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ON ACTIVE DISTURBANCE REJECTION CONTROL:

STABILITY ANALYSIS AND APPLICATIONS IN

DISTURBANCE DECOUPLING CONTROL

QING ZHENG

ABSTRACT

One main contribution of this dissertation is to analyze the stability char-

acteristics of extended state observer (ESO) and active disturbance rejection control

(ADRC). In particular, asymptotic stability of the dynamic system that describes the

estimation error and the closed-loop system is established where the plant dynamics

is completely known. In the face of large dynamic uncertainties, the estimation error,

the closed-loop tracking error, and its up to the (n− 1)st order derivatives are shown

to be bounded. Furthermore, it is demonstrated that the error upper bounds, in

general, monotonously decrease with the observer and control loop bandwidths. The

second contribution is to develop a dynamic disturbance decoupling control strategy

for square multivariable systems based on ADRC. The proposed method has been

successfully applied to chemical process problems and micro-electro-mechanical sys-

tems gyroscopes. It is shown that a largely unknown square multivariable system

can be readily decoupled by actively estimating and rejecting the effects of both the

internal plant dynamics and external disturbances. By requiring little information on

the plant model, the intention is to make the new decoupling approach practical.
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CHAPTER I

INTRODUCTION

Most existing control design methods, such as Bode plot method in classical

control and H2/H∞ control in modern control theory, are based on mathematical

description of plant dynamics. However, many physical plants in real world are not

only nonlinear and time-varying but also highly uncertain. Accurate mathematical

descriptions of physical plants are usually not available in industrial control. This

creates a dilemma for control practitioners: the requirement of the plant mathematical

model from the theoretical side and the uncertainty of the plant dynamics in practice.

Such dilemma caught much attention of many researchers. One solution is robust

control, where a small amount of uncertainty in physical plants can be tolerated.

Another dilemma in control system design is how to handle disturbances. In

the current modern control framework, disturbance attenuation is one of key control

design objectives. A less known solution is to estimate and cancel disturbance directly.

To this end, many disturbance estimators, such as unknown input observer (UIO) [1]-

[8], disturbance observer (DOB) [9]-[16], perturbation observer (POB) [17]-[20], and

extended state observer (ESO) [21]-[27], have been proposed. Based on the ESO,

1
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an active disturbance rejection control (ADRC) algorithm has also been developed

[21]-[27]. The ADRC offers a new and inherently robust controller building block that

requires very little information of the plant. This control algorithm actively estimates

and compensates for the effects of the unknown dynamics and disturbances, forcing

an otherwise unknown plant to behave like a nominal one. Such strategy offers an

alternative to the prevailing methods. That is, instead of depending on the model of

the plant, the controller draws the information needed from the ESO to control the

plant. This is achieved by using an ESO to estimate both internal plant dynamics

and external disturbances.

In robust control, the stability analysis is mostly based on the small gain the-

orem, and the results tend to be quite conservative by nature. As to the class of

disturbance estimators UIO, DOB, and POB, the rigorous stability proof or conver-

gence is not established, although a few researchers speculated this could be done.

Although the ESO and the ADRC have been applied to solve many different kinds of

problems, their convergence and stability have not been proven. Furthermore, there

is a lack of understanding of the exact relationship between the control system tuning

parameters and the performance requirements. In short, we know the ADRC works,

but do not know why. In particular, the relationship between the tuning parameters,

which include the observer and controller bandwidths, and the observer estimation er-

ror and the closed-loop tracking error is unknown. Without rigorous analytical study,

the ADRC remains a trial and error method. Therefore the stability and convergence

analysis for the ESO and the ADRC is essential.

In this dissertation, one key objective is to provide an analytical insight on why

ADRC achieves excellent performance, that is, to mathematically show that both the

external disturbance and the plant dynamics can be estimated by ESO. Estimating the

unknown parameters in plants has been studied in system identification. Estimating
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both the external disturbance and the plant dynamics crosses the boundary between

system identification and observer design. Whether the combined effect of plant

dynamics and external disturbance can be estimated in real time or not is of great

importance, because if the answer is yes, it could mean that the uncertainty problem,

the adaptive control problem, and disturbance rejection problem, can all be handled

in one single framework.

The mathematical proof of the ESO convergence and the ADRC stability ren-

ders the theoretical support of why the ADRC can achieve high disturbance rejection

and robustness performance. It also explains why the ADRC has been successfully

applied to many applications. In this dissertation, the ADRC is extended to another

important class of practical problems, namely the decoupling control for multivariable

systems.

The interactions or cross-couplings between the variables are the most signif-

icant characteristics with multivariable systems, i.e., systems with multiple inputs

and multiple outputs, also known as multiple-input multiple-output (MIMO) sys-

tems. With the interactions or cross-couplings present, one input variable may affect

all the output variables. In a vibrational micro-electro-mechanical systems (MEMS)

gyroscope [28], the quadrature error is caused by coupling in the stiffness term be-

tween its drive and sense axes. In the Wood and Berry column example [29], the

inputs reflux and vapor flow both affect the two outputs, which are the top and

bottom composition. The interactions or cross-couplings among various inputs and

outputs of a system make design technologies in multivariable control systems fun-

damentally different from single-input single-output (SISO) control systems. Given

that our understanding of the physics of MIMO systems usually helps us identify the

dominant input-output pairs, one design strategy is to disentangle the interactions

among various input-output pairs and reduce a multivariable system into a number
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of independent SISO systems. This strategy is usually known as decoupling.

Although the interactions are present in most multivariable systems, the con-

trol engineers in industry frequently ignore the interactions between variables and

design the controller for each loop independently. In most cases, proportional, in-

tegral, and derivative (PID) control is preferred. This is not because the control

engineers are not aware of the interactions but because the existing methods for solv-

ing the problem are difficult for engineers to understand and implement, either due

to their mathematical complexity or due to the unavailability of the necessary model

information. Therefore, it is important to find an approach that can address the

interaction problems and is practical and easy to be implemented in industry. This

leads to the second key objective of this research, that is, to develop a new practical

decoupling control approach for multivariable systems.

In this dissertation, we first analyze the stability characteristics of the ESO

and the associated ADRC, then discuss the proposed disturbance decoupling control

(DDC) approach. The organization of the dissertation is as follows. The stability

problem of the ADRC and the decoupling problem are formulated in Chapter 2, where

the literature survey for disturbance estimators, stability analysis of disturbance esti-

mators, and decoupling control is also given. The idea of the ADRC is introduced and

its effectiveness is demonstrated through simulation and hardware tests in Chapter

3. The stability characteristics for the ESO and the ADRC are analyzed in Chapter

4. A novel and practical DDC approach is proposed in Chapter 5. Simulation results

obtained on two chemical process problems are shown in Chapter 6. The applications

of DDC to MEMS gyroscopes are performed in Chapter 7. Finally, the highlight

of the major contributions of this dissertation and the recommendations on possible

future research directions that may be pursued based on the insights gained from this

research are given in Chapter 8.



CHAPTER II

PROBLEM FORMULATION AND

LITERATURE SURVEY

This chapter begins with problem formulation of the ADRC stability analysis

and decoupling control, followed by a literature survey on disturbance estimation,

stability analysis of disturbance estimators, and decoupling control.

2.1 Problem Formulation

This section discusses what is the problem of the ADRC stability characteristics

and why a new decoupling control is needed.

2.1.1 The Problem of ADRC Stability Characteristics

Most physical plants in real world are not just nonlinear and time-varying but

also highly uncertain. Control system design for such systems has been the focus of

much of the recent developments under the umbrella of robust, adaptive, and non-

linear control. Most of the existing results, however, are obtained presupposing that

5
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a fairly detailed and accurate mathematical model of the plant is available. The

small gain theorem based robustness analysis does allow a small amount of uncer-

tainties in plant dynamics, but not anywhere near the magnitude often encountered

in practice. As the well-known control theorist Roger Brockett puts it: “If there is

no uncertainty in the system, the control, or the environment, feedback control is

largely unnecessary” [30]. The assumption that a physical plant, without feedback,

behaves rather closely as its mathematical model describes, as the point of departure

in control system design, does not reflect either the intent of feedback control, or the

physical reality.

The ADRC was proposed as an alternative paradigm to address this funda-

mental issue [21]. The main difference in the design concept pertains to the question

of how much model information is needed. Recognizing the vulnerability of the re-

liance on accurate mathematical model, there has been a gradual recognition over

the years that active disturbance estimation is a viable alternative to an accurate

plant model. That is, if the disturbance, representing the discrepancy between the

plant and its model, is estimated in real time, then the plant-model mismatch can

be effectively compensated for, making the model based design tolerant of a large

amount of uncertainties. The focal point is how external disturbance and unknown

dynamics can be estimated.

The ADRC is designed to deal with those plants with large amount of uncer-

tainties both in dynamics and external disturbances [22]-[26]. It was further simplified

to linear ADRC, using linear ESO in [27], which makes it extremely simple and prac-

tical [31]-[32]. Although the ADRC has a wide variety of applications, the stability

analysis of the ADRC is scarce in literature. We know the ADRC works, but do not

know why. Furthermore, there is a lack of understanding of the exact relationship

between the control system tuning parameters and the performance requirements.
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Without rigorous analytical study, the ADRC remains a trial and error method. This

dissertation specifically addresses these issues. Through analyzing stability charac-

teristics of the ADRC, we want to understand why the ADRC works, i.e., what is the

stability characteristics of the ADRC; and how to tune it, i.e, whether there is a rela-

tionship between the performance of the ADRC and the bandwidths of the observer

and the controller.

2.1.2 The Disturbance Decoupling Control Problem

The decoupling problem for systems with large uncertainties of the internal

dynamics and significant unknown external disturbances is very challenging.

Consider a multivariable system



y1(s)

y2(s)

...

ym(s)




=




g11(s) g12(s) · · · g1m(s)

g21(s) g22(s) · · · g2m(s)

...
...

. . .
...

gm1(s) gm2(s) · · · gmm(s)







u1(s)

u2(s)

...

um(s)




, (2.1)

with the mathematical model, it can be decoupled to the following system



y1(s)

y2(s)

...

ym(s)




=




G11(s) 0 · · · 0

0 G22(s) · · · 0

...
...

. . .
...

0 0 · · · Gmm(s)







u1(s)

u2(s)

...

um(s)




. (2.2)

Since the mathematical model is often unavailable in practice, sometimes it is impos-

sible to obtain the mathematically decoupled form of the system as shown in (2.2).

The question is: can we make the system behave as a decoupled system without a

mathematical model? In other words, without using the mathematical model to get

the mathematical description of the decoupled form for a system, can we make it

really operate as a decoupled system?
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More generally, Let

ϑ1 =
[
y

(n1−1)
1 (t) , y

(n1−2)
1 (t) , · · · , y1 (t)

]
,

ϑ2 =
[
y

(n2−1)
2 (t) , y

(n2−2)
2 (t) , · · · , y2 (t)

]
,

...

ϑm =
[
y(nm−1)

m (t) , y(nm−2)
m (t) , · · · , ym (t)

]
,

u = [u1 (t) , u2 (t) , · · · , um (t)] ,

w = [w1 (t) , w2 (t) , · · · , wm (t)] .

(2.3)

where yi is the output, ui is the input, wi is the external disturbance of the ith

loop, y
(ni)
i denotes the nth

i order derivative of yi, i = 1, 2, · · · ,m, and fi represents

the combined effect of internal dynamics and external disturbance in the ith loop,

including the cross channel interference. Consider the following nonlinear time varying

system with unknown dynamics

y
(n1)
1 = f1 (ϑ1, ϑ2, · · · , ϑm, u, w) + b11u1

y
(n2)
2 = f2 (ϑ1, ϑ2, · · · , ϑm, u, w) + b22u2

...

y(nm)
m = fm (ϑ1, ϑ2, · · · , ϑm, u, w) + bmmum

(2.4)

Note that i = 1, 2, · · · ,m.

Without a mathematical model, can we design a control strategy to stabilize

the system and make it run as a decoupled system? Can we find a new alternative to

the existing decoupling approaches, which are based on the mathematical description

of the plant? The new alternative should be conceptually simple and easy to under-

stand, and above all, practical to implement, for real world decoupling problems, in

the presence of significant unknown disturbances and unmodeled dynamics.

In this dissertation, we seek a novel and practical approach to DDC that re-

quires very little information of the plant dynamics.
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2.2 Literature Review

In this section, an extensive literature review for disturbance estimator, stabil-

ity analysis of disturbance rejection, and decoupling is conducted.

2.2.1 A Survey of Disturbance Estimation

State observers, also known as estimators, play a central role in modern control

theory. Given the input-output data, the values of internal variables of a physical

plant,which are often inaccessible instrumentation wise, are made available through

state observers. Such information extracted by the state observers proved to be

invaluable in control system design, as well as fault detections . Please refer to recent

surveys [33, 34].

A presumption in most existing state observer design is that an accurate math-

ematical model of the plant has been obtained. While this is a common assumption

made in academia, it could pose some rather considerable challenges time and cost

wise in engineering practice. The sometimes prohibitive cost and limitation associated

with obtaining a good mathematical model drove a significant number of researchers

and engineers to seek alternatives, such as fuzzy logic control (FLC) and artificial

neural network (ANN), but there is more than an inconvenience at stake here. If

the primary purpose of employing feedback control is to counter the uncertainties in

physical devices so that a precise and consistent behavior can be obtained from a

system that consists of devices with inconsistent and only partially known dynamics,

why does most of the modern control theory insist on having a precise mathematical

model prior to any analysis and design?

The everyday users of feedback control, however, are concerned about if there is

a viable alternative, an alternative that does not completely abandon most advances

made in modern control theory, as in the case of FLC and ANN, but does away
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with the obsession with mathematical model. Some researchers over the years have

investigated the problem of real time estimation of the disturbance, i.e. the part of the

plant that is not described by the mathematical model. The ingenious idea is that if

such discrepancy between the plant and its model can be computed and compensated

for in real time, the closed-loop system behavior will not be hinged upon the accuracy

of the plant model.

One class of such disturbance estimators is the UIO [1]-[8], where the distur-

bance is treated as an augmented state of the plant. The state observer is designed

to estimate both the original states and the augmented one. The disturbance is then

rejected by using its estimated value obtained by the observer. Another class of dis-

turbance estimators is known as the DOB [9]-[16], where the disturbance is estimated

by using the inverse of the nominal transfer function of the plant. In addition to

the UIO and the DOB, there are also scattered reports of different variations, such

as the adaptive robust controller, the adaptive inverse controller, and model-based

disturbance attenuation method. Some researchers proposed the POB [17]-[20] to

estimate the disturbances in a discrete state space form.

Another important class of such disturbance estimators is the ESO [21]-[27].

The ESO is a state space approach. What sets the ESO apart from the UIO and the

DOB is that it is conceived to estimate not only external disturbances but also plant

dynamics. Among the disturbance estimators, the ESO requires the least amount

of plant information. As one class of such disturbance estimators, the ESO was

first proposed by Han in the context of the ADRC [22]-[25]. The ADRC as a new

design paradigm was first introduced to the English literature in [26]. The ADRC

using nonlinear gains was successfully applied to a complex Stewart platform control

problem in [31]. Although the idea is quite imaginative, the nonlinear structure

and a large number of tuning parameters, which need to be manually adjusted in
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implementation, make its large scale practical applications challenging. Central to

this novel design framework is the ability to estimate generalized disturbance (GD)

in real time.

The estimation of both unknown dynamics and disturbance has been studied

in [35], but it requires the higher order derivatives of the output, which may not be

available in practice. The estimation of unknown dynamics can also be achieved by

the high gain observer (HGO) [36]-[39], however, the high gain associated with the

HGO makes the system too sensitive to noise.

2.2.2 A Survey of Stability Analysis of Disturbance Estima-

tors

All estimators above, including the UIO, the DOB, and the POB, prove to

be effective practical solutions. But how fast and in what range the disturbance

and unknown dynamics can be estimated are not obvious. In particular, both the

UIO and the DOB are originally formulated to estimate the external disturbances

but later adopted to estimate the unknown plant dynamics as well, with very little

analytical support on how this can be achieved. Even when limited stability analysis

was performed, only boundedness of estimation or compensation error was obtained,

while the actual bound of the error is largely unknown. Some robust stability analysis,

based on small gain theorem, was performed for the UIO and the DOB [14]-[16] but

the results tend to be quite conservative by nature and limited to linear and time-

invariant plants. For nonlinear plants, only limited results on stability properties are

obtained for robot manipulators [10], [13].

In a rare exception, the approach proposed by [35] is designed specifically to

estimate both unknown dynamics and disturbance with asymptotic stability of the

closed-loop system firmly established. But the practicality method is quickly called
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into question as the observer, hence the stability proof, requires the use of higher

order derivatives of the output, rendering the system susceptible to noise corruption.

In short, for those effective practical solutions, there seems to be a lack of rigorous

analysis of the estimation error, especially its bound. But for those methods firmly

rooted in mathematical rigor, the utility is often questionable.

The ESO and the associated ADRC can effectively estimate not only exter-

nal disturbances but also plant dynamics. In addition, the ADRC has been widely

used in various problems [32]-[43]. A singular perturbation approach is used to show

there exists a small gain to guarantee that the origin of the error dynamics is ex-

ponentially stable under strict assumptions [44]. However, the error upper bound

and its relationship to the bandwidth are not given, which are the concerns of this

dissertation.

As to the HGO, in fact, there is a marked similarity between the HGO and

the ESO in terms of how the observer gains are selected, leading some readers to

suspect that the ESO is a special case of the HGO. To clarify this issue, the difference

between the HGO and the ESO is seen in the following four aspects. 1). The plant

and problem formulation are very different. With the HGO, the task is to estimate

the states for a class of nonlinear plants as y(n) = f(·) + g(·)u(m), with a nominal

model of f0(·) and g0(·). On the other hand, in addition to the state estimation,

the ESO is specifically designed to estimate the effects of unknown dynamics and

external disturbances for a different class of plants, mostly unknown, nonlinear and

time-varying: y(n)(t) = f
(
y(n−1)(t), y(n−2)(t), · · · , y(t), w(t)

)
+ bu(t) = F (t) + bu(t),

where w is an external disturbance and F (t) = f
(
y(n−1)(t), y(n−2)(t), · · · , y(t), w(t)

)

is to be estimated as an extended state. With f(·) as a mathematical expression

completely unknown, the ADRC is a novel design methodology by which f(·) is

treated as a variable to be estimated and canceled in the control law, thus making
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the design largely model independent. 2). The goal and approach used in stability

analysis are different. In the HGO, Lyapunov method and singular perturbation are

used to derive stability conditions. In the ADRC analysis, we seek the insight on the

relationship between the tracking error and the bandwidth, which helps to guide the

users in tuning the feedback system in real world applications. In fact, we were able

to show, by solving the differential equation of error dynamics, that the estimation

error is bounded and, more importantly, monotonously decreases with the observer

bandwidth. 3). The assumptions made in the HGO and the ESO are different. The

analysis of the HGO is predicated on six different mathematical assumptions that

are, though convenient, not necessarily easy to verify in a given physical process. The

only assumption in the ESO is that h = ḟ is bounded and this, we believe, agrees with

most physical systems where the rate of change associated with the highest derivative

is physically limited. For example, the jerk generated by a DC motor can be unknown

but it is limited by the supply voltage. On the other hand, the assumption that f(·)
is Lipschitz in [37] is not necessary in our framework, nor is it valid in the presence of

certain external disturbance, such as a ramp disturbance. 4). The conclusions of the

HGO and the ESO are different. For the HGO, based on six assumptions, it is shown

the state, in its common definition, can be estimated where the tracking error can be

made arbitrarily small with the increasing observer gains. With the ESO, we show

that not only the state but also the unknown plant dynamics and disturbance, namely

F (t) = f
(
y(n−1)(t), y(n−2)(t), · · · , y(t), w(t)

)
, can be estimated with a bounded error.

This has simply not been done before and it has enormous practical implications.

2.2.3 A Survey of Decoupling Control

Decoupling of linear time invariant (LTI) multivariable systems has drawn re-

searchers’ interest in the past several decades [45]-[73], making it a well established
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area. The long research records on decoupling control reveal that this topic has now

been well studied, at least for the systems with parameters being exactly known.

In sharp contrast to other issues of control theory, the study of decoupling problem

for uncertain systems has rarely been reported in the literature. This phenomena is

unsatisfactory since parameter perturbation or deviation from their nominal values

is inevitable in real plants, especially in industrial process control. Intuitively, strict

decoupling is very difficult to achieve due to the presence of plant parameter per-

turbations. In practice, it is often the case that first design a decoupling controller

(decoupler) for the nominal model of the real plant, put the decoupler as the inner

loop controller and then on-line tune the outer loop controller to make the overall sys-

tem performance be roughly satisfied. Reference [74] describes such a procedure. In

robot control systems, the calculated torque method combined with gain scheduling

also belongs to this approach [75].

Among the many existing decoupling methods, their mathematical complexity

or requirements of the specific model information prevent them from prevailing in

industry. Robustness, disturbance rejection, and other practical concerns continue to

pose serious challenges [45]. In conjunction with decoupling control, the importance

of disturbance rejection has been recognized by many researchers. One main stream

of disturbance rejection methods for decoupling control is based on the concept of

the disturbance estimation, which was outlined in Section 2.2.1. The effectiveness

of the existing disturbance rejection methods, such as the UIO, the DOB, and the

POB, is limited by the requirement of an accurate mathematical model of the plant.

In engineering practice, however, such presumption is hardly warranted as many

industrial processes are highly uncertain and are in a perpetual flux. This also explains

why currently PID control is still very popular and is the most commonly used control

method in practice. It is one target of this research to find a new alternative that is
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conceptually simple and easy to understand, and above all, practical to implement, for

real world decoupling problems, in the presence of significant unknown disturbances

and unmodeled dynamics.

2.3 Summary

Chapter 2 formulates the problems that this dissertation addresses and presents

a literature review on disturbance estimation, stability analysis of disturbance esti-

mators, and decoupling control. The problem formulation and the literature survey

show that the proposed research in this dissertation is indeed meaningful.



CHAPTER III

ACTIVE DISTURBANCE REJECTION

CONTROL

The ADRC is a quite different design philosophy. At its foundation is the

recognition that, in the real world, dynamic systems are often highly uncertain, both

in terms of the internal dynamics and external disturbances. The magnitude of the

uncertainties could make them well beyond the reach of prevailing robust control

theories, such as H2/H∞. The ADRC offers a solution where the necessary model-

ing information needed for the feedback control system to function well is obtained

through the input-output data of the plant in real time. Consequently, the control

system can react promptly to the changes either in the internal dynamics of the plant,

or its external disturbances. In the ADRC framework, such disturbance is actively es-

timated using the ESO and canceled in the control law, in the absence of an accurate

mathematical model of the plant.

In this chapter, for simplicity and easy understanding, a third order ADRC is

presented for controlling a second order system. This chapter begins with the ESO

16
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design, followed by the ADRC controller design. Section 3.3 shows the simulation

and hardware tests to demonstrate the effectiveness of the ESO and the ADRC.

3.1 Extended State Observer

Consider a generally nonlinear time-varying second order dynamic system

ÿ (t) = f(ẏ (t) , y (t) , w (t)) + bu (t) . (3.1)

where w is the external disturbance and b is a given constant. Here f(ẏ (t) , y (t) , w (t)),

or simply denoted as f , represents the nonlinear time-varying dynamics of the plant

that is unknown. That is, for this plant, only the order and the parameter b are given.

The ADRC is a unique method designed to tackle this problem. It is centered around

estimation of, and compensation for, f . To this end, assuming f is differentiable and

let h = ḟ , (3.1) can be written in an augmented state space form

ẋ1 = x2

ẋ2 = x3 + +bu

ẋ3 = h (x, u, w, ẇ)

y = x1

(3.2)

where x = [x1, x2, x3]
T . An ESO of (3.2) will estimate the derivatives of y and f since

(3.2) is now a state in the extended state model. With u and y as inputs, the ESO

of (3.2) is given as

˙̂x1 = x̂2 + l1 (x1 − x̂1)

˙̂x2 = x̂3 + l2 (x1 − x̂1) + bu

˙̂x3 = l3 (x1 − x̂1) ,

(3.3)

where x̂ = [x̂1, x̂2, x̂3]
T , and li, i = 1, 2, 3, are the observer gain parameters to be

chosen. The observer gains are chosen such that the characteristic polynomial s3 +
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l1s
2 + l2s + l3 is Hurwitz. For tuning simplicity, all the observer poles are placed at

−ωo. It results in the characteristic polynomial of (3.3) to be

λo(s) = s3 + l1s
2 + l2s + l3 = (s + ωo)

3 (3.4)

where ωo is the observer bandwidth and L =

[
3ωo 3ω2

o ω3
o

]T

.

Generally, the larger the observer bandwidth is, the more accurate the esti-

mation will be. However, a large observer bandwidth will increase noise sensitivity.

Therefore a proper observer bandwidth should be selected in a compromise between

the tracking performance and the noise tolerance.

3.2 Controller Design

Once the observer is designed and well tuned, its outputs will track x1, x2, and

x3 respectively. By canceling the effect of f using x̂3, the ADRC actively compensates

for f in real time. The ADRC control law is given by

u =
k1 (r − x̂1) + k2 (ṙ − x̂2)− x̂3 + r̈

b
(3.5)

where r is the reference signal, k1 and k2 are the controller gain parameters selected

to make s2 + k2s + k1 Hurwitz. For simplicity, let k1 = ω2
c , k2 = 2ωc, where ωc is the

controller bandwidth. The closed-loop system becomes

ÿ = (f − x̂3) + k1 (r − x̂1) + k2 (ṙ − x̂2) + r̈. (3.6)

Note that with a well-designed ESO, the first term in the right hand side (RHS)

of (3.6) is negligible and the rest of the terms in the RHS of (3.6) constitute a PD

controller with a feedforward gain.

In practice, the controller bandwidth, ωc, is tuned based on how fast and steady

we want the output to track the set point. A large controller bandwidth generally
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increases the response speed but it may push the system to its limit, leading to

oscillations or even instability. Thus the controller bandwidth should be adjusted

based on the competing requirements of performance and stability margin, together

with noise sensitivity. In addition, a large controller bandwidth usually increases the

magnitude and rate of change in control signal, and therefore the operation cost.

The observer is tuned in a similar way: adjusting its bandwidth, ωo, for a trade off

between tracking performance and noise sensitivity.

The primary reason for this particular parameterization and tuning method is

practicality: the observer and feedback gains must be easily tunable by most engi-

neers, who are usually familiar with the concept and implications of bandwidth. It

is advantageous that engineers could use a completely new design method without

losing the critical insight gained from classical control: frequency response.

The effectiveness of the ESO and the ADRC is shown as below through simu-

lation tests and hardware implementation.

3.3 Simulation and Hardware Tests

Two examples are given below for illustration purposes. One is a simulation

study applying the ESO and the ADRC to a nonlinear plant to see how they per-

form with three different levels of knowledge on the plant dynamics. The other is a

hardware test showing the effectiveness of ESO and ADRC in a real motion control

environment. Section 3.3 has been presented in [76]1.

1 c©[2007] IEEE.



20

3.3.1 A Simulation Case Study

Consider the following nonlinear system

ÿ = ẏ3 + y + w + u. (3.7)

Rewrite (3.7) as

ÿ = f + bu (3.8)

where f represents the summation of the plant dynamics ẏ3 + y and the external

disturbance w.

Note that for a second order plant, the ESO is of the third order, where x̂3 is

an estimate of f . With a well-tuned observer, the control law

u =
u0 + r̈ − x̂3

b
, (3.9)

should approximately reduces the original plant (3.8) to a double integral one, i.e.

ÿ ≈ u0. (3.10)

With the plant reduced to (3.10), a simple PD controller of the form

u0 = kp(r − x̂1) + kd(ṙ − x̂2) (3.11)

is usually sufficient to make the output track r, the desired trajectory, where kp =

ω2
c , kd = 2ωc.

The ESO tracking performance is demonstrated in Figure 1 under three differ-

ent scenarios: 1) f is completely unknown; 2) only partial internal dynamics infor-

mation of the plant is given, i.e. fpartial = ẏ3; 3) the internal dynamics of the plant

fin is completely known, i.e. fin = ẏ3 + y is given. In this simulation, the tuning

parameters are ωc = 4.5 rad/sec and ωo = 20 rad/sec. Figure 1 shows the observer

errors for three cases using a step input at t = 1 second as the excitation and a pulse
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disturbance with the amplitude of ±20, the period of 4 seconds, the pulse width 5% of

the period, and the phase delay of 4 seconds. The ADRC performance with different

ESOs is shown in Figure 2. From Figure 1 and Figure 2, it can be observed that the

observer error decreases as the model information is incorporated into the ESO, and

so does the tracking error of the control loop.
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ŷ

The errors between actual and estimated information

ESO1
ESO2
ESO3

0 1 2 3 4 5 6 7 8
−2

0

2

E
rr

o
r

o
f
ẏ
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Figure 1: The errors between actual and estimated information. (ESO1: without
plant information; ESO2: with partial plant information; ESO3: with complete plant
information. Note that ESO2 and ESO3 are almost overlapped.)

3.3.2 A Motion Control Hardware Test

Motion control applications can be found in almost every sector of industry,

from factory automation and robotics to high-tech computer hard-disk drives. They

are used to regulate mechanical motions in terms of position, velocity, and accelera-

tion, and/or to coordinate the motions of multiple axes or machine parts. In this case

study, an industrial motion control test bed [77] is used to verify if the plant dynamics

can indeed be estimated in real time, as shown in the mathematical analysis.
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with complete plant information. Note that ESO2 and ESO3 are almost overlapped.)

The experimental setup includes a PC-based control platform and a DC brush-

less servo system, which is shown in Figure 3. The servo system includes two motors

(one as an actuator and the other as the disturbance source), a power amplifier,

and an encoder which provides the position measurement. The inertia, friction, and

backlash are all adjustable, making it convenient to test the control algorithms. A

Pentium 133 MHz PC running in DOS is programmed as the controller. It contains

a data acquisition board for digital to analog conversion and a counter board to read

the position encoder output in the servo system. The sampling frequency is 1 KHz.

The output of the controller is limited to ±3.5 V. The drive system has a dead zone

of ±0.5 V. The system is approximated as a second-order plant of the form

ÿ (t) = f (y (t) , ẏ (t) , w (t)) + bu (t) (3.12)

where y (t) is the position output, b is a constant, u (t) is the control voltage sent

to the power amplifier that drives the motor, w (t) is the external disturbance, and
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f (y (t) , ẏ (t) , w (t)) represents the combined effect of internal dynamics and external

disturbances of the plant.

DAC

PC-based

LADRC

encoder

DC signal

Conditioning

DC drive

(2 channels)

Disturbance

Signal

Electro-

mechanical

plant
Quadrature

Counting

Board

Figure 3: A diagram for DC brushless servo system.

How close (3.10) is to a double integral plant will be an indicator of how ef-

fective the observer is. Figure 4 shows the output comparison of an ideal double

integrator, simulation test and hardware test of the original system (3.12) compen-

sated by (3.9), where x̂3 is obtained from (4.13), with b0 = 25 and ωo = 300 rad/sec.

Note that b0 is the approximate value of b in (3.12). The closeness of the three curves

in Figure 4 confirms, beyond doubt, that the ESO is capable of extracting information

from the input-output data on the unknown dynamics and disturbances. Moreover,

this can be done in such a simple and effective manner that it makes the practical

application straightforward.

The ADRC is tested in the Educational Control Products (ECP) motion con-

trol test bed with the tuning parameters selected as ωc = 50 rad/sec and ωo = 100

rad/sec, where the ESO is employed. As a comparison base, the hardware tests of the

ADRC, for the nominal case and the case with the inertia increased by a factor of two

and a 15% torque disturbance applied at t = 2 seconds, even though the controller

parameters ωc, ωo and b0 are kept unchanged, the ADRC demonstrates remarkable

consistency in the presence of a significant disturbance and dynamic variation. The

performance is shown in Figure 5. Such performance can only be attributed to the



24

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

7

8

9

Time (s)

O
ut

pu
t y

 (
m

)

The outputs of ideal double integrator, simulation test, hardware test

 

 

ideal double integrator
simulation test
hardware test

Figure 4: The output comparison among an ideal double integrator, simulation test,
and hardware test.

ability of the ESO in obtaining an accurate estimation of the combined effect of plant

dynamics and external disturbances in real time.

3.4 Summary

In this chapter, the ideas of the ESO design and the controller design of the

ADRC are presented. The simulation and hardware tests shown in Section 3.3 verify

the high disturbance rejection and robustness performance of the ESO and the ADRC.
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CHAPTER IV

STABILITY ANALYSIS

The ADRC has been extensively applied to nonlinear time-varying plants that

are largely unknown. This chapter concerns with questions: 1) for a physical plant to

be controlled, whether or not its internal dynamics and external disturbances can be

realistically estimated in real time from its input-output data by the ESO; 2) whether

or not there is an assurance for stability of the ADRC. In this chapter, it is shown

that, for an nth order plant, the answers to the above questions are indeed yes.

In particular, for the ESO, it is shown that the estimation error 1) converges

to the origin asymptotically when the model of the plant is given; 2) is bounded and

the error upper bound monotonously decreases with the bandwidth of the observer

when the plant model is mostly unknown. For the ADRC, asymptotic stability is

established where the plant dynamics is completely known. In the face of large

dynamic uncertainties, the tracking error and its up to the (n− 1)st derivatives are

shown to be bounded. Furthermore, it is demonstrated that the closed-loop tracking

error upper bounds, in general, monotonously decrease with the bandwidths of the

controller and the observer.
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Note that this is not another parameter estimation algorithm in the framework

of adaptive control. It applies to a large class of nonlinear, time-varying processes

with unknown dynamics.

This chapter is organized as follows. Section 4.1 analyzes the ESO convergence.

Section 4.2 shows the ADRC stability. The chapter ends with a summary in Section

4.3. Note that Some contents of this chapter are extracted from [78]1.

First we want to establish the convergence of the ESO.

4.1 Analysis of ESO Error Dynamics

In this section, it is shown that: 1) with given plant dynamics, the dynamic

system describing the estimation error is asymptotically stable; 2) with plant dynam-

ics largely unknown, the ESO can estimate the unknown dynamics and disturbances

and the estimation error upper bound of the ESO monotonously decreases with the

observer bandwidth.

Consider a generally nonlinear time-varying dynamic system with single-input,

u, and single-output, y,

y(n) (t) = f(y(n−1) (t) , y(n−2) (t) , · · · , y (t) , w (t)) + bu (t) . (4.1)

where w is the external disturbance and b is a given constant. Here f
(
y(n−1) (t) ,

y(n−2) (t) , · · · , y (t) , w (t)
)
, or simply denoted as f , represents the nonlinear time-

varying dynamics of the plant that is unknown. That is, for this plant, only the order

and the parameter b are given. The ADRC is a unique method designed to tackle

this problem. It is centered around estimation of, and compensation for, f . To this

end, assuming f is differentiable and let h = ḟ , (4.1) can be written in an augmented

1 c©[2007] IEEE.
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state space form

ẋ1 = x2

...

ẋn−1 = xn

ẋn = xn+1 + bu

ẋn+1 = h (x, u, w, ẇ)

y = x1

(4.2)

where x = [x1, x2, · · · , xn+1]
T ∈ Rn+1, u ∈ R and y ∈ R are the state, input and

output of the system, respectively. It is assumed that the order of the plant and the

parameter b are given. Any state observer of (4.2), will estimate the derivatives of y

and f since the latter is now a state in the extended state model. Such observers are

known as the ESO. The convergence of the estimation error dynamics for the ESO is

shown below.

4.1.1 Convergence of the ESO with the Given Model of the

Plant

First the convergence of the ESO for a system with a given h is shown. With

u and y as inputs and the function h given, the ESO of (4.2) is given as

˙̂x1 = x̂2 + l1 (x1 − x̂1)

...

˙̂xn−1 = x̂n + ln−1 (x1 − x̂1)

˙̂xn = x̂n+1 + ln (x1 − x̂1) + bu

˙̂xn+1 = ln+1 (x1 − x̂1) + h (x̂, u, w, ẇ)

(4.3)

where x̂ = [x̂1, x̂2, · · · , x̂n+1]
T ∈ Rn+1, and li, i = 1, 2, · · · , n+1, are the observer gain

parameters to be chosen. In particular, let us consider a special case where the gains
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are chosen as

[l1, l2, · · · , ln+1] =
[
ωoα1, ω

2
oα2, · · · , ωn+1

o αn+1

]
(4.4)

with ωo > 0. Here αi, i = 1, 2, · · · , n + 1, are selected such that the characteristic

polynomial sn+1 +α1s
n + · · ·+αns+αn+1 is Hurwitz. For simplicity, let sn+1 +α1s

n +

· · · + αns + αn+1 = (s + 1)n+1 where αi = (n+1)!
i!(n+1−i)!

, i = 1, 2, · · · , n + 1. Then the

characteristic polynomial of (4.3) is

λo (s) = sn+1 + ωoα1s
n + · · ·+ ωn

o αns + ωn+1
o αn+1 = (s + ωo)

n . (4.5)

and ωo, the observer bandwidth, becomes the only tuning parameter of the observer.

Let x̃i = xi − x̂i, i = 1, 2, · · · , n + 1. From (4.2) and (4.3), the observer

estimation error can be shown as

˙̃x1 = x̃2 − ωoα1x̃1

...

˙̃xn−1 = x̃n − ωn−1
o αn−1x̃1

˙̃xn = x̃n+1 − ωn
o αnx̃1

˙̃xn+1 = h (x, u, w, ẇ)− h (x̂, u, w, ẇ)− ωn+1
o αn+1x̃1.

(4.6)

Now let εi = x̃i

ωi−1
o

, i = 1, 2, · · · , n + 1, then (4.6) can be rewritten as

ε̇ = ωoAε + B
h (x, u, w, ẇ)− h (x̂, u, w, ẇ)

ωn
o

(4.7)

where A =




−α1 1 0 · · · 0

−α2 0 1 · · · 0

...
...

. . .
...

...

−αn 0 · · · 0 1

−αn+1 0 · · · 0 0




, B = [0 0 · · · 0 1]T . Here A is Hurwitz for

the αi, i = 1, 2, · · · , n + 1, chosen above.
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Theorem 1. Assuming h (x, u, w, ẇ) is globally Lipschitz with respect to x, there

exists a constant ωo > 0, such that lim
t→∞

x̃i (t) = 0, i = 1, 2, · · · , n + 1.

Proof. Since A is Hurwitz, there exists a unique positive definite matrix P

such that AT P + PA = −I. Choose the Lyapunov function as V (ε) = εT Pε. Hence

V̇ (ε) = ∂V (ε)
∂ε

ε̇, where

∂V (ε)

∂ε
=

∂
(
εT Pε

)

∂ε
= 2εT P, (4.8)

and

V̇ (ε) = 2εT P ε̇

= 2εT P

[
ωoAε + B

h (x, u, w, ẇ)− h (x̂, u, w, ẇ)

ωn
o

]

= ωoε
T PAε + ωoε

T AT Pε + 2εT PB
h (x, u, w, ẇ)− h (x̂, u, w, ẇ)

ωn
o

= −ωo ‖ε‖2 + 2εT PB
h (x, u, w, ẇ)− h (x̂, u, w, ẇ)

ωn
o

. (4.9)

Since the function h (x, u, w, ẇ) is globally Lipschitz with respect to x, that is, there

exists a constant c′ such that |h (x, u, w, ẇ)− h (x̂, u, w, ẇ)| ≤ c′ ‖x− x̂‖ for all x, x̂, u, w,

and ẇ, it follows that

2εT PB
|h (x, u, w, ẇ)− h (x̂, u, w, ẇ)|

ωn
o

≤ 2εT PBc′
‖x− x̂‖

ωn
o

. (4.10)

When ωo ≥ 1, one has ‖x−x̂‖
ωn

o
= ‖x̃‖

ωn
o

=
‖√ε2

1+ε2
2ω2

o+ε2
3ω4

o+···+ε2
n+1ω2n

o ‖
ωn

o
≤ ‖ε‖. Therefore,

we obtain

2εT PB
|h (x, u, w, ẇ)− h (x̂, u, w, ẇ)|

ωn
o

≤ 2εT PBc′
‖x− x̂‖

ωn
o

≤ 2εT PBc′ ‖ε‖

≤ ‖ε‖2 + ‖PBc′‖2 ‖ε‖2

= c ‖ε‖2 (4.11)
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where c = 1 + ‖PBc′‖2. From (4.9) and (4.11), one has

V̇ (ε) ≤ − (ωo − c) ‖ε‖2 . (4.12)

That is, V̇ (ε) < 0 if ωo > c. Therefore, lim
t→∞

x̃i (t) = 0, i = 1, 2, · · · , n + 1, for ωo > c.

Q.E.D.

In summary, it is proven that, when the plant model is given, the dynamic

system describing the estimation error of the ESO (4.3) is asymptotically stable.

4.1.2 Convergence of the ESO with Plant Dynamics Largely

Unknown

In this section, we consider that the plant dynamics represented by f is mostly

unknown. In this case, the ESO in (4.3) now takes the form of

˙̂x1 = x̂2 + l1 (x1 − x̂1)

...

˙̂xn−1 = x̂n + ln−1 (x1 − x̂1)

˙̂xn = x̂n+1 + ln (x1 − x̂1) + bu

˙̂xn+1 = ln+1 (x1 − x̂1) .

(4.13)

Consequently, the observer estimation error in (4.6) becomes

˙̃x1 = x̃2 − ωoα1x̃1

...

˙̃xn−1 = x̃n − ωn−1
o αn−1x̃1

˙̃xn = x̃n+1 − ωn
o αnx̃1

˙̃xn+1 = h (x, u, w, ẇ)− ωn+1
o αn+1x̃1

(4.14)

and Equation (4.7) is now

ε̇ = ωoAε + B
h (x, u, w, ẇ)

ωn
o

. (4.15)
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Theorem 2. Assuming h (x, u, w, ẇ) is bounded, there exist a constant σi > 0 and

a finite T1 > 0 such that |x̃i (t)| ≤ σi, i = 1, 2, · · · , n + 1,∀t ≥ T1 > 0 and ωo > 0.

Furthermore, σi = O
(

1
ωk

o

)
, for some positive integer k.

Proof. Solving (4.15), it follows that

ε (t) = eωoAtε (0) +

∫ t

0

eωoA(t−τ)B
h (x (τ) , u, w, ẇ)

ωn
o

dτ . (4.16)

Let

p (t) =

∫ t

0

eωoA(t−τ)B
h (x (τ), u, w, ẇ)

ωn
o

dτ , (4.17)

since h (x (τ), u, w, ẇ) is bounded, that is, |h (x (τ), u, w, ẇ)| ≤ δ, where δ is a positive

constant, for i = 1, 2, · · · , n + 1, we have

|pi (t)| ≤
∫ t

0

[
eωoA(t−τ)B

]
i
|h (x (τ), u, w, ẇ)| dτ

ωn
o

≤ δ
∫ t

0

[
eωoA(t−τ)B

]
i
dτ

ωn
o

=
δ

ωn
o

{[
− (ωoA)−1 eωoA(t−τ)

∣∣t
0

]
B

}
i

≤ δ

ωn+1
o

[∣∣(A−1B
)

i

∣∣ +
∣∣(A−1eωoAtB

)
i

∣∣] .

(4.18)

For A and B defined in (4.7), A−1 =




0 0 0 · · · − 1
αn+1

1 0 0 · · · − α1

αn+1

0 1 0 · · · − α2

αn+1

...
...

...
. . .

...

0 0 · · · 1 − αn

αn+1




,
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and

∣∣(A−1B
)

i

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣




- 1
αn + 1

- α1

αn + 1

...

- αn

αn + 1




i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=





1
αn+1

∣∣∣
i=1

αi−1

αn+1

∣∣∣
i=2,···, n+1

≤ ν (4.19)

where ν = max
i=2,··· ,n+1

{
1

αn+1
, αi−1

αn+1

}
. Since A is Hurwitz, there exists a finite time T1 > 0

such that

∣∣∣
[
eωoAt

]
ij

∣∣∣ ≤ 1

ωn+1
o

(4.20)

for all t ≥ T1, i, j = 1, 2, · · · , n + 1. Hence

∣∣[eωoAtB
]
i

∣∣ ≤ 1

ωn+1
o

(4.21)

for all t ≥ T1, i = 1, 2, · · · , n + 1. Note that T1 depends on ωoA. Let A−1 =


s11 . . . s1,n+1

...
. . .

...

sn+1,1 · · · sn+1,n+1




and eωoAt =




d11 . . . d1,n+1

...
. . .

...

dn+1,1 · · · dn+1,n+1




. One has

∣∣(A−1eωoAtB
)

i

∣∣ = |si,1d1,n+1 + si,2d2,n+1 + · · ·+ si,n+1dn+1,n+1|

≤ |si,1|+ |si,2|+ · · ·+ |si,n+1|
ωn+1

o

=





1
ωn+1

o αn+1

∣∣∣
i=1

1
ωn+1

o

(
1 + αi−1

αn+1

)∣∣∣
i=2,··· ,n+1

≤ µ

ωn+1
o

(4.22)
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for all t ≥ T1, i = 1, 2, · · · , n+1, where µ = max
i=2,··· ,n+1

{
1

αn+1
, 1 + αi−1

αn+1

}
. From (4.18),

(4.19), and (4.22), we obtain

|pi (t)| ≤ δν

ωn+1
o

+
δµ

ω2n+2
o

(4.23)

for all t ≥ T1, i = 1, 2, · · · , n + 1. Let εsum (0) = |ε1 (0)|+ |ε2 (0)|+ · · ·+ |εn+1 (0)|. It

follows that

∣∣[eωoAtε (0)
]
i

∣∣ = |di,1ε1 (0) + di,2ε2 (0) + · · ·+ di,n+1εn+1 (0)|

≤ εsum (0)

ωn+1
o

(4.24)

for all t ≥ T1, i = 1, 2, · · · , n + 1. From (4.16), one has

|εi (t)| ≤
∣∣[eωoAtε (0)

]
i

∣∣ + |pi (t)| . (4.25)

Let x̃sum (0) = |x̃1 (0)|+|x̃2 (0)|+· · ·+|x̃n+1 (0)|. According to εi = x̃i

ωi−1
o

and Equations

(4.23)-(4.25), we have

|x̃i (t)| ≤
∣∣∣∣
εsum (0)

ωn+1
o

∣∣∣∣ωi−1
o + |pi (t)|ωi−1

o

≤
∣∣∣∣
x̃sum (0)

ωn+1
o

∣∣∣∣ +
δν

ωn−i+2
o

+
δµ

ω2n−i+3
o

= σi (4.26)

for all t ≥ T1, i = 1, 2, · · · , n + 1. Q.E.D.

In summary, it is proven that, in the absence of such model, the estimation

error of the ESO (4.13) is bounded and its upper bound monotonously decreases with

the observer bandwidth, as shown in (4.26).

The stability characteristics of the ADRC, where the ESO is employed, is

analyzed next.



35

4.2 Stability Characteristics of ADRC

In this section, it is shown that 1) with the given model of the plant, the

closed-loop system is asymptotically stable; and 2) with plant dynamics largely un-

known, the tracking error and its up to (n− 1)th order derivatives of the ADRC

are bounded and their upper bounds monotonously decrease with the observer and

controller bandwidths.

Assume that the control design objective is to make the output of the plant in

(1) follow a given, bounded, reference signal r, whose derivatives, ṙ, r̈, · · · , r(n), are

also bounded. Let [r1, r2, · · · , rn, rn+1]
T = [r, ṙ1, · · · , ṙn−1, ṙn]T . Employing the ESO

of (4.2) in the form of (4.3) or (4.13), the ADRC control law is given as

u = [k1 (r1 − x̂1) + k2 (r2 − x̂2) + · · ·+ kn (rn − x̂n)− x̂n+1 + rn+1] /b (4.27)

where ki, i = 1, 2, · · · , n, are the controller gain parameters selected to make sn +

kns
n−1 + · · ·+ k1 Hurwitz. The system (4.1) becomes

y(n) (t) = (f − x̂n+1) + k1 (r1 − x̂1) + k2 (r2 − x̂2) + · · ·+ kn (rn − x̂n) + rn+1.

(4.28)

Note that with a well-designed ESO, the first term in the right hand side (RHS)

of (4.28) is negligible and the rest of the terms in the RHS of (4.28) constitutes a

generalized PD controller with a feedforward term. It generally works very well in

applications but the issues to be addressed are: 1) the stability of the closed-loop

system (4.28) and (4.3); and 2) the bound of the tracking error.

4.2.1 Convergence of the ADRC with the Given Model of

the Plant

Consider

η̇ (t) = Nη (t) + g (t) , (4.29)
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where η (t) = [η1 (t) , η2 (t) , · · · , ηn (t)]T ∈ Rn, g (t) = [g1 (t) , g2 (t) , · · · , gn (t)]T ∈ Rn,

and N is an n× n matrix.

Lemma 1. If N is Hurwitz and lim
t→∞

‖g (t)‖ = 0, then lim
t→∞

‖η (t)‖ = 0.

Proof. In (4.29), since lim
t→∞

‖g (t)‖ = 0, then for any φ > 0, there is a finite time

T2 > 0 such that ‖g (t)‖ ≤ φ for all t ≥ T2. The response of (4.29) can be written as

η (t) = eNtη (0) +

t∫

0

eN(t−τ)g (τ) dτ. (4.30)

When t ≥ T2, we have

‖η (t)‖ =

∥∥∥∥∥∥
eNtη (0) +

T2∫

0

eN(t−τ)g (τ) dτ +

t∫

T2

eN(t−τ)g (τ) dτ

∥∥∥∥∥∥

≤
∥∥eNtη (0)

∥∥ +
∥∥eNt

∥∥
∥∥∥∥∥∥

T2∫

0

e−Nτg (τ) dτ

∥∥∥∥∥∥
+

t∫

T2

∥∥eN(t−τ)
∥∥φdτ. (4.31)

Now consider the third term of right hand side of (4.31). For N , there is nonsingular

matrix J and block diagonal matrix Λ = block diag {Λ1, · · · , Λm} such that

N = JΛJ−1 (4.32)

and each Λi has a single eigenvalue λi with its algebraic multiplicities being qi. Sup-

pose λ1 ≥ λ2 ≥ · · · ≥ λm. Let q = max {q1, q2, · · · , qm}. Let us choose ‖·‖1 or ‖·‖∞
for the matrix norm. It follows that [79]

∥∥eΛ(t−τ)
∥∥ ≤ eλ1(t−τ)

q−1∑

k=0

c
k
(t− τ)k, ∀t ≥ τ, (4.33)

where ck are positive constants. Note that

∥∥eN(t−τ)
∥∥ =

∥∥JeΛ(t−τ)J−1
∥∥

≤ ‖J‖
∥∥eΛ(t−τ)

∥∥ ∥∥J−1
∥∥ . (4.34)
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Hence we have

‖η (t)‖ ≤
∥∥eNtη (0)

∥∥ +
∥∥eNt

∥∥
∥∥∥∥∥∥

T2∫

0

e−Nτg (τ) dτ

∥∥∥∥∥∥
+ φ ‖J‖

∥∥J−1
∥∥

t∫

T2

∥∥eΛ(t−τ)
∥∥dτ

≤
∥∥eNtη (0)

∥∥ +
∥∥eNt

∥∥
∥∥∥∥∥∥

T2∫

0

e−Nτg (τ) dτ

∥∥∥∥∥∥

+φ ‖J‖
∥∥J−1

∥∥
q−1∑

k=0

c
k

t∫

T2

eλ1(t−τ) (t− τ)k dτ

=
∥∥eNtη (0)

∥∥ +
∥∥eNt

∥∥
∥∥∥∥∥∥

T2∫

0

e−Nτg (τ) dτ

∥∥∥∥∥∥
+ φ ‖J‖

∥∥J−1
∥∥˙

q−1∑

k=0

c
k

{
eλ1(t−T2)

λk+1
1

k∑
j=0

(−1)j k!

(k − j)!
[λ1 (t− T2)]

k−j−(−1)k k!

λk+1
1

}

=
∥∥eNtη (0)

∥∥ +
∥∥eNt

∥∥
∥∥∥∥∥∥

T2∫

0

e−Nτg (τ) dτ

∥∥∥∥∥∥

+eλ1(t−T2)φ ‖J‖
∥∥J−1

∥∥
q−1∑

k=0

c
k

1

λk+1
1

k∑
j=0

(−1)j k!

(k − j)!
[λ1 (t− T2)]

k−j

+φ ‖J‖
∥∥J−1

∥∥
q−1∑

k=0

c
k

(−1)k k!

λk+1
1

. (4.35)

From (4.35), it can be seen that

lim
t→∞

∥∥eNtη (0)
∥∥ = 0

lim
t→∞

∥∥eNt
∥∥

∥∥∥∥
T2∫
0

e−Nτg (τ) dτ

∥∥∥∥ = 0

lim
t→∞

{
eλ1(t−T2)φ ‖J‖ ‖J−1‖

q−1∑
k=0

c
k

1

λk+1
1

k∑
j=0

(−1)j k!
(k−j)!

[λ1 (t− T2)]
k−j

}
= 0.

(4.36)

Therefore there exists T3 > T2 such that

∥∥eNtη (0)
∥∥ ≤ φ, ∀t > T3,

∥∥eNt
∥∥

∥∥∥∥
T2∫
0

e−Nτg (τ) dτ

∥∥∥∥ ≤ φ, ∀t ≥ T3,

eλ1(t−T2)φ ‖J‖ ‖J−1‖
{

q−1∑
k=0

c
k

1

λk+1
1

k∑
j=0

(−1)j k!
(k−j)!

[λ1 (t− T2)]
k−j

}
≤ φ, ∀t ≥ T3.

(4.37)
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Let c′′ = ‖J‖ ‖J−1‖
q−1∑
k=0

c
k

(−1)kk!

λk+1
1

. Then we have

‖η (t)‖ ≤ (c′′ + 3) φ, ∀t ≥ T3. (4.38)

Since φ can be arbitrarily small, it can be concluded that lim
t→∞

‖η (t)‖ = 0.

Theorem 3. Assuming h (x, u, w, ẇ) is globally Lipschitz with respect to x, there exist

constants ωo > 0 and ωc > 0, such that the closed-loop system (4.28) and (4.3) is

asymptotically stable.

Proof. Define ei = ri − xi, i = 1, 2, · · · , n. From (4.27), one has

u = [k1 (r1 − x̂1) + · · ·+ kn (rn − x̂n)− x̂n+1 + rn+1] /b

= {k1 [r1 − (x1 − x̃1)] + · · ·+ kn [rn − (xn − x̃n)]− (xn+1 − x̃n+1) + rn+1} /b

= [k1 (e1 + x̃1) + · · ·+ kn (en + x̃n)− (xn+1 − x̃n+1) + rn+1} /b. (4.39)

It follows that

ė1 = ṙ1 − ẋ1 = r2 − x2 = e2,

...

ėn−1 = ṙn−1 − ẋn−1 = rn − xn = en,

ėn = ṙn − ẋn = rn+1 − (xn+1 + bu)

= rn+1 − xn+1 − [k1 (e1 + x̃1) + · · ·+ kn (en + x̃n)− (xn+1 − x̃n+1) + rn+1]

= −k1 (e1 + x̃1)− · · · − kn (en + x̃n)− x̃n+1.

(4.40)

Let e = [e1, e2, · · · , en]T ∈ Rn, x̃ = [x̃1, x̃2, · · · , x̃n+1]
T ∈ Rn+1, then

ė (t) = Aee (t) + Ax̃x̃ (t) (4.41)

where Ae =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

...

0 0 · · · 0 1

−k1 −k2 · · · −kn−1 −kn




and Ax̃ =




0 0 0 · · · 0

0 0 0 · · · 0

...
...

. . .
...

...

0 0 · · · 0 0

−k1 −k2 · · · −kn −1




.
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Since ki, i = 1, 2, · · · , n, are selected such that the characteristic polynomial

sn + kns
n−1 + · · · + k1 is Hurwitz, Ae is Hurwitz. For tuning simplicity, we just let

sn + knsn−1 + · · · + k1 = (s + ωc)
n where ωc > 0 and ki = n!

(i−1)!(n+1−i)!
ωn+1−i

c , i =

1, 2, · · · , n. This makes ωc, which is the controller bandwidth, the only tuning para-

meter to be adjusted for the controller.

From Theorem 1, lim
t→∞

‖Ax̃x̃ (t)‖ = 0 if h (x, u, w, ẇ) is globally Lipschitz with

respect to x. Since Ae is Hurwitz, according to Theorem 1 and Lemma 1, it can be

concluded that: assuming h (x, u, w, ẇ) is globally Lipschitz with respect to x, there

exist constants ωo > 0 and ωc > 0, such that lim
t→∞

ei (t) = 0, i = 1, 2, · · · , n. Q.E.D.

From the above, it is shown that, with the given model of the plant, the closed-

loop system (4.28) and (4.3) is asymptotically stable.

4.2.2 Convergence of the ADRC with Plant Dynamics Largely

Unknown

Now we consider the case where the plant dynamics is largely unknown and

the ESO in the form of (4.13) is used instead.

Theorem 4. Assuming h (x, u, w, ẇ) is bounded, there exist a constant ρi > 0 and

a finite time T5 > 0 such that |ei (t)| ≤ ρi, i = 1, 2, · · · , n, ∀t ≥ T5 > 0, ωo > 0, and

ωc > 0. Furthermore, ρi = O
(

1

ωj
c

)
for some positive integer j.

Proof. Solving (4.41), we have

e (t) = eAete (0) +

∫ t

0

eAe(t−τ)Ax̃x̃ (τ) dτ . (4.42)

According to (4.41) and Theorem 2, one has

[Ax̃x̃ (τ)]i=1,··· , n−1 = 0

|[Ax̃x̃ (τ)]n| = |−k1x̃1 (τ)− · · · − knx̃n (τ)− x̃n+1 (τ)|
6 ksumσi = γ, ∀t > T1

(4.43)
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where ksum = 1 +
n∑

i=1

ki. Similar to Theorem 3, choose ki = n!
(i−1)!(n+1−i)!

ωn+1−i
c , i =

1, 2, · · · , n, such that Ae is Hurwitz. Define Ψ = [0 0 · · · 0 γ]T . Let ϕ (t) =
∫ t

0
eAe(t−τ)Ax̃x̃ (τ) dτ . It follows that

|ϕi (t)| =

∫ t

0

[
eAe(t−τ)Ax̃x̃ (τ)

]
i
dτ

≤
∫ t

0

[
eAe(t−τ)Ψ

]
i
dτ

=
{[
−A−1

e eAe(t−τ)
∣∣t
0

]
Ψ

}
i

≤
∣∣(A−1

e Ψ
)

i

∣∣ +
∣∣(A−1

e eAetΨ
)

i

∣∣ . (4.44)

For Ae defined in (4.41), A−1
e =




−k2

k1
−k3

k1
· · · −kn

k1
− 1

k1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0




, and

|(A−1
e Ψ)1| = γ

k1
= γ

ωn
c

|(A−1
e Ψ)i||i=2,··· , n = 0

(4.45)

Since Ae is Hurwitz, there exists a finite time T4 > 0 such that

∣∣∣
[
eAet

]
ij

∣∣∣ 6 1

ωn+1
c

(4.46)

for all t > T4, i, j = 1, 2, · · · , n. Note that T4 depends on Ae. Let T5 = max {T1, T4}.
It follows that

∣∣(eAetΨ
)

i

∣∣ 6 γ

ωn+1
c

(4.47)

for all t > T5, i = 1, 2, · · · , n, and

∣∣(A−1
e eAetΨ

)
i

∣∣ 6





1 +
n∑

i=2

ki

ωn
c

γ

ωn+1
c

∣∣∣∣∣∣∣∣
i=1

γ

ωn+1
c

∣∣∣∣
i=2,··· ,n

(4.48)
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for all t > T5. From (4.44), (4.45), and (4.48), we obtain

|ϕi (t)| ≤
∣∣(A−1

e Ψ
)

i

∣∣ +
∣∣(A−1

e eAetΨ
)

i

∣∣

≤





γ

ωn
c

+

1 +
n∑

i=2

ki

ωn
c

γ

ωn+1
c

∣∣∣∣∣∣∣∣
i=1

γ

ωn+1
c

∣∣∣∣
i=2,··· ,n

(4.49)

for all t > T5. Let eAet =




o11 . . . o1n

...
. . .

...

on1 · · · onn




and esum (0) = |e1 (0)| + |e2 (0)| + · · · +

|en (0)|. It follows that

∣∣[eAete (0)
]
i

∣∣ = |oi1e1 (0) + oi2e2 (0) + · · ·+ oinen (0)|

≤ esum (0)

ωn+1
c

(4.50)

for all t ≥ T5, i = 1, 2, · · · , n. From (4.42), one has

|ei (t)| 6
∣∣[eAete (0)

]
i

∣∣ + |ϕi (t)| . (4.51)

According to (4.43), (4.49)-(4.51), we have

|ei (t)| ≤





esum (0)

ωn+1
c

+
ksumσi

ωn
c

+

(
1 +

n∑
i=2

ki

)
ksumσi

ω2n+1
c

∣∣∣∣∣∣∣∣
i=1

esum (0) + ksumσi

ωn+1
c

∣∣∣∣
i=2,··· ,n

≤ ρi (4.52)

for all t > T5, i = 1, 2, · · · , n, where ρ = max





esum(0)

ωn+1
c

+ ksumσ
ωn

c
+

(1+
nP

i=2
ki)ksumσ

ω2n+1
c

,

esum(0)+ksumσ

ωn+1
c

}
. Q.E.D.

From the above, it is shown that, with plant dynamics largely unknown, the

tracking error and its up to the (n− 1)st order derivatives of the ADRC are bounded
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and their upper bounds monotonously decrease with the observer and controller band-

widths.

4.3 Summary

The main result in this chapter is the analysis of the stability characteristics

of the ESO, and the associated state feedback system ADRC. Both design scenarios,

with and without a detailed mathematical model of the plant, are considered. It

is shown that the asymptotic stability is assured for the dynamic system describing

the estimation error and the closed-loop system in the former and boundedness of

the errors in the later. Furthermore, it is demonstrated that the error upper bounds

monotonously decrease with the observer and controller bandwidths.



CHAPTER V

A PRACTICAL APPROACH TO

DISTURBANCE DECOUPLING

CONTROL

In this chapter, a novel disturbance rejection based approach is proposed where

the cross-couplings between control loops as well as external disturbances are treated

as “disturbance,” estimated in real time and rejected. This DDC strategy is rooted

in the novel control method ADRC. Using the ESO as the observer, the new method

requires very little information of the plant dynamics. The original concept of active

disturbance rejection was proposed by Han [22]. The recently proposed new para-

meterization and tuning method greatly simplified the implementation of ADRC and

made the design transparent to practicing engineers. More importantly, with the

parameterized ADRC, it becomes a viable candidate for decoupling control.

As first shown in [81] for aircraft flight control and then in [82] for the jet

engine problem, the ADRC is a natural solution to decoupling control problems in

the presence of large uncertainties. In [81] and [82], the approach that they used still

43
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needs the accurate matrix of the coefficients of the control signal, which is still de-

manding. Compared to the above problems, the dynamics of some industrial systems,

such as chemical processes and MEMS gyroscopes, is even more nonlinear with less

information available on how each input affects various outputs, which is needed to

be known in the method used in [81, 82]. To address such challenges, an ADRC based

DDC approach is proposed. With little modeling information assumed, namely the

predetermined input-output paring, the decoupling problem is reformulated as that of

disturbance rejection, where disturbance is defined as the cross channel interference.

The effect of one input to all other outputs that it is not paired with is viewed as a

disturbance to be rejected. In the ADRC framework, such disturbance is actively es-

timated using the ESO and canceled in the control law, in the absence of an accurate

mathematical model of the plant.

The chapter is organized as follows. How a disturbance decoupling problem can

be reformulated and solved as a disturbance rejection problem is shown in Section 5.1.

The multi-loop ESO is shown in Section 5.2, followed by the disturbance decoupling

controller design. Note that this chapter and the next chapter are the expanded

version of [80].

5.1 Reformulation of Decoupling Control Problem

The ADRC is a relatively new control design concept. In this chapter, the

ADRC based DDC approach is proposed to address the decoupling problem for sys-

tems with large uncertainties of the internal dynamics and significant unknown ex-
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ternal disturbances. Let

ϑ1 =
[
y

(n1−1)
1 (t) , y

(n1−2)
1 (t) , · · · , y1 (t)

]
,

ϑ2 =
[
y

(n2−1)
2 (t) , y

(n2−2)
2 (t) , · · · , y2 (t)

]
,

...

ϑm =
[
y(nm−1)

m (t) , y(nm−2)
m (t) , · · · , ym (t)

]
,

u = [u1 (t) , u2 (t) , · · · , um (t)] .

(5.1)

Consider a system formed by a set of coupled input-output equations with predeter-

mined input-output parings

y
(n1)
1 = f1 (ϑ1, ϑ2, · · · , ϑm, u2, u3, · · · , um, w1) + b11u1

y
(n2)
2 = f2 (ϑ1, ϑ2, · · · , ϑm, u1, u3, · · · , um, w2) + b22u2

...

y(nm)
m = fm (ϑ1, ϑ2, · · · , ϑm, u1, u2, · · · , um−1, wm) + bmmum

(5.2)

where yi is the output, ui is the input, wi is the external disturbances of the ith

loop, respectively, y
(ni)
i denotes the nth

i order derivative of yi, i = 1, 2, · · · , m, and fi

represents the combined effect of internal dynamics and external disturbances in the

ith loop, including the cross channel interference. Note that i = 1, 2, · · · ,m in the

following. In (5.2), we assume that the numbers of inputs and outputs are the same;

the orders ni and the approximate values of bii are given.

A presumption in most existing decoupling control approaches is that an ac-

curate mathematical model of the plant has been obtained. This could pose some

rather considerable time and cost challenges in engineering practice. This is where

the ADRC concept comes in. The idea is: if there is a viable alternative that allows

us to realistically estimate fi from input-output data, then the accurate mathematical

description of fi might not be required. It is the aim of this chapter to establish that

the ESO is indeed a suitable solution for this task.
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5.2 Multi-Loop Extended State Observer

Instead of identifying the plant dynamics off-line, we propose to estimate the

combined effect of plant dynamics and external disturbance in real time. The idea is

introduced as follows.

The square multivariable system (5.2) is an m−loop system. An ADRC based

SISO controller is designed for each loop independently. Consider the ith loop in (5.2)

y
(ni)

i = fi + biiui. (5.3)

Let x1,i = yi, x2,i = ẏi, · · · , xni,i = y
(ni−1)
i and xni+1,i = fi, which is added as an

extended state. Assuming fi is differentiable, define

hi =
dfi

dt
= ḟi. (5.4)

Then (5.3) can also be represented in state space form as

ẋ1,i = x2,i

...

ẋni−1,i = xni,i

ẋni,i = xni+1,i + biiui

ẋni+1,i = hi

yi = x1,i

(5.5)

where xi = [x1,i, x2,i, . . . , xni+1,i]
T ∈ Rni+1, ui ∈ R, and y ∈ R. An ESO for (5.5) is

designed as

˙̂x1,i = x̂2,i + l1,i (x1,i − x̂1,i) ,

...

˙̂xni−1,i = x̂ni,i + lni−1,i (x1,i − x̂1,i) ,

˙̂xni,i = x̂ni+1,i + lni,i (x1,i − x̂1,i) + biiui,

˙̂xni+1,i = lni+1,i (x1,i − x̂1,i)

(5.6)
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where x̂i = [x̂1,i, x̂2,i, · · · , x̂ni+1,i]
T ∈ Rni+1 and [l1,i, l2,i, · · · , lni,i, lni+1,i]

T are the

observer gain parameters to be chosen. In particular, let us consider a special case

where the gains are chosen as

[l1,i, l2,i, · · · , lni,i, lni+1,i]
T =

[
ωo,iα1,i, ω

2
o,iα2,i, · · · , ωni+1

o,i αni+1,i

]T
(5.7)

with ωo,i > 0. Here αj,i, j = 1, 2, · · · , ni + 1 are chosen such that sni+1 + α1,is
ni +

· · ·+αni,is+αni+1,i is Hurwitz. For simplicity, we just let sni+1+α1,is
ni + · · ·+αni,is+

αni+1,i = (s + 1)ni+1 where αj,i = (ni+1)!
j!(ni+1−j)!

, j = 1, 2, · · · , ni + 1. It results in the

characteristic polynomial of (5.6) to be

λo,i (s) = sni+1 + ωo,iα1,is
ni + · · ·+ ωni+1

o,i αni+1,i = (s + ωo,i)
ni+1 . (5.8)

This makes ωo,i, which is the observer bandwidth of the ith loop, the only tuning

parameter for the ith loop observer and the implementation process much simplified,

compared to other observers. Generally, the larger the observer bandwidth, the more

accurate the estimation. However, a large observer bandwidth will increase noise

sensitivity. Therefore a proper observer bandwidth should be selected in a compromise

between tracking performance and the noise tolerance.

5.3 Dynamic Disturbance Decoupling

With a well-tuned observer, the observer states will closely track the states of

the augmented plant. By canceling the effect of fi using f̂i, i.e, x̂ni+1,i, the ADRC

actively compensates for fi in real time. The control law of the ith loop is designed

as follows. The ADRC control law is given by

ui =
k1,i(ri − x̂1,i) + · · ·+ kni,i(r

(ni−1)
i − x̂ni,i)− x̂ni+1,i + r

(ni)
i

bii

(5.9)
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where ri is the desired trajectory, and kj,i, j = 1, 2, · · · , ni are the controller gain

parameters. The closed-loop system becomes

y
(ni)

i = (fi − x̂ni+1,i) + k1,i(ri − x̂1,i) + · · ·+ kni,i(r
(ni−1)
i − x̂ni,i) + r

(ni)
i . (5.10)

Note that with a well-designed ESO, the first term in the right hand side (RHS) of

(5.10) is negligible and the rest of the terms in the RHS of (5.10) constitute a PD

controller with a feedforward term. Here kj,i, j = 1, 2, · · · , ni are the controller gain

parameters selected to make sni +kni,is
ni−1 + · · ·+k1,i Hurwitz. To further reduce the

tuning parameters, all the controller poles are placed at −ωc,i. Then the approximate

closed-loop characteristic polynomial becomes

λc,i (s) = sni + kni,is
ni−1 + · · ·+ k1,i = (s + ωc,i)

ni (5.11)

where kj,i = ni!
(j−1)!(ni+1−j)!

ωni+1−j
c,i , j = 1, 2, · · · , ni. This makes ωc,i, which is the

controller bandwidth, the only tuning parameter for the ith loop controller. The con-

troller bandwidth is selected based on how fast and steady we want the output to

track the set point. A large controller bandwidth generally increases the response

speed but, pushed to the limit, it also could make the system oscillatory, or even

unstable. Thus the controller bandwidth is tuned based on the competing require-

ments of performance and stability margin, together with noise sensitivity as well. In

addition, a large controller bandwidth usually increases the magnitude and rate of

change in control signal, and therefore the operation cost.

The primary reason for the above particular way of selecting αj,i and kj,i is

practicality: the observer and feedback gains must be easily tunable by the users.

Another reason for such parameterization is that it reduces tuning to adjusting para-

meters that are familiar to engineers: bandwidth. It is advantageous that engineers

could use a completely new design method without losing the critical insight gained

from classical control: frequency response.
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The proposed DDC approach renders a new alternative for decoupling control

problems. The second key contribution of this dissertation is to present that the

decoupling problems can be reformulated as a disturbance rejection one, without

an elaborate plant model. In fact, the only information required is the orders of the

subsystems associated with each input-output pair and the values of the corresponding

input gains. Even when bii are unknown, the DDC method can still be implemented

with the approximate bii as the tuning parameters [27]-[43]. Being able to deal with

multivariable systems that have different orders for different input-output parings is

another advantage of the proposed method. Overall, the DDC is a conceptually simple

and easy to understand, and above all, practical solution for real world decoupling

problems, where there is a large amount of uncertainties.

Since one loop of the DDC takes the coupling terms from other loops as dis-

turbance, the stability analysis of ADRC presented in Chapter 4 also applies to the

DDC. The stability analysis for the DDC has been presented in [80] and is omitted

here to avoid redundancy.

5.4 Summary

In this chapter, a novel disturbance decoupling control method is proposed

for a class of square multivariable systems of various orders. This is one of the

main contributions of this dissertation. It is based on a novel disturbance rejection

concept and it does not require an accurate mathematical model. The proposed DDC

method is easy to understand and to implement, making it an appealing solution for

practitioners. In addition, the parameter tuning guidance is given for the proposed

DDC.



CHAPTER VI

DISTURBANCE DECOUPLING

CONTROL IN CHEMICAL PROCESSES

In this chapter, two chemical process problems are investigated to show the

effectiveness of the proposed DDC approach. The first example shows a linear

multivariable system case, which is a refinery distillation column. The second one

shows the nonlinear multivariable system case, which is a continuous stirred tank

reactor (CSTR).

6.1 A Linear Multivariable System

A square multivariable system with two inputs and two outputs is illustrated

how a linear MIMO system can be controlled by the proposed DDC framework.

Distillation columns are very commonly used separation equipment in chemical and

process industries. Figure 6 shows a simplified scheme of distillation column. A

stream of mixture enters the column in the middle and two products exit. The light

product is drawn from the top and the heavy product is obtained from the bottom.

50
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The objective of the controller is to keep the purity of light product y1 and the purity

of heavy product y2 at their desired values by manipulating the reflux flow rate u1 and

steam flow rate u2. Generally, the feed flow rate is fixed. In case that the upstream

process changes, the feed flow rate may have a disturbance. The Wood-Berry model

Figure 6: A simplified scheme of distillation column [29].

of a pilot-scale distillation column [29] with delay set to zero is considered, which is

shown as below: 


y1(s)

y2(s)


 =




K11

T11s+1
K12

T12s+1

K21

T21s+1
K22

T22s+1







u1(s)

u2(s)


 (6.1)

where K11 = 12.8, K12 = −18.9, K21 = 6.6, K22 = −19.4, T11 = 16.7, T12 = 21, T21 =

10.9, T22 = 14.4. The system (6.1) can be represented as





ẏ1(t) = f1 +
K11

T11T12

u1(t)

ẏ2(t) = f2 +
K22

T21T22

u2(t)

(6.2)

which is the form of (5.2). Note f1 and f2 account for all other factors except u1 and

u2 in loop 1 and loop 2 respectively.
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6.1.1 Setpoint Tracking and Disturbance Rejection Perfor-

mance

Let setpoints: r1 = 0, r2 = 1. unmeasured disturbances are added into the

system as follows: t = 0, d1 = 0; t = 50, D(s) =




Kd1

Td1s+1

Kd2

Td2s+1


 d2, t = 100, d3 = 0

where Kd1 = 3.8, K12 = 4.9, Td1 = 14.9, Td2 = 13.2, d2 = 0.735. The comparisons

of disturbance rejection performance between the proposed DDC approach and the

model predictive control (MPC) for Loop 1 and Loop 2 of the distillation column

are shown in Figure 7 and Figure 8 respectively. Their respective design or tuning

parameters are as below. The DDC parameters: ωc1 = ωc2 = 0.2, ωo1 = ωo2 =

3, b0,11 = 0.8, b0,22 = −1.4. Note that b0,11 and b0,22 are the approximate values of

b11 and b22 in (6.2). The MPC parameters: model horizon: 120, sampling rate: 1

min, prediction horizon: 90, control move horizon: 30, output weightings: [1 1], and

control weightings: [0.1, 0.1]. Figure 7 and Figure 8 show that the DDC achieves

better performance than the MPC in disturbance rejection.
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Figure 7: The comparison of disturbance rejection performance between the DDC
and the MPC for Loop 1 of the distillation column.
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Figure 8: The comparison of disturbance rejection performance between the DDC
and the MPC for Loop 2 of the distillation column.

6.1.2 Control Signal Selection

In practice, it is sometimes difficult to decide which control signal should be

chosen for one specific loop in the absence of the plant model information. With the

proposed DDC approach, this turns out not to be a problem. Consider the system

ẏ1 = f1 + b11u1 + b12u2

ẏ2 = f2 + b21u1 + b22u2

(6.3)

with b12 = 5b11, b21 = 5b22, u1 is the control signal of Loop 1, and u2 is the control

signal of Loop 2. That is, a clearly wrong choice was made regarding which input is

the primary control signal for each loop. The output performance and control signal

with the DDC are shown in Figure 9. It can be observed that the control signals for

both loops become steep, but the systems can still be controlled to quickly go to the

steady state.
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Figure 9: The performance with non-dominant control signal selection for each loop.

6.2 A Nonlinear Multivariable System

The continuous stirred tank reactor (CSTR) is widely used in chemical and

process industries. Due to its highly nonlinear nature, it is a very important bench-

mark problem in process control. The system studied here is a CSTR with an ir-

reversible exothermic first order reaction A → B, which exhibits highly nonlinear

characteristics [85]. Figure 10 shows the CSTR diagram. A pure stream of species

A enters a constant volume reactor and a well-mixed stream of species A and B exit

the reactor. The control objective is to keep the reactor concentration CA and the

reactor T temperature at their desired settings. The manipulated variables are the

reactant feed flow rate Fin and the coolant water mass rate at the inlet Fw.

According to the reactant mass balance, reactor energy balance and the cooling

jacket energy balance, a dynamic model of the plant is obtained. The plant model
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Figure 10: The CSTR diagram [87].

can be written into a standard nonlinear system representation as the following [87]:

ẋ =




−rx1

−V M Hrx1 + UA(x3 − x2)

V ρCp

UA(x2 − x3)

VjρwCpw




+




CA,in − x1

V
0

Tin − x2

V
0

0
Tw − x3

Vjρw




u

[y1 y2]
T =

[
CA,in − x1

CA,in

x2

]T

(6.4)

where

r = k0 exp(
−E

Rx2

),

x = [x1, x2, x3]
T = [CA, T, Tj]

T ,

u = [u1, u2]
T = [Fin, Fw]T .

The description of variables for this CSTR model is given in [87], which is also

listed in Table I.

The output responses of CSTR under the control of the DDC are shown in

Figure 11. The control signals of CSTR are shown in Figure 12. The tracking

error of CSTR is shown in Figure 13. The design parameters for the DDC are:

b0,11 = −0.5, b0,22 = −0.03. Note that b0,11 and b0,22 are the approximate values of b11
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Table I: Description of Variables for the CSTR Model [87]
Variable Value Unit Description

Fin kg s−1 The reactant feed flow rate
Fout kg s−1 The outlet flow rate
V 1 m3 The volume of the tank reactor
cA kg/m3 The concentration of species A inside the tank

cA,in 866 kg/m3 The concentration of species A at the feed
cA,out kg/m3 The concentration of species A at the outlet
k0 4.108 s−1 Arrhenius rate constant
E 6.14 Jmol−1K−1 Activation energy
R 8.314 Jmol−1K−1 Gas law constant
T K Reactor temperature
ρ 866 kgm−3 Density of the reactant
Cp 1.791 Jkg−1K−1 Specific heat capacity of species A and B
Tin 293 K Temperature of the inlet stream
U 30 Wm−2K−1 Overall heat transfer coefficient
A 50 m2 Heat transfer area

M H −140 Jkg−1 Heat of reaction
Tj K Temperature of the cooling jacket
Vj 0.2 m3 Volume of the cooling jacket
ρw 998 kgm−3 Density of the water
Cpw 4.181 Jkg−1K−1 Specific heat capacity of water
Fw kgs−1 Coolant water mass rate at the inlet and the outlet
Tw 290 K Coolant water temperature at the jacket inlet
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and b22 in (6.4). The two sets of tuning parameters for the DDC are: ωc1 = ωc2 =

0.2, ωo1 = ωo2 = 0.03. In addition, a reasonable amount of noise is added to the

measurement in simulation. Compared to the signals, the noises are amount to about

1% and 0.1% in the two loops, respectively. The simulation results demonstrate that

the nonlinear system is well controlled in the presence of cross-couplings and noises.

The performance shows the effects of different controller and observer bandwidths.

The larger observer bandwidths result in more accurate estimation, but it also leads

to more sensitivity to noises. The larger controller bandwidths make the response

faster, with a more jittery control signal.

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

 

 

Time (s)

C
on

ve
rs

io
n

0 500 1000 1500 2000
300

305

310

315

Time (s)

T
em

pe
ra

tu
re

 (
K

)

Setpoint

ωc1 = ωc2 = 0.2, ωo1 = ωo2 = 0.03

ωc1 = ωc2 = 1, ωo1 = ωo2 = 0.15

Figure 11: The output response of CSTR under the control of the DDC .

6.3 Summary

In this chapter, the proposed DDC method is applied to chemical process

problems. Simulation results are quite promising. Excellent performance is attained

in two case studies involving both the linear and nonlinear multivariable plants with

significant uncertainties.
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CHAPTER VII

CONTROL AND RATE ESTIMATION

OF MEMS GYROSCOPES

There are two major control problems associated with vibrational MEMS gy-

roscopes: to control two vibrating modes (or axes) of the gyroscope, and to estimate

a time-varying rotation rate. This chapter demonstrates how the DDC addresses

these problems in the presences of the natural frequency mismatch between the two

axes, mechanical-thermal noises, quadrature errors, and parameter variations. A de-

modulation approach based on the estimated dynamics of the system by the ESO is

proposed to estimate the rotation rate. The simulation results on a Z-axis MEMS

gyroscope show that the controller is very effective by driving the output of the drive

axis to a desired trajectory, forcing the vibration of the sense axis to zero for a force-

to-rebalance operation and precisely estimating the rotation rate.

This chapter is organized as follows. Section 7.1 introduces the background

of MEMS gyroscopes. Section 7.2 describes the dynamics of MEMS gyroscopes.

Section 7.3 presents how to apply the DDC to MEMS gyroscope control. Section 7.4
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demonstrates how the time-varying rotation rate of MEMS gyroscopes is estimated

using demodulation technique. Section 7.5 shows the simulation results. Finally,

Section 7.6 summarizes this chapter. Note that Section 7.1 - Section 7.6 are extracted

from [86]1.

7.1 Introduction to MEMS Gyroscopes

MEMS gyroscopes are inertial rate sensors batch fabricated on crystal silicon

or polysilicon [88]. The operating principle of the MEMS gyroscopes is based on

the energy transfer from driving mode to sensing mode of the gyroscopes caused by

Coriolis acceleration. When the gyroscope is subject to a rotation rate, the response

of the sensing mode provides the information of the rotation rate. With the advance-

ment of MEMS technology, MEMS gyroscopes have been applied to automobiles for

roll-over sensing and skid control, consumer electronics (for example, image stabi-

lizations of cameras), GPS assisted inertial navigation, industry, aerospace, and so

on [89]. However, fabrication imperfections and environmental variations produce

undesirable coupling terms, unknown disturbances, input and measurement noises,

frequency mismatch between two vibrating modes, and parameter variations which

greatly degrade the performance of the gyroscopes. As a consequence, a control

system is essential to improve the performance and stability of MEMS gyroscopes.

Advanced control technologies should focus on exploiting the inherent structures of

the vibratory MEMS gyroscopes, so as to achieve disturbance attenuation and per-

formance robustness against modeling uncertainties.

Since the 1990’s, there has been a limited amount of research on the control

designs of MEMS gyroscopes. Most of the reported control approaches [90]-[96] as-

sume constant rotation rates. However, in reality, the rotation rate is time varying.

1 c©[2007] IEEE.
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Little research is reported to estimate time-varying rotation rates. The design of

the adaptive controller reported in [28] is based on the known states of the system

dynamics. However, the velocity outputs of the two axes are unknown in practice.

Furthermore, the multiple tuning parameters also make the adaptive controller very

difficult to implement in real world situation. The controller in [97] assumes that

the mechanical coupling terms are zeros. Actually the fabrication imperfections re-

sult in damping and stiffness coupling terms, which cause wrong measurement of the

rotation rate. Hence, dealing with such time-varying uncertain dynamics of MEMS

gyroscopes makes the control problem challenging and critically important. Since the

system dynamics are only partially known, a solution that is insensitive to the uncer-

tainties in system dynamics and is able to accurately determine the rotation rate is

needed. In addition, the control solution should be practical and easy to implement.

In this chapter, the DDC is applied to control the MEMS gyroscope. In par-

ticular, the multi-loop ESO provides an estimate of the combination of the external

disturbances and plant dynamics, which has modeling errors and structure uncertain-

ties due to the unknown time varying rotation rate and the unknown quadrature error

terms arising from mechanical imperfections. In addition, with the accurate estimate

of the plant dynamics, an input time-varying rotation rate is accurately estimated

with the demodulation technique.

7.2 Dynamics of MEMS Gyroscopes

We assume there is no coupling in the damping for both the drive and sense

axes [94]. We allow for the frequency mismatch between the two axes. The governing



62

equations of the Z-Axis MEMS gyroscope [91] are represented by

ẍ + 2ζωnẋ + ω2
nx + ωxyy − 2Ωẏ =

K

m
ud(t)

ÿ + 2ζyωyẏ + ω2
yy + ωxyx + 2Ωẋ =

K

m
us(t)

(7.1)

where x (t) and y (t) are drive axis and sense axis outputs respectively, ωn and ωy

are natural frequencies of the drive and sense axes, ζ and ζy are damping coefficients,

ud and us are control inputs for the drive and sense axes, m is the proof mass, 2Ωẋ

and 2Ωẏ are Coriolis accelerations, Ω is an unknown time-varying rotation rate, ωxyy

and ωxyx are constant unknown quadrature error terms caused by stiffness couplings

between two axes, and K is a constant that accounts for sensor, actuator, and am-

plifier gains. Note that there is a more elaborate model for MEMS gyroscopes [99],

which should be used for controlling MEMS gyroscopes with time-varying rotation

rate. The results obtained here is from a preliminary simulation with a simplified

model.

Rotation sensing is achieved by forcing the drive axis into a fixed amplitude

vibration, and measuring the displacement y(t) of sense axis. We apply force-to-

rebalance mode of operation onto the sense axis because of the general success of

nulling-the-output approach in precise sensing applications [90]. In this mode, the

output amplitude of the sense axis is continuously monitored and driven to zero,

and the control signal becomes a part of measurement of rotation rate. Therefore

our control tasks are to drive the drive axis to the desired trajectory with specified

amplitude and resonant frequency, to force the output of the sense axis to zero, and

to estimate the rotation rate in the presence of noises.

7.3 DDC for MEMS Gyroscopes

The existing control approaches for MEMS gyroscopes employ various methods

to derive the accurate model of the plant. However, in practice, it is very challenging
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to achieve precise model information. Especially for MEMS gyroscopes, the fac-

tors such as the mechanical-thermal noise, the measurement noise, the unknown time

varying rotation rate, and the unknown quadrature error terms, bring modeling errors

and structural uncertainties in the system. The mechanical imperfection and envi-

ronmental variations also introduce the parameter variations to the model of MEMS

gyroscopes. DDC is a natural fit for the MEMS gyroscope control due to its inherent

disturbance rejection characteristics. How the idea of DDC can be applied to MEMS

gyroscopes is briefly presented as follows.

The MEMS gyroscope can be understood as a coupled second-order system.

The system (7.1) can be rewritten as

ẍ = − (
2ζωnẋ + ω2

nx + ωxyy − 2Ωẏ
)

+ bxud

ÿ = − (
2ζyωyẏ + ω2

yy + ωxyx + 2Ωẋ
)

+ byus

(7.2)

where bx = by = K
m

.

Define

fx = − (
2ζωnẋ + ω2

nx + ωxyy − 2Ωẏ
)

fy = − (
2ζyωyẏ + ω2

yy + ωxyx + 2Ωẋ
) (7.3)

where fx and fy are referred to as the generalized disturbance, or disturbance, because

they represent both the unknown internal dynamics and the external disturbances of

the drive and sense axes respectively. The couplings between the two axes are also

taken as disturbances to each axis. Substituting (7.3) into (7.2), the system (7.2)

becomes

ẍ = fx + bxud (a)

ÿ = fy + byus. (b)

(7.4)

The basic idea of the DDC is to obtain the estimated fx and fy, i.e., f̂x and

f̂y, and to compensate for them in the control law in real time. Note that the control

designs of the drive and sense axes are the same and they are implemented in parallel.
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For clarity, the concept of the DDC is explained with the control of the sense axis in

the following. Let ξy1 = y, ξy2 = ẏ, ξy3 = fy and ξy = [ξy1, ξy2, ξy3]
T . Assuming fy

is differentiable and the derivative of fy (hy = ḟy) is bounded, the state space form

of (7.4b) is

ξ̇y1 = ξy2

ξ̇y2 = ξy3 + byus

ξ̇y3 = hy

y = ξy1.

(7.5)

An ESO for (7.5) is designed as

˙̂
ξy1 = ξ̂y2 + ly1

(
ξy1 − ξ̂y1

)

˙̂
ξy2 = ξ̂y3 + ly2

(
ξy1 − ξ̂y1

)
+ byus

˙̂
ξy3 = ly3

(
ξy1 − ξ̂y1

)

ŷ = ξ̂y1

(7.6)

where Ly = [ly1, ly2, ly3]
T is the observer gain. The observer gains are chosen such that

the characteristic polynomial s3 + ly1s
2 + ly2s + ly3 is Hurwitz. For tuning simplicity,

all the observer poles are placed at −ωoy. It results in the characteristic polynomial

of (7.6) to be

λoy (s) = s3 + ly1s
2 + ly2s + ly3 = (s + ωoy)

3 (7.7)

where ωoy is the observer bandwidth of the sense axis and ly1 = 3ωoy, ly2 = 3ω2
oy, ly3 =

ω3
oy. This makes ωoy the only tuning parameter for the observer. Thus the implemen-

tation process of the observer is much simplified.

Once the observer is designed and well tuned, its outputs will track y, ẏ, fy

respectively. By canceling the effect of fy using ξ̂y3, the DDC actively compensates

for fy in real time. The control law is designed as follows. First, the control law

us =
u0 − ξ̂y3

by

(7.8)
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approximately reduces the original plant (7.4b) to

ÿ ≈ u0 (7.9)

which is a much simple control problem to deal with. A simple controller can be

designed as

u0 = ky1(ry − ξ̂y1) + ky2(ṙy − ξ̂y2) + r̈y (7.10)

where ry is the desired trajectory of the sense axis. Note that a feedforward mechanism

is employed in (7.10) for the purpose of reducing the tracking error. The controller

gains are selected so that the closed-loop characteristic polynomial s2 + ky2s + ky1 is

Hurwitz. For tuning simplicity, all the controller poles are placed at −ωcy. Then the

approximate closed-loop characteristic polynomial is

λcy (s) = s2 + ky2s + ky1 = (s + ωcy)
2 (7.11)

where ky1 = ω2
cy, ky2 = 2ωcy. This makes ωcy, the controller bandwidth, the only

tuning parameter for the controller of the sense axis.

7.4 Rotation Rate Estimation

Considering the sense axis of the MEMS gyroscope system, both Coriolis accel-

eration and quadrature error terms are amplitude modulated signals centered at the

resonant frequency of the drive axis. The only distinguishing characteristic between

the two signals is that they have a relative phase shift of 90◦. Therefore we can take

advantage of this characteristic to separate the undesired quadrature errors from the

useful Coriolis acceleration through the demodulation technique.

Applying the ESO (7.6) and the control law (7.8) and (7.10) to the MEMS

gyroscope, we can drive the output of the drive axis x to the desired trajectory rx

with ideal amplitude and resonant frequency, force the output of sense axis y to zero,
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Figure 14: Block diagram of the ADRC and rate estimation.

and accurately estimate the states of the drive and sense axes. Based on the accurate

state estimation and the good tracking of the drive and sense axes, the rotation

rate is determined. The block diagram of the ADRC for the sense axis control and

rate estimation is shown in Figure 14, where a demodulation block is used for the

estimation of rotation rate. In Figure 14, Ny represents the mechanical-thermal noise

input to the sense axis and Nm represents the measurement noise (position noise) at

the output of the sense axis [94].

The desired trajectory of the drive axis is rx = A cos (ωt). With the ideal

tracking of the ADRC, we have x = rx = A cos (ωt), and ẋ = −Aω sin (ωt). From

(7.3), we have

ωxyx + 2Ωẋ = − (
fy + 2ζyωyẏ + ω2

yy
)
. (7.12)

Let q = ωxyx + 2Ωẋ. It is assumed that the rotation rate is a sinusoidal signal [94],

and Ω = Ω0sin (2πfratet) where Ω0 and 2πfrate are amplitude and angular frequency
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of the rate. Then we have

q sin (ωt) = (ωxyx + 2Ωẋ) sin (ωt)

= ωxyA cos (ωt) sin (ωt)− 2ΩAω sin2 (ωt)

=
1

2
ωxyA sin (2ωt)− 2ΩAω

1− cos (2ωt)

2

=
1

2
ωxyA sin (2ωt) + ΩAω cos (2ωt)− ΩAω

(7.13)

where ω À 2πfrate in the MEMS gyroscopes. In (7.13), the high frequency signals

1
2
ωxyA sin (2ωt) and ΩAω cos (2ωt) will be filtered out through a low pass filter (LPF).

Therefore the rotation rate Ω can be demodulated from the signal q by multiplying

sin(ωt) and dividing by a gain introduced from modulation/demodulation, and filter-

ing the resultant signal with a LPF, that is

Ω = FLPF

(
−q sin (ωt)

Aω

)
(7.14)

where FLPF(.) represents the function of the LPF. With the information of the ESO,

according to (7.12), the signal q in (7.14) can be estimated as follows

q̂ = −
(
f̂y + 2ζyωy ξ̂y2 + ω2

y ξ̂y1

)
. (7.15)

The rotation rate can be estimated by

Ω̂ = FLPF

(
− q̂ · sin (ωt)

Aω

)
. (7.16)

The transfer function of the low-pass filter is chosen as

GLPF (s) =
1

(τs + 1)2 (7.17)

where τ is the time constant of the filter.

7.5 Simulation Results

A control system based on the DDC is designed and simulated on a model of

the Berkeley Z-axis gyroscope [98]. The key parameters are ωn = 81681.4 rad/sec,
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K=0.8338, ωy = 80864.6 rad/sec, ζ = 4.5455 × 10−5, ζy = 3.125 × 10−4, ωxy = 6000

rad2/sec2, and m = 2× 10−9 kg. The design parameters bx = by = K
m

= 4.169× 108.

The actual rotation rate is assumed to be a sinusoidal signal Ω = 0.1sin (2πfratet) and

frate = 50 Hz. The reference signal for the drive axis is rx = A cos (ωt), where

ω = 84194.7 rad/sec. Typically A = 10−6 m. We use A = 50 in ”simulation units” to

represent this [90]. The reference signal of the sense axis is ry = 0. In the simulation,

the mechanical-thermal noise is added to the drive axis, and the mechanical-thermal

noise as well as the measurement noise is added to the sense axis. The PSD of

mechanical-thermal noise for the drive axis is 2.4× 10−28 N2sec, and the one for the

sense axis is 1.63 × 10−27 N2sec. The PSD of measurement noise for the sense axis

is 1.49× 10−27 N2sec [94]. The controller and observer parameters for the drive axis

are: ωcx = 4.95× 105 rad/sec, ωox = 2.45× 106 rad/sec. The controller and observer

parameters for the sense axis are: ωcy = 5× 105 rad/sec, ωoy = 2× 107 rad/sec. The

time constant of LPF is τ = 6.7× 10−5 sec.

The output of the drive axis under the control of the DDC is shown in Figure

15. After approximate 1 ms, the amplitude of the drive axis is maintained at 50 as

desired, and the frequency of the drive axis is driven to the resonant frequency ω

as expected. The output of the sense axis under the control of the DDC is shown

in Figure 16. The stabilized output is around 0.01% of the uncontrolled amplitude

of y, which shows that the sense axis is driven to almost zero. The rotation rate

estimation at frate = 50 Hz is shown in Figure 17. The control signals of the drive

and sense axes are shown in Figure 18. It is implemented through FPGA. The

estimated rotation rate can track the actual rotation rate after approximate 2.5 ms

and the steady-state peak error is about 1% of the actual rotation rate magnitude.

Compared to the performance that was obtained by using the adaptive control in [92],

this demonstrates that a fast and accurate estimation of the rotation rate is achieved.
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Figure 15: The output of the drive axis.

To further investigate the robustness of DDC against parameter variations, the

system parameters are changed as follows: the natural frequency of the drive axis ωn

is increased by 10%, the natural frequency of the sense axis ωy is increased by 20%,

and the magnitude of the quadrature error term is increased by 20%. With the plant

parameter variations, the output of the drive axis, the output of the sense axis, and

the rotation rate estimation are shown in Figs. 19-21, respectively. Note that the

tuning parameters of the DDC and the rate frequency are not changed. The rotation

rate estimations at frate = 100 Hz and frate = 200 Hz are shown in Figure 22 and

Figure 23 respectively, without changing the parameters of the DDC and the LPF.

With frate = 100 Hz and frate = 200 Hz, the estimated rotation rates can track the

actual rotation rate after approximate 2.5 ms and the steady state peak errors are

about 1% of the amplitude of actual rotation rate. Compared to the performance

that was obtained by using the adaptive control in [92], the above simulation shows

the strong robustness of the DDC.

The simulation and hardware implementation results for MEMS gyroscope
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Figure 16: The output of the sense axis.

control with the discrete ADRC are presented in [100, 101].

7.6 Summary

In this chapter, the DDC approach is used to control the drive and sense axes

of a vibrational MEMS gyroscope. Based on the accurate estimation of the internal

plant dynamics and external disturbances of the multi-loop ESO, a demodulation

technique is used to estimate the time-varying rotation rate. Since the DDC does not

require an accurate mathematical model of the plant, it is very effective for controlling

the MEMS gyroscope and estimating the time-varying rotation rate in the presence

of noises and parameter variations. Compared to the performance that was obtained

by using the adaptive control in [92], the simulation results demonstrated the high

tracking performance and robustness of the DDC, as well as the fast and accurate

estimation of the input time-varying rotation rate. Since most MEMS sensors have

similar control problems to MEMS gyroscopes, i.e. precise amplitude and frequency
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Figure 17: The rotation rate estimation at frate = 50 Hz.

control, disturbance rejection, and minimizing the effects of fabrication imperfection,

the DDC provides a new solution to the problems. The applications of the DDC are

expected to be broadened to other MEMS sensors such as micro-accelerometers and

pressure sensors.
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Figure 18: The control signals of the drive and sense axes.
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Figure 19: The output of the drive axis with parameter variations.
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Figure 20: The output of the sense axis with parameter variations.
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Figure 21: The rotation rate estimation at frate = 50 Hz with parameter variations.
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Figure 22: The rotation rate estimation at frate = 100 Hz.
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Figure 23: The rotation rate estimation at frate = 200 Hz.



CHAPTER VIII

CONCLUDING REMARKS

8.1 Findings and Conclusions

One main result in this dissertation is the analysis of the convergence and the

stability characteristics of the ESO and the associated compensation system, ADRC.

It is demonstrated that, for a large class of physical processes, both the unknown

plant dynamics and external disturbances can be estimated using the unique state

observer, ESO. Both design scenarios, with and without a detailed mathematical

model of the plant, are considered. It is shown that the asymptotic stability is

assured for the dynamic system describing the estimation error and the closed-loop

system when the plant mathematical model is given. For the other case, i.e., without

a mathematical model of the plant, it is shown that the observer estimation error,

the closed-loop tracking error, and its up to the (n− 1)st order derivatives are shown

to be bounded. Furthermore, it is demonstrated that the observer estimation error

upper bound monotonously decreases with the observer bandwidth and the closed-

loop tracking error upper bound monotonously decreases with the bandwidths of the

75
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observer and the controller. The results in this dissertation solidify the foundation

for the alternative control design paradigm, ADRC, one that is not bound by the

prevailing notion that an accurate mathematical description of the physical process

is required. The analytical study is furthered supported by both the simulation

and experimental results, showing that the plant dynamics and disturbance can be

realistically estimated in real time based on the plant input-output data and some

limited knowledge of the plant structure and order.

The other main contribution of this dissertation is the formulation of the DDC

approach for a class of square multivariable systems of various orders, based on the

disturbance rejection nature of the ADRC. It does not require an accurate mathe-

matical model. The proposed DDC method is easy to understand and to implement,

making it an appealing solution for practitioners. Because of the simplicity of the

proposed DDC for implementation, it has been successfully simulated in chemical

processes and MEMS gyroscopes. Simulation results are quite promising. Through

comparing the DDC performance with MPC performance in chemical process prob-

lems and adaptive control performance in MEMS gyroscopes, DDC achieves high per-

formance in tracking, disturbance rejection, and robustness in the chemical processes

and MEMS gyroscopes involving both the linear and nonlinear multivariable plants

with significant uncertainties.

8.2 Remarks on Future Research

Based on the work of this dissertation, further investigation could be divided

into theoretical part and application part.

From the theoretical side, future research could be to focus on the following di-

rections. First, the stability analysis of the ADRC has some assumptions for the two

cases: with the plant model information and without the plant model information.
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With relaxing the limitation of the stability analysis in this dissertation, what con-

clusions will be obtained for the stability characteristics of the ESO and the ADRC?

Second, the coefficient of the control signal and the order of the system in the current

ADRC framework still need to be known in order to design the control system. What

can be achieved for the control system design without the above information? In

other words, what approach can be developed for systems with time-varying coeffi-

cients of control signals and/or systems without order information? Third, the DDC

is proposed for square multivariable systems without time delay. How to develop a

new approach to design the control system for non-square multivariable systems and

/or for MIMO systems with time delay, under the ADRC framework?

From the application side, future investigation could be conducted with the

following possible directions. The DDC is a very practical approach and has not

been widely applied to real systems. The applications of the DDC to large scale

systems are very interesting. For example, energy and environmental control issues

are currently one society’s main concern. The DDC is a good approach to energy and

environmental control problems, since it is hard to provide a mathematical model.

These are interesting topics that could be further investigated.



BIBLIOGRAPHY

[1] G. Basile and G. Marro, “On the observability of linear, time-invariant systems

with unknown inputs, Journal of Optimization Theory and Applications, vol. 2,

no. 6, pp. 410-415, 1969.

[2] C. Johnson, “Accommodation of external disturbances in linear regulator and

servomechanism problems,” IEEE Transactions on Automatic Control, vol. AC-

16, no. 6, pp. 635-644, 1971.

[3] G. Hostetter and J. Meditch, “On the generalization of observers to systems with

unmeasurable, unknown inputs,” Automatica, vol. 9, pp. 721-724, 1973.

[4] C. Johnson, “Theory of disturbance-accommodating controllers,”, Control and

Dynamic Systems, vol. 12, pp. 387-489, 1976.

[5] V. Gourishangkar, P. Kudva, and K. Ramar, “Reduced-order observers for mul-

tivariable systems with inaccessible disturbance inputs,” International Journal

of Control, vol. 25, pp.311-319, 1977.

[6] P. C. Muller, “Indirect measurements of nonlinear effects by state observers,”

Proc. IUTAB Symposium Nonlinear Dynamics in Engineering Systems, pp. 205-

215, 1990.

[7] J. Profeta, W. Vogt, and M. Mickle, “Disturbance estimation and compensation

in linear systems,” IEEE Transaction on Aerospace and Electronic Systems, vol.

26, no. 2, pp. 225-231, 1990.

[8] J. Chen, R. J. Patton, and H. Zhang, “Design of unknown input observers and

78



79

robust fault detection filters,” International Journal of Control, vol. 63, no. 1,

pp. 85-105, 1995.

[9] T. Umeno, and Y. Hori, “Robust speed control of DC servo motors using mod-

ern two degrees-of-freedom controller design,” IEEE Transactions on Industrial

Electronics, vol. 38, pp. 363-368, 1991.

[10] Y. Hori, K. Shimura, and M. Tomizuka, “Position/force control of multi-axis

manipulator based on the TDOF robust servo controller for each joint,” Proc. of

the American Control Conference ACC/WM9, vol. 1, pp. 753-757, 1992.

[11] H. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy

positioning systems,” IEEE Transactions on Industrial Electronics, vol. 43, pp.

48-55, 1996.

[12] T. Mita, M. Hirata, K. Murata, and H. Zhang, “H∞ control versus disturbance-

observer-based control,” IEEE Transactions on Industrial Electronics, vol. 45,

no. 3, pp. 488-495, 1998.

[13] R. Bickel and M. Tomizuka, “Passivity-based versus disturbance observer based

robot control: equivalence and stability,” ASME Journal of Dynamics Systems,

Measurement, and Control, vol. 121, pp. 41-47, 1999.

[14] E. Schrijver and J. van Dijk,“Disturbance observers for rigid mechanical sys-

tems: Equivalence, stability, and design,” ASME Journal of Dynamics Systems,

Measurement, and Control, vol. 124, no. 4, pp. 539-548, 2002.

[15] Y. Choi, K. Yang, W. K. Chung, H. R. Kim, and I. H. Suh, “On the robust-

ness and performance of disturbance observers for second-order systems,” IEEE

Transactions on Automatic Control, vol. 48, no. 2, pp. 315-320, 2003.



80

[16] K. Yang, Y. Choi, and W. Chung, “On the tracking performance improvement of

optical disk drive servo systems using error-based disturbance observer,” IEEE

Transactions on Industrial Electronics, vol. 52, no. 1, pp. 270-279, 2005.

[17] S. Kwon and W. K. Chung, “Robust performance of the multiloop perturbation

compensator,” IEEE/ASME Transaction on Mechatron., vol. 7, no. 2, pp. 190-

200, 2002.

[18] S. Kwon and W. K. Chung, “A discrete-time design and analysis of perturbation

observer for motion control applications,” IEEE Transactions on Control Systems

Technology, vol. 11, no. 3, pp. 399-407, 2003.

[19] S. Kwon and W. K. Chung, “Combined synthesis of state estimator and per-

turbation observer,” ASME Journal of Dynamic Systems, Measurement, and

Control, vol. 125, pp. 19-26, 2003.

[20] S. Kwon, “Robust kalman filtering with perturbation estimation process,” Proc.

of the American Control Conference, pp. 997-1002, 2006.

[21] Z. Gao, “Active disturbance rejection control: a paradigm shift in feedback con-

trol system design,” Proc. of the American Control Conference, pp. 2399-2405,

2006.

[22] J. Han, “A class of extended state observers for uncertain systems,” Control and

Decision, vol. 10, no. 1, pp. 85-88, 1995. (In Chinese)

[23] J. Han, “Nonlinear state error feedback control,” Control and Decision, vol. 10,

no. 3, pp. 221-225, 1995. (In Chinese)

[24] J. Han, “Auto-disturbance rejection control and its applicationss,” Control and

Decision, vol. 13, no. 1, pp. 19-23, 1998. (In Chinese)



81

[25] J. Han, “Nonlinear design methods for control systems,” Proc. of the 14th IFAC

World Congress, 1999.

[26] Z. Gao, Y. Huang, and J. Han, “An alternative paradigm for control system

design,” Proceedings of IEEE conference on Decision and Control, pp. 4578-4585,

2001.

[27] Z. Gao, “Scaling and parameterization based controller tuning,” Proceedings of

the American Control Conference, pp. 4989-4996, 2003.

[28] L. Dong and R.P. Leland, “The adaptive control system of a MEMS gyroscope

with time-varying rotation rate,” Proceedings of the American Control Confer-

ence, pp. 3592-3597, 2005.

[29] R. K. Wood and M.W. Berry, “Terminal composition control of a binary distil-

lation Column,” Chemical Engineering Science, vol. 28, pp. 1707-1717, 1973.

[30] R. Brockett, “New Issues in the Mathematics of Control,” Mathematics Unlimited

- 2001 and Beyond, B. Engquist and W. Schimid Ed., pp. 189-220, Springer,

2001.

[31] Y. X. Su, B. Y. Duan, C. H. Zheng, Y. F. Zhang, G. D. chen, and J. W.

Mi, “Disturbance-rejection high-precision motion control of a stewart platform,”

IEEE Transactions on Control Systems Technology, vol. 12, no. 3, pp. 364-374,

2004.

[32] Z. Gao, S. Hu, and F. Jiang, “A novel motion control design approach based on

active disturbance rejection,” Proceedings of IEEE Conference on Decision and

Control, pp. 4877-4882, 2001.

[33] J. J. Gertler, “Survey of model-based failure detection and isolation in complex

plants,” IEEE Control Systems Magazine, vol. 8, no. 6, pp. 3-11, 1988.



82

[34] A. Radke and Z. Gao, “A survey of state and disturbance observers for practi-

tioners,” Proceedings of the 2006 American Control Conference, pp. 5183-5188,

2006.

[35] A. Tornambe and P. Valigi, “A Decentralized controller for the robust stabi-

lization of a class of MIMO dynamical systems,” Journal of Dynamic Systems

Measurement and Control, vol. 116, pp. 293-304, 1994.

[36] S. Oh and H. K. Khalil, “Output feedback stabilization using variable structure

control,” International Journal of Control, vol. 62, no. 4, pp. 831-848, 1995.

[37] H. K. Khalil, “Nonlinear output-feedback tracking using high-gain observer and

variable structure control,” Automatica, vol. 33, no. 10, pp. 1845-1856, 1997.

[38] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.

[39] L. B. Freidovich and H. K. Khalil, “Performance recovery of feedback-

linearization-based designs,” IEEE Transactions on Automatic Control, vol. 23,

no. 10, pp. 2324-2334, 2008.

[40] F. Goforth,”On motion control design and tuning techniques,” Proceedings of the

2004 American Control Conference, pp. 716-721, 2004.

[41] Q. Zheng and Z. Gao, “Motion control opmitimization: problem and solutions,”

Interntional Journal of Intelligent control and systems, vol. 10, no. 4, pp. 269-

276, 2006.

[42] Y. Hou, Z. Gao, F. Jiang, and B. Boulter, “Active disturbance rejection control

for web tension regulation,” Proceedings of the 40th IEEE Conference on Decision

and Control, pp. 4974-4979, 2001.



83

[43] B. Sun and Z. Gao, “A DSP-based active disturbance rejection control design

for a 1KW H-bridge DC-DC power converter,” IEEE Trans. on Industrial Elec-

tronics, vol. 52, no. 5, pp. 1271-1277, 2005.

[44] W. Zhou, S. Shao, and Z. Gao, “A stability study of active disturbance rejection

control problem by a singular perturbation approach,” Applied Mathematical

Sciences, vol. 3, no. 10, pp. 491 - 508, 2009.

[45] Q. G. Wang, Decoupling Control, Springer, 2003.

[46] B. S. Morgan, “The synthesis of linear multivariable systems by state variable

feedback,” IEEE Transactions on Automatic Control, AC-9, pp. 404-411, 1964.

[47] B. S. Gilbert, ‘The decoupling of multivariable systems by state feedback,” SIAM

Journal on Control, vol. 7, no. 1, pp. 50-63, 1969.

[48] A. S. Morse and W. A. Wonham, “Decoupling and pole assignment by dynamic

compensation,” SIAM Journal on Control, pp. 317-337, 1970.

[49] W. C. Williams and P. J. Antsaklis, ‘A unifying approach to the decoupling

of linear multivariable systems,” International Journal of Control, vol. 44, pp.

181-201, 1986.

[50] J. Descusse, “Block noninteracting control with (non)regular static state feed-

back: a complete solution,” Automatica, vol. 27, pp. 883-886, 1991.

[51] F. Zheng, Q. G. Wang and T. H. Lee, “On the design of multivariable PID

controllers via LMI approach,” Automatica, vol. 38, pp. 517-526, 2002.

[52] I. N. Voznesenskii, “On controlling machines with a large number of controlled

parameters,” Avtomatika i Telemekhanica, nos. 4-5, pp. 65-78, 1938.



84

[53] R. J. Kavanagh, “The multivariable problem,” Progress in Control Engineering,

vol. 3, pp. 94-12, 1966.

[54] H. S. Tsien, Engineering Cybernetics, McGraw-Hill, New York, 1954.

[55] P. L. Falb and W. A. Wolovich, “Decoupling in design and syntheis of multivari-

able systems,” IEEE Transactions on Automatic Control, AC-12, pp. 651-669,

1967.

[56] W. A. Wonham and A. S. Morse, “Decoupling and pole assignment in linear

multivariable systems: a geometric approach,” SIAM Journal on Control, vol. 8,

pp. 1-18, 1970.

[57] W. A. Wonham, Linear Multivariable Control: A geometric approach, 3rd edi-

tion, Springer, 1986.

[58] L. M. Silverman and H. J. Payne, “Input-output structure of linear systems

with application to decoupling problem,” SIAM Journal on Control, vol. 9, pp.

199-233, 1971.

[59] L. M. Silverman, “Inversion of multivariable linear systems,” IEEE Transactions

on Automatic Control, vol. 14, pp. 270-276, 1969.

[60] J. Descusse, J. F. Lafay and M. Malabre, “Solution to Morgan’s problem,” IEEE

Transactions on Automatic Control, AC-33, pp. 732-739, 1988.

[61] C. Commault,, J. M. Dion and J. A. Torres, “Minimal structure in the block

decoupling problem with stability,” Automatica, vol. 27,pp. 331-338, 1991.

[62] C. A. Desoer and A. N. Gundes, “Decoupling linear multiinput multioutput

plants by dynamic output feedback: An algebraic theory,” IEEE Transactions

on Automatic Control, vol. 31,pp. 744-750, 1986.



85

[63] M. L. J. Hautus and M. Heymann, “Linear feedback decoupling – transfer func-

tion analysis,” IEEE Transactions on Automatic Control, vol. 28, pp. 823-832,

1983.

[64] T. G. Koussiouris, “A frequency domain approach to the block decoupling prob-

lem: I — The solvability of block decoupling problem by state feedback and a

constant non-singular input transformation,” International Journal of Control,

vol. 29, pp. 911-1010, 1979.

[65] T. G. Koussiouris, “A frequency domain approach to the block decoupling prob-

lem: II — Pole placement while block-decoupling a minimal system by state feed-

back and a constant non-singular input transformationn,” International Journal

of Control, vol. 32, pp. 443-464, 1980.

[66] L. Pernebo, “An algebraic theory for the design of controllers for linear multivari-

able systems,” IEEE Transactions on Automatic Control, vol. 26, pp. 171-193,

1981.

[67] C. A. Lin and T. F. Hsieh, “Decoupling controller design for linear multivariable

plants,” IEEE Transactions on Automatic Control, vol. 36, pp. 485-489, 1991.

[68] Y. Peng, “A general decoupling precompensator for linear multivariable systems

with application to adaptive control,” IEEE Transactions on Automatic Control,

vol. 35, pp. 344-348, 1990.

[69] M. G. Safonov and B. S. Chen, “Multivaribale stability-margin optimization

with decoupling and output regulation,” IEE Proceedings Part D, vol. 129, pp.

276-282, 1982.

[70] A. I. G. Vardulakis, “Internal stabilization and decoupling in linear multivari-



86

able systems by unity output feedback compensation,” IEEE Transactions on

Automatic Control, AC-32, pp. 735-739, 1987.

[71] A. Linnemann and R. Maier, “Decoupling by precompensation while maintain-

ing stabilizability,” Proceedings of the 29th IEEE Conference on Decision and

Control, pp. 2921-2922, 1990.

[72] Q.-G. Wang, “Decoupling with internal stability for unity output feedback sys-

tems,” Automatica, vol. 28, pp. 411-415, 1992.

[73] A. Linnemann and Q.-G. Wang, “Block decoupling with stability by unity output

feedback – Solution and performance limitations,” Automatica, vol. 29, pp. 735-

744, 1993.

[74] W.-T. Wu, Z.-P. Hwang, and Y.-L. Hsu, “Robust decoupling control based on ex-

ternal loops,” Chemical Engineering Communications, vol. 169, pp. 25-35, 1998.

[75] A. Ito and M. Shiraishi, “Robust decoupling control for articulated robot,” JSME

International Journal, Series C, Dynamics, Control, Robotics, Design and Man-

ufacturing, vol. 40, pp. 89-96, 1997.

[76] Q. Zheng, L. Q. Gao, and Z. Gao, “On Estimation of Plant Dynamics and

Disturbance from Input-Output Data in Real Time,” Proceedings of the IEEE

Multi-Conference on Systems & Control, pp. 1167-1172, Singapore, October 1-3,

2007.

[77] Manual for Model 220 Industrial Emulator/Servo Trainer,

http://www.mne.psu.edu/ray/me355web/IndustrialEmulator.pdf, Educa-

tional Control Products, 5725 Ostin Avenue, Woodland Hills, CA 91367,

1995.



87

[78] Q. Zheng, L. Q. Gao, and Z. Gao, “On Stability Analysis of Active Disturbance

Rejection Control for Nonlinear Time-Varying Plants with Unknown Dynamics,”

Proceedings of the 46th IEEE Conference on Decision and Control, pp. 3501-

3506, New Orleans, LA, USA, December 12-14, 2007.

[79] R. Bellman, Introduction to Matrix Analysis, RAND Corporation, New York,

1997.

[80] Q. Zheng, Z. Chen, and Z. Gao, “A Practical Dynamic Decoupling Control

Approach,” Control Engineering Practice, vol. 17, no. 9, pp. 1016-1025, 2009.

[81] Y. Huang, K. Xu, J. Han, and J. Lam, “Flight Control Design Using Extended

State Observer and Non- Smooth Feedback,” Proceedings of the 40th IEEE Con-

ference on Decision and Control, pp. 223-228, 2001.

[82] R. Miklosovic and Z. Gao, “A Dynamic Decoupling Method for Controlling High

Performance Turbofan Engine,” Proceedings of the 16th IFAC World Congress,

2005.

[83] B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance robust motion con-

trol of machine tools: An adaptive robust control approach and comparative

experiments,” IEEE/ASME Transaction on Mechatron., vol. 2, pp. 63-76, 1997.

[84] B.-K. Choi, C.-H. Choi, and H. Lim, ‘Model-based disturbance attenuation

for CNC machining centers in cutting process,” IEEE/ASME Transaction on

Mechatron., vol. 4, pp. 157-168, 1999.

[85] B. S. Dayal and J.F. MacGregor, “Recursive exponentially weighted PLS and its

application to adaptive control and prediction,” Journal of Process Control, vol.

7, no. 3, pp. 169-179, 1997.



88

[86] Q. Zheng, L. Dong, and Z. Gao, “Control and Rotation Rate Estimation of

Vibrational MEMS Gyroscopes,” Proceedings of the IEEE Multi-Conference on

Systems & Control, pp. 118-123, Singapore, October 1-3, 2007.

[87] B. Roffel and B. H. Betlem, Advanced Practical Process Control, Springer, 2004.

[88] S. Park and R. Horowitz, “Adaptive Control for Z-axis MEMS Gyroscopes,”

Proceedings of American Control Conference, pp. 1223-1228, 2001.

[89] Y. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings

of the IEEE, vol. 86, no. 8, pp. 1640-1659, 1998.

[90] R. Leland, “Lyapunov based adaptive control of a MEMS gyroscope,” Proceed-

ings of American Control Conference, pp. 3765-3770, 2002.

[91] R. P. Leland, Y. Lipkin, and A. Highsmith, “Adaptive oscillator control for a

vibrational gyroscope,” Proceedings of American Control Conference, pp. 3347-

3352, 2003.

[92] S. Park, Adaptive control strategies for MEMS gyroscopes, PhD Dissertation, The

University of California Berkeley, 2000.

[93] A. M. Shkel, R. Horowitz, A. A. Seshia, S. Park, and R. T. Howe, “Dynam-

icsw and control of micromachined gyroscopes,” Proceedings of American Control

Conference, pp. 2119-2124, 1999.

[94] S. Park and R. Horowitz, “Adaptive control for the conventional mode of opera-

tion of MEMS gyroscopes,” Journal of Microelectromechanical Systems, vol. 12,

no. 1, pp. 101-108, 2003.

[95] J. D. John and T. Vinay, “Novel concept of a single-mass adaptively controlled



89

triaxial angular rate sensor,” IEEE Sensors Journal, vol. 6, no. 3, pp. 588-595,

2006.

[96] R. M’Closkey, S. Gibson, and J. Hul, “System identification of a MEMS gyro-

scope,” Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp.

201-210, 2001.

[97] M. Salah, M. McIntyre, D. Dawson, and J. Wagner, “Time-varying angular rate

sensing for a MEMS Z-axis gyroscope,” Proceedings of the 45th IEEE Conference

on Decision and Control, pp. 2165-2170, 2006.

[98] W. A. Clark, R. T. Howe, and R. Horowitz, “Surface micromachined Z-axis

vibratory rate gyroscope,” Tech. Dig. Solid-State Sensor and Actuator Workshop,

pp. 283-287, 1996.

[99] L. Dong, Q. Zheng, and Z. Gao, “On Control System Design for the Conventional

Mode of Operation of Vibrational Gyroscopes,” IEEE Sensors Journal, vol. 8,

no. 11, pp. 1871-1878, 2008.

[100] Q. Zheng, L. Dong, D. H. Lee, and Z. Gao, “Active Disturbance Rejection

Control for MEMS gyroscopes,” Proceedings of the American Control Conference,

pp. 4425-4430, Seattle, Washington, USA, June 11-13, 2008.

[101] Q. Zheng, L. Dong, D. H. Lee, and Z. Gao, “Active Disturbance Rejection Con-

trol and Implementation for MEMS Gyroscopes,” to appear, IEEE Transactions

on Control System Technology, 2009.


	On Active Disturbance Rejection Control;Stability Analysis and Applications in Disturbance Decoupling Control
	Recommended Citation

	tmp.1455914885.pdf.PnJ45

