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Perera N. Indika Æ Mekki Bayachou

Eliminating absorbing interference using the H-point standard
addition method: case of Griess assay in the presence
of interferent heme enzymes such as NOS

Abstract Standard calibration methods used to deter-
mine trace analytes usually yield significant deviations
from the actual analyte value in the presence of interf-
erents in the assay media. These deviations become of
particular concern when the concentration of the analyte
is low, and when the results are used to draw mecha-
nistic or kinetic conclusions, for instance in enzyme
structure-function studies. In these circumstances, the
H-point standard addition method (HPSAM) provides
superior precision and accuracy. This method is devel-
oped here for the case of the spectrophotometric Griess
assay used to determine nitrite in various enzymology
investigations, such as nitrite determination in studies of
nitrite reductases (NiR), or when determining nitrite as a
breakdown product of nitric oxide synthesized by NOS
enzymes. The results obtained by HPSAM are con-
trasted with those of the traditional calibration method.

Keywords Nitrite Æ Determination Æ NOS Æ
Enzymes Æ Griess Æ Assay

Introduction

Determination of trace amounts of nitrite (NO2
�) is

crucial to a number of mechanistic and kinetic investi-
gations addressing the structure-functions of enzymes.
Examples include investigations that address the mech-
anisms and kinetics of the molecular functions of en-
zymes such as nitrite reductases (NiR) [1], and nitric
oxide synthases (NOS) [2]. In the latter case, accurate

determination of (NO2
�) as a breakdown product of

nitric oxide (NO) is of particular importance to current
investigations, which aim to understand the mechanism
of function of NOS enzymes. NOS is a class of heme
enzymes which catalyze the in vivo synthesis of the
effector molecule NO [3]. NO is synthesized through the
oxidation of the amino acid L-arginine, and is used in
vasodilation, neurotransmission, cytotoxicity, and
numerous physiological processes; it is also involved in
the development of a host of pathological states [4, 5].

In NOS enzymology, NO is often quantified in the
form of NO2

�, a stable breakdown product of NO in
aerobic reaction media, by using a standard calibration
method that uses the Griess assay. This method is one of
the most popular and simplest used to spectrophoto-
metrically detect NO2

� concentration [6, 7]. This assay is
based on a two-step chemical derivatization reaction,
using sulfanilamide and N-1-napthylethylenediamine
dihydrochloride (NED), and yields an azo-compound
with kmax at 540 nm; the latter is used to quantify the
NO2

� originally present. The Griess assay is widely used
to determine NO2

� in a variety of biological and
experimental matrices, such as plasma, serum, urine and
tissue culture media [8, 9]. However, serious accuracy
problems may arise in the presence of absorbing inter-
ferences, especially if these are not taken into account
during the calibration step.

For instance, an issue of major concern to those using
the Griess assay to determine N2O

� in NOS enzymology
using standard calibration curves is that the absorption
band of NOS-heme as well as that of the flavins around
520–540 nm in full-length NOS may positively interfere
with the absorption reading of the azo-compound,
especially when the enzyme is not separated by size
exclusion prior to the Griess assay. The same is true for
any heme-protein with heme Q-band absorption over-
lapping with that of the target azo-compound [10, 11].
Even if the enzyme is separated by size exclusion prior to
conducting the assay, trace amounts of protein may re-
main in the solution and may significantly interfere with
the final reading. This is especially critical in the case of
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NOS, since the molar extinction coefficient (at 540 nm)
of NOS is quite large. Therefore, the traditional stan-
dard calibration curve may lead to erroneous quantita-
tion.

An alternative method called standard addition can
be used instead. However this method cannot remove
the constant error resulting from other absorbing com-
ponents in the system, although it may remove the error
resulting from the sample matrix. To overcome this
obstacle a new procedure called the H-point standard
addition method (HPSAM) was introduced in 1988 by
Bosch-Reig et al [12, 13]. The method is mainly based on
the principle of the dual wavelength spectrophotometer
coupled with the standard addition method. Among
other advantages of this method is the fact that it
eliminates interferences caused by absorbing compo-
nents intrinsic to the system being analyzed, as well as
interference from the blank matrix solution [14, 15, 16].
The method is growing in popularity, and continues to
find new applications in a number of fields [17, 18, 19,
20, 21]. A modified version of HPSAM, called general-
ized HPSAM, can be used to quantify the analyte con-
centration even when the nature of the interferent is not
known [22, 23].

The objective of the present work is to explore the
relative error (due to interference) associated with NO2

�

determination when performing the traditional standard
calibration curve rather than the HPSAM. The perfor-
mance of the new method is contrasted with that of the
traditional calibration, especially when dealing with the
very low NO2

� concentrations usually involved in
enzymatic initial rate determinations or under single
turnover conditions.

The method is first developed and validated with
myoglobin, a cheap commercially available heme-pro-
tein that gives interfering absorption similar to NOS in
the 520–540 nm region. Then, determinations of NO2

�

in the presence of mouse inducible NOS (iNOS) are
conducted to prove the applicability of the new method
to the NOS case.

Experimental section

Reagents

All the chemicals used were of analytical grade. Nano-
pure deionized water (specific resistance >18.2 Wcm)
used throughout the experiment was supplied by a
Barnstead water purification system. All working solu-
tions of NO2

� were prepared using 0.1 M standard
NO2

� solution. Heme-proteins, Horse Heart myoglobin
and mouse inducible NOS, iNOS, were purchased from
Sigma-Aldrich. Original concentrations of hemeproteins
were quantified using their molar extinction coefficients
(163.9 mM�1 cm�1 at 410 nm for myoglobin [24], and
71 mM�1 cm�1 at 414 nm for iNOS [25]). The Griess
reagent kit was purchased from Promega and was used
according to the technical instructions of this supplier.

Apparatus

UV-visible absorbance spectra were recorded on an
Agilent 8453 spectrophotometer using 1-cm path UV-
Vis cells. Spectra were collected between 400 and
650 nm. Measurements of pH were made with an Acc-
umet AB15 pH-meter using a combined glass electrode.

Procedure

Myoglobin was dissolved in pH 7.6 phosphate buffer
(10 mM). This solution was purified by filtration on
YM30 membranes (Amicon); its concentration was
quantified by measuring its absorbance at 410 nm.
Spectra were recorded separately for the azo-com-
pound, for myoglobin, and for iNOS in the region of
450–620 nm (Fig. 1) to obtain the best working
wavelengths for HPSAM (see Sect. 3.1, ‘‘Selection of
wavelengths’’). Standard samples containing four dif-
ferent concentrations of NO2

� (10, 7.5, 5.0 and
2.5 lM) in the presence of three different concentra-
tions of myoglobin (10, 15, and 20 lM) were pre-
pared, giving a total of 12 working standards. The
total volume of each sample analyzed was 6.00 ml.
The range of nitrite concentration in these working
samples was selected based on actual ranges used in
enzymology studies. Each standard was divided into
6·1.00 ml aliquots. Then known amounts of NO2

�

standard were successively added into each vial fol-
lowed by appropriate amounts of the Griess reagent
system (sulfanilamide and NED solutions). The mix-
tures were incubated for 10 min. The resulting solu-
tions were then diluted twice (to 2 ml) with deionized
water. The NO2

� concentration in each standard was
then quantified by performing HPSAM (see Sects. 3.2
and 3.4) by measuring the absorbance at two pre-se-
lected wavelengths. Each data point on the graphs is
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Fig. 1a c Absorbance spectra of a 10 lM myoglobin, b azo
compound of Griess assay and c 10 lM iNOS
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the mean value of results of two separate experiments.
For comparison purposes, the NO2

� concentration in
each sample analyzed by the HPSAM was also
quantified using a standard calibration curve con-
structed at 540 nm. The same procedure was per-
formed with 10 lM iNOS as an interferent for three
different NO2

� concentrations. Determinations of
NO2

� generated in situ (through the breakdown of
NO synthesized in the medium by iNOS enzymes),
were also conducted as described above using the two
methods.

The procedure for the NOS assay was as follows:
100 ll of iNOS (8 lM) were added to 1.00 ml of 50 mM
HEPES buffer at pH 7.4 containing 0.1 mM NADPH,
1 mM arginine, 12 lM tetrahydrobiopterin and 170 lM
DTT, all pre-warmed at 37 �C for 15 mins. The NOS
reaction was then allowed to proceed for 12 min at
37 �C. The reaction was quenched after 12 min by add-
ing 100 ll of ice-cold-deionized water into the reaction
vessel and then stored in ice for the assay. The content of
the reaction vessel was divided into six aliquots of 200 ll
on which standard addition and calibration methods
were carried out as described in the text.

Results and discussion

This study explores the impact of absorbing interfer-
ences on the determination of small amounts of NO2

�

using the Griess assay in the presence of interfering heme
proteins, and develops a method based on HPSAM to
eliminate the effect of absorbing interference(s) (see
requirements in electronic supplementary material,
Appendix 1 [12]). Figure 1 shows absorbance spectra for
the terminal azo-compound used to determine NO2

�, in
addition to the spectra of the hemeproteins myoglobin
and iNOS in the same region.

One can clearly see that when the hemeproteins
myoglobin and iNOS are used in a concentration range
similar to that used in actual determinations, they give
significant overlapping absorbance in the 520–540 nm
range, which is the most desired range of wavelength
used to quantify NO2

� in the Griess assay. It is therefore
expected that the standard calibration method in the
presence of these interferences will lead to significant
errors.

Optimization of the system

Selection of pH

The influence of pH value on the absorbance of the azo-
compound in the presence of constant interferent con-
centration was studied. The absorbance was found to be
the highest with an assay solution at pH 7.4. This pH
was then selected as the optimum pH for all assays,
which also turns out to be the pH value most often used
in enzymatic studies.

Selection of wavelengths

Two wavelengths for each interferent (myoglobin and
iNOS) were selected based on their absorbance in order
to fulfill the HPSAM requirement. At these selected
wavelengths, the absorbance must be linear with the
concentrations and the interferent absorbance must re-
main equal (electronic supplementary material, Appen-
dix 1). Also, the analytical signal obtained from a
mixture containing both the analyte and interferent
should be equal to the sum of the individual signals of
the two components. In addition, good accuracy and
precision can be achieved when the difference in the
slopes of the two straight lines measured at the two pre-
selected wavelengths (k1 and k2) are large. Taking all of
these criteria into account, the wavelengths 491 and
516 nm were found to be the best pair of wavelengths for
myoglobin, while for iNOS, 544 and 554 nm were se-
lected as the working wavelengths [26]. However, it is
important to note that, although very rare, cases may
exist where the selection of the working wavelengths
may be prohibited by either the complexity of the sample
or by the interferent not necessarily being known.

The HPSAM with myoglobin as interferent

Several working standard samples containing different
concentrations of myoglobin were analyzed using the
proposed HPSAM. Figure 2 was obtained by plotting
the standard addition curves at 516 and 491 nm for
different nitrite concentrations in the presence of 10 lM
concentration of myoglobin. As described in the exper-
imental section, the standards are diluted two times, and
therefore the value at the crossing point of the two lines
of each graph (which corresponds to the concentration
of NO2

� in the standard) should be multiplied by a
factor of two to reflect the original concentration in the
analyzed sample. As can be seen from Fig. 2, the con-
centrations found by the HPSAM satisfactorily repro-
duce the concentrations in the working samples
analyzed. It is worth mentioning that these results are
obtained using the samples as prepared in the presence
of the interferent without pre-separation steps by size-
exclusion membranes. The observed deviations from
actual values in the presence of 10 lM of myoglobin as
interferent are all very small compared to the deviations
encountered when using the traditional calibration
curves (see Sect. 3.3).

The recovery data in Table 1 shows that, except for
the lowest analyte concentration (2.5 lM), and only at
high interferent concentrations (15 and 20 lM), the
HPSAM performs relatively well given the presence of
high interferent concentration (10–20 lM). Despite the
deviations from the values of the standards, the perfor-
mance of the HPSAM is still superior to the traditional
calibration in the same conditions (see Sect. 3.3). While
myoglobin is a good mimic for developing and validat-
ing the HPSAM for the Griess assay in the presence of
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interferent present in the assay. Compare for instance
the 100% recovery for a 2.5-lM standard in the presence
of 10 lM heme protein interferent, to 149% recovery for
the same sample using the traditional calibration curve.
The HPSAM eliminates or significantly minimizes the

effect of absorbing interferent. Although there are some
slight deviations (like 127% recovery for 2.5 lM stan-
dard in the presence of 15 lM interferent) observed with
the HPSAM determinations at low NO2

� concentra-
tions (2.5 lM), the method is still far more reliable than
a blind calibration in the presence of absorbing inter-
ference.

The HPSAM in the case of iNOS as interferent

The proposed method was tested with samples con-
taining different NO2

� concentrations in the presence of
10 lM iNOS as the absorbing interferent. Again, Fig-
ure 4a shows that the traditional calibration method
cannot be used in this assay to accurately determine the
concentration of NO2

�, particularly, when using this
information to derive mechanistic and/or kinetic con-
clusions (like in mechanistic/kinetic studies of the
molecular function of NOS enzymes, where the end
product, NO, is determined in the form of NO2

� ions
using the Griess assay). As shown previously, the devi-
ation from actual values increases as NO2

� concentra-
tion decreases; in fact, a deviation of 101% from the
actual value was recorded with the calibration curve
when the NO2

� concentration is 2.5 lM in the presence
of 10 lM iNOS interferent. This discrepancy between
measured and actual concentrations values in the pres-
ence of iNOS interferent observed in the calibration
almost disappears when using the HPSAM. Figure 4b
shows NO2

� concentration values obtained by the pro-
posed HPSAM as a function of actual values in the
presence of 10 lM iNOS as interferent.

Except for the low end of the nitrite (2.5 lM) where a
deviation is observed, NO2

� concentration values mea-
sured in these conditions using the HPSAM are very
close to the actual values. Even for the low range of
NO2

� concentration (2.5 lM), the performance of the
HPSAM (24% deviation) is still superior to that of the
traditional calibration method (101% deviation).

Comparison of the performance of HPSAM
and standard calibration in actual NOS reactions

Assays for mouse inducible NOS were experimentally
performed for 12 min under the conditions given in the
enzyme kit. NO (in the form of NO2

�) generated after
the catalytic oxidation of the substrate arginine was then
quantified using the proposed HPSAM and standard
calibration methods. The values of NO2

� concentration

Table 2 Summary of recovery
data by the conventional
calibration as applied in the
Griess assay in the presence
of myoglobin interferent
(at 10, 15 and 20 lM)

Recovery Data (lM (%))

Nitrite standard (lM) 10 7.5 5.0 2.5
Myogobin interferent at 10 lM 9.54 (95.4) 7.71 (103) 5.40 (108) 3.73 (149)
Myogobin interferent at 15 lM 12.0 (120) 9.5 (127) 7.28 (146) 6.11 (244)
Myogobin interferent at 20 lM 12.6 (126) 10.4 (139) 8.8 (176) 6.69 (268)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

12

13

ob
ta

in
ed

 c
on

ce
nt

ra
tio

n 
(µ

M
)

Actual nitrite concentration (µM)

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

12

O
bt

ai
ne

d 
co

nc
en

tr
at

io
n 

(µ
M

)

Actual nitrite concentration (µM) 

Expected line (i.e. slope=1)

For 10 µM

For 20 µM(a)

Expected line (i.e. slope=1)

For 15 µM

(b)
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