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Robust and Decentralized Control of Web Winding Systems

WANKUN ZHOU

ABSTRACT

This research addresses the velocity and tension regulation problems in web

handling, including those found in the single element of an accumulator and those

in the large-scale system settings. A continuous web winding system is a complex

large-scale interconnected dynamics system with numerous tension zones to trans-

port the web while processing it. A major challenge in controlling such systems is the

unexpected disturbances that propagate through the system and affect both tension

and velocity loops along the way. To solve this problem, a unique active disturbance

rejection control (ADRC) strategy is proposed. Simulation results show remarkable

disturbance rejection capability of the proposed control scheme in coping with large

dynamic variations commonly seen in web winding systems. Another complication

in web winding system stems from its large-scale and interconnected dynamics which

makes control design difficult. This motivates the research in formulating a novel

robust decentralized control strategy. The key idea in the proposed approach is that

nonlinearities and interactions between adjunct subsystems are regarded as perturba-

tions, to be estimated by an augmented state observer and rejected in the control loop,

therefore making the local control design extremely simple. The proposed decentral-

ized control strategy was implemented on a 3-tension-zone web winding processing

v



line. Simulation results show that the proposed control method leads to much bet-

ter tension and velocity regulation quality than the existing controller common in

industry. Finally, this research tackles the challenging problem of stability analysis.

Although ADRC has demonstrated the validity and advantage in many applications,

the rigorous stability study has not been fully addressed previously. To this end,

stability characterization of ADRC is carried out in this work. The closed-loop sys-

tem is first reformulated, resulting in a form that allows the application of the well-

established singular perturbation method. Based on the decomposed subsystems by

singular perturbation, the composite Lyapunov function method is used to determine

the condition for exponential stability of the closed-loop system.

vi
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CHAPTER I

INTRODUCTION

In the material processing industry, long flexible sheets are usually described

as web. More precisely, web refers to any object which is very long compared to

its width, and very wide compared to its thickness. Many types of material are

manufactured or processed in web form such as paper, plastic film, cloth fabrics,

and even strip steel [2]. To produce an end product from a raw web material, web

converting and web handling are the two major processes that are involved. Web

converting [5] involves all those processes which are required to modify the physical

properties of the web material such as coating, slitting, drying, and embossing, etc.

while the web handling [6] processes consist of those processes that are associated

with the web transportation.

This chapter will introduce the basic concept of web winding systems, the

motivation behind this research, and finally the outline of the dissertation.

1
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1.1 Background

Web winding systems are common in the manufacture, fabrication, and trans-

port of any materials such as paper, metal, and photographic film. A continuous

web processing line is a large-scale, complex interconnected dynamic system with

numerous tension zones to transport the web while processing it. A continuous web

processing line is also a multi-span web transporting system which consists of a com-

bination of some basic mechanical/electrical elements, such as unwinder, rewinder,

roller, free web span, measuring sensors, and driving motors.

A prototype web winding system is shown in Figure 1. This system consists

of an unwinding roll which releases the web material, a nip roller which regulates

the velocity of the web, a winding roll which rewinds the released material, and

some transporting rolls which transmit the web material. These rolls are driven

independently by DC or AC servo motors with their torques regulated. Between the

nip roller and the rewinder/unwinder, there are a number of idle rolls which help form

a desired web path and the contact rolls which push the web against the transport

roll.

Figure 1: A prototype multi-span web transporting system

The roller in this web winding system is worthy of mention. Rollers are essential

parts of a web handling machine. In any web handling system, there are two types of
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rollers: 1) externally torque driven rollers such as the unwinder, rewinder and the nip

roller; and 2) the web driven rollers (idlers). These devices are also called “transport

rollers” in industry because they are not intended to change the physical properties

of the web. The traditional role of a “nipped roller” is to step the tension up or down

between sections of processes and, hence, create different tension zones for different

processes. In designing a controller for a web system, the nipped roller torque input

and the wound roller torque inputs (rewinder and unwinder) provide multiple inputs

for multivariable tension/speed control. In the control system design, these torque

inputs are usually regulated by Pulse Width Modulation (PWM) drives. The torque

outputs from the PWM drives can be either positive or negative and, hence, can

either act as “drives” or “brakes” in web tension control. The tensions of the web

system are measured by load cells. To provide real-time monitoring of time varying

information such as inertia of the unwinder and rewinder, there are also diameter

sensors which measure the changing diameters of the unwinder and rewinder.

The main purpose of the web handling process is to transport web with max-

imum throughput (speed) and with minimum damage. To achieve this, web tension

control is crucial for the following reasons:

1) Web tension affects the geometry of the web, such as the apparent length

and width of the web.

2) Web tension control helps reduce wrinkling. In particular, high process

tension will help decrease the wrinkling caused by a misalignment of rollers. However,

excessively high tension will cause more wrinkling to occur on very thin materials.

Hence, appropriate web tension control is very important.

3) Web tension affects the wound-in tension and the shape of the final product

roll and, hence, the roll quality.

For these reasons, it is essential in web winding systems to control the web
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tension at a desired value as closely as possible.

A continuous web winding system is a large-scale, complex interconnected dy-

namic system with numerous tension zones to transport the web while processing it.

There are two control schemes for large-scale system control: the centralized scheme

and the decentralized scheme. Centralized control is the traditional control method,

which considers all the information about the system to be a single dynamic model

and design a control system for this model. Since the system is a Multi-input Multi-

output (MIMO) system, modern multivariable control theory seems to be a natural

fit. However, when the dimensions of the system becomes larger, it is not practical

to implement the high order controllers obtained by multivariable control. Decentral-

ized control strategy is commonly used, because the whole system consists of many

subsystems, such as driven rolls and idle rollers. The controller is designed for each

subsystem, which removes the complexity of designing MIMO controllers. However,

the interactions among the input signals should be estimated sufficiently to assure

appropriate stability and performance of the decentralized control system.

1.2 Motivation

The ever-increasing demands on quality and efficiency in industry motivate

researchers and engineers alike to explore better methods for tension and velocity

control. However, the tension control problem is challenging because of the highly

nonlinear dynamics and external disturbance of the system. If tension variations

occur, they will result in degradation of product quality or even rupture of the mate-

rial. Therefore, in order to have a high quality product and to reduce cost, it is very

important to monitor and control the tension within the desired range.

Advances in web-winding system control might improve these situations in a

number of ways, such as increasing transient performance or reliability, and facili-
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tating tighter tracking of the desired velocity and tension. More advanced control

schemes may also reduce costs. For instance, robust control techniques diminish the

need for lengthy and costly “tuning” of controllers or expensive, highly specified hard-

ware components. Finally, observer-based control may allow costly and complicated

tension sensors to be eliminated from some systems.

Most control schemes presented in the literature aim to maneuver the system

via feedback control, possibly accounting for some of the uncertainties and distur-

bances. All of them rely on the availability of velocity and tension measurements. A

control system is described in [16], which addresses only the LTI system model and

does not account for changing roller radii, friction, or any other disturbances. Other

gain-scheduled or H∞ controllers form most of the rest of the web winding system

control literature [28, 29, 30, 31]. These schemes are shown to be stable at a range

of steady-state operating points. However, the system cannot be assumed to be in

steady-state during many maneuvers, especially when attempting to rapidly change

the roller velocities. The stability of these controllers has yet to be established an-

alytically for the whole nonlinear system (i.e., where the roller radii and moments

are dynamic variables). Furthermore, gain-scheduled linear controllers have the po-

tential disadvantage of being costly and time-consuming to tune [30]. Finally, while

these schemes have proven workable in experiment and practice, a nonlinear control

strategy may offer advantages in performance, intuitive clarity, and the tractability

of stability analysis. It may also help reduce component and development costs and

facilitate new observer-based schemes that eliminate the need for costly sensors.

Therefore, one of the purposes of this research is to implement and compare

these control design methods in order to find a better control algorithm that will be

used in practical applications.

Another complication in web winding control stems from its strong coupling
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caused by large-scale interconnected nature. Centralized control is the traditional

control method, which considers all the segments and interconnections to be a single

dynamic system. Since the system is a MIMO system, multivariable controllers were

the reasonable choices. In multivariable industrial controller design, three approaches

can be taken: 1) assume the system consists of a set of Single-input Single-output

(SISO) control loops and design each control loop independently of the others using

SISO methods; 2) define a mathematical model of the system using either analytical or

identification methods, and then apply any of the well-known multivariable controller

synthesis methods to design a multivariable controller for the system; 3) apply some

type of multivariable tuning controller design. In the case of 1), this approach has the

advantage of simplicity and is often used, but the disadvantage is that the resulting

performance may be poor due to ignored interaction effects. In the case of 2), the

main disadvantage of the method is in the effort required in the construction of

a suitable mathematical model of the system, or in the difficulty in carrying out

identification experiments, and in the fact that there is no guarantee that the resultant

model obtained is “sufficiently accurate” for controller design. In the case of 3),

when the dimension of the system becomes much larger, the tuning process becomes

troublesome, and it also requires carrying out steady-state experiments on the system.

Recently, many research results have been applied to large scale decentralized

control strategies to this specific problem. We have seen some research towards this

direction, such as work by Pagilla [125, 126] and Knittel [84, 92]. By far, the most com-

mon control strategy used in web winding systems is the decentralized proportional-

integral (PI) control scheme. Although decentralized PI control is easier, the wide

variation of web winding systems requires extensive tuning by an experienced control

engineer to obtain acceptable performance. Furthermore, controllers rarely remain

well tuned in the process industry and require multiple tuning sessions. The tuning
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rules should be easier to understand by less experienced technicians who then can per-

form the procedure. Another purpose of this research is to find a stable decentralized

control strategy that is easy for utilization in industry.

1.3 Summary

This dissertation is organized as follows: Background on web winding systems

and motivation are introduced in Chapter 1. Chapter 2 presents general models of

rollers and free web span separately in a typical web winding system. They are then

combined to give a description of a complete coupled web winding system. Literature

review of existing techniques on web tension control and decentralized control are

given in Chapter 3. Chapter 4 reviews different disturbance rejection techniques and

introduces a new control paradigm - Active Disturbance Rejection Control (ADRC),

which is chosen to be the disturbance rejection control strategy applied throughout

this dissertation. Chapter 5 presents a robust tension/velocity feedback controller

that accounts for uncertainties and changing variables in the model. Simulation re-

sults are used to illustrate advantages over the existing control schemes. Chapter

6 extends the idea of ADRC to the decentralized control framework. It presents

the design technique for large-scale web winding system using the proposed control

methodologies. Stability analysis by singular perturbation theory is carried out in

Chapter 7 to further validate the success of ADRC applications. Chapter 8 summa-

rizes the contributions of this dissertation, and discusses some open problems that

might allow for more advanced controls in the future.



CHAPTER II

DYNAMICS OF WEB WINDING

SYSTEMS

This chapter first reviews mathematical tools and assumptions for modeling

of web winding systems. Then mathematical models are derived for a free web span,

a roller, and a web interacting with a roller. The model for each sub-component

of a web winding system will be developed essentially following the development in

[34] but with some change of variables. These component models are then combined,

resulting in the model of the general web winding system.

2.1 Mathematical Tools and Assumptions

Web dynamics are governed by Newton’s laws of motion. In the case of web

winding systems, we are concerned with the dynamics properties in different regions

of various free spans. Therefore, Newton’s laws are rewritten to describe the dynamics

of a region of free web spans. This procedure is known as control volume analysis

and is described in textbooks [5, 6, 34]. Various models for the web tension in web

8
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winding systems are based on the following laws [28, 34]:

1. Hooke’s law, which models the elasticity of the web.

2. Mass conservation law, which states that the rate of mass accumulation in a

control volume, is equal to the sum of the net rate of the mass inflow into the control

volume and the rate of mass generation within the control volume. It describes the

cross coupling between web velocity and web strain.

In order to simplify the modeling procedures, the following assumptions are

made to develop the dynamics of web winding systems:

• There is no web slippage;

• The web is perfectly elastic, which means that stress is linearly proportional to

strain tension in all spans;

• The web is homogeneous, and all the physical properties of the web such as

modulus of elasticity, density of the web are constant;

• The web material is isotropic, so that machine direction stress prevails;

• The dynamics of load cell and idle rollers are neglected, which means that the

rotational inertia of all idler rolls equal to zero;

• The wound-in and wound-out tension of the web are zero;

• The gear ratio between motor and roll is one to one;

• The bearing friction remains constant and not changing with transporting ve-

locity and other physical conditions of the web material.
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2.2 Dynamics of a Web Processing System

A web winding system is built from the equations of web tension behavior

between two consecutive rolls and the equations describing the velocity of each roll.

Shin [33] established the concept of “preliminary element” to model a web processing

system, which is the combination of preliminary elements, such as a free web span,

various kinds of rollers and rolls, a web interacting with roller, etc. Therefore, to

model a web winding system, we will first derive the mathematical model for these

preliminary elements.

Since most important elements of a web processing system are the web span

and the roller, we will begin by developing mathematical models of these elements

and then develop a model for the overall system.

2.2.1 Dynamics of a Free Web Span

To obtain the differential equation that describes the variation of tension in

open web span, the principle of conservation of mass is applied to the control volume

defined by the web span between two successive rollers.

A strip of web under longitudinal stretch will experience strains in three dimen-

sions (see Figure 2): machine direction (MD), cross direction (CD), and Z direction

(ZD) as follows:

εx =
Ls − L0

L0

=
∆L0

L0

(2.1)

εw =
ws − w0

w0

=
∆w0

w0

(2.2)

εh =
hs − h0

h0

=
∆h0

h0

(2.3)

where L, w, and h represent the length, width and the hight of the web, respectively.

∆ represents the incremental of the web in each direction and ε denotes the strain
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of the web. Subscripts x, w, and h represent the MD, CD and ZD direction, respec-

tively. The subscript “s” represents the state of being stretched and the subscript

“0” represents the original unstretched state. In the following paragraphs, we focus

on MD direction from assumption that the MD stress prevails when stretched, and

the subscript x for the MD direction will be omitted for the sake of simplicity .

Figure 2: Illustration of a free web span

Assuming that the cross section stays constant, then according to the mass

conservation law, the mass of the web remains constant between the state without

stress and the state under stress. Thus, the following relationship can be obtained:

ρ0Lω0h0 = ρsLωshs (2.4)

⇒ ρ0A0 = ρsAs(1 + ε) (2.5)

⇒ ms

m0

=
ρsAs

ρ0A0

=
1

1 + ε
(2.6)

where ρ and A denote the density and the cross section area of the web span respec-

tively. ms and m0 denote the mass of the web after stretched and before stretched.

Here ε denotes the strain in the MD direction as described in (2.1). Now consider a

one-span web system as shown in Figure 3. Applying the mass conservation law on

the web span from x1 to x2, it is known that the rate of the mass increase in the web

span equals to the rate of mass entering the web span minus the rate of leaving the

span. We can obtain

dm

dt
=

d

dt

[∫ x2

x1

ρ(x, t)A(x, t)dx

]
= ρ2(t)A2(t)v2(t)− ρ1(t)A1(t)v1(t) (2.7)
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Figure 3: A single web span between two consecutive rolls

Under the assumption that strain in the web is uniformly distributed, the strain

in the web span can be expressed as ε1(x, t) = ε1(t), which implies that ρ(x, t) = ρ1(t)

and A(x, t) = A1(t) are true. Integrating equation (2.7), we can obtain

m =

∫ x2

x1

ρ(x, t)A(x, t)dx = Lρ1(t)A1(t) (2.8)

On applying (2.5), (2.8) to (2.7), we then obtain the following dynamics of the web

span as:

L
d

dt

[
1

1 + ε1(t)

]
=

v2(t)

1 + ε2(t)
− v1(t)

1 + ε1(t)
(2.9)

For small ε, it has the following approximation

1

1 + ε
∼= 1− ε (2.10)

Substitute (2.10) to (2.9), we have

ε̇1(t) =
1

L
[ε2(t)v2(t)− ε1(t)v1(t) + v1(t)− v2(t)] (2.11)

From Hooke’s law, it is known that tension and strain are approximately pre-

sented as

T = AEε (2.12)
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where T is the tension, A is the cross-section area of the web, and E is Young’s

modulus of the web from the unstretched state. Substitute (2.12) into (2.11), we

obtain the web tension dynamics as follows:

Ṫ1 =
1

L
[−v1T1 + v2T2 + AE(v1 − v2)] (2.13)

The generalized web tension dynamics can be extended from one span (2.13) to the

ith span as follows:

LṪi = −viTi + vi+1Ti+1 + AiEi(vi − vi+1) (2.14)

where L is the length of the web span between two adjunct rollers. Ti and vi denote

the tension and velocity of the upstream rollers respectively. Ti+1 and vi+1 denote

the tension and velocity of the adjunct downstream roller respectively. Ei and Ai are

Young’s elasticity modulus and the cross-section area of the web respectively.

Complete details of this deviation and various other aspects, such as span

tension dynamics can be found in [34]. Slightly different version of (2.14), obtained

using different approximation schemes, were discussed in [17].

2.2.2 Roller Dynamics

A roller in a web winding system is driven by the web tension (Ti and Ti+1) and

the corresponding external motor torque (ui). The roller also experiences external

frictional torque (Fi) as shown in Figure 4. We shall denote the downstream and

upstream tension by Ti, Ti+1 respectively for the ith roller dynamics development.

For a general roller, the equation of web motion can be derived by considering

the torque balance at the two adjunct driven rolls as follows:

d

dt
(Jiωi) = ui − βfiωi + Ri(Ti+1 − Ti) (2.15)

where Ji is the inertia, and ωi is the angular velocity of the roller, ui is the input

motor torques, Ri is the radius of the roller, and Fi = βfiωi is the friction force, where
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Figure 4: Roller dynamics

βfi is the total friction coefficient. Note that the inertia terms on the left hand sides

of equation (2.15) are time-varying for the unwind and rewind processing, since both

the radius Ri and inertia Ji are changing during web processing. The second term

of the right hand side of equation (2.15), which is the viscous friction coefficient βfi,

also changes with transporting velocity and other physical conditions.

2.3 Dynamics of a Multi-Span Web Winding Sys-

tem

Given a web winding system, the coupled dynamics are obtained by applying

the models in equation (2.13) and (2.15) to each tension span and each roller. Care

should be taken when writing the models for the rewinder and unwinder, since there

is only one adjacent tension span and their radius and inertia are changing.

Let us consider the N roller web winding system, where each roller is associated

with ui, Ji, Ri, ωi, and each tension span is associated with Ti, Li, ωi, and AiEi. The

aforementioned assumptions and component models lead to the following equations

that describe the dynamics of the general multi-span N -roller web winding system.

d

dt
(J1ω1) = u1 − βf1ω1 − T1R1(t) (2.16)
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Ji
d

dt
(ωi) = ui − βfiωi + (Ti−1 − Ti)Ri (2.17)

d

dt
(JNωN) = uN − βfNωN + TN−1RN(t) (2.18)

dTi

dt
=

1

L
[Ri+1ωi+1Ti+1 −RiωiTi + AE(Riωi −Ri+1ωi+1)] (2.19)

2.4 Summary

In Chapter 2, mathematical description of the dynamics of the web winding

system has been presented and the mathematical models have been derived for a

free-web span, a roller and a web interacting with the roller. Then the dynamics of a

multi-span N roller web winding system has been summarized in the end.



CHAPTER III

BACKGROUND AND LITERATURE

REVIEW

3.1 Introduction

A number of researchers have investigated the modeling and control of web

winding systems. Swift [9] was one of the first references that investigated longi-

tudinal dynamics. Campbell [4] presented the dynamic equations of a web under

longitudinal tension in ordinary differential equation (ODE) form and developed lin-

earized controllers based on current and voltage feedback. Grenfell [7] derived a

mathematical model and applied it to a paper-making processing. Young and Reid

[8] summarized the history of modeling web longitudinal tension dynamics. Based

on the work above, King [10], Whitworth and Harrison [11], and Brandenburg [12]

provided more specific nonlinear models. The nonlinear models derived in [10, 11, 12]

have been used as the basis for tension controller design in some papers, for example,

Shelton [13], Grimble [14], Boulter [15], Liu [16], Lynch [17] and Koc [18].

16
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Web tension regulation is a rather challenging industrial control problem. A

review of the web tension control problems can be found in [19]. Proportional-integral-

derivative (PID) [20, 21], fuzzy logic [22, 23], neural network [24, 25], optimal control

[26], and robust control approaches [27, 28] are used. Recently, robust Lyapunov-

based feedback control [29, 30] and multivariable H∞ controller with one or two

degrees of freedom control strategies have been proposed for industrial web transport

systems [31]. The role of active dancers in attenuation of periodic tension disturbances

was studied in [32].

Regarding control structure, centralized control structure has many drawbacks

and researchers have proposed distributed control [33, 34], decentralized control [81,

82, 83, 84, 85, 86, 87] and overlapping decentralized control [88, 89, 90, 91] to improve

the performance over centralized control structure.

3.2 Web Tension Regulation

To meet the requirements of the control objects and specifications defined

above, various advanced control strategies and methods have been proposed and

applied to industry applications. A review of existing techniques on control system

structures, tension regulations methods and tension estimations will be given in this

subsection.

3.2.1 Structures

Centralized Control

Centralized control is the traditional control method which considers all the

segments and interconnections to be a single dynamic system. Similar to all the

large-scale system, the order of the controller in a multivariable control framework
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is high, which makes it difficult to implement in real time. In addition, because of

the variation of radius and the presence of interaction, the control of tension is more

difficult. Feedback and feed forward control are used to reject disturbance and to

improve performance. Many control strategies, such as PID [20, 21], loop shaping

[15], gain-scheduling [28], multivariable H∞ control [18] are applied in centralized

controller design in industrial practice.

Distributed Control

The main academic work on distributed control method is presented by Shin

in his thesis and book on tension control [33, 34]. It assumes that all spans have the

same length and all rollers have the same moment of inertia, the same radius and the

same frictional coefficient. To improve the performance, Shin first derived an auxiliary

dynamic model from the mathematical model for a unit process by defining a new

state variable based on the relative velocity of the web span. Then, an auxiliary local

controller is designed, which meets the required closed-loop performance specifications

of subsystems. Finally, all closed-loop subsystem are combined into a composite

system and checked to confirm that they meet the stability conditions for the overall

system.

Decentralized Control

Centralized control is not normally feasible, because in practice there are many

drive rolls to deal with. Decentralized control is essential for such large scale systems.

When decentralized control is applied to web tension control systems, the interactions

among control stations and the modeling are the major problems for the controller

design. In the decentralized case, the interconnections between segments are usually

neglected for control design purposes. The decentralized approach then greatly re-

duces the computational and hardware requirements. The goal of the method is to
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design a controller, which minimizes the influence of the remaining system and to

guarantee the desired dynamics and stability of the total system.

The advantage of this method is that there are not any measurements of the

quantities of coupling. It is necessary to know where the quantities of coupling are

active in the subsystem. However, the designed control is robust against changes of

the parameters in a limited range. Figure 5 is a 3-tension-zone web winding system,

in which each tension zone is designed by a decentralized separate PI controller [18].

Figure 5: Structure of the decentralized control strategy

Overlapping Decentralized Control

Since a major problem on the decentralized controller design is the mutual

interactions among different subsystems or control sections, a natural solution is to

identify them. Overlapping in decentralized control adds extra degrees of freedom

that allow improvements from disjoint decomposition [88, 89, 91]. This methodology

of control assumes that overlapping information of controlled variables could be ob-

tained from a couple of subsystems. It is based on overlapping decomposition of the

system, which includes system expansion based on the inclusion principle, overlap-

ping decomposition of the subsystem, controller design for each disjoint subsystem,

and stability check for the entire system.
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Figure 6: Structure of overlapping decentralized control strategy

Figure 6 [31] is a demonstration on overlapping decentralized control strategy,

where two consecutive controllers share the some inputs and outputs. For instance,

input signals of the driven roller located at the boundary of two subsystems come

from two controllers.

3.2.2 Tension Control and Estimation

Open-loop draw control and closed-loop progressive set-point coordination con-

trol are the two control approaches that are commonly used in web processing indus-

tries for tension control. In progressive set-point coordination control, once an input

is provided to an upstream driven roller, an input of the same magnitude is automati-

cally provided to each of the driven rollers, which follows downstream. The approach

is effective for the start-up or shutdown of a system. But it is not a desirable scheme

for normal operation, since it forces tension in the downstream web span to be auto-

matically changed when only the tension in the upstream span needs to be changed.

Therefore, it is impossible to control the tension in each web span independently in

a multi-span web transport system using progressive set-point coordination. In the

draw control scheme, tension in a web span is controlled in an open-loop manner by
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controlling the velocities of the rollers at either end of the web span. Thus, tension

is very sensitive to the velocity difference between the ends of the web span. On the

other hand, feedback control of web tension can result in greatly improved accuracy,

since the sensitivity of web tension to the velocity difference no longer exists. The

accuracy of the feedback control depends on the accuracy of the tension sensor.

Generally, there are three tension regulation strategies widely used in the in-

dustry. The simplest approach is the indirect calculation of required motor torque

from tension reference and radius. Many examples of this method are found in

winder/unwinder tension control. Another approach is the feedback control scheme

based on the direct detection of tension with load cells. The third approach uses the

dancer roll as a measurement device and/or as a self-regulating device [49].

Tension Control Strategies

Tension control is so critical to the entire web transport system that many

advanced control methods have been applied to solve this problem. Herein we review

some of these control methods used today.

1) PID

PID control is the common method in industry because of its simplicity. Usu-

ally a cascade PID control loop is adopted, where tension control is in the outer loop

and speed loop in the inner loop. In order to deal with changing variables, variable

PID control [21] and other versions of PID, such as nonlinear PID [33] have been

proposed to get better results. The main problem of PID control is that an interac-

tion between tension and speed make it difficult to get a satisfying result and hard

to tune. In addition, if the controller gain is tuned bigger to get better performance,

the plant may become unstable.

2) Fuzzy Logic [22, 23]
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An Fuzzy Logic Controller (FLC) is a non-linear controller. To find the setting

of the Fuzzy controller it is not necessary to have a mathematical description of the

process. But one must have a good physical knowledge of the process. The rules of an

FLC are made with “if . . . , then . . . ” conditions. In conventional control, the process

is modeled, but in FLC the expert is modeled. Some problems are solved better and

in a shorter time with FLC as by a conventional non-linear control. Unfortunately,

there are no defined criterion functions to find an optimal FLC. Usually one has to

find the optimum with the trial and error method.

3) Neural Network

In the field of web tension control, there are a lot of nonlinearities and time-

varying dynamic. One application of Neural Network (NN) is to learn the unknown

time-dependent friction of the mechanical system for compensation [24]. Another

application is the compensation of disturbances if a winder runs non-circular. The

NN is able to learn such disturbances [25]. The weakness of NN is that it needs

training data, which is time consuming and not efficient in industry.

4) Optimal Control

In [120], a Linear Quadratic Gaussian (LQG) method was proposed and applied

to a multivariable web winding system. The interactions between tensions and linear

velocities are considered and estimated by subspace identification method. An infinite

horizon LQ regulator is developed, and in order to get an asymptotic precision, a

rearranged LQ controller with reference input and an integrator is added. In addition,

a Kalman filter was used to estimate the state vector. The weakness of LQG is that

it is a model-based controller and its successful applications rely on the existence of

an accurate model and sufficient knowledge of the parameters of the model, which

are hard to satisfy in a web winding system.
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5) Adaptive Control (Gain Scheduling)

Since radius and inertia of the roller are keep changing, some researchers pro-

posed to use a gain-scheduling scheme to improve robustness to radius variations.

In [28] the author pointed out that with a quasi-static assumption on radius varia-

tions, the transfer function between command signal and web tension appears to be

inversely proportional to radius. Based on this observation, a new plant is obtained

by multiplying the controller output signals by the radius. This new plant has the

advantage of making the gain at low frequency less dependent on radius and inertia.

6) Nonlinear Active Disturbance Rejection Control (NADRC)

In [121], a nonlinear ADRC, proposed by Han [127, 128, 129] and simplified by

Gao [139], is designed to accommodate for nonlinearity and uncertainties in the web

tension control system. The results demonstrated that the control system was robust

to a large range of parameter variations. Although good performance was observed,

the initial NADRC [128, 129, 93] controller used many nonlinear gain functions and

was difficult to tune. The practical implementation would also be difficult. The

parameterized linear ADRC [140, 132, 130] resolved this implementation issue.

7) Other Control Methods

Besides the methods above, there are many other methods, such as model

predictive control [141], time optimal control [26], self-tuning regulation [142], perfect

control [143], and observer-based feedback control [144, 145, 146, 147, 148].

Tension Estimation

In cases where tension measurement is not available, observers that estimate

the web forces can be applied. The earliest reference found on tension observers, was
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a full-order Kalman filter in [149]. Another reference [150] used an observer as part

of a tension control system for a two-span web processing machine. The observers

estimated the tension difference across each nip. Other works consider the estimation

of rewind and effects of winder tension in order to perform closed-loop tension control

[151, 152, 153].

The following subsections summarize the main observer techniques in the lit-

erature.

1) Observer Design Based on Frequency Response

Song et al. [145] used a formula to estimate web tension based on frequency

response. The observer is designed based on the unwind/rewind roller dynamics as

follows:

Ju
dωu(t)

dt
= RuTu(t)− Fuf −Kuuu(t) (3.1)

where the subscript “u” denotes the unwind roller. The tension observer Tobs is then

designed based on (3.1) neglecting the friction effect Fuf .

Tobs(t) =
1

Ru

[Juᾱu(t) + Kuuu(t)] (3.2)

where ᾱu(t) denotes filtered angular acceleration of the unwind roller, which is com-

puted by taking the derivative of the measured angular velocity of the unwind roll,

and then passing through a second-order low-pass filter as follows:

ᾱu(s) =
ω2

n

s2 + 2ξωns + ω2
n

sωu(s) (3.3)

where ᾱu(s) and ωu(s) denotes the Laplace transformation of ᾱu(t) and uu(t), and ωn

and ξ denote the natural frequency and damping ratio of the filter, respectively.

2) Observer Design Based on Computational Tension
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Figure 7: Diagram of tension observer

Lin [146] proposed an alternative approach to using the computational method

for tension estimation based on Song’s tension dynamics. The observer has a feedback

configuration and a filtered inertia block as shown in Figure 7.

The output of the observer is shown as follows:

τobs(t) =
Kpos + Kio

Jus2 + Kpos + Kio

[Ku
Jus

1 + Jus/N
− Jus]




uu(s)

ωu(s)


 (3.4)

Tobs(t) =
τobs(t)

Ru

(3.5)

where uu(s) denotes the Laplace transform of uu(t). Proper values of N are between

3 and 10 as described in [146]. The larger the value of N is, the faster the observer

responses can be. The stability of Lin’s observer can be guaranteed by proper design

of the PI gains.

3) Observer Design with Friction Compensation

The observer proposed in [146] is good as a torque observer; however, it is not

good as a tension observer if acceleration or deceleration inertia of the roll arises.

Lin et al. [147] continued to propose another observer. The outputs of the filtered

inertia block were used as feedforward signals and added into the estimated torque.

The sum of the filtered inertia and estimated torque provides good estimates of web
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tension in spite of acceleration or deceleration inertia of the roll. A block diagram of

the observer with inertia compensation is shown in Figure 8 [147].

Figure 8: Modified diagram of a tension observer

The output of the observer is shown as follows:

Tobs(t) =
1

Ru

Kpos + Kio

Jus2 + Kpos + Kio

[Ku
Jus

1 + Jus/N
− Jus−Bu]




uu(s)

ωu(s)




+
1

Ru

(
Kf

Jus

1 + Jus/N
ωu(s) +

Cu

s
sgn[ωu(t)]

)
(3.6)

where Bu and Cu are the coefficient of bearing and Coulomb friction, Ju is the inertia

of the roller, ω is the angular velocity of the wind/unwind, R is the radius of the

wind/unwind, subscript w and u represent wind and unwind respectively, Td and vd

represents tension and velocity reference respectively, and K is the gain of PID.

4) Nonlinear Observer Design

An observer that achieves a time-varying error linearizion was presented in

[17]. The observer has a cascade structure. The estimate of a certain span’s tension
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is determined by an ODE, which depends on the tension estimate of that span and

the upstream span. The nonlinear observer is based on the tension dynamics:

dTi

dt
=

1

L
[ri+1ωi+1Ti+1 − riωiTi + AE(riωi − ri+1ωi+1)] (3.7)

First, the tension estimation is determined by

˙̂
Ti =

1

Li

[ri+1ωi+1Ti+1 − riωiTi + AE(riωi − ri+1ωi+1)] + KiT̃i (3.8)

where T̃i = T
i
− T̂i, Ki are the observer gains needed to be deigned. Consider Ti is

still in the right hand of (3.8), and then the author defines a new variable to cancel

Ti.

wi = Ti − Ji(ri)Kiθ̇i/ri (3.9)

The new coordinate design is accurately based on the velocity dynamics

d

dt
(Jiωi) = Ui + (Ti−1 − Ti)ri − Fi(ωi) (3.10)

After coordinate transformation, a nonlinear observer is obtained, whose right-hand

side depend only on the measurements.

5) Sliding-mode Observer

As a comparison, Lynch [17] also provides a sliding-mode observer design. The

full order sliding-mode observer uses discontinuous output injection depending on the

unwinder and rewinder angular velocity error. The observer is given by

d

dt
(Jiωi) = Ui + (Ti−1 − Ti)ri − Fi(ωi) + Ki sgn ω̃i (3.11)

˙̂
Ti =

1

Li

[ri+1ωi+1Ti+1 − riωiTi + AE(riωi − ri+1ωi+1)] + Ki sgn T̃i (3.12)

where ω̃i = ωi − ω̂i, and Ki is the positive observer gains.

6) Decentralized Observer
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Centralized state space control often causes the total system to be compli-

cated and thus often impractical for industrial applications. Decentralized control

methods are often used, where the state space control and the observers are designed

with subsystems of low order. Wolfermann proposed a decentralized observer in con-

tinuous moving webs in 1991 [153]. In order to solve the problems of disturbance

and uncertainties in the system, a new adaptive decentralized control in state space

form is proposed. The subsystem is also extended with a disturbance model, and the

decentralized observer is calculated from the extended system.

3.2.3 Summary of the Solutions

During the past decades, many advanced control strategies and algorithms

have been proposed and applied to web winding system control problems. However,

few of these schemes are entirely satisfactory.

In terms of control strategy, centralized control is traditionally widely used

for web tension regulation; but for large-scale system, it is too complex and hard

to design and tune. Decentralized control has been applied to many large-scale sys-

tems, including web-winding system. The decentralized scheme is relatively simple

but the performance may be deteriorated due to the neglected strong dynamic in-

teractions between adjunct segments, which sometimes even make the entire system

unstable. The overlapping decentralized control performs better by taking account of

interactions dynamics. But it is more complicated to implement in industry.

Regarding tension control methods, strengthens and weakness of the control

methods are summarized as follows: PID design was simple but the coupling between

tension and speed consequently restricted performance. Robust controller designs

could guarantee robust stability from disturbance and uncertainty. However, it was

restricted to a small robustness range. Optimal multivariable control methods re-
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duced the effect of interaction, but they require an accurate model and parameters.

Intelligent control methods, such as fuzzy logic control and neural network, are time-

consuming and difficult to design and implement in the real world. The advanced

control methods, such as observed based feedback control and H∞, are too complex

to implement and not well understood by industry.

3.3 Decentralized Large-scale Web Winding Sys-

tems Control

3.3.1 Challenges

Web tension control system has a structure of multi-inputs and multi-outputs

structure with strong coupling. In the early days, a centralized control structure

was used to design controller. Since the system is a MIMO system, multivariable

controllers were the reasonable choices. However, when the system becomes larger,

it is not practical to implement the high order controllers. Decentralized control

strategy is then commonly used, which is constructed as a form of decentralized

subsystem structure. The controllers are designed at each subsystem, which removes

the complexity of designing MIMO controllers. However, the interactions among

the input signals should be estimated sufficiently to assure appropriate stability and

performance of the decentralized control system.

In summary, the web winding system control problem is a challenging problem

for the following reasons: the entire system is actually a large-scale system, which is

still an open problem in study; the tension dynamics are highly nonlinear and sen-

sitive to velocity variations; for each subsystem, the tension and velocity dynamics

are coupled to each other; the coefficients of the tension and velocity dynamics are

highly dependent on the operating conditions and web material characteristics. Fur-
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thermore,there are extensive external disturbances propagating throughout the whole

system that keep affecting the behaviors of the system. And finally, the interactions

between each tension zone make it difficult to design controllers.

3.3.2 Background

Inter-connected or networked small subsystems can been seen in many areas

such as manufacturing systems, telecommunication systems and information systems.

In such systems, it is possible to define subsystems, which interact with each other or

are networked to form large-scale systems. Power networks, multiple aircraft formu-

lation, wireless telecommunication systems, intelligent vehicle and highway systems

are some of the examples of such physical systems [2]. The physical configuration and

high dimensionality of such complex systems lead to centralized control being tech-

nically challenging and even economically infeasible. Now, with the rapid progress

of microcomputers available at low cost, decentralized control schemes have gained

greater attention and become a hot topic.

Large dimensionality, unavoidable uncertainty, and information structure con-

straints are the main characteristics of large-scale systems. It is these three features

that motivate the development of decentralized control theory for such complex sys-

tems.

The decentralized control of interconnected systems is one of the research topics

of large-scale control theory. A large-scale system consists of a number of intercon-

nected subsystems. Complexities in large-scale systems make it difficult to design

controller and analyze the performance for the entire system. In the decentralized

framework, the system has several subsystems, where each controller locally controls

each subsystem. Hence, the large-scale system is usually decomposed into smaller

interconnected subsystems. Figure 9 shows a typical decentralized control structure,
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in which subsystems are interacting with each other and each local controller only

controls the subsystem. Development of decentralized control theory based on the

fundamental knowledge of centralized control theory is the main motivation behind

much research done in the field. In the late 1960’s, research on decentralized control

and decomposition structure started. A survey of early results in the development

of decentralized control of large-scale systems was summarized in [2], which also pre-

dicted future research direction of decentralized control theory. The basic framework

of decentralized control was systematically organized in [3], where most decentralized

control schemes and their applications for a variety of fields such as power networks

and spacecraft systems were discussed.

Figure 9: An illustration of a large-scale system

Decentralized control has been applied to large-scale systems for over three

decades. Most recent applications of decentralized control include platoons of under-

water vehicles, cooperative robotic systems etc. There are many reasons that make

decentralized control a popular choice for large-scale systems. However the most

prominent factor is its effective solution to problems of dimensionality, uncertainty

and information structure constraints. When a system consists of many intercon-

nected subsystems or has large dimension, it is computationally efficient to formulate

control laws that use only local available information. Such an approach also helps

reduce the implementation cost, since it can significantly reduce the information ex-



32

change among subsystems. Robustness is another attractive feature of decentralized

control schemes, since they can make the closed-loop system tolerant of a range of

uncertainties within the subsystems and the interconnections with other subsystems.

To make the overall large-scale system behave well, controller design strategy

is an important issue in the operation of a large-scale system. For several decades,

various strategies have been proposed to decentralized control for large-scale systems,

but very few have been successfully implemented in industry applications. This sec-

tion will briefly review the main ideas behind each of the control strategies attempted,

followed by a discussion of the disadvantage of current state-of-the-art methods for

decentralized control. The potential idea that could help to solve the problem will

also be introduced in the end.

3.3.3 Design Methods

A comprehensive review of most of the results form decentralized control strate-

gies available until 1982 can be found in a special issue of IEEE Transaction on Au-

tomatic Control (1983). Generalized research in decentralized control theory started

with classical linear time-invariant (LTI) control. Necessary and sufficient conditions

for existence of stabilizing decentralized controllers for LTI systems were proposed in

[35] with an introduction of the concept of “fixed modes”. Fixed modes are defined in

association with a decentralized control system, in which linear, constant gain, state

feedback controllers are used. Modes of the closed-loop large-scale systems, which

cannot be influenced by a decentralized control scheme, are known as “fixed modes”.

It was shown in [35] that, like the centralized case, decentralized fixed modes are im-

movable. It was also shown in [36] that these fixed modes are immovable if constant

state-feedback gains are used. However, with time-varying gains, the fixed modes re-

lated to the decentralized control system can be eliminated. Later on, many types of
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fixed mode were studied during extensive work on large-scale systems. In these work,

two aspects of decentralized control were addressed: 1) which kind of fixed modes

can be eliminated? 2) which controllers should be used? It is shown in [37] that

all of the fixed modes except those associated with unstable zeros of complementary

subsystem can be stabilized by periodically time-varying decentralized state feedback

controllers.

It is important to note that the classical concept of fixed modes and rele-

vant literature are developed for LTI large-scale systems. Motivated by the success

of decentralized control scheme for LTI systems, efforts were made to develop de-

centralized control scheme for nonlinear large-scale systems. The first result, which

extended classical centralized adaptive control theory to decentralized adaptive con-

trol, was developed in [38]. But the result in [38] was obtained for a class of large-scale

systems, in which each subsystem only had relative degree of less than two. Later

results on decentralized adaptive control were developed for more generalized class

of large-scale systems, in which Lyapunov analysis played an important role. Condi-

tions on relative degree of subsystem were relaxed in [39] to obtain a decentralized

adaptive controller, in which matched interconnections and uncertainties are assumed

to be bounded by the higher order polynomial in the norms of states. The match-

ing condition is said to be satisfied if interconnections and uncertainties entered into

the subsystem at the same point, where decentralized control input entered into the

subsystem. Decentralized control of large-scale systems with matched condition was

investigated extensively in the past [40, 41, 42]. Global decentralized adaptive control

was obtained in [40], where a class of nonlinear systems was considered, which can be

transformed to the output feedback canonical form. Decentralized model reference

adaptive control (MRAC) was introduced in [41, 42], which developed decentralized

adaptive schemes for a class of systems in which the matching condition is satis-
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fied. Lower order control law was developed in [43] to show semi-global stability for

large-scale systems with higher order polynomials of interconnections.

In practice, complete state measurements are usually not available at each

individual subsystem for decentralized control. Therefore, decentralized feedback

control based on output measurements became a research topic. There also has been

a strong research effort in literature towards development of decentralized control

schemes using decentralized observers, since one can design decentralized observers

to estimate the state of individual subsystems that can be used for estimated state

feedback control. Early work in this area can be found in [44, 45]. Two methods are

used to design observer-based decentralized output feedback controllers for large-scale

systems: 1) design local observer and controller for each subsystem independently,

and then verify the stability of the overall closed-loop system. In this method, the

interconnection in each subsystem is regarded as an unknown input [45, 46]; 2) design

the observer and controller, and treat the output feedback stabilization problem as

an optimization problem.

Recent work in [46, 47, 48, 49, 50, 51] has focused on the decentralized out-

put feedback problem for a number of special classes of nonlinear systems. In [46],

a decentralized observer-based control scheme with unknown inputs was described.

A partially decentralized state observer was proposed in [47] and the implementa-

tion of the decentralized observers was also given. An adaptive tracking controller

using output feedback for a class of nonlinear systems was proposed in [48]. It was

shown in [49], considering systems with matched interconnections, that it is possible

to asymptotically track the desired output with zero error in strictly decentralized

adaptive control system. A control scheme for robust decentralized stabilization of

multi-machine power systems, based on linear matrix inequalities, was proposed in

[50]. A decentralized output feedback model reference adaptive controller for systems
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with delay can be found in [51]. A recent paper discussed the decentralized robust

control of uncertain interconnected systems with an exponential convergence [42].

Decentralized controller can not access the entire state information. Therefore,

interconnections between subsystems need to be analyzed, so that their influence on

the system performance can be understood properly. As far as interconnected systems

are concerned, there are two main approaches for the treatment of the interconnec-

tions in the literature. The first approach assumes that the interconnections satisfy

the matching conditions bounded by first-order polynomials or higher-order poly-

nomials of states. The second approach requires that the interconnections meet a

triangular structure bounded by first-order polynomials or higher-order polynomials

of states. The matching condition guarantees that Lyapunov redesign is possible,

which begins with Lyapunov functions for nominal subsystems and then uses these

Lyapunov functions to design decentralized feedback laws. Most of the work in the

literature falls into this category. On the other hand, the triangular structure makes

it possible to apply back-stepping technique to design the decentralized controllers.

In summary, the methods of solving the decentralized control problem can be

categorized into five major areas: decentralized adaptive control; decentralized robust

control; decentralized robust adaptive control; decentralized intelligent control; and

decentralized decomposition solutions. The following sections outline the vast body

of research and results in each area.

1) Decentralized Adaptive Control Scheme

The uncertainties and difficult to measure parameter values within a large-scale

system attract adaptive techniques into this research. Much progress has been made in

the field of decentralized adaptive control, such as [53, 54, 55, 56, 57, 58, 59, 60] and the

references therein. Model reference adaptive control based designs for decentralized

system haven been studied in [53]-[54] for the continuous time case and in [55] for
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discrete time case. These approaches, however, are limited to decentralized systems

with linear subsystems and possibly nonlinear interactions. Decentralized adaptive

controllers for robotic manipulators were presented in [56] and [57], while a scheme

of nonlinear subsystems with a special class of interconnections was presented in [58].

It was shown in [58] that it is possible to provide stable tracking in decentralized

systems that contain uncertainties, which are bounded by polynomials with known

order.

When the internal states are not measurable or not easily obtained, output

feedback control scheme has been applied in many cases. Particularly, a decentral-

ized adaptive output control scheme was presented in [59] for a class of large-scale

nonlinear systems that are transformed into the output feedback canonical form. The

scheme guarantees global uniform bounds of the tracking error and all the states of

the closed-loop system in the presence of parametric and dynamic uncertainties in

the interconnections and bounded disturbances. However, the scheme cannot apply

to the systems with unmodeled dynamics. The work in [60] presented a decentralized

adaptive output feedback control scheme for large-scale systems with nonlinear in-

terconnections. The scheme in [60] has several advantages: 1) it achieves asymptotic

tracking; 2) the considered large-scale systems may possess an unknown, nonzero

equilibrium. But the scheme cannot apply to the systems with unmodeled dynamics

and disturbances.

Makoudi et al. [61] proposed a new decentralized model reference adaptive

control for interconnected systems. The main idea was to predict the interconnection

outputs acting on each subsystem. This method was based on expressing the inter-

connections as a linear combination of a set of orthogonal known functions of basis.

It was also shown that this scheme was robust with respect to unmodeled dynamics.

2) Decentralized Intelligent Control Approaches
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Since model based control methods need an accurate model of the plant and are

sensitive to parameter variations and to the existence of disturbances, model free con-

trol methods have been developed for decentralized control problem. Because they do

not require the exact mathematical model for the system and only some input-output

data are employed to obtain an effective model, intelligent control algorithms have

been applied to solve this complicated system. Basically, there are three approaches

that intelligent methods have been applied to decentralized control problem, which

includes fuzzy logic based, neural network based, and the combination of fuzzy-neural

network based decentralized control.

To estimate the unknown dynamics, neural networks have been exploited to

approximate unknown functions and dynamics uncertainness. Due to the functional

approximation capabilities of radial basis neural networks, the dynamics for each sub-

system are not required to be linear in a set of unknown coefficients as is typically

required in decentralized adaptive schemes. In addition, each subsystem is able to

adaptively compensate for disturbances and interconnections with unknown bounds.

Hwang et al. [62] presented a fuzzy decentralized variable structure tracking control

scheme with an application to a two-joint-robot control. In this paper, each nonlinear

interconnected subsystem was approximated by a weighed combination of fuzzy linear

pulse transfer function systems. Spooner et al. [63] reported a decentralized adaptive

control of nonlinear systems using radial basis neural networks, which approximates

the unknown functions on-line. The proposed approach is able to adaptively com-

pensate for disturbances and interconnected with unknown bounds. Hovakimyan [64]

proposed a coordinated decentralized output feedback control of interconnected sys-

tem based on neural networks. A linear parameterized neural network is used to

model the interconnection effects on-line. Da [65] showed a new type of fuzzy neural

networks sliding mode controller for interconnected uncertain nonlinear systems. The
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combination of fuzzy neural network has both the learning and reasoning abilities,

and therefore can handle the disturbance and uncertainties. The approach does not

require the bounds of uncertainty and disturbances in each subsystem.

3) Globally Robust H∞ Based Decentralized Control

Motivated by considerable success of centralized H∞ control in many appli-

cations, the decentralized linear H∞ control techniques was first applied for linear

interconnected systems with linear interconnections in reference [66]. Later on, the

nonlinear H∞ almost disturbance decoupling problem was solved in the sense that the

designed internally stable system can maintain arbitrary L2 gain from the disturbance

input to output [67, 68]. Guo et al. [69] further developed decentralized nonlinear

H∞ control with an effort to close the gap between decentralized and centralized

H∞ control. Guo’s work combined the decentralized adaptive control and centralized

nonlinear H∞ control for structured systems and applied the proposed methods to

large scale power systems control. The control law was obtained through recursive

back-stepping procedures where any given L2 gain must satisfy given conditions.

Another approach of robust decentralized control is global stabilization con-

trol. The back-stepping design idea was applied to construct decentralized robust

controllers by Chen [70] and Xie [71] for the first time and initially used in decen-

tralized adaptive control by Jain and Khorrami [72]. Xie [73] designed decentralized

robust control for a more general class of interconnected nonlinear systems with de-

centralized strict feedback form and single input minimum-phase subsystems. In

Xie’s two papers, the interconnections were assumed to be bounded by higher order

polynomials of the states in the first integrator of every subsystem, whose coefficients

have a lower triangular structure.

Liu [74] et al. investigated the problem of decentralized robust stabilization for

a class of large scale nonlinear systems with parameter uncertainties and nonlinear
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interconnections. Each system of the interconnected system was assumed to be con-

trolled by multiple inputs and to be in a nested structure. The uncertain parameters

and/or disturbances were allowed to be time-varying and entered the system nonlin-

early. The nonlinear interconnections were bounded by higher-order polynomials in

the decentralized strict feedback form. It was proved that the global decentralized ro-

bust asymptotic stabilization problem can be solved for the uncertain interconnected

nonlinear systems by applying a recursive design procedure.

4) Decentralized Robust Adaptive Control

The adaptive control is only robust to sufficiently fast unmodeled dynamics and

sufficiently small bounded disturbance. Recently, robust adaptive control of nonlinear

systems has emerged as an active research area and is extended to decentralized

control framework.

The purpose of adding a robust control component is to deal with those cases

with significant disturbance and uncertain nonlinearities. The upper bound on the

disturbance must be known in the design of the controller. Liu et al. [75] proposed a

decentralized robust adaptive controller of nonlinear systems with unmodeled dynam-

ics. First, a modified dynamic signal was introduced to each subsystem to dominate

the unmodeled dynamics in the interactions between each subsystem and an adaptive

scheme was used to counter the effects of the interactions. Then, a systematic design

procedure was employed to obtain the decentralized robust adaptive output feedback

controllers. The approach guaranteed that all the signals in the closed-loop system

were bounded in the presence of unmodeled dynamics. Using combined back-stepping

and small gain approaches, [76] presented an adaptive output feedback control scheme

for nonlinear un-modeled dynamics. As an extension of the centralized case, a decen-

tralized robust adaptive output feedback regulation scheme was presented for a class

of large scale nonlinear systems.
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Zhang et al. [77] presented a robust decentralized adaptive stabilization of

interconnected systems. The backstepping technique was used to design totally de-

centralized adaptive controllers for large-scale systems with both strong static inter-

actions and weak dynamic interactions. The L∞ and L2 bounds of tracking error

were set to chosen the design parameters.

5) Decentralized Control Using Overlapping Decomposition

Decomposition is a prerequisite for decentralized control, breaking down a large

system into a number of subsystems of lower dimension. There are several decompo-

sition methods for large scale systems that are convenient for parallel computations,

such as nested epsilon decompositions, and overlapping decompositions [3].

Decomposition for systems with the overlapping structure has been used to

solve problems in many fields, such as automated highway systems, electric power

systems, and large space structures. Within the mathematical framework of the

inclusion principle, the underlying methodology is essentially based on expanding

the state space (and, eventually, input and output spaces), so that the overlapping

subsystems appear as disjoint, applying standard methods for decentralized control

design, and contracting the obtained controller for implementation. An overlapping

decomposition of the original system corresponds to a disjoint decomposition of the

expanded system. A decentralized solution for the (disjoint) pieces of the expanded

system is then contracted to obtain a solution for the original system. Satisfaction of

the inclusion conditions is essential for transferring properties of the expanded system

to the original one.

An overlapping decomposition of a large-scale system allows the subsystems

to share some common parts and thus provides greater flexibility in the choice of

the subsystems. The concept of overlapping decompositions has been successfully

applied to various large scale problems including decentralized optimal control, par-
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allel distributed systems and hybrid system control, etc. In some cases, overlapping

decompositions have been shown to be successful, while disjoint decompositions have

failed.

3.3.4 Large-scale Web Winding Systems

Web winding process covers wide ranges of applications and is composed of

many rolls connected to guide rolls, dancer rolls and motors. Then the entire process-

ing lines are regarded as large-scale systems mechanically connected together with the

web materials, which is expected to operate at the desired speed and tension levels.

Over the years, centralized multivariable control, distributed control, decen-

tralized control, overlapping decentralized control have been proposed to solve large-

scale web processing lines control problem. Traditional centralized control has some

limitations and is not practical because it has too many driven rolls in practice. By

the possible perfect elimination of the undesirable effects caused by the interconnect-

ing terms, centralized multivariable control approach can guarantee good closed-loop

performances. However, when the system is in large-scale and becomes complicated,

it is hard to implement. Recently, decentralized control, overlapping decentralized

control has shown better results.

1) Decentralized Control

For practical considerations, the decentralized scheme has received more at-

tention in recent years. The reliability, the ease of implementation, the operator

acceptance and the less computational requirement, are among the most relevant

properties that make the decentralized controllers more widely used in the control

of web winding processes. Furthermore, the system is more easily managed in the

decentralized context, and does not require the whole system to be put out of order.
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When decentralized control is applied to web winding systems, the interac-

tions among control stations and the modeling issues are the major problems for the

controller design. In the decentralized case, the interconnections between segments

are usually neglected for control design purposes. The decentralized approach then

greatly reduces the computational and hardware requirements [81, 83, 84, 85, 86,

87, 88]. The advantage of this method is that no measurement of the quantities of

coupling is required. It is only necessary to know where the quantities of coupling

are active in the subsystem. The designed control is robust against changes of the

parameters in a wide range. Sakamoto [83, 84, 85] discussed the controller design for

decentralized web tension control system with the aid of some forms of interaction

measures. Pagilla et al. [86] investigated the robust control of large-scale inter-

connected system for general interconnections and applied it to a decentralized web

tension control system. Knittle et al. [87] applied decentralized robust H∞ control

to a three-tension-zone web winding system.

2) Overlapping Decentralized Control

Since a major problem on the decentralized controller design is mutual interac-

tions among different subsystems or control sections, a natural solution is to identify

them. Web winding system can be treated as an interconnected system of overlap-

ping subsystems (the subsystems share common components). This leads researchers

to consider control structures based on overlapping. Overlapping in decentralized

control adds extra degrees of freedom that allow improvements from disjoint decom-

position. This methodology of control assumes overlapping information of controlled

variables obtained from a couple of subsystems [88, 89]. It is based on overlapping

decomposition of the system, which includes system expansion based on inclusion

principle [79], overlapping decomposition of the subsystem, controller design for each

disjoint subsystem and stability check for the entire system. Sakamoto [90, 91] ap-
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plied the overlapping decomposition concept to a web winding system and showed

the results by decentralized PI control. Claveau [92] et al. extended the previous

work by Knittel [31] to an overlapping decentralized control method and applied H∞

control to each subsystem.

3.4 Summary

In this chapter, web tension control problem has been review in a systematic

way. First, the control strategy regarding existing technique on control system struc-

ture, tension regulation methods and tension estimation have been reviewed. Then

the problem has been expanded to large-scale decentralized control problems. Finally,

background and literature review of decentralized control are then provided in detail.



CHAPTER IV

ACTIVE DISTURBANCE REJECTION

CONTROL

Most control systems will unavoidably encounter disturbances, both internal

(pertaining to unknown, nonlinear, time-varying plant dynamics) and external, and

the system performance largely depends on how effectively the control system can deal

with them. Thus, one of the original and fundamental problems in control theory is

the problem of disturbance rejection. This led us to investigate disturbance rejection

techniques.

This chapter will first investigate what is disturbance and how to rejection

disturbances in terms of controller design. Then different disturbance rejection control

strategies will be reviewed in detail. Based on the reviews, this chapter will focus

on the disturbance observer based approaches. A novel active disturbance rejection

strategy will be reviewed as a potential method to be applied in this dissertation.

Finally, the central idea behind this strategy will be discussed for the applications in

the following chapters.

44
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4.1 Disturbance Rejection

Definition of Disturbance

Before going into the disturbance rejection topic, we want to clarify the de-

finition of disturbance. A typical open-loop control system with disturbances and

Figure 10: A generalized plant with disturbances and uncertainties

uncertainties introduced is shown in Figure 10, which consists of a plant P , an input

disturbance di, an output disturbance do, and the generalized uncertainties ∆ of the

plant.

The external disturbance is independent of system states, which includes both

the input disturbance di and the output disturbance do. The input disturbance is

usually introduced into the control signal u and the output disturbance do is added

to the output of the plant and contribute to the system output y.

In our new definition, we extended conventional notion of disturbance to a

more general concept of a disturbance, which includes both the external disturbance

di and do, and the unknown dynamics ∆. The unknown dynamics refer to the dis-

crepancies between the real plant and its nominal model P0, which represents the

known information of the plant.

In summary, there are three disturbances definitions: Input disturbance (di),

output disturbance (do), and generalized disturbance (f(·) = di + do + ∆). These

disturbances will be studied in the following disturbance rejection framework.
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How to Reject Disturbances?

Control theory related to disturbance rejection has focused in two main cate-

gories in terms of different patterns of disturbance rejection. One is the passive and

the other one is active disturbance rejection method.

Passive Disturbance Rejection

Modern control methods, such as adaptive control and robust control, close

the loop in Figure 10, which includes the disturbance to the feedback as shown in

Figure 11, and design controller C to passively reject the disturbances to the effect of

the plant. From this aspect, modern control methods fall into the passive disturbance

rejection category.

Figure 11: Passive disturbance rejection control diagram

Figuratively speaking, two technology upgrades are offered in the modern con-

trol framework: adaptive control [155] and robust control theory [156]. The former

refers to a class of controllers whose gains are adjusted using a particular adapta-

tion law to cope with the unknowns and changes in the plant dynamics; while the

latter is based on the optimal control solution, assuming that the plant dynamics is

mostly known and LTI, with the given bound on the uncertainties in frequency do-

main. The combination of the two offers the third alternative: robust adaptive control

[157]. While these proposed solutions show awareness of the problem and progress

toward solving it, they are far from resolving it because, among other reasons, they

still rely on accurate and detailed mathematical model of the plant and they often
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produce solutions, such as the H∞ design, that are rather conservative. Therefore,

as improvements of, rather than departure from, the model-based design paradigm,

adaptive control and robust control, as solutions to the disturbance rejection problem,

didn’t travel very far from their source: model-based classical control theory. Such

approaches are deemed passive as they accept disturbances as they are and merely

deal with them as one of the design issues, as opposed to the problem that the control

system must contend with.

Active Disturbance Rejection

In regard to external disturbances, it is well known that good disturbance

rejection is achieved with a high loop gain together with a high bandwidth, assuming

that the plant is LTI and accurately described in a mathematical model. Things get

a little complicated and interesting when such assumptions do not hold, as in most

practical applications, where it is the internal disturbance that is most significant. In

many regards, much of the literature on control can be seen as various responses to

this dilemma. That is, how do we take a well-formulated and time-tested, classical

control theory and apply it to Nonlinear and time-varying (NTV) and uncertain plants

in the real world?

In contrast, from the 70s in the last century to the present, there have been

many researchers, although scattered and overlooked for the most part, who suggested

various approaches to disturbance rejection that, compared to the modern control

framework, are truly active. They are distinctly different from the standard methods

in that the disturbance, mostly external, is estimated using an observer and canceled

out, allowing control design to be reduced to one that is disturbance free. Thus the

disturbance rejection problem is transformed to the disturbance observer design, a

survey of which can be found in [94]. To be sure, most of these disturbance observers,

including the Disturbance Observer (DoB) [101, 97, 95], the Perturbation Observer
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(PoB) [98, 99, 103], the Unknown Input Observer (UIO) [105, 95], can be traced to

Internal Model Control (IMC) [102], where the LTI model of the plant is explicitly

used in the observer design.

An illustration example of the active disturbance rejection paradigm is shown

in Figure 12, where P0 refers to the design model of the true plant P . In contrast

to the passive disturbance rejection method, the active disturbance rejection method

feeds back the estimation of disturbances d̂o instead of the real disturbances do to the

input reference r.

Figure 12: Active disturbance rejection diagram

4.2 Active Disturbance Rejection Techniques

Disturbance observer based approaches have gained much attention and are es-

pecially welcome by engineers for their easy implementation and practical successes.

Since then, there were a number of works and its applications [96] - [100]. Although

there exist diverse versions of the disturbance compensation method based on the

identical idea with the disturbance observer, they share the same common charac-

teristics, which have been formulated for linear systems in frequency domain with

output feedback. The above schemes can be classified into two sets again. The first

one is the inverse-plant-model based compensators including internal model control

(IMC) [102], disturbance observer (DoB) [96] - [100], perturbation observer (PoB)
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[98, 99, 103]. IMC was the first method to estimate and compensate external distur-

bances in Linear Time Variant (LTI) system. The original DoB was proposed by T.

Umeno et al. [101] in 1991 in a 2-DOF of format following the idea of IMC. PoB is

similar to DoB in concept but implemented in discrete time domain. The second one

is the state space based methods, which can estimate both the internal states and

external disturbances. Model estimation, unified input output (UIO), and extended

state observer are among the three typical methods. ME was proposed in 1994 by A.

Tornambe et al. [104] and assumed that up to (n + 1)st order derivatives of the plant

output should be measurable, which is not realistic in most industrial applications.

UIO [105] is another variation of DoB, where the external disturbance is formulated

as an augmented state and estimated using a state observer. ESO was proposed by

Han [128, 129] in the active disturbance rejection control (ADRC) strategy, where

the generalized disturbances are estimated by ESO as an extra state.

Herein, the above active disturbance rejection methods will be reviewed and

studied in detail in terms of three different disturbances as follows.

4.2.1 Output Disturbance Rejection: Internal Model Con-

trol

IMC was published in 1970s and became widely known for the introduction by

Garcia and Morari, and their unifying review in 1982 [107]. IMC relies on internal

model principle Internal Model Principle (IMP), which states that it is necessary to

place the disturbance dynamics in the feedback control loop for achieving asymptotic

tracking.

IMC feedback the estimated disturbances d̂o to the reference signal r, which is

then added to the reference signal as the final input signal to the controller C. From

the aspect of controller design, it is an open-loop mechanism, since the estimated
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disturbances are not compensated directly in the controller design.

Figure 13: Diagram of the IMC

A general structure of IMC is shown in Figure 13, where do is the output

disturbance, the manipulated u is introduced to both the plant P and its nominal

plant Po. The output y is compared with the nominal model, resulting an estimation

of d̂, which is

d̂o = (P − Po)u + do (4.1)

Assuming there is no noise and P = Po, then d̂o is equal to the unknown disturbance.

Remarks:

IMC was one of the earliest control method dedicated to estimate and com-

pensate external disturbances in LTI system. The following disturbance observers are

based on the idea of IMC. IMC was developed based on the assumption that plant

always has an invertible transfer function. Therefore, a crucial step in applying IMC

is system inversion.

4.2.2 Input Disturbance Rejection

Although originated from the idea of IMC, disturbance observers feedback the

estimated disturbances into the controller u instead into the reference input r. From
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this respect, we call the disturbance observer based methods the closed-loop active

disturbance rejection control.

Herein we review some of the famous disturbance observer based methods

in terms of the time sequence to illustrate the idea of active disturbance rejection

mechanism.

Unified Input Output (UIO)

In 1971, C. D. Johnson in [95] proposed a direct external disturbances can-

cellation method called disturbance accommodation control (DAC), which was later

refereed as UIO by E. Schrijver [96]. Since then, there were other work on UIO, such

as a discrete UIO in [105] and a modified UIO in [97].

UIO assumed that the input disturbance d can be generated by a fictitious

autonomous dynamic system of order m as follows:





d = Cdξ

ξ̇ = Adξ

(4.2)

where Ad is a matrix of m ×m, and Cd is a matrix of 1 ×m. The state space form

of the nominal plant model is presented as follows:





ẋ = Ax + Bu

y = Cx

(4.3)

where A is a matrix of n × n, B is a matrix of n × 1, and C is a matrix of 1 × n.

The fictitious disturbance generator in (4.2) is then added to the original plant (4.3),

resulting in the augmented plant as follows:





v̇ = Auv + Bu(u + d)

w = Cuv

(4.4)
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where

Au =




A BCd

0 Ad




(n+m)×(n+m)

, Bu =




B

0




(n+m)×1

, Cu = [ C 0 ]1×(n+m)

Based on (4.4), an observer is constructed as follows:

ż = Auz + Buu + LuCu(v − z) (4.5)

where Lu is the observer gain vector.

The well designed observer in (4.5), is supposed to estimate not only the states

of the plant, but also the states of the fictitious disturbance.

Remarks

Assuming the dynamics of the external disturbances are known, UIO is dif-

ferent from IMC in disturbance estimation. The advantage of UIO is, as a state

observer, UIO estimates not only disturbances but also states. However, UIO as-

sumed that both the models of the plant and the external disturbances are known.

Accordingly, the disadvantage of UIO is that it required the models of the plant and

the disturbances to build the observer and design controller.

Disturbance Observer (DoB)

The first DoB was proposed by T. Umeno et al. in [101] in 1991, where DoB

was designed as the inner loop of a 2-DOF controller to reject external disturbances.

It follows the same idea of IMC: separate the disturbances from the plant and cancel

it. The only difference between DoB and IMC is that DoB deals with the input

disturbance di rejection while IMC deals with the output disturbance do. Similar

to the idea of UIO, DoB was implemented to estimate internal disturbance in the

transfer function format.
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DoB was implemented in frequency domain using a Q filter, which cuts off the

disturbance in low frequency region. To some extent, the design of DoB, is the design

of the low-pass Q filter.

Figure 14: Diagram of the DoB

As shown in Figure 14, since the real plant P and its nominal model Po are

not equal in the real world, the difference between the control inputs to them can be

estimated. Based on this observation, the estimation of external disturbance di, is

obtained from the difference between control signal u and the output signal combined

with the inverse of the nominal plant filtered by a Q filter. The DoB algorithm is

expressed in the following equation:

d̂i = Q
(
P̂−1

o y − u
)

(4.6)

Because the direct feedback would result in an algebraic loop, a filter is nec-

essary in the DoB design. In addition, the Q filter can also filter the measurement

noise in the feedback signal. Therefore, the design of the Q filer is an essential part

of DoB.

Remarks

DoB simplifies the external disturbance rejection design to a low-pass filter

design, which makes it easy to understand by industry. As a transfer function based
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design method, DoB also has the same disadvantages as IMC: it requires that the

nominal plant model and its inverse are available.

Model Estimator (ME)

ME was proposed in 1994 by A. Tornambe et al. [104] for robust decentralized

control of both SISO and MIMO systems.

For a nth order system





ẋ1 = x2

· · ·

ẋn−1 = xn

ẋn = a(x) + b(x)u

, (4.7)

ME assumed that all the states are measurable, and the functions a(x) and b(x) are

known. The equation describing the dynamics of ẋn can be rewritten as follows:

ẋn = f(x, u) + u (4.8)

where f(x, u) = a(x) + (b(x)− 1)u.

The control law is designed as follows:

u = −β0x1 − β1x2 − · · · − βn−1xn − f̂(x, u)

=
n−1∑
i=0

βixi+1 − f̂(x, u)
(4.9)

where 



f̂(x, u) = g(x, u) +
n−1∑
i=0

kixi+1

ġ(x, u) = −kn−1g − kn−1

n−1∑
i=0

kixi+1 −
n−2∑
i=0

kixi+2 − kn−1u

(4.10)

where βi, i = 0, . . . , n−1, are positive constants, and ki, i = 0, . . . , n−1 are arbitrary

constants.
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After some manipulations, the control law is obtained as follows:

u = − 1

b(x)

(
n−1∑
i=0

βixi+1 + a(x)− f̃(x, u)

)
(4.11)

where f̃(x, u) = f(x, u)− f̂(x, u). The parameters βi, i = 0, . . . , n− 1, are chosen so

that the spectrum of the polynomial β(s) = β0 + β1s + · · · , +βn−1s
n−1 + sn is in the

left half plane.

Remarks

ME can estimate unknown dynamics of the system by the mechanism shown

above. Although rigorous stability proof is provided for ME, it is under the assump-

tion that the plant model is completely known. Another disadvantage of ME is that, it

assumed that the up to (n−1)st order derivatives of the plant output are measurable,

which is not usually realistic in real world.

Summary

IMC, DoB, UIO and ME have been reviewed in terms of disturbance rejection

mechanism. The common properties of these disturbance observers based methods

are summarized as follows:

1) Adaptive Control Property: These methods can generate as much control

effort as is required to compensate the current disturbances. This is a distinguished

characteristics from other fixed gain robust control approaches where a sufficiently

large deterministic gain is inevitable to cover the worst case of the disturbance. Hence

they achieved the adaptive control property.

2) Integral Control Property: These methods can generate dynamic compensa-

tion terms based on the comparison between the external inputs and nominal plant,

which characterize the typical integral control property.
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3) Model-based Property: All these methods assume that the plant model is

linear and known, and external disturbance is independent of the plant, which are

the characteristics of the model-based methods.

Therefore, to apply these model-based methods, a linear model has to be ex-

tracted or simplified from the real plant. Even a linearized model is obtained, the

inverse or pseudo-inverse of the plant model has to be derived for implementation of

DoB and PoB.

Some differences among these disturbance observers are also summarized as

follows:

1) IMC, DoB, PoB are based on linear transfer function, while ME and UIO

are formulated in the state space form;

2) IMC, DoB, and PoB require the availability of the inverse of the plant model,

and are designed to estimate the disturbance only. While UIO can estimate both the

internal states and external disturbances, and ME can estimate unknown dynamics

of the system.

3) Amongst these disturbance observers, only ME has provided the stability

proof, while other methods only have frequency domain stability analysis.

4.2.3 Generalized Disturbance Rejection

The above model based disturbance observers have achieved a lot of successful

applications. However, these disturbance rejection methods are designed for LTI

systems and need a precise nominal model. We all know that most physical plants are

nonlinear time-varying system, which cannot be described by the LTI nominal models

that are used in these model-based disturbance rejection methods. Furthermore, most

of the disturbances are arbitrary and cannot be readily identified. Therefore, some

other approaches attempt to jump out of the box of model-based methodology, and
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can estimate and cancel the disturbances in real time. Among the few techniques

to address this model independent control strategy, time-delay control (TDC), and

active disturbance rejection control (ADRC), have attracted much attention as an

effective robust, nonlinear control algorithm.

Furthermore, please note that the above active disturbance rejection methods

are designed to estimated ONLY external disturbances. The following TDC and

ADRC can estimate the generalized disturbances, which include both the external

disturbances and the unknown dynamics.

Time Delay Control (TDC)

TDC was first introduced by Youcef-Toumi et al. [108, 109] in 1991 and was

designed for control of systems with unknown dynamics and disturbances. This ap-

proach approximates the nonlinear dynamics and uncertainties with the time-delayed

values of control inputs and derivatives of state variables at the previous time step

and calculates the current control action that can quickly cancel unknown dynamics

and unexpected disturbance.

Considering the following nonlinear differential equation:

ẋ = g(x) + b(x)u + d (4.12)

where x denotes the state vector of the system, u denotes the input vector, g(x) de-

notes the nonlinear function in companion form, which may be unknown, yet bounded,

b(x) denotes the control vector, and d denotes disturbances.

Introducing in (4.12) a constant matrix, b̂(x), representing the nominal value

of b(x), we can rearrange (4.12) into the following

ẋ = g(x) + b(x)u + d (4.13)

=
[
g(x) + (b(x)− b̂(x))u + d

]
+ b̂(x)u

= f(x, u, t) + b̂(x)u
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where f(x, u, t) denotes the total uncertainty including the uncertainty in the plant

and disturbances. The control objective is to makes the plant in (4.12) follow accu-

rately a desired error dynamics in the presence of unknown dynamics and unexpected

disturbance. To get the desired error dynamics as follows

ė = Ame (4.14)

where e = xd − x, denotes an error vector with xd denoting the reference command

vector, and Am denoting the desired error dynamics matrix. The control law is

designed as follows:

u(t) = b̂+ [ẋd − f(x, u, t)− Ame] (4.15)

where b̂+ denotes a pseudo-inverse of b̂. f(x, u, t) can be approximated by f̂(x, u, t)

as follows:

f̂(x, u, t) ≈ f(x, u, (t− L)) = ẋ(t− L)− b̂u(t− L) (4.16)

where L denotes a sufficiently small time delay.

Combining (4.15) and (4.16), the final control law can be obtained as follows:

u(t) = b̂+
[
ẋd − f̂(x, u, t)− Ame

]
= u(t− L) + b̂+ [ẋd − ẋ(t− L)− Ame] (4.17)

Remarks

TDC has shown advantages to deal with NTV system. However, to apply TDC

to a plant, it is necessary to be able to measure all of the state variables and their

derivatives. Unfortunately, this is not always the case in practice. In many plants,

even state variables are not always available, not to mention their derivatives. Hence,

the measurability requirement presents a serious limitation on the implementations

of TDC to real plants.

Another variation of TDC is perturbation observer (PoB). As a special case

of TDC, with the condition of L = 1 in discrete time domain, PoB assumes the



59

actual disturbances change quite smoothly between each control interval. Assume

the discrete nominal plant model is described as follows:





x(k + 1) = Ax(k) + B(u(k) + d(k))

y = Cx(k)

(4.18)

At k time point, x(k), x(k− 1), and u(k− 1) are known and can be used to calculate

the previous external disturbance, d(k − 1), through the inverse operation as shown

in the following equation:

d̂(k − 1) = B+(x(k)− Ax(k − 1))− u(k − 1) (4.19)

Assuming that the external disturbance changes little from (k − 1) to k time

interval, which means d(k) ≈ d(k− 1), d̂(k) is obtained with a digital Q filter applied

as follows:

d̂(k) = Q(B+(x(k)− Ax(k − 1))− u(k − 1)) (4.20)

Active Disturbance Rejection Control (ADRC)

In contrast to TDC, ADRC does not require the availability of the state vari-

ables and their derivatives. ADRC was first proposed by J. Han in 1995 [127, 128] and

further simplified and parameterized by Gao [139, 140], respectively. ADRC shares

the same idea of TDC because both of them do not require an exact mathematical

model and be able to robust to a wide range of uncertainties and disturbances. How-

ever, ADRC has gone further by attaching an extended state observer (ESO), which

only require the plant input-output data, and not necessarily require measuring all

of the state variables and their derivatives as required by TDC.

ADRC stipulates that if any external disturbances and unknown dynamics can

be estimated in real time, then they can be compensated and canceled without an

explicit modeling of the disturbances and unknown dynamics. The extended state



60

observer is then designed to achieve the online estimation function, with an augmented

state estimating the combination of the unknown dynamics and disturbances to the

internal states.

Up to now, ADRC has been successfully implemented in a wide range of ap-

plications including motion control [132, 133, 134], jet engine control [135], MEMS

Gyroscope control [136] and process control [137], etc.

4.3 Proposed Active Disturbance Rejection Con-

trol - ADRC

The ADRC with ESO control strategy, therefore, can estimate the effect of

any unknown dynamics (internal or external) and compensate in real time via ESO.

From the aspect of disturbance estimation and compensation, there is nothing novel

from ADRC compared with TDC. However, the estimation by ESO is novel and

different from other methods. From this aspect, the design of the ESO is thus the key

element of ADRC. ESO was first proposed by Han [127] using nonlinear functions to

make the observer more efficient. It was selected heuristically based on experimental

results. Although the nonlinear functions make the observer work better, it increases

the complexity and makes the parameter tuning process a nightmare. Gao [139]

parameterized the tuning process and simplified to the linear case. In this dissertation,

the discussion about ADRC is limited to the linear ADRC.

Consider a general nonlinear nth-order minimum phase systems represented by:

y(n) = f(y, ẏ, · · · , y(n−1), w, u) + bu (4.21)

where y is the system output, u is the control signal, b is a constant and w represents

external disturbances. f(y, ẏ, · · · , y(n−1), w, u) is the function describing the system

dynamics, which includes unknown dynamics and external disturbances.
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In the ADRC framework, the external disturbance (w) and unknown dynamics

are combined to form a generalized term f(y, ẏ, · · · , y(n−1), w, u). For the sake of

simplicity, here we simply call it f(·). The entire f(·) is assumed unknown and

denoted as the total disturbance. It is the combination of the internal dynamics of

the system and external disturbance. If the total disturbance can be estimated and

cancelled, the system is then reduced to a simple nth-order integral plant with a

scaling factor b, making the control problem much easier.

Instead of following the traditional design path of modeling and obtaining the

explicit mathematical expression of f(·), ADRC seeks to actively estimate and then

cancel f(·) in real time, thereby reducing the problem to the control of an integral

plant as follows:

u = (−f̂(·) + u0)/b (4.22)

which reduces the plant in (4.21) to

y(n) = f(·)− f̂(·) + u0 ≈ u0 (4.23)

At this point, the original unknown NTV plant of (4.21) is transformed to a

simple plant that is quite easy to control. This is the key idea and main benefit of

ADRC. It only works, of course, if f(·) can be estimated effectively, which is the

problem to be discussed next.

ESO

An extended state observer (ESO) is designed to achieve the online estimation

of f(·) with an augmented state estimating the combination of the unknown dynamics

and disturbances f(·) to the internal states. Define x = [x1, x2, . . . , xn, xn+1]
T =
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[y, ẏ, · · · , y(n−1), f ]T , the plant in (4.21) can be rewritten in the following form:




ẋ1 = x2

...

ẋn−1 = xn

ẋn = xn+1 + bu

ẋn+1 = η

(4.24)

where η is the derivative of f(·) and is unknown. The reason for increasing the order

of the plant is to make f(·) a state set, such that a state observer can be used to

estimate it. Han [128] proposed a nonlinear observer of the following form:




ż1 = z2 + g1(y − z1)

...

żn−1 = zn + gn−1(y − z1)

żn = zn+1 + gn(y − z1) + bu

żn+1 = gn+1(y − z1)

(4.25)

where zi is the estimate of yi−1, and zn+1 is the estimation of the extended state η.

gi(·), i = 1, · · · , (n + 1), are appropriate nonlinear functions, which are used to make

the observer more efficient. Intuitively, it is a nonlinear gain function, where small

errors correspond to higher gains.

However, the ESO is hard to tune for so many parameters, Gao [140] then

parameterized it to a linear case as follows:




ż1 = z2 + l1(y − z1)

...

żn−1 = zn + ln−1(y − z1)

żn = zn+1 + ln(y − z1) + bu

żn+1 = ln+1(y − z1)

(4.26)
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where li are the linear gain parameters to be determined later. The proposed lin-

ear observer is therefore denoted as the linear extended state observer (LESO). The

observer gain vector l = [l1, . . . , ln+1]
T , can be obtained using any known method,

such as the pole-placement technique. Gao [130] proposed to place all the poles at

the same location to reduce the number of tuning parameters. The observer gains

are solved as functions of a single tuning parameter, ωo.

Control Law

With the well-tuned ESO, such that z1, z2,. . . and zn+1 closely track y, ẏ , . . .

and f(·), respectively. The control law

u = (u0 − zn+1)/b (4.27)

then reduces the plant to y(n) = (f(·)− zn+1) + u0 ≈ u0 , and the control law can be

designed as

u =
1

b
[k0(yr1 − z1) + k1(yr2 − z2) + · · ·+ kn−1(yrn − zn)− zn+1] (4.28)

where yr = [yr1, yr2, . . . , yrn]T is the reference signal, ki is the control gains and can be

parameterized as the function of the bandwidth of the closed-loop system, ωc, which

can be tuned later.

Remarks

1. ADRC can be viewed as the combination of TDC and DoB. However, ESO

extended an extra state to estimate f(·) and does not require the plant model, which

is different from other model based disturbance observers, such as IMC, DoB, UIO,

PoB, and ME.

2. The design parameters are ωc and ωo. The only actual tuning parameter

is ωo, since ωo is generally chosen as several times larger than ωc. The only plant
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information needed is the approximate value of b. Since this parameter has clear

physical meanings, it is assumed that we have reasonable knowledge of it.

Note that the unknown external disturbance and the internal uncertain dy-

namics are combined and treated as a generalized disturbance. The novelty of this

approach is the augmentation of the observer, which allows the unknown term f(·) to

be actively estimated and canceled, thereby achieving active disturbance rejection.

The architecture of ADRC is shown in Figure 15, which composed of two main

parts, the controller and the observer ESO,where w(t) is the external disturbance, yd

is the desired reference signal, and b is the coefficient of the control input u(t). The

critical component here is obviously the ESO.

Figure 15: An illustration of ADRC configuration



CHAPTER V

TENSION AND VELOCITY

REGULATION IN ACCUMULATORS

5.1 Introduction

In this chapter, the accumulator in a large-scale web winding system is studied.

Although much work has been done in tension control of a web [4, 7, 8, 10, 12, 13],

very little is known in modeling and control of accumulators in web processing lines.

An overview of the lateral and longitudinal behavior and control of moving webs was

presented in [8]. A review of the problems in tension control of webs can be found

in [19]. Discussions on tension control versus strain control and torque control versus

velocity control were given in [13].

Both open-loop and close-loop methods are commonly used in web processing

industries for tension control purposes. In the open-loop control case, the tension in

a web span is controlled indirectly by regulating the velocities of the rollers at either

end of the web span. An inherent drawback of this method is its dependency on

65
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the knowledge of an accurate mathematical relationship between the velocities and

tension, which is highly nonlinear and highly sensitive to velocity variations. Still,

simplicity of the controller outweighs this drawback in many applications. Closing

the tension loop with tension feedback is an obvious solution to improve accuracy and

reduces sensitivity to modeling errors. It requires tension measurement, for example,

through a load cell, but can be justified by the resulting improvements in tension

regulation.

Some researchers have proposed to design tension observers in place of tension

measurements, which could reduce the hardware complexity and cost. One trade-

off is the increased complexity in the control algorithm and its tuning. In addition,

the discrepancies between the estimated and the actual tension will likely cause the

performance of the tension loop to suffer. The design of the observer also requires

a fairly accurate mathematical model of the tension dynamics, which may not be

available. It is not surprising to see that most of today’s tension feedback loops

employ tension measurement.

Accumulators in web processing lines constitute an important element in all

of the web processing lines. Functional importance of these in web processing lines

is quite substantial as they are primarily responsible for continuous operation of web

processing lines. A preliminary study on modeling and control of accumulators is

given in [144]. A dynamic model for accumulator spans that consider the time-varying

nature of the span length was developed in [119].

In this chapter, control of the accumulator carriage in conjunction with control

of the driven rollers both upstream and downstream of the accumulator is considered.

The average dynamic model developed in [144] is further simplified based on practical

observations and is used for controller design. A robust disturbance rejection control

strategy is proposed for a class of tension and velocity regulation problems found in
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accumulators. The proposed control system actively estimates and rejects the effects

of both dynamic changes in the system and external disturbances. Both open-loop

and closed-loop tension regulation schemes are investigated. A tension observer is

designed in order to facilitate close-loop tension control in the absence of a tension

transducer. The performance of existing schemes and the proposed ones are compared

in the end.

5.2 Dynamic Behavior of the Accumulator

A typical web processing line includes an entry section, a process section and

an exit section. Operations such as wash and quench on the web are performed in the

process section. The entry and exit section are responsible for web unwinding and

rewinding operations with the help of accumulators located in each sections.

Accumulators are primarily used to allow for rewind or unwind core changes

while the process continues at a constant velocity. Dynamics of the accumulator

directly affect the behavior of web tension in the entire process line. Tension distur-

bance propagates along both the upstream and downstream of the accumulator due

to the accumulator carriage.

Since there is no difference between the entry accumulator and exit accumula-

tor, except that one is for unwinding and the other is for rewinding operations. The

focus of this section is the exit accumulators. A sketch of the exit accumulator is

shown in Figure 16, which includes a carriage and N web spans.

As a special case of web transporting system, the accumulator’s span length

varies with the motion of the carriage. From Newton’s law and the dynamics of the

general web span, a modified tension model is obtained by considering the average

tension dynamics in [27]. The dynamics of the carriage tension and the entry/exit
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Figure 16: A sketch of an exit accumulator

rollers in the accumulator are summarized in [29] as follows:

ṫc(t) =
AE

xc(t)

(
vc(t) +

1

N
(ve(t)− vp(t))

)
(5.1)

ẋc(t) = vc(t) (5.2)

v̇c(t) =
1

Mc

(−Ntc(t)− Vfvc(t)− Fd(t) + uc(t))− g (5.3)

v̇e(t) =
1

J
(−βfve(t) + R2(tr − tc(t)) + RKeue(t)−R2δe(t)) (5.4)

v̇p(t) =
1

J
(−βfvp(t) + R2(tc(t)− tr) + RKpup(t) + R2δp(t)) (5.5)

where vc(t),ve(t) and vp(t) are the carriage velocity, exit-side and process-side web

velocity, respectively. xc(t) is the carriage position, tr is the desired web tension

in the process line and tc(t) is the average web tension. N is the number of web

spans. uc(t), ue(t) and up(t) are the carriage, exit-side and process-side driven roller

control inputs, respectively. The disturbance force, Fd(t), represents the friction in

the carriage guides, rod seals and other external forces on the carriage. Ke and Kp

are positive gains. δe(t) and δp(t) are disturbances on the exit side and process line.

The other constant coefficients in (5.1) to (5.5) are described in Table I.
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Table I: Plant Coefficients
Values Discriptions

Mc 7310 kg Mass of the carriage
A 35.07× 10−4 m2 Cross sectional area of web
E 6.90× 107 N/m2 Modulus of elasticity
R 0.1524 m Radius of roller
N 34 Number of web spans
J 2.1542 kg ·m2 Moment of inertia
Vf 35.037× 105 N · s/m Viscous friction coefficient
βf 2.25× 10−3 N ·m · s Bearing friction coefficient

5.3 Design Considerations

5.3.1 Design Objective

The objective of the control system design is to determine a control law such

that the carriage velocity vc(t), exit velocity ve(t), process velocity vp(t) as well as

the tension tc(t), all closely follow their desired trajectories. It is assumed that vc(t),

ve(t) and vp(t), are measured and available as feedback variables. The controller also

needs to satisfy the following design specifications:

• Response of the tension and the roller speed should be as quick as possible;

• Tension control performance should be kept to guarantee the required product

quality;

• The effect of interaction and disturbance should be suppressed as much and as

quickly as possible;

• The entire closed-loop system should be robust to parameter uncertainties and

disturbances.

5.3.2 Existing Control Methods

Industry Controller (IC)
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PID is still the predominant method in industry, and web applications are no

exception. It is simple to use and easy to set up, but its performance is obviously

very limited. Over the years, practicing engineers address the performance limitation

by adding feed-forward terms inside the PID algorithm. One such industry controller

(IC) is described in the literature [29] for the position and velocity control of the

accumulator carriage, the exit-side driven roller and process-side driven roller. The

control law is described as follows:

ucI(t) = Mc(v̇
d
c (t) + g +

vf

Mc

vd
c (t) +

N

Mc

tdc) (5.6)

ueI(t) =
J

RKe

(
Bf

J
vd

e(t) + v̇d
e(t)− kpeeve(t)− kie

∫
eve(τ)dτ) (5.7)

upI(t) =
J

RKp

(
Bf

J
vd

p(t) + v̇d
p(t)− kppevp(t)− kip

∫
evp(τ)dτ) (5.8)

where eve and evp are the tracking errors defined as: evp(t) = vp(t) − vd
p(t), eve(t) =

ve(t)−vd
e(t). ucI(t), ueI(t) and upI(t) are the carriage, exit-side and process-side driven

roller control inputs. vd
c , v

d
e and vd

p are the desired velocity of carriage, exit-side, and

process-side rollers, respectively, and v̇d
c , v̇

d
e ,v̇

d
p are their derivatives. kpe and kpp are

proportional gains and kie, kip are integral gains of the PID controller.

Lyapunov Based Control (LBC)

To make the control design more systematic, researchers have been working on

advanced design methods based on the mathematical model of the accumulator. For

example, a Lyapunov based control (LBC) method is proposed in [29], which results

in the following control law:

uc(t) = Mc(v̇
d
c (t)+g+

vf

Mc

vd
c (t)+

N

Mc

tdc−
AE

xc(t)
êtc(t)−exc(t)+

N

Mc

êtc(t)−γ3eve(t)) (5.9)

ue(t) =
J

RKe

(
Bf

J
vd

e(t)+ v̇d
e(t)−γeeve(t)−(

AE

Nxc(t)
−R2

J
)êtc(t)−R2

J
δe sgn(eve)) (5.10)

up(t) =
J

RKe

(
Bf

J
vd

p(t)+v̇d
p(t)−γpevp(t)−(

AE

Nxc(t)
−R2

J
)êtc(t)−R2

J
δp sgn(evp)) (5.11)
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Tension is estimated based on the error dynamics of the velocity loops, such

that




˙̂tc(t) = (
2AE

xc(t)
− N

Mc

)evc(t) + (
2AE

Nxc(t)
− R2

J
)(eve(t)− evp(t))

t̂c(0) = t̂c0

(5.12)

where γ3, γe and γp are the controller gains to be selected.

The related tracking errors are defined as follows: etc(t) = tc(t)− tdc(t), êtc(t) =

t̂c(t)− tdc , ẽtc(t) = tc(t)− t̂c(t), evc(t) = vc(t)− vd
c (t), exc(t) = xc(t)− xd

c(t).

5.3.3 Why New Solutions Are Needed

Tension and velocity control in the accumulator is a challenging problem for

the following reasons:

• There is a strong coupling between the carriage dynamics, strip tension dynam-

ics and the roller dynamics;

• The tension dynamics are highly nonlinear and sensitive to velocity variations;

• The coefficients of (5.1) to (5.5) are highly dependent on the operating condi-

tions and web material characteristics, and vary with conditions;

• There are extensive external disturbances, which propagate through the system

and even make the system unstable in some cases.

Since the velocities are controlled in open-loop by feed-forward and classical

PI control method, the industry controller needs to be re-tuned when the operating

conditions are changed or when the external disturbance appears. In addition, the

industrial controller has a poor performance in the presence of disturbance. LBC im-

proves the industrial controller by adding auxiliary error feedback terms to get better

performance and disturbance rejection. However, it is designed specifically to deal
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with disturbances of certain kinds. When the module uncertainties and other unex-

pected disturbances appear in the real world, the performance may not be adequate.

5.4 Proposed Control Strategy

In developing new solutions for this difficult industry problem, performance

and simplicity are stressed. That is, the new controller must have a much better

performance than the existing ones, and it should also be simple to design, implement,

and tune. A key observation in this research is that there are two control problems to

consider: velocity and tension. The three velocity loops are very similar in nature and

finding a better solution would be a good first step. The tension problem is crucial

because of its nonlinear dynamics and the coupled relationship with velocity loops.

The velocity control problem below will be addressed first, followed by the solutions

to the tension control problem.

5.4.1 A New Solution for Velocity Control

Velocity loop control in the accumulator is the key to the tension loop control

since they are coupled with each other. ADRC is known for its efficient disturbance

rejection control. It is also a good candidate for decoupling control by treating all the

unknown coupled dynamics as one generalized term f(·) and cancel it in real time

with the help of ESO. In this case, ADRC will be applied to the velocity loop control

by treating the coupling tension dynamics as disturbances and thereby decoupling

the tension dynamics from velocity loops.

In order to apply ADRC to velocity loop control, we need to formulate the

velocity loops and rewrite the velocity equations (5.3)-(5.5) as follows:

v̇c(t) = fc(t) + bcuc(t) (5.13)
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v̇e(t) = fe(t) + beue(t) (5.14)

v̇p(t) = fp(t) + bpup(t) (5.15)

where

fc(t) =
1

Mc

(−Ntc(t)− Fd(t)−Mcg) (5.16)

fe(t) =
1

J
(−Bfve(t) + R2(tr − tc(t))−R2δe(t)) (5.17)

fp(t) =
1

J
(−Bfvp(t) + R2(tc(t)− tr) + R2δp(t)) (5.18)

The plants in (5.13)-(5.15) are all of the form

v̇(t) = f(t) + bu(t) (5.19)

where v(t) is the velocity to be controlled, u(t) is the control signal, and the value of

b is known, approximately. f(t) represents the combined effects of internal dynamics

and external disturbance. From (5.19), it can be seen that it is exactly the format

of the first-order ADRC control problem as described in section 4.3. Following the

general ADRC design procedure, we will first design a second-order ESO and then

design an ADRC controller.

Second-order ESO Design:

Rewrite the plant (5.19) in a state space form as follows:




ẋ1 = x2 + bu

ẋ2 = h

y = x1

(5.20)

Let x1 = v, with x2 = f(·) added as an augmented state, and η = ḟ(·) as unknown

disturbance. The state space model of (5.20) is obtained as follows:




ẋ = Ax + Bu + Eη

y = Cx

(5.21)
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where

A =




0 1

0 0


 , B =




b

0


 , C =

[
1 0

]
, E =




0

1




Based on (5.21), f(·) can be estimated by LESO, which is constructed as follows:





ż1 = z2 + L1(y − z1) + bu

ż2 = L2(y − z1)

(5.22)

where L1 and L2 are the design parameters. By setting λ(s) = |sI − (A− LC)| =

s2 + L1s + L2 equal to the desired error dynamics, (s + ω)2, the observer gains are

solved as functions of a single tuning parameter, ωo. It is demonstrated in [139] that

L1 = 2ωo, L2 = ω2 can be parameterized and assign eigenvalues of the observer to

−ωo.

With a functioning LESO, which results in z1 → v and z2 → f(·), the control

law will be designed as follows:

u = (−z2 + u0) /b (5.23)

This reduces the plant to an approximate integral plant

v̇(t) = (f (t)− z2(t)) + u0(t) ≈ u0(t) (5.24)

which can be easily controlled by

u0(t) = kp(r(t)− z1(t)) (5.25)

By setting the controller equal to the desired transfer function, ωc/(s + ωc), the

controller gains are solved as functions of one tuning parameter, ωc. Set kp = ωc,

where ωc is the desired closed-loop bandwidth.

Remarks
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1. To show how z2 converges to f , it is clear from (5.19) that f = v̇−bu. After

solving (5.22) and (5.24) for z2 by superposition, the result is simply a filter version

of f as follows:

z2(s) = (sv(s)− bu(s))
ω2

0

(s + ω0)2
(5.26)

where the term
ω2

0

(s+ω0)2
is a second-order filter.

2. The LESO is further simplified by substituting (5.21) from (5.20) to remove

an algebraic loop and decouple z2, allowing ADRC to be presented in PID form as

follows:

u = kp(r − z1)− b

L2

∫
(y − z1)dt (5.27)

3. The disturbance observer-based PD controller achieves zero steady state

error without using an integrator in the controller.

4. The PD controller can be replaced with other advanced controller if neces-

sary.

5. The tuning parameters are ωc and the only model parameter needed is the

approximate value of b in (5.19).

The diagram for the above controller combines with the LESO (5.21 - 5.23) is

shown in Figure 17. It is applied separately for all three velocities loops.

Figure 17: ADRC based velocity control
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5.4.2 Tension Control Methods

Both open-loop and close-loop solutions to tension regulation will be discussed

in this section. The open-loop tension control is simple and economic, while the

closed-loop tension control is more precise but requires an additional sensing device.

Open-Loop Tension Regulation

High quality velocity regulation allows the tension to be controlled open-loop,

if the model of the tension dynamics (5.1) is accurate. From (5.1), the tension can

be computed as

tc(t) = tc(0) +

∫ t

0

AE

xc(t)
(vc(t) +

1

N
(ve(t)− vp(t)))dt (5.28)

where tc(0) is the initial value of tension.

For the open-loop control, let the desired velocities: vd
c , vd

e , and vd
p , be carefully

chosen so that (5.28) yields

tc(t) = tdc , t ≥ t1 (5.29)

For a given initial condition tc(0) and a given time constraint t1, if all three velocity

loops are well-behaved, the actual tension should be close to the desired value. This

method will be tested in simulation in a later section. Note that, for this purpose,

the desired velocities must satisfy the following condition

vd
c (t) = −vd

e(t)− vd
p(t)

N
, t ≥ t1 (5.30)

The above approach is a low cost, open-loop solution. As the operating condi-

tion changes, the tension dynamics (5.1) could vary, causing variations in tension. For

the tension is not measured, such variations go unnoticed until visible effects on the

product quality appear. To maintain accurate tension control, industry users usually

are willing to install a tension sensor, which regulates the tension in a feedback loop,

as discussed below.
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Observer-based Closed-loop Tension Regulation

A tension transducer, such as a load cell, can be used for closed-loop tension

control. Nevertheless, it requires installing physical instruments, additional machine

space, and new adjustments. Therefore, implementing tension control without tension

sensors would be beneficial from an economic point. For this purpose, a tension

observer is designed in this section.

Recall in (5.1)-(5.5), tension is coupled with velocity loops, and we use an

ADRC controller to decouple the tension from the velocity loops. Actually, tension

is thrown into f(·) part, which is estimated and canceled out in ESO.

Let us look at the function f(·) in three velocity loops, and it turns out that

if the other terms of f(·) are known, tension can be estimated through equation

(5.16)-(5.18) and presented as follows:

t̂cc(t) = −Mc

N
(fc(t) +

1

Mc

(−Fd(t)−Mcg)) (5.31)

t̂ce(t) =
1

R2
(−Jfe(t)−Bfve(t) + R

2 tr) (5.32)

t̂cp(t) =
1

R2
(Jfp(t) + Bfvp(t) + R

2 tr) (5.33)

With an efficient LESO, z1 → v and z2 → f(·). That is, from ESO, fc(t)

, fe(t) and fp(t) can be obtained. Since the other parts in f(t) are all known in

this problem, tension estimation from three velocity loops can be calculated based

on (5.31)-(5.33). Finally, the tension observer is obtained from the average of three

tension estimations.

t̂c(t) =
1

3
(t̂cc(t) + t̂ce(t) + t̂cp(t)) (5.34)

The complete block diagram for the velocity and tension control loops are illustrated

in Figure 18.

The simulation results are shown in the next section, where the proposed

method is compared to the two previous methods.
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Figure 18: Configuration of ADRC based tension/velocity control system

5.4.3 Simulation and Comparison

In this section, four types of control systems are compared via simulations,

including:

1) IC in equations (5.6) to (5.8);

2) LBC in equations (5.9) to (5.11);

3) Open-loop tension control;

4) Closed-loop tension control.

The comparison of these controllers is carried out in the presence of distur-

bances. In addition, to demonstrate the feasibility of the proposed methods, they are

implemented in discrete-time form with a sampling period of 10 ms.

A. Simulation Setup

The control schemes are investigated by conducting simulations of an industrial

continuous web processing line. The desired tension in the web span is 5180 N. The

desired process speed is 650 fpm. A typical scenario of the exit speed and the carriage

speed during a rewind roll change is depicted in Figure 19.
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Figure 19: Desired exit speed and the carriage speed

To make the simulation results realistic, three sinusoidal disturbances are in-

jected. Fd(t) in (5.3) is a sinusoidal disturbance with the frequency of 0.5 Hz and

amplitude of 44 N, and is applied only in three short specific time intervals: 20 : 30

seconds, 106 : 126 seconds, and 318 : 328 seconds as shown in Figure 20. δe(t) and

δp(t), in equation (5.4) and (5.5), are also sinusoidal functions with the frequency of

0.2 Hz and the amplitude of 44 N. They are applied throughout the simulation, as

shown in Figure 21.

B. Parameterization Setup and Tuning Procedures

Following the parameterization and design procedure described above, ωc and

ωo are the two parameters need to be tuned. As discussed in [139], relationship

between ωc and ωo is ωo ≈ (3 ∼ 5)ωc. So we only have one parameter to tune, which

is ωc. The other important parameter needed is the approximate value of b in (5.19).
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Figure 20: Fd: Interval sinusoidal disturbance for carriage velocity loop
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For this problem, the best estimate of b in (5.13), (5.14) and (5.15) is as follows: bc

= 1.368e-4, be = 0.7057, bp = 0.7057, and bt = AE/5 = 3.76106.

A cohesive ADRC design and optimization procedure is given as follows:

Step 1: Design parameterized ESO and controller where ωo and ωc are design

parameters;

Step 2: Choose an approximate value of b in different plant, such as bc, be, bp

and bt;

Step 3: Set ωo = 5ωc and simulate/test the ADRC in the simulation;

Step 4: Incrementally increase ωc until the noise levels and/or oscillations in

the control signal and output exceed the specified tolerance;

Step 5: If necessary, slightly increase or decrease the ratio of ωc and ωo.

The parameters of the four controllers are shown in Table II, where kpe, kpp,

kie and kip are the gains in (5.6)-(5.8) for the IC. γ3, γe, and γp are the gains in (5.9)-

(5.11) for the LBC. bc, be, and bp are specific values of b in (5.19) for the carriage, exit,

and process velocity loops, respectively. Similarly, ωoc, ωoe and ωop are the observer

gains in equation (5.22), and ωcc, ωce, ωcp are the controller gains (kp) in equation

(5.25). ωct is the corresponding ADRC parameters for the tension dynamics in (5.1).

Table II: Gain used in the simulation
Velocity Loops Velocity Loops

IC kie=0.1,kip=0.1,kpe=100,kpp=100
LBC γ3=100, γe=100,γp=100

ADRC1 ωcc=15, ωce=40,ωcp=40
ADRC2 ωcc=15, ωce=40,ωcp=40 ωct=12

C. Simulation Results and Comparison

The velocity and tension tracking errors resulting from ADRC1 are shown in

Figure 22. Obviously, the velocity and tension tracking errors are quite small, despite
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the fact that the controller design is not based on the complete mathematical model

of the plant and there are significant disturbances in the process.
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Figure 22: Error signals in ADRC1

The comparisons of IC, LBC and ADRC1 are shown in Figures 23 and Figure

24, in terms of the tracking errors and control signals for the carriage velocity loop.

Note that the carriage velocity errors indicate that ADRC1 is much better than the

other two methods and the control signal indicates that the ADRC controller actively

responds to the disturbances. Similar characteristics are also found in the exit and

process velocity loops.

Due to the poor results of IC, only LBC, ADRC1, ADRC2 are compared in

the tension control results in Figure 25. Note that, with a direct tension measure-

ment, ADRC2 results in negligible tension errors. Furthermore, even in an open-loop

control, ADRC1 has a smaller error than LBC. This can be attributed to the high
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quality velocity controllers in LADRC1.

The velocity and tension errors of all four control systems are summarized in

Table III.

Table III: Simulation Comparison
Maximum Error RMS

vc(m/s) ve(m/s) vp(m/s) tc(N) vc(m/s) ve(m/s) vp(m/s) tc(N)
IC 5.0e-4 8.5e-3 8.5e-3 8.8e+4 1.0e-4 1.0e-3 1.0e-3 71.0

LBC 1.2e-4 2.7e-3 1.4e-3 12.8 3.0e-5 5.0e-4 6.0e-4 11.1
ADRC1 8.0e-5 1.5e-3 2.0e-4 4.1 1.0e-5 1.0e-5 2.0e-4 2.8
ADRC2 7.0e-5 1.3e-3 2.0e-4 1.5 1.0e-5 1.0e-5 2.0e-4 1e-2

Overall, these results reveal that the proposed ADRC controllers have a distinct

advantage in the presence of sinusoidal disturbances and a much better performance

in tension control.
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5.5 Summary

A new control strategy is proposed for web processing applications, based on

the active disturbance rejection concept. It is applied to both velocity and tension

regulation problems. Although only one section of the process, including the carriage,

the exit, and the process stages, is included in this study, the proposed method

applies to both the upstream and downstream sections to include the entire web line.

Simulation results, based on a full nonlinear model of the plant, have demonstrated

that the proposed control algorithm results in not only better velocity control but also

significantly less web tension variation. The proposed method is promising because:

1) no detailed mathematical model is required; 2) zero steady state error is achieved

without using the integrator term in the controller; 3) the controller is able to cope

with a large range of the plant’s dynamic change; and finally 4) excellent disturbance

rejection is achieved.



CHAPTER VI

DECENTRALIZED CONTROL OF WEB

WINDING SYSTEMS

As a real industrial example of large-scale systems, large-scale web winding

systems with many different processes will be studied in the decentralized control

framework in this chapter.

The presence of tension terms in the roller velocity dynamics, and conversely

roller velocity terms in the tension dynamics lead the web winding system to be an

interacting large-scale system. Given measurements of all states variables, the sys-

tem can be controlled by multivariable control methods. Numerous attempts have

been presented with promising results [33, 123, 148]. These results are in the form

of static full state feedback, although the process of obtaining gains differs. Though

powerful, multivariable control does have its limitations. Being centralized, the con-

trol scheme must be completely redesigned if the system is changed in some way. For

example, adding one process to the system may force the system to be redesigned

since the system dimension has been grown by one. Furthermore, failure in a section

87
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of one web tension zone can lead to catastrophic failure in the overall control system.

Decentralized structure can alleviate these problems associated with centralized con-

trol structure. Although widely applicable to the industry, traditional decentralized

control structure also introduces other issues.

The aim of this chapter is to provide a novel approach to the traditional de-

centralized control problem. A large-scale web processing line, where the mutual

interaction between each control station is the major problem, is used as a case study

in demonstrating the validity and practicality of the new method.

6.1 The Key Idea

In the decentralized control case, the interconnections between segments are

usually neglected for control design purposes. However, the interconnections are

affecting the subsystems. Furthermore, an extra degree of freedom that models the

dynamics is added in the overlapping decentralized framework, which adds to the

complexity of implementation. To solve these issues, we propose a trade-off between

decentralized and overlapping decentralized control strategy. That is, we consider the

interconnections as disturbances and uncertainties in each subsystem. Since ADRC

can actively estimate and compensate the disturbances, a coordinated ADRC appears

to be reasonable in handling such interconnected large-scale systems.

6.2 Large-scale Web Processing Lines

It is common in the web handling industry to divide a processing line into

many tension zones by defining the span between two successive driven rollers as a

tension zone. A typical web winding system with (N + 1)-tension-zone is shown in

Figure 26.
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Figure 26: An illustration of a (N + 1)-tension-zone system

The corresponding decentralized control structure is shown in Figure 27, where

each tension zone is designed by a decentralized controller. Except for tension zone

1 (master speed section), which consists of only one velocity loop, all other tension

zones consist of two control loops: one velocity loop and one tension loop. The

corresponding controllers are tension controller CT and velocity controller CV .

Figure 27: Diagram of a decentralized web tension control system

Consider a large-scale web processing line, which consists of the unwind/rewind

rolls and (N − 1) intermediate driven rollers. The master speed roller is given to a

driven roller upstream of the unwind roll in almost all web processing lines. The pur-

pose of the master speed roller is to regulate web line speed and is not used to regulate

tension in the spans adjacent to it. The unwind/rewind rolls release/accumulate ma-

terial to/from the processing section of the web line. Thus their radii and inertia are
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time-varying. The dynamics of each section of the web processing line are presented

in the following section.

Here we define the unwind section as tension zone 0, and the rewind section

as tension zone N . All the other sections between unwind and rewind zones are the

process zones. Then we will build the models for each tension zone according to the

governed tension and velocity dynamics given in (2.13) and (2.15).

Unwind section

Dynamic behavior of the web tension T1 , in the span immediately downstream

from the unwind roller is given by

Ṫ1 =
1

L1

[v1T1 − v0T0 + AE(v1 − v0)] (6.1)

where L1 is the length of the web span between unwind roller and master speed roller.

T0 represents the wound-in tension of the web in the unwind roll. v1 and v0 are the

transporting velocity of the unwind roller and the adjunct master roller. The velocity

dynamics of the unwind roller is as follows:

d

dt
(J0ω0) = −u0 − βf0ω0 + T1R0 (6.2)

where J0 and R0 represent the inertia and the radius of the unwind roller, respectively.

βf0 is the coefficient of friction in the unwind roll shaft. Since in the process of unwind,

the radius and the rotational moment of inertia are changing, (6.2) can be rewritten

as

J̇0ω0 + J0ω̇0 = −u0 − βf0ω0 + T1R0 (6.3)

where ω0 is the angular velocity of the unwind roller.

Below we will try to derive the expression of derivative of J0 and ω0. At any

instant of time t, the rotational moment of inertia of the unwinding rollers change as
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the roll diameters change, and can be expressed as follows:

J0 = Jc0 + Jcu (6.4)

where Jc0 is the inertia of the driving shaft and the core amounted on it, which is a

constant. Jcu is the inertia of the cylindrically wound web material on the core. Jcu

is not constant because the web is continuously released into the process. The inertia

of Jcu can be expressed as follows:

Jcu =
π

2
tρtw(R4

0 −R4
u0) (6.5)

where tρ is the density of the web material, tw is the web width. Ru0 is the radius of

the empty core mounted on the unwind roll-shaft, and R0 is the time changing radius

of the material roll. The rate of change in J0 caused by the rate of change of radius,

can be given by deviating (6.4) as follows:

J̇0 = J̇cu = 2πtptwR3
0Ṙ0 (6.6)

The angular velocity of the unwind roller has a relationship with transport velocity

of the web by

v0 = R0ω0 (6.7)

Differentiating both sides of (6.7), we can get the expression of ω̇0 as

ω̇0 =
v̇0

R0

− Ṙ0v0

R2
0

(6.8)

The diameters of the unwinding rolls change as the winding process goes on. This

change can be mathematically represented as follows:

Ṙ0 ≈ −ew

2π
ω0 = −ew

2π

v0

R0

(6.9)

where ew is the web thickness. Note that (6.9) is an approximation because the

thickness affects the rate of change of the radius of the roll after each revolution of



92

the roll. The continuous approximation is valid since the thickness is very small.

By substituting (6.3) through (6.9) into (6.2), the roller dynamic can be obtained as

follows:

J0v̇0 = −R0u0 − βf0v0 + T1R
2
0 −

ew

2π

(
J0

R2
0

− 2πtρtwR2
0

)
v2

0 (6.10)

Combining the tension dynamics in (6.1) and roller dynamics in (6.10) gives

the dynamics of the unwind section as follows:




J0v̇0 = −R0u0 − βf0v0 + T1R
2
0 −

ew

2π

(
J0

R2
0

− 2πtρtwR2
0

)
v2

0

Ṫ1 =
1

L1

[v1T1 − v0T0 + AE(v1 − v0)]

(6.11)

Master speed section and process section

Since the radius and inertia of the master speed roller are not changing with

time, J1 and R1 are constant. The dynamics of the master speed roller is given by

J1v̇1 = R1u1 − βf1v1 + R2
1(T2 − T1) (6.12)

The dynamics of web tension and velocity of the rollers in the process section

are given by 



Jiv̇i = Riui − βfivi + R2
i (Ti+1 − Ti)

Ṫi =
1

L
[vi+1Ti+1 − viTi + AE(vi − vi+1)]

(6.13)

Rewind section

The dynamics of roller velocity entering the rewind roll can be determined along

similar procedures as presented for the unwind roll. The only difference between them

is the changing direction of the radius and inertia. The signal for the derivative of

radius and inertia are positive instead of negative in the unwind processing.

The dynamics of the rewind section is shown as follows:




JN v̇N = RNuN − βfN −R2
NTN +

ew

2π

(
JN

R2
N

− 2πtwtρR
2
N

)
v2

N

ṪN =
1

LN

[vNTN − vN−1TN−1 + AE(vN − vN−1)]

(6.14)
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where LN is the length of the web span between rewind roller and the previous

transporting roller. TN and TN−1 represent the wound-out tension of the web in the

rewind roll and the adjunct roller. vN and vN−1 are the transporting velocity of the

rewind roller and the adjunct roller. JN and RN represent the inertia and the radius

of the rewind roller, respectively. βfN is the coefficient of friction in the rewind roll

shaft.

The dynamic models given in equations (6.1) to (6.14) are nonlinear and time

varying. The plant for each subsystem is summarized as follows:

S0 :





Ṫ1 =
1

L1

[v1T1 − v0T0 + AE(v1 − v0)]

v̇0 = −βf0

J0

v0 − R0

J0

u0 +
1

J0

[
T1R

2
0 −

ew

2π

(
J0

R2
0

− 2πtρtwR2
0

)
v2

0

] (6.15)

S1 : v̇1 = −βf1

J1

v1 +
1

J1

R1u1 +
R2

1

J1

(T2 − T1) (6.16)

Si :





Ṫi =
1

Li

[vi+1Ti+1 − viTi + AE(vi − vi+1)]

v̇i = −βfi

Ji

vi +
Ri

Ji

ui +
R2

i

Ji

(Ti+1 − Ti)

(6.17)

SN :





ṪN =
1

LN

[vNTN − vN−1TN−1 + AE(vN − vN−1)]

v̇N = −βfN

JN

vN +
RN

JN

uN +
1

JN

[
−R2

NTN +
ew

2π

(
JN

R2
N

− 2πtwtρR
2
N

)
v2

N

](6.18)

where S0, S1, Si, SN stand for the subsystem of unwind section, the master speed roller

section, the process sections between unwind and rewind section, and rewind section,

respectively.

6.3 Existing and Proposed Solutions

Prior to the design of a proper control system, the control objectives for the

decentralized control of web winding systems must be clearly defined. The goal for

this particular large-scale system is to design a controller for each subsystem, which

minimizes the influence of the remaining subsystems. This section will review the
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general assumptions made to large-scale control problem formulation, then existing

control solutions will be analyzed in terms of their weakness. Finally, an ADRC based

decentralized control strategy will be proposed to overcome those weaknesses caused

by traditional decentralized control methods.

6.3.1 Assumptions

Consider an interconnected large-scale nonlinear system S comprised of (N +

1) interconnected subsystems Si(i = 0, . . . , N). Each subsystem Si is presented as

follows:

Si : ẏi = σi(yi) + biui + ∆i(y) (6.19)

where i = 0, . . . , N ;

yi ∈ Rni is the output of the subsystem Si;

y = [yT
0 , yT

1 , · · · , yT
N ]T is the overall output of S;

ui ∈ Rmi is the control input of the subsystem Si;

σi ∈ Rni is the internal dynamics of the subsystem Si;

∆i is the interactions of the ith subsystems Si with other subsystems;

The following assumptions are made on the system (6.19) as follows

Assumption 1: The system is a minimum phase system without any “zero

dynamics.”

Assumption 2: The constant vectors bi ∈ Rni are known.

Assumption 3: The vectors σi(yi) are unknown and bounded.

Assumption 4: The interconnections ∆i(y) are unknown and bounded.

Assumption 5: Denote fi(yi, y) = σi(yi) + ∆i(y) , and ḟi(yi, y) = ηi(yi, y), It is

assumed that the derivative of ηi(yi, y) is bounded, i.e., ‖η̇i(yi, y)‖ ≤ θi, where θi is a

positive constant.
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The objective of the decentralized control design is to determine a control law

for each individual subsystem such that the outputs yi(t) follow the desired trajectory

yir for all i = 0, . . . , N .

6.3.2 Summary of the Existing Control Methods

From the literature review in Section 3.3, it can be seen that there are two chal-

lenges in the decentralized control of large-scale systems, which are interconnections

assumptions and controller design.

Assumptions on Interconnection Dynamics

First, let’s review existing assumptions on interconnections. Literature study

has shown that the interactions in the subsystem are usually bounded by polynomial-

type nonlinearities. The interconnections are assumed to be linear and nonlinear form

in the literature [52, 60, 72]. One of a typical linear form [52] is expressed as follows:

∆i(x) =
N∑

j=0,j 6=i

Kijxj (6.20)

where Kij ∈ Rni×nj are linear interconnection matrixes, which are assumed to be

bounded.

There are also many nonlinear forms of interconnections. Usually, the inter-

connections are composed of two parts: higher order polynomials of its own states

and high-order polynomials of the states from other subsystems, one of which is as

follows:

∆T
i (x)∆i(x) 6

pi∑
j=2

N∑

k=0

δij ‖xk‖j (6.21)

where pi is the order of the polynomials, δij are unknown positive constants for i, j.

Sometimes, the interconnections are also bounded by the sum of the tracking errors

as follows:

|∆i (x1, . . . , xN)| 6
N∑

j=1

γij ‖ej‖ (6.22)
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where ‖ej‖ is the norm of the tracking error of the j−th subsystem, defined as ej =

xr
j − xj, and γij are some unknown constants.

Note that the restrictions on the interconnections shown in (6.20) are very gen-

eral which include many types of interconnections considered in the existing literature

as special case. For example, the interconnections bounded by first-order polynomials

[55, 56], high-order polynomials [71, 73] et al.

Control Methods

Second, let’s examine the control methods. Basically, we can find that all

these assumptions are made to model the unknown parts of the nominal plant and

make the plant model more precisely. Based on the well understood model and the

interactions dynamics, different modern control methods are applied to deal with the

unmodeled interactions. Adaptive control is used to deal with slow but well-defined

changes in dynamics; robust control is based on small gain theory and only robust

to small bounded disturbance and unmodeled dynamics; intelligent control methods,

such as fuzzy logic control and neural network control, are time-consuming in design

and also difficult to implement in the real world; the industry PID controller is simple

in form but difficult to tune. If anything changes in the system, very often this results

in poor performance or even instability.

6.3.3 Proposed Method

Based on the analysis of existing methods on decentralized control of large-scale

systems, a novel approach to these issues is proposed in this section. The decentralized

control problem is first reformulated in the active disturbance rejection framework.

Then a linear observer and controller for each individual subsystem will be designed,

without requiring the precise knowledge of the dynamics of interconnections from

other subsystems.
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Design Objectives

Based on the analysis of the state-of-the-art of decentralized control methods,

our design objectives are:

1. Construct a decentralized controller that is easy to implement, robust to

uncertainties, and stability guaranteed;

2. Relax the required knowledge of the dynamics of interconnections from

other subsystems;

3. Relax restrictions on the required knowledge of interconnections and uncer-

tainties;

4. Maintain the stability of the constructed decentralized closed-loop system.

Design Strategy: Treat Subsystem Interactions as Disturbances

In this section, we will propose a new control strategy that can meet our

design philosophy. As mentioned previously, one of the most important problems in

decentralized control is to relax restrictions on the interconnections and uncertainties.

To solve this problem, the ADRC paradigm will be applied to this special case.

The idea is that instead of treating external disturbances and unknown dynamics as

one term for disturbance rejection purpose, ADRC is further extended to treat the

unknown interconnections dynamics as one generalized term f(·), estimating them

and canceling their effect in real time in order to render the system as a decoupled

centralized control problem.

Based on the analysis above, all the combined effect of disturbances, changing

dynamics, uncertainness, and interactions between each subsystem are treated in one

term fi(yi, y) in the framework of active disturbance rejection control. The expression

of fi(yi, y) is defined as follows:

fi(yi, y) = σi(yi) + ∆i(y) (6.23)
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Substituting (6.23) into (6.19) gives the standard ADRC form as follows:

Si : ẏi = fi(yi, y) + biui, i = 0, . . . , N. (6.24)

To this end, a linear ADRC is applied to each subsystem and constitutes a decen-

tralized ADRC based control system as shown in Figure 28, where each subsystem is

controlled by a linear ADRC.

Figure 28: ADRC based decentralized control strategy

By treating the unknown interconnections as generalized f(·) term, ADRC

actively estimates and cancels the changing dynamics of the interactions from other

subsystems. Therefore, ADRC decouples each subsystem from other subsystems and

makes the decentralized control problem a stand-alone centralized control problem.

Thus, the proposed method will not require the interconnections to be bounded by

polynomial-type combinations of the states within themselves and the other sub-

systems states. What we need to assume is that all the combined effect of distur-

bances, changing dynamics, uncertainness, and interactions between each subsystems

are bounded over the domain of interest. In addition, the derivative of the combined

term f(·) is also bounded. This is reasonable in most practical systems.

Decentralized ADRC Control System Design

For the ith subsystem in a large-scale system, the control system design can

be divided into three steps.
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A. Solving the Subsystem Control Problem

First step is the reformulation of the original problem in (6.24). For the sake of

simplicity, we denote fi(yi, y) as fi(·). In order to estimate fi(·), an additional state is

added to the original system (6.24). Let xi1 = yi, xi2 = fi(·), then subsystems (6.24)

become second order systems of the form:





ẋi1 = xi2 + biui

ẋi2 = ηi(·)

yi = xi1

(6.25)

where fi(·) is added as an augmented state, and ηi(·) = ḟi(·) is unknown but bounded.

The state space form of (6.25) can be rewritten as





ẋi = Aixi + Biui + Eiηi

yi = Cixi

(6.26)

where

Ai =




0 1

0 0


 , Bi =




b1

0


 , Ei =




0

1


 , Ci =

[
1 0

]

B. Linear Observer Design

The fi(·) term can be estimated by ESO and designed as follows:





żi = Aizi + Biui + li(yi − ŷi)

ŷi = Cizi

(6.27)

where li is the observer gain vector to be selected. By setting λi(s) = |sI − (Ai −
liCi)| = s2 + l1s + l2 equal to the desired error dynamics (s + ωo)

2, the observer gains

are functions of one single tuning parameter, ωo.

C. Controller Design
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The next step is the controller design. Here a crucial step is that we want to

get the plant to be a pure integral format, so that it can be easier to design controller.

As described in Chapter III, the control law is designed as

ui =
1

bi

[−zi2 + ui0] (6.28)

This reduced the plant to approximate an integral plant

ẏi = (fi(·)− zi2) + ui0 ≈ ui0 (6.29)

Let yir be the desired output, ui0 can be selected as

ui0 = ki1(yir − zi1) (6.30)

where ki1 are the controller gains to be selected. For the purpose of easy tuning, let

ki1 = ωc (6.31)

where ωc is the bandwidth of the closed-loop system.

Remarks:

1. It can be seen that the proposed control strategy can meet the requirement

of our design philosophy: easy to implement, less model information.

2. Unlike exact linearization approach, which needs a nonlinear transformation

and an explicit expression of the interconnections, what we do is estimate it and then

cancel it in real-time. This enables us to deal with difficult issues caused by the

uncertainties, nonlinearities and unknown nonlinear functions of the interconnections.

3. The only requirement left to meet is the proof of stability of the closed-loop

system. The singular perturbation based stability analysis of the proposed controller

will be given in the next chapter.

In summary, the advantage of the proposed method is that the precise knowl-

edge of the interconnection dynamics does not need to be known. Furthermore, the
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constraints on the interconnections are not necessarily being polynomials. What is

really needed to be known is that the interconnections are bounded, which is usually

true in practice.

6.4 Application to a Web Winding System

This section explains the design of decentralized controller proposed in the

previous section for large-scale web winding systems. In order to fit the proposed

control strategy into the specific web winding system, let us first look back at the

decentralized web winding system control problem. In Section 6.3, we have developed

the mathematical model for each subsystem. In this section, we will reformulate the

dynamics for each subsystem in the ADRC control framework.

6.4.1 Reformulation of Web Winding Dynamics

Defining the new variable for the unwind section as yT
1 = [T1, v0] , for the master

speed roller as y2 = v1 , for the ith subsystem as yT
i = [Ti, vi] ,i = 2, 3, . . . , (N − 1),

and for the rewind section as yT
N = [TN , vN−1] , we can get the expression of each

subsystem as follows:

S0 : ẏ0 = σ0(y0) + b0u0 + ∆0(y) (6.32)

where

b0 =




0

−R0/J0


 , ∆0(y) =




(AE + T1)v1/L1

0




σo(y0) =




−[T0 + AE]v0/L1

− bf0

J0
v0 + 1

J0

[
T1R

2
0 − ew

2π

(
J0

R2
0
− 2πtρtwR2

0

)
v2

0

]




S1 : ẏ1 = σ1(y1) + b1u1 + ∆1(y) (6.33)
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where

b1 =
R1

J1

, ∆1(y) =
R2

1

J1

T1, σ1(y1) = −βf1

J1

v1 +
R2

1

J1

T2

Si : ẏi = σi(yi) + biui + ∆i(y) (6.34)

where

bi =




0

−Ri/Ji


 , ∆i(y) =




(AE + Ti+1)vi+1/Li

0




σi(yi) =




−[Ti + AE]vi/Li

−βfi

Ji
vi +

R2
i

Ji
(Ti+1 − Ti)




SN : ẏN = σ1(yN) + bNuN + ∆N(y) (6.35)

where

bN =




0

−RN/JN


 , ∆N(y) =




(AE + TN)vN/LN

0




σN(yN) =




−[TN + AE]vN−1/LN

− bfN

JN
vN + 1

JN

[
TNR2

N − ew

2π

(
JN

R2
N
− 2πtρtwR2

N

)
v2

N

]




In summary, the equations from (6.32) to (6.35) defined above can be rewritten

as following forms:

Si : ẏi = σi(yi) + biui + ∆i(y) (6.36)

So far we have formulated the dynamic models of decentralized web winding

system to be arranged in the standard decentralized systems problem as defined in

equation (6.19). Next section, we will investigate the control of this decentralized

web winding system by ADRC.
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6.4.2 Implementation of ADRC

A control block diagram for the industrial web winding system of one single

tension zone is shown in Figure 29. It can be seen that a cascaded structure of tension

and velocity loop is applied. In other words, the output of the tension loop is fed into

the velocity loop and added to the velocity reference to get a real velocity reference

signal for the velocity loop.

Figure 29: Cascaded structure of industrial control

Based on the observer designed in equation (6.27) and controller derived in

equation (6.28) to (6.31), the proposed control laws are applied to both tension and

velocity loops in each subsystem.

In a large-scale web winding system, there is always a master speed roller;

the reference velocities of the transport rollers in the process line are set equal to the

master speed roller. The diagram of a four-tension zone web winding system is shown

in Figure 30, where the first tension zone is unwind section, the second master speed

roller, the third a process roller section, the last the rewind section.

Because of interconnections between tension zones, the variations of velocities

and tensions propagated to all subsequent sections. As shown in Figure 30, the

velocity variations propagated downstream, while the tension variations propagated

upstream. The directions of the propagations are demonstrated in different arrow

directions. It is those factors that cause the traditional decentralized controller design

and tuning procedure to be a challenging problem, since the plant dynamics keep
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changing.

Figure 30: The illustration of the decentralized tension control system

However, it is NOT a problem for ADRC due to its decoupling nature. The

changing dynamics are decoupled by ADRC, thereby making the decentralized control

a centralized control problem. Furthermore, because each subsystem except for the

master roller section has the same structure, we only need to design one control

system for one of the subsystem, and duplicate the controller for other subsystems.

This feature will reduce the tuning time and implementation cost in practice.

6.4.3 Assumptions Checks

The disturbance and its derivative are assumed to be locally bounded as de-

scribed in Assumptions 1-5 in Section 6.3.1. The existence of these bounds will be

checked in this section.
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The combined functions for each subsystem is summarized as follows:

f0(·) = σ0 + ∆0 =




1

L
[v1T1 − v0T0 + AE(v0 − v1)]

−bf0

J0

v0 +
1

J0

[
T1R

2
0 −

ew

2π

(
J0

R2
0

− 2πtρtwR2
0

)
v2

0

]


 (6.37)

f1(·) = σ1 + ∆1 = −bf1

J1

v1 +
R2

1

J1

(T2 − T1) (6.38)

fi(·) = σi + ∆i =




1

L
[vi+1Ti+1 − viTi + AE(vi − vi+1)]

−βfi

Ji

vi +
R2

i

Ji

(Ti+1 − Ti)


 (6.39)

fN(·) = σN + ∆N =




1

L
[vi+1Ti+1 − viTi + AE(vi − vi+1)]

−bfN

JN

vN +
1

JN

[
−R2

NTN +
ew

2π

(
JN

R2
N

− 2πtwtρR
2
N

)
v2

N

]




where f0(·), f1(·), fi(·), and fN(·) denote the generalized term of f(·) for unwind

section, master speed section, process section and rewind section, respectively.

We will first show that combined function fi(·) and its derivative ḟi(·) are

bounded in the ith subsystem, then consider three special cases, which include the

unwind section, the master speed section and the rewind section with a little bit

difference from the general case.

|fi1(·)| ≤ 1

Li min

[|vi+1Ti+1|+ |viTi|+ |AEmaxvi|+ |AEmaxvi+1|] (6.40)

≤ 1

Li min

[
1

2
(v2

i+1 + T 2
i+1) +

1

2
(v2

i + T 2
i ) + AEmax |vi|+ AEmax |vi+1|

]

≤ 1

Li min

[
1

2
(y2

i+1 + y2
i ) + AEmax |yi1|+ AEmax

∣∣y(i+1)1

∣∣
]

(6.41)

|fi2(·)| ≤
∣∣∣∣
βfi

Ji

vi

∣∣∣∣ +

∣∣∣∣
R2

i

Ji

Ti+1

∣∣∣∣ +

∣∣∣∣
R2

i

Ji

Ti

∣∣∣∣ (6.42)

|fi(·)| = |fi1(·)|+ |fi2(·)|

For the master speed section, f1(·) is bounded by |fi2(·)|i=1. For the unwind

subsystem and rewind subsystem, there are an added-on term due to radius and

inertia changing in these two sections. The added-on term is shown in the following
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equations:

Πk(·) = −bfk

Jk

vk +
1

Jk

[
−R2

kTk ± ew

2π

(
Jk

R2
k

− 2πtwtρR
2
k

)
v2

k

]
(6.43)

≤
∣∣∣∣
bfk

Jk

vN

∣∣∣∣ +
1

Jk

[∣∣R2
kTk

∣∣ +

∣∣∣∣
ew

2π

Jk

R2
k

v2
k

∣∣∣∣ +
∣∣ewtwtρR

2
kv

2
k

∣∣
]

(6.44)

Π̇k(·) ≤ bfk

Jk

|v̇N |+ 1

Jk

[
R2

k

∣∣∣Ṫk

∣∣∣ +
ew

π

Jkvk

R2
k

|v̇|+ ∣∣2ewtwtρR
2
kvkv̇k

∣∣
]

(6.45)

where k = 0 or N . It is shown that the added-on term is bounded. Since the added-

on term is bounded, it is easy to check that the whole subsystem is bounded for the

unwind and the rewind subsystem.

|f0(·)| ≤ 1

L0 min

[
1

2
(y2

1 + y2
0) + AEmax (|y0,1|+ |y1,1|)

]
+ |fi2(·)|i=0 + Π0(·)

|fN(·)| ≤ 1

LN min

[
1

2
(y2

N + y2
N−1) + AEmax (|yN−1,1|+ |yN,1|)

]
+ |fi2(·)|i=N + ΠN(·)

From the above equations, it can be concluded that the bound of the distur-

bances and their derivatives exist and meet those Assumptions 1-5 in Section 6.3.1.

6.5 Simulation and Results

The web processing application under consideration directly falls into the large-

scale system control problem. We will test the proposed control methods in a four-

tension-zone web processing line in this section.

The block diagram of the four-tension-zone web winding model is shown in

Figure 31. Note that the diagram is a little different from the decentralized structure

shown in Figure 30. Here we set the master roller speed as tension zone 1 without

tension zone 0 of a unwind section. The reason is that the control of unwind and

rewind section is almost the same; the only difference between them is the changing

direction of radius and inertia. We also assume that the web tensions can be measured
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by the load cells, the radius of the winding roll can be measured by a potentiometer,

and the angular velocities of the rolls can be measured by tachometers.

Figure 31: Simulation diagram

6.5.1 Simulation Setup

The simulation system is composed of four subsystems, and each of them is

subjected to interferences from other subsystems. A subsystem of the upstream ten-

sion control loop, for example, has an interference from the speed master and the

downstream tension loops. As can be seen from Figure 31, it constitutes a decentral-

ized control system.

The velocity set point is 1500 m/s and the reference tension is 200 lbs. In the

simulation, they are scaled to 0.5 m/s and 0.4 lbs respectively. In addition, a step

tension disturbance of 50 lbs is added to the upstream and downstream tension set
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point during the 10th second. A step velocity disturbance of 300 m/s is added to the

velocity set point at the 5th second.

6.5.2 Simulation Results

The simulation results are demonstrated by applying both PID controller and

the proposed ADRC controller to the decentralized web winding system.

To test the robustness to disturbances and uncertainties, we have tested both

cases: Case 1: variation of tension at the 10th second, and Case 2: variation of both

tension (10 th second) and velocity (5th second). Figure 32 - 33 shows the results for

Case 1, and Figure 34 and 35 show the results of Case 2.
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Figure 32: Velocity responses to tension variation at 10th second

From the simulation results, it can be seen that ADRC has a much better

tracking performance in both speed and tension loops. It also can be observed that



109

0 5 10 15 20
0

0.5

1

T
1

 (
b

ls
)

Tension Zone 1 Upstream tension

0 5 10 15 20
0

0.5

1

T
2

 (
b

ls
)

Tension Zone 2 Downstream tension

0 5 10 15 20
0

0.5

1

Time:  sec

T
3

 (
b

ls
)

Tension Zone 3 Downstream tension

PID
ADRC

PID
ADRC

PID
ADRC

Figure 33: Tension responses to tension variation at 10th second

ADRC has a much shorter recovery time when a variation in tension and velocity

setpoint occurs.

It is worthwhile pointing out that the observer and controller for each subsys-

tem has the same parameters. I only tune for one subsystem and copy the tuned

parameters to the other subsystems. That is the beauty of the proposed approach:

easy to tune.

6.6 Summary

A decentralized robust controller has been developed based on linear active

disturbance rejection control paradigm. The extended state observer is designed to

estimate the unknown interactions among each subsystem. The proposed controller

is then implemented on a four-tension-zone web winding processing line. Simulation
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Figure 34: Velocity responses to both tension and velocity variations

results show that the proposed control method has better tension and velocity regu-

lation results than industrial PID controller. The stability of the closed-loop system

will be proven in the next chapter. Although only four sections of the process are

included in this study, the proposed method is very promising to apply to both the

upstream and downstream sections to include the entire web line.
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Figure 35: Tension responses to both tension and velocity variations



CHAPTER VII

STABILITY ANALYSIS OF ADRC

Since ADRC has demonstrated the validity and the advantage in different

applications [130], many of its properties have been studied by researchers in the past

few years. Bounded input and bounded output (BIBO) stability had been proved

in [140]. Frequency domain analysis of linear ADRC had been conducted in [106].

The convergence and the bounds of the estimation and tracking errors of ESO were

presented in [110]. Stability analysis of nonlinear ADRC was studied by Huang [111].

In this chapter, the stability analysis of the closed-loop system is carried out

using singular perturbation theory. The idea is that we divide the closed-loop system

into two separated sub-systems: a fast subsystem (dynamics of observer) and a slow

subsystem (dynamics of controller). Taking advantage of the results in [119], we

provide a necessary condition of the exponential stability for the linear disturbance

rejection control.

112
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7.1 Singular Perturbation Theory

The singular perturbation theory in control was designed to analyze models

which depend on a small scalar parameter and can be written as follows:





ẋ = f(x, z, ε, t)

εż = g(x, z, ε, t)

(7.1)

Given a small positive parameter ε, the system with two-time-scale property can be

split into two coupled subsystems, which described a relatively fast and slow part

of the original system. Therefore, we can use a systematic way to conduct stability

analysis for the separated subsystems, which can be obtained by letting the parameter

ε tends to zero and re-scaling the fast subsystem.

Singular Perturbation Theory - Standard Form

Before studying the stability properties of the proposed system, we introduce

some relevant results in singular perturbation theory. Many of the following results

can be found in [118].

Definitions A nonlinear system is said to be singularly perturbed if it has the following

form: 



ẋ = f(x, z, ε, t), x(t0) = x0 , x ∈ Rn

εż = g(x, z, ε, t), z(t0) = z0 , z ∈ Rm

(7.2)

where ε represents a small parameter. We assume that functions f and g are suffi-

ciently smooth with respected to x, z, ε, t.

System (7.2) is said to be a standard form if and only if the following assump-

tions are satisfied.

Assumption 1: System (7.2) has a unique solution and it has a unique equilib-

rium point at the origin (0, 0).
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Consider system (7.2): let ε = 0, then we have

ẋ = f(x, z, 0, t),

g(x, z, 0, t) = 0

(7.3)

Assumption 2: System (7.3) has a unique root z = φ(x).

Then we obtain a slow or reduced subsystem

ẋ = f(x, φ(x), t) (7.4)

and a fast or boundary layer subsystem

dẑ

dτ
= g(x, ẑ(τ) + φ(x̄, t), 0, t) (7.5)

where τ = t/ε.

Now we have our first theorem below.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold for (7.2), then as

ε → 0+, the asymptotic solution of (7.4) and (7.5) approximate the solution of (7.2)

for all t ≥ t0 ≥ 0 with




x(ε, t)− x̄(t) = O(ε)

z(t, ε)− φ(x̄, t)− ẑ(τ) = O(ε)

(7.6)

(7.6) is uniformly valid for t ∈ (t0,∞), where x̄(t) and ẑ(τ) are the solutions of the

reduced (slow) and boundary layer (fast) systems (7.4) and (7.5), respectively.

Singular Perturbation Theory - Asymptotic Solutions

The Steady-State-Model. Let the parameter ε tend to zero, which means

that the second equation of (7.1) is considered in steady state z|ε→0 = z̄(x, t) , we

obtain the steady-state system by the following steps:

Step 1: Let ε = 0 and solve the reduced (slow) equation g(x̄, z̄, 0) = 0 to obtain

solution:

z̄ = φ(x̄) (7.7)
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where the bar is used to indicate that the variable belongs to the original system with

ε = 0.

Step 2: Substitute (7.7) into the first equation of (7.1), we obtain the quasi-

steady-state model:

˙̄x = f(x̄, φ̄(x̄), 0). (7.8)

Because z, whose velocity ż = g(x, z, ε)/ε, could become large when ε → 0, it con-

verges to a root of (7.1) rapidly.

The Boundary-Layer-Model. Singular perturbations cause a multi-time-

scale behavior of dynamics systems by the presence of both slow and fast transients

in the system. The slow response or the “quasi-steady-state” is approximated by the

reduced model, while the discrepancy between the response of the reduced model and

that of the full model is the fast transient. To analyze this fast transient characteris-

tics, we will look at it closely by changing time scale.

The boundary-layer model can be obtained by the following steps:

Step 1: Performing a change of variables as follows:

ẑ = z − z̄ (7.9)

and a change of the time base by introducing a new time scale variable τ . Given an

initial value at t = t0, the new time variable

τ =
t− t0

ε
, (7.10)

is “stretched,” which means that if ε → 0, τ →∞ even for fixed t only slightly larger

than t0. The slowly varying variables x and t are treated as constant with respect to

the fast time base.

Step 2: Substituting (7.9) and (7.10) into the second equation of (7.1), we

obtain the boundary-layer-model

dẑ(τ)

dτ
= g(x0, ẑ(τ) + z̄(t0), 0) (7.11)
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Here the new variable ẑ is the deviation of the fast variable from its quasi steady

state z̄ = φ̄(x̄).

We have obtained the slow model (7.8) and fast model (7.11) respectively. Now

we are ready to provide the results in stability analysis, which is based on Hassan K.

Khalil’s theorem in [119].

7.2 Stability Analysis

In this section we show that with proper controllers and observers that have

been designed, the closed-loop system of ADRC is stable. Singular perturbation

theory [98] is used to analyze the system. Based on the analysis, we construct a

Lyapunov function to prove the stability property of the slow and fast subsystems.

7.2.1 The Error Dynamics of ESO

The plant defined by (4.24) can be represented in a matrix form as follows:




ẋ = Ax + Bu + Eη

y = Cx

(7.12)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0




(n+1)×(n+1)

B =




0

0

...

b

0




(n+1)×1

E =




0

0

...

0

1




(n+1)×1

C =




1

0

...

0

0




T

1×(n+1)

The corresponding ESO is designed based on the plant above as follows:




ż = Az + Bu + l(y − ŷ)

ŷ = Cz

(7.13)
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where l is the observer gain vector to be selected.

Define the estimation error vector of ESO as

ẽ = x− z (7.14)

Subtracting (7.13) from (7.12), the error dynamics of the LESO is as follows

˙̃e = (A− lC)ẽ + Eη (7.15)

For the purpose of parameterization and the stability analysis, we introduce

the following change of coordinates,




ẽ1 = ωoξ1

...

ẽn = ωn
o ξn

ẽn+1 = ωn+1
o ξn+1

(7.16)

Equation (7.16) can also be equally written as

ẽ =




ωo 0 0 · · · 0

0 ω2
o 0 · · · 0

...
... ωi

o

...
...

0 0 0
. . . 1

0 0 0 · · · ωn+1
o




ξ = Λξ (7.17)

where ẽ = [ẽ1, ẽ2, . . . , ẽn+1]
T , ξ = [ξ1, ξ2, . . . , ξn+1]

T , and ωo is a scaling factor, which

has specific meaning. Λ = diag [ωo, ω
2
o , · · · , ωn+1

o ], Λ−1 = diag [ω−1
o ,ω−2

o , · · · , ω
−(n+1)
o ].

Substitute (7.17) into (7.15), and we can get

Λξ̇ = (Ae − lC)Λξ + Eη (7.18)

Since matrix Λ is a diagonal matrix and invertible, equation (7.18) could be trans-

formed as follows:

ξ̇ = Λ−1(Ae − lC)Λξ + Λ−1Eη (7.19)
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With the parameterized observer gain l is defined as

l =
[
β1ωo, β2ω

2
o , · · · , βnω

n
o , βn+1ω

n+1
o

]T
(7.20)

we can transfer (7.19) to the following form

ξ̇ = ωoAzξ + ω−(n+1)
o Eη (7.21)

where Az =




−β1 1 0 · · · 0

−β2 0 1 · · · 0

...
...

...
. . .

...

−βn 0 0 · · · 1

−βn+1 0 0 · · · 0




7.2.2 The Error Dynamics of the Plant

The plant in (4.21) can also be rewritten in the following form




ẋ = A1x + B1u + Bff(·)

y = Cx

(7.22)

where

A1 =




0 1 0 · · · 0

0 0 1
. . .

...

...
. . . . . . . . . 0

0 0 · · · 0 1

0 0 · · · 0 0




n×n

B1 =




0

0

...

0

b




n×1

Bf =




0

0

...

0

1




n×1

C =




1

0

...

0

0




T

1×n

For the tracking problem, let us define the desired track state vector as

xr = [yr, ẏr, · · · , y(n−1)
r ]T (7.23)

and define the tracking error vector as follows:

e = x− xr = [e1, e2, · · · , en]T (7.24)
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Then the error dynamics of the tracking problems is as follows:

ė = A1e + B1u + Bff(·) (7.25)

As described in Section 4.3, the control law is designed as

u =
1

b
[−zn+1 + u0] (7.26)

This reduced the plant to approximate a nth order integral plant

y(n) = (f(·)− zn+1) + u0 ≈ u0 (7.27)

The control law is designed as follows:

u0 = k1(yr − z1) + k2(ẏr − z2) + · · ·+ kn(y(n)
r − zn)

= k1 [yr − (x1 − ẽ1)] + k2[ẏr − (x2 − ẽ2)] + · · ·+ kn[y(n−1)
r − (xn − ẽn)]

= k1(yr − x1) + k1ẽ1 + k2(ẏr − x2) + k2ẽ2 + · · ·+ kn(y(n−1)
r − xn) + knẽn

= −k1e1 + k1ẽ1 − k2e2 + · · · − knen + knẽn

(7.28)

From equation (7.14), we conclude that

zn+1 = f(·)− ẽn+1 (7.29)

Substitute (7.28) and (7.29) into (7.26), and we can get the control input as

u =
1

b
[−Ke + KfΛξ − f(·)] (7.30)

where K = [k1, k2]
T ,which can be designed to make Af = A1 − B1K the Hurwitz

matrix, and Kf = [k1, k2, 1]T .

Substitute controller defined by (7.30) into error dynamics (7.25), the error

dynamics of the closed-loop system is as follows:

ė = Afe + B1KfΛξ (7.31)

Dynamics of the Combined Closed-loop System



120

Combining the closed-loop tracking error dynamics (7.31) and observer error

dynamics (7.21), we obtain





ė = Afe + BfKfΛξ,

ξ̇ = ωoAzξ + ω−(n+1)
o Eη.

(7.32)

As the closed-loop system dynamics, (7.32) is thereby serve as the starting point for

the next step of the stability analysis.

7.2.3 Stability Analysis

The main objective of this section is to study stability characteristics of ADRC.

In particular, we wish to determine conditions for stability of the closed-loop error

dynamics described by (7.32). This is guided by the insight that the observer dy-

namics, the second equation in (7.32), is usually much faster than that of the state

feedback. The task of analysis is made easier if we separate the fast dynamics from

the slow one, and this is a common practice in singular perturbation theory.

In order to apply singular perturbation theory to the stability analysis of the

closed-loop error dynamics, we need to reformulate the error dynamics in (7.32) to

the standard singular perturbation system as described in (7.2). This is achieved by

defining ε = 1/ωo, which results in





ė = Afe + BfKfΛξ

εξ̇ = Azξ + εn+2Eη

(7.33)

Clearly, (7.33) is now a standard singularly perturbed system. We apply some existing

theorems on stability conditions of the singularly perturbed systems to analyze (7.33).

In particular, we introduce the following theorem which proves to be especially useful

in the later studies.
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Theorem 2. Consider the singularly perturbed system [119]





ẋ = f(x, z, ε, t)

εż = g(x, z, ε, t)

(7.34)

Assume that the following assumptions are satisfied for all (t, x, ε) ∈ [0,∞) × Br ×
[0, ε0]

1). f(0, 0, ε, 0) = 0 and g(0, 0, ε, 0) = 0.

2). The equation g(0, 0, ε, t) = 0 has an isolated root z = h(x, t) such that

h(0, t) = 0.

3). The function f , g, h, and their derivatives up to the second order are

bounded for z − h(x, t) ∈ Bρ.

4). The origin of the reduced system ẋ = f(x, h(x, t), 0, t) is exponentially

stable.

5). The origin of the boundary-layer system dy
dτ

= g(x, y + h(x, t), 0, t) is expo-

nentially stable, uniformly in (x, t).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (7.34) is

exponentially stable.

Applying Theorem 2 to (7.33), we obtain our first main result in stability analy-

sis. Before proceeding to derive Theorem 2, we assume that the following conditions

are satisfied for system (4.21).

Condition 1: It is assumed that f(·) and its derivative η(·) are locally Lipschitz in

their arguments and bounded within the domain of interest. In addition, the initial

conditions are assumed such that f(·)|t=0=0, and η(·)|t=0 = 0.

Condition 2: It is assumed that the desired output and its derivatives up to

(n + 2)nd order are bounded, such that |y(i)
r | ≤ γ.
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Theorem 3. Consider the ADRC error dynamics in (7.33). Let Condition 1 and

Condition 2 hold for (4.21), then there exists an ε∗ > 0 such that for all ε < ε∗, the

origin of (7.33) is exponentially stable.

Proof: In order to apply Theorem 2, we need to show is that (7.33) meets all

five assumptions of Theorem 2. Comparing (7.33) and (7.34), it is obvious that

f = Afe + BfKfΛξ (7.35)

g = Azξ + εn+2Eη (7.36)

By the definitions of f , g and Condition 1, one can easily see that Assumptions 1 is

satisfied.

For Assumption 2, we need to separate the slow and fast model from the

original system defined by (7.33) and follow the procedures described in [119]. To

obtain the quasi-steady-state model, let ε = 0, and solve the algebraic equation:

Azξ + ε(n+2)Eη = 0 → ξ̄ = φ(ē, t) = 0 (7.37)

Obviously, ξ̄ is an isolated root for (7.37), and Assumption 2 is therefore satisfied.

To check Assumption 3, we need to show that function f , g, φ and their partial

derivatives are bounded. Since e and ξ vanish at the origin for all ε ∈ [0, ε0] , they

are Lipschitz in ε linearly in the state (e, ξ). By Conditions 1 and 2: both η(·) and

η̇(·) are bounded, we have

‖BfKfΛξ‖ 6 L1 ‖ξ‖ (7.38)

‖η‖ 6 L2(‖e‖+ ‖ξ‖) (7.39)

‖η̇‖ 6 L3(‖ė‖+
∥∥∥ξ̇

∥∥∥) (7.40)

where L1, L2 and L3 are positive constants. Hence, we now exam the expressions of

f , g, φ and their partial derivatives are bounded:

f = Afe + BfKfΛξ 6 Af ‖e‖+ L1 ‖ξ‖ (7.41)
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ḟ = Af ė + BfKfΛξ̇ 6 Af ‖ė‖+ L1

∥∥∥ξ̇
∥∥∥ (7.42)

g = Azξ + εn+2Eη 6 Az ‖ξ‖+ εn+2 ‖Eη‖ 6 Az ‖ξ‖+ εn+2EL2(‖e‖+ ‖ξ‖) (7.43)

ġ = Az ξ̇ + εn+2Eη̇ 6 Az

∥∥∥ξ̇
∥∥∥ + εn+2EL3(‖ė‖+

∥∥∥ξ̇
∥∥∥) (7.44)

φ(ē, t) = 0. (7.45)

Therefore, we conclude that Assumption 3 is satisfied.

Substitute (7.37) into the first equation of (7.33), we obtain the quasi-steady-

state model as follows:

ė = Afe (7.46)

Since Af is a Hurwitz matrix, it is obvious that Assumption 4 holds.

The boundary layer system, which is the fast dynamics, is obtained by intro-

ducing a time scale of

τ = t/ε (7.47)

As ε → 0, substitute (7.47) into the second equation of (7.33), we obtain

dξ

dτ
= Az(τ)ξ(τ). (7.48)

This is the fast dynamics of (7.33). Since Az is a Hurwitz matrix, it is obvious that

Assumption 5 holds.

Note that all the assumptions are satisfied. By Theorem 2, the origin of (7.33)

is exponentially stable. Q.E.D.

Remarks

By using singular perturbation approach, we separate the original system into

two subsystems: the slow subsystem or quasi-steady state system and the fast sub-

system or boundary-layer system. We can then study the subsystems independently.

Under the assumption of ε = 0, the observer error and the tracking error of

the system are exponentially stable. Since it is impossible for the ESO to have ε = 0,
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it is necessary to find a positive value of ε for which the stability properties are

valid. For this purpose, we want to establish the stability properties of the singularly

perturbed system (7.33) for small ε. We need to show that, under mild assumption

that for sufficient small ε, any weighted sum of Lyapunov functions of the reduced

and boundary-layer system is exponentially stable.

Theorem 2 shows proof that there exists a certain ε∗ that can guarantee the

origin of (7.33) is exponentially stable. Since (7.33) is a linear system, Theorem 6

can be used to find the upper bonds of ε.

Before showing the new result in Theorem 6, we first state Theorem 4 and

Theorem 5 in [119].

Theorem 4. Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x) (7.49)

where f : [0,∞)×D → Rn is continuous differentiable, D = {x ∈ Rn| ‖x‖ < r} and

the Jacobian matrix [∂f/∂x] is bounded on D uniformly in t.

Let k, λ and r0 be positive constant with r0 < r/k, and define D0 = {x ∈ Rn| ‖x‖ < r0}.
Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0),∀x(t0) ∈ D0,∀t ≥ t0 ≥ 0 (7.50)

then there is a function V : [0,∞)×D0 → R that satisfies the inequalities

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2 , (7.51)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −c3 ‖x‖2 , (7.52)

∥∥∥∥
∂V

∂x

∥∥∥∥ ≤ c4 ‖x‖ , (7.53)

for some positive constants c1, c2, c3 and c4. Moreover, if r = ∞ and the origin is

globally exponentially stable, then V (t, x) satisfies the aforementioned inequalities on
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Rn. Furthermore, if the system is autonomous, V (t, x) can be chosen independent of

t.

Theorem 5. The system shown below is considered to be slowly varying

ẋ = f(x, u) (7.54)

where x ∈ Rn and u ∈ Γ ⊂ Rm for all t ≥ 0.

Suppose f(x, u) is locally Lipschitz on Rn × Γ for every u ∈ Γ, the equation

(7.54) has a continuously differentiable isolated root. To analyze the stability proper-

ties of the frozen equilibrium point x = h(α), we shift it to the origin via the change

of variables z = x− h(α) to obtain the equation

ż = f(x + h(α), α)
def
= g(z, α) (7.55)

Now, consider the system (7.55), suppose g(z, α) is continuously differentiable

and the Jacobian matrices [∂g/∂z] and [∂g/∂z] satisfy

∥∥∥∥
∂g

∂z
(z, α)

∥∥∥∥ ≤ L1,

∥∥∥∥
∂g

∂α
(z, α)

∥∥∥∥ ≤ L2 ‖z‖ (7.56)

for all (z, α) ∈ D × Γ where D = {z ∈ Rn| ‖z‖ < r}.
Let k, γ, and r0 be positive constants with r0 < r/k, and define D0 = {z ∈ Rn| ‖z‖ < r0}.

Assume that the trajectories of the system satisfy

‖z(t)‖ ≤ k ‖z(0)‖ e−γt,∀z(0) ∈ D0, α ∈ Γ,∀t ≥ 0, (7.57)

then there is a function W : D0 × Γ → R that satisfies (7.58) through (7.61). More-

over, if all the assumptions hold globally in z, then W (z, α) is defined and satisfies

(7.58) through (7.61) on Rn × Γ

b1 ‖z‖2 ≤ W (z, α) ≤ b2 ‖z‖2 , (7.58)

∂W

∂z
g(z, α) ≤ −b3 ‖z‖2 , (7.59)
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∥∥∥∥
∂W

∂z

∥∥∥∥ ≤ b4 ‖z‖ , (7.60)

∥∥∥∥
∂W

∂α

∥∥∥∥ ≤ b5 ‖z‖ , (7.61)

for all z ∈ D = {z ∈ Rn| ‖z‖ < r} and α ∈ Γ, where bi, i = 1, . . . , 5 are positive

constants independent of α.

Theorem 6. Consider the singular perturbed system (7.33), and assume that Con-

dition 1 and Condition 2 hold for (4.21), then there exist an upper bound of ε∗, such

that

ε∗ ≤ min


 n+1

√
[2(1− d)c3 − c4L1(1− d)] /db4L2,

db3

c4L1(1− d)
, n+1

√
1

3

c4L1(1− d)

db4L2




where bi(i = 1, . . . , 4), ci(i = 1, . . . , 4), L1, and L2 are nonnegative constants, 0 <

d < 1. Then for all ε ≤ ε∗, the origin of (7.33) is exponentially stable.

Proof: By Theorem 4, there is a Lyapunov function V (e) for the reduced

system that satisfies

c1 ‖e‖2 ≤ V (e) ≤ c2 ‖e‖2 , (7.62)

∂V

∂x
Afe ≤ −c3 ‖e‖2 , (7.63)

∥∥∥∥
∂V

∂e

∥∥∥∥ ≤ c4 ‖e‖ , (7.64)

for some positive constants ci, i = 1, . . . , 4 and for e ∈ Br0 with r0 ≤ r.

By Theorem 5, there is a Lyapunov function W (ξ) for the boundary layer

system that satisfies

b1 ‖ξ‖2 ≤ W (ξ) ≤ b2 ‖ξ‖2 , (7.65)

∂W

∂ξ
Azξ ≤ −b3 ‖ξ‖2 , (7.66)

∥∥∥∥
∂W

∂ξ

∥∥∥∥ ≤ b4 ‖ξ‖ , (7.67)

for some positive constants bi(i = 1, . . . , 4) and for ξ ∈ Bρ0 with ρ0 ≤ ρ.
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Since e and ξ vanish at the origin for all ε ∈ [0, ε0], they are Lipschitz in ε

linearly in the state (e, ξ). In particular,

‖BfKfΛξ‖ ≤ L1 ‖ξ‖ (7.68)

‖Eη‖ ≤ L2 (‖e‖+ ‖ξ‖) (7.69)

where L1 and L2 are two positive constants.

We set

Vcl(e, ξ) = (1− d)V (e) + dW (ξ) (7.70)

as a Lyapunov function candidate for system (7.33), where d is a weighting variable,

0 < d < 1. Using the properties of functions and the estimates from (7.62) to (7.69),

one can verify that the derivative of (7.70) along the trajectories of (7.33) satisfies

the following inequalities:

V̇cl = (1− d)
∂V

∂e
(Afe + BfKfΛξ) + d

∂W

∂ξ
(
1

ε
Azξ + Eη) (7.71)

= (1− d)
∂V

∂e
Afe + (1− d)

∂V

∂e
BfKfΛξ + d

∂W

∂ξ

1

ε
Azξ + d

∂W

∂ξ
Eη (7.72)

≤ −(1− d)c3 ‖e‖2 + (1− d)c4 ‖e‖L1 ‖ξ‖ − d

ε
b3 ‖ξ‖2

+db4 ‖ξ‖ [L2 (‖e‖+ ‖ξ‖)] (7.73)

≤ −(1− d)c3 ‖e‖2 − d

ε
b3 ‖ξ‖2 + db4ε

n+1L2 ‖ξ‖2

+
(
c4L1(1− d) + db4ε

n+1L2

) ‖e‖ ‖ξ‖ (7.74)

≤ −(1− d)c3 ‖e‖2 +

[
db4ε

n+1L2 − d

ε
b3

]
‖ξ‖2

+
(
c4L1(1− d) + db4ε

n+1L2

)
(
‖e‖2 + ‖ξ‖2

2

)
(7.75)

≤
[
−(1− d)c3 +

1

2
c4L1(1− d) +

1

2
db4ε

n+1L2

]
‖e‖2

+

[
3

2
db4ε

n+1L2 − d

ε
b3 +

1

2
c4L1(1− d)

]
‖ξ‖2 (7.76)

≤ −µ1 ‖e‖2 − µ2 ‖ξ‖2 (7.77)
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where





µ1 = (1− d)c3 − 1

2
c4L1(1− d)− 1

2
db4ε

n+1L2

µ2 =

[
d

ε
b3 − 1

2
c4L1(1− d)− 3

2
db4ε

n+1L2

]

From (7.77), in order to get the desired vcl ≤ 0, we need to make both µ1 and

µ2 be positive.

First let µ1 ≥ 0, we can obtain:

µ1 = (1− d)c3 − 1

2
c4L1(1− d)− 1

2
db4ε

n+1L2 ≥ 0

⇒ ε∗1 ≤ n+1
√

[2(1− d)c3 − c4L1(1− d)] /db4L2.

(7.78)

Then let µ2 ≥ 0, we can obtain:

µ2 =

[
d

ε
b3 − 1

2
c4L1(1− d)− 3

2
db4ε

n+1L2

]
≥ 0

⇒





d

ε
b3 − 1

2
c4L1(1− d) ≥ 1

2
c4L1(1− d)

1

2
c4L1(1− d) ≥ 3

2
db4ε

n+1L2

⇒ ε∗2 ≤ min


 db3

c4L1(1− d)
, n+1

√
1

3

c4L1(1− d)

db4L2




(7.79)

Based on the selection of ε∗1 and ε∗2, it will be guaranteed that

V̇cl ≤ −min(µ1, µ2)
[‖e‖2 + ‖ξ‖2] (7.80)

which completes the proof. Q.E.D.

Example

Take an example of the exit velocity loop dynamics in equation (5.4)

v̇e(t) =
1

J
(−Bfve(t) + R2(tr − tc(t)) + RKeue(t)−R2δe(t)) (7.81)

It is a first-order system, and the general dynamics in terms of f(·) is expressed as

follows

ẏ(t) = f(·) +
RKe

J
ue(t) (7.82)
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where f(·) = 1
J
(−Bfve(t) + R2(tr − tc(t))−R2δe(t)).

From the error dynamics described in section 7.2.1 and 7.2.2, Af and Az are

expressed as follows

Af = A1 −B1K = −bK, Az =



−β1 1

−β2 0


 =



−2 1

−1 0


 (7.83)

Since Af and Az are both linear Hurwitz matrix, we define a Lyapunov function

V (e) = eT Pe for the reduced system, where P is the positive definite solution of the

Lyapunov equation AT
f P + PAf = −I, where I is a corresponding identity matrix.

Similarly, we define a Lyapunov function W (ξ) = ξT Qξ for the boundary-

layer system, where Q is the positive definite solution of the Lyapunov equation

AT
z Q + QAz = −I, where I is a corresponding identity matrix.

We solve Lyapunov function on Matlab and obtain the P and Q matrix as

follows: P = 1
2bK

= 0.707, Q =




0.5 −0.5

−0.5 1.5


. Based on P and Q matrix, we

determine that b3 = 1, b4 = 2, c3 = 1, c4 = 1/2, L1 = 1, L2 = 3 × 104, and choose

d=1/2. Finally, we are able to calculate ε as follows:

ε = min
[√

2×(1−1/2)−1/2×1×(1−1/2)
1/2×3.414×30000

, 1/2×1
1/2×1×(1−1/2)

,
√

1
3

1/2×1×(1−1/2)
1/2×3.414×30000

]
= 0.0004033.

Therefore, we obtain the lower bound of the observer bandwidth as ωo = 1/ε = 2479.5.

Remarks

(1). Theorem 6 is an extension of Theorem 3, in which equation (7.78)-(7.80)

determine the upper bound of ε. Since ε = 1/ωo, it means that the lower bound of

observer bandwidth ωo can be obtained based on Theorem 6.

(2). The ESO in the fast time scale τ is faster than the dynamics of the plant

and the controller, we are able to make the estimated state converge to the real state

faster. This explains why ESO can actively reject the disturbance, since the extended

state can estimate the unknown dynamics very well.
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(3). The derived lower bound of the observer bandwidth is larger than the

real tuning parameter, because it was derived by Lyapunov functions, which are very

conservative.

The above results show that for the closed-loop system, when controlled by

ESO and ADRC control law presented in (7.32), achieves exponentially asymptotic

convergence of the tracking errors.

7.3 Summary

We presents in this chapter a singular perturbation approach to analyze the

stability characteristics of the closed-loop error dynamics based on the active distur-

bance rejection control (ADRC) for nonlinear time-invariant plant. The closed-loop

error dynamics is first formulated into a standard singular perturbation system. Then

we analyze the resulting singular perturbation system to provide a necessary condi-

tion of the stability characteristics of the original error dynamics. We found that

there exists a small ε that guarantees that the origin of the error dynamics is expo-

nentially stable. Since the decomposed singular perturbation systems are linear, we

can further the study to obtain an upper bound for ε by applying Khalil’s theorem in

([119]). Our result shows that parameter ε is reversely proportional to the bandwidth

of the controller and it is bounded by a upper limit of ε. This has significant practical

meaning because it will be very helpful for the real control system design.



CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The problem of web winding system, both single elements of an accumulator

and large-scale systems, have been investigated in this dissertation.

Firstly, the mathematical tools and assumptions for modeling of web winding

systems are reviewed. Based on these assumptions and mathematical laws, the general

mathematical model of web winding system is derived. It is observed that the existing

web winding system control literature is not extensive. Thus an in-depth literature

review of web winding system with a highlight of system modeling, control structures

and control strategies, tension observer techniques, and other related aspects has been

conducted thoroughly.

Secondly, from literature review, nearly all controllers proposed have been ei-

ther too complicated to implement or costly to tune for a given system. Furthermore,

one of the challenges of web winding systems control is the unexpected disturbances

that can propagate through the system and affect both tension and velocity loops. To
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solve these issues, we presented a unique active disturbance rejection control strategy

for a class of tension and velocity regulation problems found in accumulators in web

processing lines. Simulation results show remarkable disturbance rejection capability

of the proposed control scheme in coping with large dynamic variations commonly

seen in web tension applications.

Thirdly, another complication in web winding system stems from its large-

scale, coupled interconnections nature. This motivates the research in formulating

a novel robust decentralized control strategy. Web winding system is a strongly

coupled system. While the literature has taken some advantage of the intuitive de-

coupling present in the system, it has not been exploited to its fullest extent. Hence,

we have reformulated the web winding system as a large-scale decentralized control

problem. A literature review of both large-scale systems and accordingly decentral-

ized control strategies are reviewed first, then the decentralized web winding system

control is discussed in detail. All subsystem nonlinearities and interactions between

adjunct subsystems are regarded as perturbations, to be estimated by an augmented

state observer. The proposed decentralized control strategy was implemented on a 3-

tension-zone web winding processing line. Simulation results show that the proposed

control method has better tension and velocity regulation results than industrial PID

controller.

The core technology that has been applied to web winding system is active

disturbance rejection control strategy. Therefore, an extensive literature review of

existing disturbance rejection control strategies, both passive and active disturbance

rejection control, have been investigated.

ADRC has been demonstrated and exhibited excellent results both in simu-

lation and real applications in many benchmark problems and practical industrial

applications. However, the stability and convergence have not been rigorously ad-
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dressed previously. Therefore, a systematic analysis of the stability of the close-loop

system is essential. A novel approach to the stability analysis of the close-loop system

by singular perturbation theory is creatively proposed to solve this issue. Finally, it is

shown that the exponential stability is assured for the dynamic system if the observer

bandwidth is higher than the given lower bound of the bandwidth of the controller.

The major accomplishments in this work are as follows:

• Extensive state-of-the-art review of web winding system, including system mod-

eling, tension control, tension estimation, existing control techniques, and the

challenges in terms of control.

• Literature review of large-scale decentralized control problems and specific ap-

plications in decentralized control of web winding systems.

• Literature review of disturbance rejection control in terms of passive and active

rejection mechanism. Advantages and disadvantages of each strategy have been

fully investigated.

• The velocity and tension regulation problems are reformulated as a disturbance

rejection problem, opening a new direction in research.

• Active disturbance rejection control strategy is evaluated and employed for a

class of tension and velocity regulation problems found in accumulators. The

coupled tension and velocity loops are easily decoupled by ADRC, which is

demonstrated in a web processing line.

• Demonstrated that ADRC is not a formula, instead it is an idea. ADRC has

been originally proposed to deal with disturbance rejection problems. In this

dissertation, the ADRC idea is creatively applied in the decentralized control

framework, where the unknown dynamics of the interactions between each sub-



134

system are treated as disturbances to each subsystem. Again, this opens up a

new research direction in a well-established field: decentralized control.

• Formulated and implemented a novel robust decentralized control strategy and

demonstrated its application in large-scale web winding systems.

• Stability characteristics of ADRC for nonlinear, uncertain, and time-varying

plant are analyzed. A novel reformulation of the stability problem is proposed,

leading to the application of a class of mathematical analysis techniques.

8.2 Future Work

ADRC has been applied to both accumulator and large scale web winding

system in simulation. Future work would be an experimental validation for these

results.

The decentralized control problem is still a hot research topic nowadays. There

are still many research areas in this direction, such as how to deal with fault tolerant

control for large scale decentralized control problems.

ADRC is not omnipotent; it has its limitations, one of which is to deal with

time-delay problems. Therefore, one of the possible directions is to solve this problem.

This dissertation has demonstrated ADRC absolutely is not a formula. New

directions and research ideas should rest on this philosophy and expand the current

results. Future research could be to focus on the following directions:

• Noise is the limitation to the perfect result of ADRC. To improve the perfor-

mance of ADRC, one direction of ADRC research could be focus on applying

wavelets or other filtering methods to get cleaner input signals to the ESO, thus

improving the limits of the observer bandwidth.
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• ADRC can be applied to minimum phase system without any “zero dynamics”.

How about non-minimum phase system with unstable “zero-dynamics”? There

are some open issues on how ADRC applies to these systems.

• In some situations, minimum control effort is the main concern. ADRC is very

aggressive in achieving excellent performance and eliminating the disturbance;

however, it also costs a large amount of control effort. If f is well estimated, the

control effort would be much smaller, thus achieving the smaller control effort.
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