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ABSTRACT 

     NASA Glenn Research Center is developing various circuits for a lunar concept rover 

powered by both a stirling convertor and lithium ion batteries. To begin, a survey of six 

analog, non-power factor correcting controllers was done for an Advanced Stirling 

Convertor (ASC) design; one was selected to control the stirling convertor. Next, a 

constant power circuit and lithium ion battery charger was designed, built and tested 

based on simulation in PSpice. The constant power circuit enables the stirling convertor 

to maintain a constant power when additional power is required from the batteries.  
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 CHAPTER I 
 

INTRODUCTION 
 
 
 

1.1  Stirling Convertors 

 Figure 1 describes the operation of a stirling convertor. It describes the various 

configurations of stirling machines and how each configuration operates. It also shows 

how a free piston stirling operates and the affect of operating and initial conditions on the 

operation of the convertors.   

 

 
(a)
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(b) 

 
(c)  
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(g) 

Figure 1. Operation of a Free-Piston Stirling Convertor [1] 
 

1.2  History [2] 

 The stirling engine was invented by Reverend Robert Stirling and patented by him in 

1816. The main subject of the original patent was a heat exchanger which Reverend 

Stirling called the economiser. The economiser enhanced the fuel economy in a variety of 

applications. The patent also described in detail the employment of one form of the 

economiser in air engine. This application is now known as the regenerator. An engine 
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built by Stirling was put to work pumping water in a quarry in 1818. The need for stirling 

to run at a very high temperature to maximize power and efficiency exposed limitations 

due to the material available in that time period. The few engines which were built in 

those early years had short and troublesome lives. 

 The stirling engine was considered as an alternative to a steam engine. Two key 

features made the early stirling engines attractive in the decades that followed. First, they 

provided greater efficiency than the steam engines. The second feature was the safety that 

they provided. A rigorous boiler code to guide the design of pressurized systems had not 

been developed. This resulted in numerous boiler failures and accidents that posed hazard 

to personnel as steam engines were in wide use. The Reverend Stirling was motivated to 

work on his engine in part due to the concern for the safety of the members of his parish. 

The early stirling engines were closed cycle, and operated with air as the working fluid at 

atmospheric pressure. This resulted in relatively large cylinders compared to steam 

engines. Stirling engines enjoyed commercial success and were commonly produced in 

the range of 0.2 to 4 kW.  

 Advances in the steel industry resulted in a tightly controlled product with more 

consistent material properties. In addition, a rigorous design code was established to 

guide the use of steel in pressurized systems and enhance safety. The design code used 

safety factors to provide uniform safety in boilers and piping, and included compensation 

for the known variation in material properties produced by the steel products of that era. 

This resulted in relatively safe, high-power steam engines being readily available from 

numerous manufacturers. Designers were able to push power density of steam engines to 

higher levels; the stirling engine became obsolete. Internal combustion engines were 
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developed by the mid 1800s, followed by the invention of the electric motor later that 

century.  

 By the early 1900s, the first general phase of stirling development had ended. This 

status did not change until the 1930’s when pioneering research began at Philips 

Laboratories of Einhoven, Netherlands. The contributions were in several areas such as  

performance, the first of which was operating the cycle at elevated mean pressure. This 

increased the power density of the engine. The second major contribution by Philips was 

the use of gasses other than air as the working fluid. Significant increases in power and 

efficiency were found to be available in engines with helium or hydrogen as the working 

fluid. By 1954, they succeeded in liquefying air. Both gasses improved performance in 

engines but presented challenges in containment of the working fluid with hydrogen 

proving to be more difficult than helium since hydrogen could more easily permeate 

through polymer o-rings and in some cases, through high-temperature heater tubes. The 

third contribution by Philips was perfecting the regenerator to increase cycle efficiency. 

The regenerator is a porous matrix that absorbs heat from the working fluid when it flows 

from the hot expansion space to the relatively cool compression space, and returns the 

heat to the working fluid when it moves from the compression space toward the 

expansion space. The early engines developed by Reverend Robert Stirling more than 

100 years earlier had a form of a regenerator known as an “economizer”. This was one of 

the most important features of the invention, and was likely conceived by intuition. The 

work at Philips continued into the 1980’s resulting in highly developed kinematic 

engines, which depended on linkages, seals, lubrication systems, and resulted in rotary 

shaft power output. 
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 One of the applications envisioned for stirling at that time was an automotive engine. 

Efforts to develop automotive engines continued at low levels because of its multi-fuel 

capability, quiet operation, low emissions, and increased efficiency. Other features were 

that the engine needed no muffler, no catalytic converter, there was only one igniter, and 

there was no need for an oil change over the life of the engine. Interest in the automotive 

stirling engine increased sharply in the 1970s, motivated in the U.S. by the energy crisis. 

The most successful advanced heat engine effort was the Automotive Stirling engine 

project funded by the Department of Energy (DOE), managed by NASA, with prime 

contractor Mechanical Technology Incorporated (MTI) of Latham, New York. Initially, 

Ford Motor Company worked on a parallel effort, partnered with Philips on a four-

cylinder engine designated the 4-215 that produced 127 kW. After approximately 1 year, 

Ford made a corporate decision to discontinue their involvement in stirling to focus their 

resources on a lean-burning Otto cycle engine.  

 By the mid-1980s, several generations of engines had been developed. The goals had 

been achieved of increasing power, reducing manufacturing cost, reduce start-up time, 

and improve throttle response. Engine efficiency was over 38 percent. A manufacturing 

study concluded that production cost would be less than a comparable Diesel engine. 

Early vehicle tests used American Motors Corporation Lerma and Spirit, which logged 

2,300 and 13,763 miles respectively. Engines were integrated into three demonstration 

vehicles, which were put into service, two by the U.S. Air Force and one by the U.S. 

Postal Service. An automotive Stirling engine is shown in Figure 2 integrated into a D-

150 pickup truck. 
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. 

Figure 2. Automotive Stirling engine integrated into a D-150 pickup truck [2] 

The engine resulted in a 10 percent improvement in fuel economy compared to spark 

ignition engines of the day. The D-150 pick up truck logged over 1,200 hours on the 

road, and more than 20,000 miles. The postal vehicle was used in daily service for a 3-

month trial. Other technologies advanced during that time and the price of fuel stabilized, 

reducing the willingness of industry to embrace this new technology.  

 The invention of the free-piston stirling is accredited to William Beale, founder of 

Sunpower of Athens, Ohio in the 1960s. The free-piston stirling is a resonant device 

whereby the motions of a piston and a displacer are guided by spring-mass-damping 

system dynamics. Very generally, the total spring content comes from several sources 

including internal gas springs, mechanical springs, and other sources of spring that are 

inherent in the dynamic system, mass comes from the moving physical components, and 

damping comes from internal flow losses or the load for the power output produced. 

Development of early free-piston stirlings focused more on mechanical configuration, 

dynamics, reliability, and performance, but paid less attention to the conversion of linear 

motion to electricity. The potential of free-piston stirling for a range of applications was 

recognized by the 1970s resulting in the early research efforts for applications such as 

terrestrial generators, heat pumps, or space power conversion. By the 1980s, free-piston 
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stirling technology had evolved to the point where the intended performance of a new 

engine design could be achieved after a reasonable amount of development. Integration 

had improved and the designs were becoming more compact and more efficient. The 

integrated free-piston stirling engine with a linear alternator converts heat to electric 

power and had become known as a stirling convertor.  

 NASA had interest in stirling power conversion since the 1970s, envisioning that the 

technology could someday be developed into a long-life, high-reliability device. The 

emergence of free-piston technology resulted in MTI being commissioned to design the 

Space Power Demonstrator Engine (SPDE) and the Component Technology Power 

Convertor (CTPC) for the SP-100 project. The SPDE was intended to demonstrate the 

feasibility of free-piston Stirling power conversion for a 100-kWe system that would use 

multiple stirling convertors, heated by a nuclear reactor. The SPDE, shown in Figure 3, 

produced 25-kWe output with conversion of heat to electricity at about 20 percent 

efficiency. 

 

Figure 3. The Space Power Demonstration Unit [2] 

 It was a symmetrical design with two displacers, two power pistons, and two linear 

alternators, sharing a common expansion space. The SPDE was a dynamically balanced 

unit showing negligible vibration Since it was intended to demonstrate feasibility, the 
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SPDE was built with materials that limited the hot-end temperature to about 630 K (357 

°C).  

 Convertors were being built that were more compact, operated more reliably, and 

achieved intended performance with minimal development. This can be viewed as a third 

phase of stirling development whereby free-piston stirling power conversion is able to 

operate at the intended level of performance, sometimes needing a little refinement 

following initial operation to achieve full performance, but to a great extent still lacking 

in system integration. 

1.3  Technology Demonstrator Convertor (TDC) [2] 

 The Technology Demonstration Convertor (TDC) was developed by Infinia 

Corporation to convert heat from one General Purpose Heat Source (GPHS) module to 

electric power, and by 1999 had demonstrated efficiency greater than 20 percent from 

heat input to AC electric power output. The TDC had a mass of about 6 kg with 

anticipated mass reduction if flight development were undertaken. In support of DOE, 

Orbital Sciences Corporation (OSC) investigated several generator designs to assess 

feasibility of the integrated system. Some concepts included three GPHS modules and 

four Stirling convertors such that each convertor would operate at derated power, and in 

the event of failure of one convertor, the remaining three convertors would change their 

operating points to allow the generator to maintain full power.  

 The status of free-piston stirling for potential use in a radioisotope power system 

in space had changed measurably by mid-1999. Some of the features previously 

identified as “potentials” were demonstrated. A 10-W convertor based on non-contacting 

operation had operated for over 50,000 hr at Infinia with no change in performance. The 
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convertors operate to this day. Four pairs have operated in the past 4 years accumulating 

over 125,000 hours.  

1.4   EE-35 Stirling Convertor [2] 

 Advances have been made in the pursuit of improved performance. The most 

common metric considered for convertors for space power applications is the specific 

power of the fully integrated system. The TDC that was used in the SRG110 design had 

specific power of the stirling convertor of about 15 W per kg. Through Small Business 

Innovative Research (SBIR), and an advanced technology effort at GRC, many of the 

technologies necessary for significant increase in specific power were developed. The 

first example of the increase in specific power was shown in the EE-35 developed by 

Sunpower. The EE-35 was sized for half of the heat from a GPHS module and achieved 

approximately 90 W/kg. High levels of specific power were projected to be possible in 

the past; however, development of the EE-35 has demonstrated this in hardware. With the 

higher specific power of the stirling convertor, it appears that a radioisotope generator 

could achieve approximately 8 W per kg, potentially enabling radioisotope electric 

propulsion missions. Further advances may be achievable through the use of ceramics or 

refractory alloys, but it would bring some amount of developmental risk. The most recent 

designs appear to be able to withstand even higher levels of random vibration than earlier 

designs. At the onset of the SRG110 project, stirling convertors had been tested to 12.3 

random vibration. The EE-35 was tested at GRC in 2004 and survived nearly 24 g 

vibration. The only failures noted were breakage of a fill tube that would not be attached 

in a space mission, and failure of a controller, of the type that would not be used in a 

space mission. The EE-35’s have operated over 3,000 hours.  
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1.5  Advanced Stirling Convertor (ASC) [3] 

 The objective of the Radioisotope Power Conversion Technology (RPCT) project is 

to advance the development of power-conversion technologies to provide higher 

efficiencies and specific power than the state-of-the-practice general-purpose heat source 

Radioisotope Thermoelectric Generator (RTG). Other goals include safety, long life (>14 

year with well-understood degradation), reliability, scalability, multimission capability 

(in Mar’s atmosphere or in the vacuum of space), resistance to radiation (from the GPHS 

or potential mission environments), and minimal interference with the spacecraft payload.  

 The ASC consists of the free-piston stirling engine integrated with a linear alternator 

to produce electricity. The ASC is pictured in Figure 4.  

 

Figure 4. ASC in GRC Stirling Lab [3] 

The key technologies in the ASC that enable high efficiency and low mass are the 

hydrostatic gas bearings, a moving-magnet linear alternator, high-frequency operation 

(>100 Hz), high-temperature heater head materials and fabrication processes, and high-

temperature, high-porosity regenerators. The charge pressure of the ASC is 3.5 MPa, and 

the frequency is about 105 Hz. The four pairs of ASCs at NASA GRC have operated over 

14,000 hours.  
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1.6  Advanced Stirling Radioisotope Generator (ASRG) Simulator [4] 

 An ASRG (Advanced Stirling Radioisotope Generator) simulator was designed for 

demonstrating stirling power conversion outside the laboratory environment.  The setup 

is depicted in Figure 5.  Two FTB (Frequency Test Bed) units were mounted in the dual-

opposed configuration. FTBs are the initial ASCs designed before others are 

manufactured.  Fins were placed on the rejection zone to allow air cooling.  The 

mounting structure supports the convertors and provides containment for the air flow 

from the cooling fans.  The outer panels of the containment allow observation of the 

convertors inside.  Two fans located on the top of the container draw air in from the 

environment and discharge into the containment through the top panel.  The cooling fins 

and fans were sized for operation in ambient air temperatures up to 110 °F.   

 Thermal energy is supplied to each hot end by an array of cartridge heaters inserted 

into a nickel heat collector. The hot end and regenerators sections were insulated using 

KaowoolTM ceramic blanket.  The inner insulation containment functions to direct the air 

flow exiting the cooling fins along the radial direction.   

 A helium management system made up of a pressure gauge, isolation valve and fill 

port was integrated into the container for charge pressure adjustment.    

 The ASRG simulator system was designed to require as little support equipment as 

possible, with the intended application being integration onto a rover.  The ASRG 

Simulator has support equipment such as a tuning capacitor bank, control electronics, and 

ground support equipment (Figure 6). The tuning capacitor bank is necessary for power 

factor correction, and is connected in series with the alternator outputs.  The control 

electronics contain the linear AC controller, protection circuit, constant power circuit, and 
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Li-Ion battery charger.  Power is supplied to the user by one of the connectors on the 

front of the control electronics. The controller’s parasitic load is located on the sides of 

the container, and dissipates full power while being air-cooled by natural convection.  

Any power not required by the user is dissipated in the parasitic load. The ground support 

equipment requires a connection to a 120 VAC, 60 Hz source. It provides heater power 

and temperature control, cooling fan power, and centering and starting circuits. PID 

controllers maintain the hot-end temperature set-points.  Over temperature protection is 

accomplished by using the alarm relay integrated into each PID controller.  When either 

upper temperature limit is exceeded, the relay opens both heater circuits, removing power 

from the heaters.   

= COOLING FINS

= INSULATION
= FTB

= HEAT COLLECTOR

= CARTRIDGE HEATERS
= FANS

= MOUNTING

 
 

 
 

Figure 5. ASRG Simulator Setup [4] 
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Figure 6. Ground Support Equipment [4] 

 

 Figure 7 represents the total system used to operate, control, and power the rover. The 

stirling controller, constant power circuit, and Li-Ion battery charger will be the focus of 

this thesis. The smart block to control charging, protect stirling, and communicate state 

will be completed by another engineer. When the rover power exceeds that of the stirling 

convertors then the batteries supply the additional power needed. When the constant 

power circuit detects that more power is required then the diode becomes forward biased 

and the batteries start supplying power. The constant power circuit enables the stirling 

convertors to continue to maintain full power while the batteries supply the additional 

power required by the rover.  The FTBs in the ASRG simulator supply 20 V, 6.5 A and 

130 W at a frequency of 106 Hz. The linear AC controller, constant power circuit, and 

battery charger will be discussed in more detail in the following sections.  
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Figure 7. Electronic Support Equipment Block Diagram 

1.7  Stirling Convertor Controller Development 

 In 1999, there were no designs for a flight controller. A flight controller must have 

high reliability over the life of the mission, and be able to operate in an autonomous 

manner, in addition to meeting specific requirements of a mission such as operating 

temperature and radiation tolerance. Since that time, there have been fully autonomous 

controllers designed for space and terrestrial applications, however, none of the designs 

for space have been built and tested. Results of the designs have indicated that a flight-

worthy controller is possible, yet none exists and therefore, none of the extended 

operation tests is making use of a flight-like controller. An advanced controller is 

presently being developed at GRC that will make use of active power factor correction 

(APFC) to eliminate the need for tuning capacitors. The controller will be used in a future 

test that will be conducted in the thermal vacuum facility at GRC, and is intended to 

operate a pair of Advanced Stirling Convertors (ASC) in the dual-opposed configuration 

in extended operation. Work on the APFC is still in progress.  
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 Previous controllers used tuning capacitors between the linear alternator and the 

controller to compensate for the inherent inductance of the coil of the linear alternator. 

Compensation of the inductance would force current through the linear alternator in 

phase with the velocity and the electromotive force generated, thereby minimizing 

reactive current and the associated resistive losses. A relatively new technique to 

minimize reactive current without the need for tuning capacitors is with power 

electronics. This technique senses the piston position or velocity, and uses a switching 

technique to force current to flow in the phase desired. Tuning capacitors were found to 

occupy significant volume, and with requirements for mounting, wiring, shielding, and 

the mass of the tuning capacitors themselves, resulted in controller mass greater than 

desired. GRC has studied the various options for configuring APFC controllers, and is 

developing controllers for use in air and in vacuum. Current APFC controllers being 

designed and tested at GRC are a part of the mass savings that enable the generator with 

specific power of 8 W/kg. Controllers of this type have been operated successfully at 

GRC in addition to a few other organizations. 

 A development effort of a power electronics controller for advanced stirling 

radioisotope generators was initiated by NASA Glenn Research Center and various 

contractors. According to [5] the power electronics controller is beneficial because it 

eliminates the tuning capacitors. The power electronics controller synchronizes dual-

opposed convertors and maintains a fixed frequency operating point. The controller is 

single-fault tolerant and uses high-frequency pulse width modulation to create the 

sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need 

for large series tuning capacitors. Based on a system-level trade study, mission planners 
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said that single-fault tolerance is the baseline for meeting space mission requirements. 

Several features of the controller design were identified. These include: 

• Single Point Fault Tolerant 

• Provide Controller and ASC telemetry and status 

• Commandable ASC hot end temperature set point 

• Compatible with battery or capacitor dominated spacecraft bus with a voltage 

range of 22 to 36 volts.  

• Space and Source Radiation TID to 126 krad 

• 17-year design life 

• Controller Efficiency > 93% 

     These requirements are achieved through the use of three Field Programmable Gate 

Arrays (FPGA), use of H-switch design, and life and radiation requirement met via the 

proper parts selection.  

 According to [6] a free-piston stirling convertor end-to-end modeling effort produced 

a software-based test bed in which free-piston stirling convertors can be simulated and 

evaluated. The simulation includes all the components of the convertor. Three controllers 

have been studied using this model. It has aided in developing control engineering 

techniques for the free-piston stirling convertor. The three styles of controllers studied 

with this model are controllers with parasitic DC loading, controllers with parasitic AC 

loading, and controllers that maintain a reference current.  

 A controller with parasitic DC loading makes use of a rectifier circuit. Rectifier 

diodes allow current to flow in only one direction. The output voltage of the rectifier 

resembles the absolute value of the sinusoidal input voltage. The increasing portion of the 
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rectifier voltage is used to charge the filter capacitor. DC loads draw their energy from 

the filter capacitor. A rectifier circuit makes a good load for the stirling convertor as long 

as the input voltage signal is in phase with the piston velocity. The fixed DC load is not a 

practical controller unless it allows the user loads to be drawn from the DC bus.  

 Controllers with parasitic AC loading also make use of a tuning capacitor to bring 

load current in phase with piston velocity. The resulting DC voltage is converted to a 

binary number in an analog-to-digital converter. The binary number at the output is used 

to close or open relays which connect/disconnect resistors at the AC bus. The original 

space power research engine application fitted the controller with a PID front-end that 

operated to automatically adjust the horizontal position of the characteristic to maintain 

set point amplitude under various conditions of end-use loading. A 2nd generation digital 

controller was tested at GRC. It makes use of the zero-switched discrete parasitic 

resistors but the controller switches them not to synthesize a specific voltage controlled 

resistance characteristic but to directly maintain a voltage setpoint. The analog-to-digital 

converter is again used but it looks at the difference between terminal voltage and the 

setpoint voltage. The resulting binary representation of the error present at the ADC 

output is added to a binary register containing the representation of the connected 

parasitic resistance. Thus the error adds or subtracts from the connected load.  

 Controllers that maintain a reference current do not require tuning capacitors. This 

control method uses a position sensor to generate a position signal in order to bring the 

current into phase with the piston velocity. This controller uses power electronics 

techniques to synthesize the required current waveform. A control loop varies the current 

amplitude in order to maintain a certain operating point. The usual connection for dual 
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opposed stirling convertors is to connect the two alternator outputs together through 

tuning capacitors. Unless they are locked together electrically, it has been found they drift 

out of synchronization. Using this type of controller, it may be possible to run without 

electrically connecting the two outputs. The signals must have identical frequencies and 

they must provide a load that satisfies the basic stability criterion.  

1.8  Stirling Convertor Applications 

 Future application of NASA multi-kilowatt free-piston stirling convertors have been 

considered according to [7]. These applications began when President Bush in January 

2004 announced a NASA vision for exploration.  He proposed an ambitious program that 

plans to return astronauts to the moon by the 2018 time frame. The mission plan looks 

much like the Apollo missions. They start with a 4-day mission and gradually grow to 

12+ days. The exact details of the landers and other structures on the moon are not 

available. The power levels are expected to rise from the level of a few kilowatts to 

anywhere from 25 to 50 kW. Past studies have shown that a solar array/regenerative fuel 

cell system is exceptionally massive for a 20 kW system. Dynamic conversion systems 

powered from thermal sources have been shown to be potentially lighter. There is an 

opportunity to develop new, larger free-piston stirling convertor systems to meet future 

NASA needs.  

 Stirling isotope power systems for stationary and mobile lunar applications were 

considered according to [8]. A significant emphasis on the development of a wide range 

of capabilities on the lunar surface is a stepping-stone to further space exploration. One 

candidate system to provide electrical power is made by coupling the General Purpose 

Heat Source (GPHS) with a high-performance stirling convertor. The practical power 
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range of the GPHS/stirling convertor system with conductively coupled hot-end designs 

for use on the lunar surface has been considered. Unique issues concerning stirling 

convertor configurations, integration of the GPHS with the stirling convertor, controller 

operation, waste heat rejection, and thermal protection have been explored. The 

evaluation process of understanding the interaction between the wide range of unique 

lunar environments and the selection of key systems operating characteristics and the 

power systems design is important. As power levels rise the interface between the GPHS 

and stirling and the stirling and radiator begins to dominate systems mass then material 

selection becomes more important.  

1.9 Contributions of this Thesis 

 The ASRG simulator and Li-ion batteries will be used to power a lunar concept rover. 

This thesis discusses a survey of six controllers for the ASRG simulator. When the 

survey is complete, one controller is chosen to control the ASRG simulator. A constant 

power circuit was designed to maintain the power at the output of the controller when the 

Li-ion batteries are supplying additional power. A battery charger was designed to charge 

a Li-ion battery.  

 Chapter 1 of this thesis discusses past and present research on the topic of stirling 

convertor controllers and applications. Chapter 2 discusses the stirling convertor 

controller option evaluation. Chapter 3 discusses the constant power circuit design and 

bench testing. Chapter 4 discusses the Li-Ion battery charger design and bench testing. 

Chapter 5 discusses the system integration of the constant power circuit and Li-Ion 

battery charger.  



 

CHAPTER II 
 

STIRLING CONVERTOR CONTROLLER 
 
 
 
 Stable operation of a stirling convertor is maintained by a controller. A stirling 

convertor controller regulates the alternating current produced by the linear alternator of 

the convertor. The regulated current is used to power a load. The controller is designed to 

maintain operation at a certain piston amplitude and hot end temperature. The controller 

allows some adjustment so that the operating point may be adjusted; hot end temperature 

or piston amplitude may be adjusted up or down.  The piston amplitude is maintained by 

the regulation stage of each controller. The load of the controller is sized to dissipate all 

the power being produced by the convertor. If the controller did not dissipate all the 

power, the excess would flow into the resonating piston motion, increasing amplitude, 

and ultimately resulting in damage to internal convertor components.  Similarly, if the 

controller dissipated more power than that being produced, the balance would be 

extracted from the resonating piston motion, causing a stall of the engine cycle. The 

controller also provides a regulated user voltage at its output. The controller rectifies the 

alternator output, and then produces a specified output voltage based on the load sizing.    
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 The goal of the stirling convertor controller task was to design and build a small, 

efficient, and reliable controller for use on the ASRG simulator. Six methods of control 

were considered and each of the methods was analog and used tuning capacitors for 

passive power factor correction.  No active power factor correcting control methods were 

investigated. The controller uses a tuning capacitor because the stator current must be in 

phase with piston velocity to achieve stable operation. Load current flows as a response 

to terminal voltage. When a tuning capacitor is used, terminal voltage is in phase with 

piston velocity. The phase discrepancy is caused by the inductance of the stator. It is 

balanced out by a capacitance to make a resistive circuit. In a resistive circuit, the voltage 

and current are in phase. One important consequence of this technique is that the tuning 

capacitor will only cancel the effect of the alternator inductance at a single frequency.  If 

the operating frequency deviates from this value, the power factor correction will be 

reduced.   

 Originally, each control concept was designed for TDC operation.  The designs 

required modification to accommodate the lower alternator voltage and higher power 

output of the ASCs and FTB convertors.  Each controller was designed for both single 

convertor and dual-opposed pair operation. The circuit simulation software PSpiceTM was 

used to simulate operation of an ASC convertor pair on each of the controllers.  A model 

of each controller circuit connected to the ASC linear alternators was constructed.  The 

linear alternator was modeled as an AC voltage source using its nominal values for 

resistance, inductance, frequency, and output voltage.   

 The linear alternator is designed with a resistance and an inductance. Through the 

known values of inductance and frequency, the capacitance can be calculated as follows:  
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 Each controller will be designed with a 50 Ωk  potentiometer and a 5 V reference so 

that a connection can be made to the Labview Interface. The Labview Interface is an SPI 

(Serial Peripheral Interface) interface combined with an isolator and 50 Ωk  digital 

potentiometer; it can be interchanged with a 50 Ωk  manual pot. The potentiometer is 

used to control the piston amplitude of the convertor.  

2.1  Controller Types 
 
 Six controllers, which have either been designed for a TDC or an EE-35 convertor, 

have been re-designed for ASC operation. Each controller was designed by Michael 

Brace [1] at NASA GRC with the exception of the linear AC controller. The linear AC 

controller was designed by both Michael Brace and Gina Blaze at NASA GRC. Three of 

the six controllers considered provide AC control.  

2.1.1  Zener-diode  
 
 Figure 8 shows the zener diode based controller. The motivation behind the zener 

diode controller was to improve the reliability of the controller. The controller 
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accomplished this through staged loads. The AC from both alternators is converted to DC 

by a diode bridge and an energy storage capacitor.  The loads are then applied in stages to 

the DC bus.  The DC voltage is connected to the operational amplifiers only after it 

exceeds the breakdown voltage of the zener-diode.  The output of each operational 

amplifier controls the state of a field effect transistor (FET), which functions to switch a 

resistance onto the DC bus.  The voltage level at which each operational amplifier turns 

on is controlled by sensing resistors, which are sized so that the trip point of each 

operational amplifier is slightly higher than the previous one.  As the DC voltage rises 

above the first trip point, the first operational amplifier will turn on, applying its 

associated resistance to the DC bus.  If the DC voltage continues to increase, the next 

operational amplifier in sequence will turn on, applying more loads. This process 

continues until the DC voltage stops increasing or until all stages are on.  As the DC 

voltage drops, the stages turn off one at a time in the reverse sequence.   
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Figure 8. Circuit Model of Zener-Diode Based Controller 

 
The load resistors are sized so that there is sufficient load available to maintain piston 

amplitude control at maximum convertor power output.  The user may change the piston 
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amplitude by adjusting the breakdown voltage of the zener-diode. The piston amplitudes 

can be increased by increasing the DC voltage.  This control method was considered the 

baseline for the evaluation effort.  The zener-diode controller has been used to operate 

several convertor designs and has heritage in the GRC Stirling Research Lab. 

2.1.2  Linear DC regulator  
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Figure 9. Circuit Model of Linear DC Controller  

 
 Figure 9 shows the linear DC regulator. The linear DC regulator method functions 

much the same way as the zener-diode method, but applies load in a directly proportional 

manner, rather than in discrete steps. As with the zener-diode controller, the AC from 

both alternators is converted to DC. However, the DC voltage is sensed by a voltage 

divider connected to a single operational amplifier. It generates a voltage proportional to 

the difference between the divided voltage and the reference voltage. This output is used 

to drive FETs in their linear range, rather than discrete on-off states. The FETs connect 

load resistors onto the DC bus, but also dissipate power themselves. The user may change 

piston amplitude by adjusting the voltage divider that controls the input to the operational 

amplifier. The motivation behind the design of the linear DC regulator is that is has 

continuously variable loads, which avoids the ON/OFF behavior of the zener diode 

controller, but retains the multiple redundant load stages.  
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2.1.3  Digital hybrid  
 
 Figure 10 shows the digital hybrid controller. The digital hybrid controller is similar 

to the zener-diode.  The load can be adjusted in discrete steps, but not all steps are 

identical.  Instead the resistors are sized to provide a linear change in load.  Also the load 

is only updated once every half cycle of operation when the AC voltage crosses zero.  

The DC bus voltage is sensed by a voltage divider connected to an operational amplifier 

acting as a PID controller.  The output of the PID loop is converted to a binary value by 

an analog-to-digital converter.  The analog-to-digital converter is controlled by a zero 

crossing detector which generates a pulse each time the AC voltage crosses zero.  The 

binary value controls FETs that switch resistors onto the DC bus.  Any bit with a value of 

one will switch on the FET occupying the same position in the sequence as the bit.  The 

resistors are sized so that each provides twice the load as the previous one. As the DC 

voltage increases, the binary value increases, which applies more load to the DC bus.  

The user may change piston amplitude by adjusting the voltage divider that controls the 

input to the PID loop. The digital hybrid was designed to essentially be a digital 

potentiometer that can dissipate power. The idea was to have something like a linear 

regulator, but avoid dissipating power in the MOSFETs by having them be discrete 

switches.  
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Figure 10. Circuit Model of Digital Hybrid Controller 

 
2.1.4  Buck circuit with zener-diode  
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Figure 11. Circuit Model of a Buck Circuit with Zener-Diode 

 
 Figure 11 shows the buck circuit with zener-diode controller. The AC from the 

alternators is rectified by a diode bridge.  However, the energy storage capacitor for DC 

conversion is not connected directly to the diode bridge.  Instead, an inductor, diode, and 

FET are inserted between the diode bridge and energy storage capacitor.  These 
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components, along with a pulse width modulator (PWM) comprise a buck circuit. The 

rectified AC voltage is sensed by a voltage divider connected to a PWM that switches the 

FET at 50 kHz.  As the sensed voltage rises, the duty cycle of the PWM, and thus the 

FET, increases. When the FET is on, the AC is switched onto the buck circuit. The power 

flowing through the buck circuit must be dissipated and virtually any dissipative regulator 

will suffice.  In this example, a zener-diode controller is used.  The zener-diode controller 

functions the same as described above, but is used only to dissipate power.  Coupling a 

buck circuit to a dissipative controller allows the load to be adjusted at a higher frequency 

than that of the alternator voltage.  In this example, the load is adjusted 50,000 times each 

second. This allows the controller to respond more quickly to changes in convertor 

operation.  One important consequence of this method is that the buck circuit reduces the 

output voltage below the desired range. Both the boost circuit with pulse width modulator 

and the buck circuit with zener diode were designed to improve the power factor.  

2.1.5  Boost circuit with pulse width modulation regulator  
 

 Figure 12 shows the boost circuit with pulse width modulation regulator controller. 

This method operates similar to the buck circuit with zener-diode, but utilizes a boost 
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Figure 12. Circuit Model of Boost Circuit with Pulse Width Modulator  
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circuit. The PWM still switches a FET at 50 kHz, but the FET connects a boost circuit.   

Again, power must be dissipated after the boost circuit.  In this example, another PWM, 

FET, and resistor are used to provide load.  The duty cycle of the FET is adjusted by the 

PWM to control the amount of load applied to the DC bus. This method also permits 

quicker adjustment of the load.  One important consequence of this method is that the 

boost circuit increases the output voltage above the desired range.   

2.1.6 Linear AC regulator  
 

 Figure 13 shows the linear AC regulator controller. This method operates in a manner 

similar to the linear DC voltage regulator method, except that the rectified alternator 

voltage is used to control the load instead of the DC voltage. The AC voltage is passed 

through a separate diode bridge with no energy storage capacitor that would convert it to 

DC. The remainder of operation is identical to the linear DC voltage regulator method. 

However, in this example, four FETs and load resistor sets are used instead of two. 
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Figure 13. Circuit Model of Linear AC Controller 
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2.2  Initial Evaluation 
  
 The initial controller evaluation was based on results of PSpice modeling and general 

characteristics of each design. The circuit models were used to observe power dissipation 

in the loads, switching voltage, output voltage, and power flows.  Observation of these 

items provided a first level indication of the performance of each option.  Evaluation was 

also based on the criteria that follow.  

2.2.1 Voltage Monitoring 
  
 The load can be controlled by monitoring either the AC or DC voltage.  At a given 

frequency, the AC voltage is directly proportional to the piston amplitude.  Therefore, the 

AC voltage is an accurate, real-time indicator of the piston amplitude.  When the AC 

voltage is passed through the diode bridge rectifier, its full amplitude is still observable, 

but the waveform is altered so it occupies the positive region only.  However, if the AC 

voltage is converted to DC by passing it through an energy storage capacitor, this 

amplitude is attenuated.  The energy storage capacitor also has the effect of buffering 

changes in the alternator voltage output.  For example, sudden changes in the AC voltage 

will be delayed because of the time constant of the capacitor.  Therefore, AC bus voltage 

monitoring is desirable because it allows finer control of the load. The linear AC 

regulator, boost converter with PWM, and buck converter with zener-diode use AC bus 

monitoring.  The zener-diode baseline, linear DC regulator, and digital hybrid use DC bus 

monitoring. 

2.2.2.  Load Staging 
 

 Staging refers to application of load in discrete increments.  An example of the use of 

load staging can be seen in the zener-diode based controller. As the DC bus voltage 
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increases, each operational amplifier is activated in succession. Staging is desirable 

because it adds redundancy to the controller. Controllers can be designed to permit failure 

of at least one of the load connections while still maintaining piston amplitude at full 

power operation.   

2.2.3.  Power Dissipation Technique 
 
 Power can be dissipated in either resistors or transistors.  The reliability of a transistor 

is reduced when used to dissipate power.  For example, the power dissipating capacity of 

a transistor is typically reduced by 50 % for long-term, reliable operation.  Because of 

this, use of resistors is desirable.   

2.2.4.  Tuning 
 
 Tuning is a process of selecting appropriate values for each parameter. The values are 

selected based on the design properties of the convertor. Many components in the 

controllers were tuned to provide a stable output, proper power dissipation, and efficient 

control by means of the switching of the op-amp stages. The following components were 

tuned in all six controllers: load resistors, filtering capacitors, gate resistors, and voltage 

dividers. The most complex of these components to tune was the filtering capacitor. 

Selecting a capacitor required careful consideration of the ESR (Effective Series 

Resistance) value. This value was added in the simulation. Each capacitor has its own 

ESR value and even amongst equivalent values of capacitance, the ESR value was 

variable. 

  The buck converter with zener and boost converter with PWM required additional 

tuning. The boost and buck circuits had to be redesigned. Tuning these two controllers 

was the most difficult. The digital hybrid was difficult to tune because the load resistors 
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had to be selected to give a linear change in load. The zener controller had one additional 

component to be tuned; the hysteresis resistor. The linear AC regulator and linear DC 

regulator did not require additional tuning.  

The tuning process also included the addition of various components such as 

additional capacitors for filtering, a diode bridge, or a voltage regulator in place of a 

DC/DC converter. The tuning process varied amongst the six controllers. A detailed 

explanation of the tuning process for each controller will not be discussed. The main 

focus will be the advantages and disadvantages of each controller as well as the 

techniques used to evaluate each controller. Tuning was necessary to compare and 

understand each controller.   

2.2.5.  Necessity of DC-DC Converter 
 
 Some of the controller options required a DC-DC converter to return their output 

voltage to the desired range. The boost converter with PWM would normally output 

twice the linear alternator voltage.  Similarly, the buck converter with zener-diode would 

normally output half the linear alternator voltage. A DC-DC converter is required on 

these two options to return the output voltage to 28 VDC.  The digital hybrid controller 

also requires a DC-DC converter to compensate for the large overshoot in its output 

voltage. This overshoot is due to the time constant of the capacitor in the integrator of the 

PID circuit.  Use of a DC-DC converter is undesirable because it adds a relatively large 

component to the controller.  

2.2.6  Power Factor Controller (PFC)  
 
 The boost converter with PWM has a power factor controller. The PFC can control 

the follower boost allowing a drastic size reduction of both the inductor and the power 
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switch. It is a compact circuit that requires minimal external components.  However this 

component does not have a PSpice model. Therefore the behavior of the PFC can not be 

observed before entering the lab. 

 Three of the six controllers were eliminated based on the advantages and 

disadvantages summarized in Table I. The linear DC regulator method was eliminated 

because a design for linear AC regulation exists, and AC voltage control is desirable. The 

boost convertor with PWM requires many more components than the other options, 

requires a DC-DC converter and has a power factor controller that can not be modeled in 

PSpice. The zener-diode and buck converter with zener-diode controller options both 

utilize load staging and dissipate power through resistors. However, the buck converter 

with zener-diode provides AC voltage control, making it more desirable.  

Controller option Advantages Disadvantages Eliminated

Zener-diode (baseline) 
Resistor power 

dissipation 
Load staging 

DC voltage monitoring X 

Linear DC regulator  
Transistor power 

dissipation 
DC voltage monitoring 

X 

Digital hybrid 
Resistor power 

dissipation 
Load staging 

Transistor power 
dissipation 

DC voltage monitoring 
DC-DC converter 

required 

 

Buck converter with 
zener-diode 

Resistor power 
dissipation 

AC voltage monitoring 
Load staging 

DC-DC converter 
required  

Boost converter with 
PWM AC voltage monitoring DC-DC converter 

required X 

Linear AC regulator AC voltage monitoring 
Load staging 

Transistor power 
dissipation  

Table I. Controller Option Evaluation 
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2.3  Further Evaluation 
 
 The three remaining controllers, linear AC regulator, buck converter with zener-

diode, and the digital hybrid were re-evaluated based on the following criteria. 

2.3.1  Efficiency 
 
 The power required to operate the controller is supplied by the convertors, which 

reduces the net usable power. Internal losses may be attributed to housekeeping power. 

Housekeeping refers to the power required to operate the controller’s resistors, op-amps, 

and voltage dividers. Another significant source of power loss may occur in the diode 

bridge during rectification. For example, the baseline zener-diode controller discussed 

above dissipates 26 W in the diodes at full power. The diode rectifier is a function of the 

current from the convertor; therefore the power dissipation in the diodes for each 

controller is equivalent. Schottky diodes were preferred over silicon diodes because they 

have a low forward voltage drop. The Schottky diode bridge significantly improves the 

efficiency of the controller; it dissipates 8.0 W compared to the 26 W of the silicon diode 

bridge.  The efficiencies of the three remaining options were calculated using the circuit 

models. The linear AC regulator, buck converter with zener-diode, and digital hybrid 

efficiencies were calculated with a Schottky diode bridge. The zener-diode controller 

efficiency was calculated with a silicon diode bridge. These calculated values, along with 

the efficiency of the baseline zener-diode controller, are summarized in Table II. 

2.3.2.  Number of Components 
 
 The components were evaluated based on their sensitivity, size, and complexity. The 

number of components affects the testing of the controller. Identifying a failure during 
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testing is difficult in a controller which has many components. The linear AC regulator 

has the fewest components. The buck converter with zener has the most components.  

 An additional potentiometer adds to the complexity of the controller. The buck 

converter with zener is the only controller of the three that is designed with two 

potentiometers. It requires the most demands from the user because the user will have to 

verify two pot settings as well as adjust each of them. 

  The filtering capacitor and the load resistors were the most sensitive components.  

The filtering capacitor has a rated tolerance of +/- 20%.  Each controller was tested with 

this specification. A 10,000 uF capacitor was tested at 8,000 uF and 12,000 uF. Changes 

in the filtering capacitor affect the output voltage stability and steady state value of the 

controller. Higher values of capacitance diminish the stability of the output voltage. This 

is a result of the time constant increasing with the increase of capacitance. The buck 

converter with zener-diode was the only controller of the three sensitive to the filtering 

capacitor tolerances.  

  The digital hybrid was the only controller of the three sensitive to changes in the load 

resistors. The values of the digital hybrid load resistors must decrease by 50%. The gate 

of the FET on each resistor and FET pair is driven by a binary number. The least 

significant bit corresponds to the highest resistance. If one of the FET/resistor pairs fails 

then the controller will act to increase the binary number during the next half cycle. This 

in turn decreases the stroke significantly. Then the controller will act to increase the 

stroke significantly. This pattern will continue as long as one of the pairs fails causing the 

controller to become oscillatory.  

 36



 

 The amount of space required to house the controller increases with the parts count. 

The heat sink is the largest component in each controller. For the designs considered a 

DC/DC converter and capacitor were much larger than other components. Each controller 

was designed with one output filtering capacitor and in some designs a voltage regulator 

replaced a DC/DC converter. 

2.3.3.  Stability 
 
 Stability refers to the ability of the controller to maintain its output voltage at a fixed 

value when the convertor operating conditions change. A steady output voltage indicates 

the controller is able to maintain tight control of the piston amplitude. The circuit models 

were used to quantify the stability of each option by observing the ripple and overshoot 

of the output voltage.   

2.3.4  Summary 

 Table 2 summarizes these criteria for each of the three remaining controllers and the 

baseline zener-diode controller. The values for voltage stability, internal power 

consumption, and efficiency were calculated using the circuit models. The efficiency of 

the controller was calculated based on the power dissipation in the diode bridge. The 

power dissipation was measured in PSpice.  

 The linear AC regulator was selected because of its exhibits the best voltage stability, 

requires the fewest components, and has the highest efficiency. A disadvantage of the 

linear AC regulator is its use of transistors for power dissipation. The reliability of these 

transistors is not a concern because the power dissipation is below the de-rated value.  
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 Zener-diode 
(baseline) 

Linear AC 
regulator 

Digital 
hybrid 

Buck converter with 
zener-diode 

DC ripple (V) 0.3 0.08 0.5 0.4 

DC overshoot 
(V) 1 1 11.2 0 

Number of 
components 46 42 56 62 

Heat sinks 
required 4 4 4 5 

Sensitivity None None Load 
resistance 

Energy storage 
capacitance 

Efficiency (%) 85.1 95.4 93.4 84.7 

Table II. Controller option quantitative evaluation summary 
 
2.4  Controller Waveforms 
 
2.4.1  Linear AC Regulator  

Figure 14 represents the input power of the linear AC regulator. The convertor is 

designed to have an output power of 130 W based on the linear alternator voltage of 20 

V. The simulation produces a power of 129.371 W.  
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Figure 14. Linear AC Regulator Input Power 

 
The ASRG simulator is designed with a linear alternator voltage of 20 V. As can be 

viewed by Figure 15, the simulation verifies that the controller produces a 20.299 V 

output.  
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Figure 15. Linear AC Regulator DC Output Voltage 

 
Figure 16 represents each of the four stages of the linear AC regulator. Each stage is 

regulating at 4.2451 V. 
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Figure 16. Linear AC Regulator Control Voltage  

 
Figure 17 represents the power dissipated by the 2 ohm load. Power is dissipated both 

in resistors and MOSFET (IRFP350). Each of the eight 2 ohm loads dissipated 8.3944 W 

based on simulation in PSpice.  
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Figure 17. Linear AC Regulator 2 Ohm Load Power Dissipation 

 
Figure 18 represents the power dissipation of the 1 ohm load. Each of the four 1 ohm 

loads dissipate 4.1972 W based on simulation in PSpice.  
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Figure 18. Linear AC Regulator 1 Ohm Load Power Dissipation 

 
Figure 19 represents the power dissipation in each of the four MOSFET’s. The power 

dissipation based on simulation in PSpice is 16.463 W. This is well below the de-rated 

value of the MOSFET, 50 W. The de-rated value was obtained from the specification 

sheet.  
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Figure 19. Linear AC Regulator MOSFET Power Dissipation 

 
Figure 20 represents the AC input voltage of the controller; this is the voltage pre-

diode bridge. The voltage is 20.818 V.  
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Figure 20. Linear AC Regulator AC Input Voltage 

 
Figure 21 represents the power dissipation in each of the four schottky diodes. The 

power dissipation in each diode is 1.6669 W based on simulation in PSpice.  
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Figure 21. Linear AC Regulator Schottky Diode Power Dissipation 

 
 Figure 22 represents the capacitor ripple current. The ripple current was important 

when selecting the filtering capacitor. It was verified that the ripple current was within 

the specification listed on the datasheet. The filtering capacitor ripple current based on 

simulation in PSpice is 0.432875 A.  
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Figure 22. Linear AC Regulator Capacitor Ripple Current  

 
2.4.2  Digital Hybrid Waveforms 
 

Figure 23 displays the output DC regulated voltage. The steady state output voltage is 

approximately 23.9 V with a slight ripple on the order of a tenth of a volt and a settling 

time of 70 ms. The Digital Hybrid has an overshoot of 13 V and a steady state ripple 

voltage of 0.5 V.  
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Figure 23. Digital Hybrid Regulated DC Output Voltage 
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 Figures 24-29 display the switching of the MOSFET stages. The stages are used to 

regulate the DC output voltage. The switching is advantageous because not all of the 

MOSFET’s are on all of the time. Therefore, if one stage fails, there are other stages 

available to compensate for this failure.  
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Figure 24. Digital Hybrid First Stage Switching 
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Figure 25. Digital Hybrid Second Stage Switching 
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Figure 26. Digital Hybrid Third Stage Switching 

 

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms
V(M4:g)

0V

5V

10V

15V

 
Figure 27. Digital Hybrid Fourth Stage Switching 
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Figure 28. Digital Hybrid Fifth Stage Switching 
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Figure 29. Digital Hybrid Sixth Stage Switching  

 
Figures 30-41 display the waveforms corresponding to the load power dissipation in 

each of the seven MOSFET stages. The majority of the power dissipation is done in 

stages five and six; the power dissipation is not distributed evenly. If these two stages 

were to fail then the other stages may not be suitable to dissipate the power.  
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Figure 30. Digital Hybrid Stage One Load Power Dissipation 
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Figure 31. Digital Hybrid Stage Two Load Power Dissipation 
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Figure 32. Digital Hybrid Stage Three Load Power Dissipation 
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Figure 33. Digital Hybrid Stage Four Load Power Dissipation 
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Figure 34. Digital Hybrid Stage Five Load Power Dissipation 
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Figure 35. Digital Hybrid Stage Six Load Power Dissipation 
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Figure 36. Digital Hybrid Stage One MOSFET Power Dissipation 
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Figure 37. Digital Hybrid Stage Two MOSFET Power Dissipation 
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Figure 38. Digital Hybrid Stage Three MOSFET Power Dissipation 
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Figure 39. Digital Hybrid Stage Four MOSFET Power Dissipation 
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  Figure 40. Digital Hybrid Stage Five MOSFET Power Dissipation 
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Figure 41. Digital Hybrid Stage Six MOSFET Power Dissipation  

 
Figure 42 displays the waveform of the output ripple current of the filtering capacitor. 

A capacitor has been chosen that can withstand the amount of ripple current displayed in 

the waveform below; approximately 1.13A. It is important that the ripple current of the 

capacitor is not exceeded because it results in a shortened life span of the capacitor and 

may result in the capacitor venting or failing catastrophically. 
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Figure 42. Digital Hybrid Capacitor Ripple Current 

 
Figure 43 represents the AC voltage at the input of the digital hybrid controller. The 

AC input voltage is set to 26 V. This voltage is before the diode bridge and tuning 

capacitor.  
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Figure 43.  Digital Hybrid AC Voltage  

 
2.4.3  Buck Converter with Zener Waveforms 
 

Figure 44 represents the DC output voltage of the buck converter with zener. The 

Buck converter with zener simulations were run for 40 ms as opposed to 25 ms for the 
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other simulations because the file is significantly larger than the others. A simulation of 

250 ms for the buck converter with zener takes approximately 30-45 minutes as opposed 

to less than one minute for the other controller simulations. The steady state value of the 

DC output voltage is viewed; not the transient. The DC output voltage reaches a steady 

state value of approximately 12 V; a DC/DC converter is needed at the output in order to 

supply the user with the desired 24 V or 28 VDC. The buck converter with zener has the 

most stable output voltage because the variations from the output of the buck converter 

are less than that of the engine.  
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Figure 44. Buck Converter with Zener DC Output Voltage 
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Figure 45 represents the ripple voltage of the DC output. The ripple voltage of the 

buck converter with zener is approximately 0.4 V.  
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Figure 45. Buck Converter with Zener DC Output Ripple Voltage 

 
Figures 46-48 represent the switching of each of the four op-amp stages. Each of the 

MOSFETs is on for a different period of time.  

           Time

50ms 55ms 60ms 65ms 70ms 75ms 80ms 85ms 90ms 95ms
V(STAGE1)

-15V

-10V

-5V

0V

5V

10V

15V

 
Figure 46. Buck Converter with Zener MOSFET Switching Stage One  
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Figure 47. Buck Converter with Zener MOSFET Switching Stage Two  
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Figure 48. Buck Converter with zener MOSFET Switching Stage Three 
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  Figure 49 represents the AC voltage from the convertor.  
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Figure 49. Buck Converter w/Zener AC Voltage  

 
Figure 50 represents the RMS value of the power dissipation in the load resistors. The 

power dissipation in the load resistors is approximately 63.7 W.  
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Figure 50. Buck Converter with Zener Load Resistor Power Dissipation  
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Figure 51 represents the power dissipation in the MOSFET. The power dissipation is 

approximately 2.15 W.  
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Figure 51. Buck Converter with Zener MOSFET Power Dissipation 

 
2.5  Bench Testing 
 

The purpose of the bench test is to verify that the controller has been assembled 

correctly and that the PSpice simulations, with an ASC convertor, accurately represent 

the performance of the controller.   

2.5.1  Equipment 
 

The following equipment was used to test the linear AC controller: BK Precision 

1730A 30V/3A DC Power Supply, Chroma 6408, Agilent 34401A 6-1/2 Digit 

Multimeter, HP 6060B System DC Electronic Load, Clarke-Hess Model 2330 Sampling 

V-A-W Meter, Tektronix TDS3014 Four Channel Color Digital Phosphor Oscilloscope, 

High Voltage Differential Probe, 2 -1 ohm resistors. 
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2.5.2  Procedure  
 

Figure 52 represents the bench test set up of the Linear AC Regulator controller.  

 
Figure 52. Linear AC Controller Bench Testing Setup 

 
Figure 53 represents the bench test PSpice simulation. The bench test simulation 

differs from the original PSpice simulation for the Linear AC Regulator in that the 

inductor and capacitor, which represent the linear alternator, are removed. 
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Figure 53. PSpice Simulation of Bench Testing 
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Initially, the controller was tested with a DC voltage input. This was used as a safety 

precaution in the event that a short was present in the circuit or any components were 

connected incorrectly. The damage to the controller would not be as significant as it 

would with an AC supply. Figure 54 shows the internal connections of the linear AC 

controller. The space inside the box is limited therefore during assembly a wrong 

connection could be made or two wires could be touching each other, causing a short.  

 

 
Figure 54. Linear AC Regulator Controller Internal Connections 

 
A six ohm resistor was placed in series with the BK Precision 1730A 30V/3A DC 

power supply in order to produce a current through the controller. The voltage pot was set 

to 6.0, which corresponds to an output voltage of 24 V. The DC power supply has a built 

in current meter which allows the current to be monitored as the voltage is increased. If 

the current meter on the DC power supply increased significantly then it could be 

concluded that a short was present in the circuit. Once the DC input voltage was 

increased to 24 V the current increased slightly which indicated that the op-amp was 

regulating. Once the DC voltage check was complete an AC voltage was applied at the 

input of the controller. Figure 55 represents the controller along with the voltage and 

current potentiometers used during testing. 
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Figure 55. Linear AC Controller with Voltage and Current Potentiometers 

 

Next, an AC voltage was applied to the input of the controller. Two 1 Ω resistors 

were connected in parallel to provide 0.5 Ω . The resistor value was changed in order to 

model the resistance of the linear alternator of the convertor. The resistor was placed in 

series with the AC voltage source. The Clarke-Hess V-A-W meter was used to measure 

the input voltage, current, and power. The Agilent multimeter was used to measure the 

DC output voltage. The voltage was increased slowly to 24 V; the output voltage, input 

voltage and regulation stages of the op-amp were monitored both on the Tektronix 

TDS3014 Four Channel Color Digital Phosphor oscilloscope, Agilent 34401A 6-1/2 

Digit multi-meter, and the Clarke-Hess Model 2330 Sampling V-A-W meter. 

2.5.3  Results 
 

Table III represents the output voltage potentiometer dial setting corresponding to a 

specific output voltage. 

Dial Voltage
3.2 15.688 
3.5 16.25 
4 17.856 
4.5 19.34 
5 20.94 
5.5 22.5 
6 24.072 

Table III. Output Voltage Potentiometer Dial Readings 
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Figure 56 represents the output voltage potentiometer dial readings at a range of 

output voltages. This graph can be used to set the output voltage to any desired value 

from 12-24 V.  The controller is not operational below 12 V due to the voltage regulator.  
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Figure 56. Output Voltage Potentiometer Dial Readings 

 
Figure 57 represents the first two op-amp stages of the linear AC regulator controller 

regulating at 5 V. The inverting terminal of the op-amp was set to 5 V by a voltage 

reference. So the non-inverting terminal of the op-amp adjusts itself in order to match the 

5 V reference of the inverting terminal. When the op-amp is regulating at 5 V then it can 

be concluded that the output is producing 24 V. This can be concluded because the input 

voltage is connected to a voltage divider which produces 5 V at a 24 V input. So as the 

input changes, so does the non-inverting terminal. The non-inverting terminal of the op-

amp effects the output voltage regulation. Stages 3 and 4 were also monitored on the 

oscilloscope. Only two channels were available on the oscilloscope so all four stages 

could not be viewed at the same time. However, stages 3 and 4 have the same 

characteristics as stages 1 and 2.  
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Figure 57. Op-Amp Stages: Bench Testing 

 
Figure 58 represents the PSpice simulation waveform of the op-amp stages. As can be 

seen, the stages of the op-amp in the simulation match those of the experimental results.  

           Time
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Figure 58. Op-Amp Stages: PSpice Simulation 

 

Figure 59 represents the op-amp regulation stage and the output voltage. As shown in 

the figure, the output voltage is regulating at 25 VDC and the op-amp is regulating at 5 

V.  
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Figure 59. Op-Amp Stage and DC Output Voltage: Bench Testing 

 
Figure 60 represents the PSpice simulation of the DC output voltage and the op-amp 

stages. As viewed below the DC output voltage and op-amp stages are the same as those 

obtained experimentally in Figure 59.  
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Figure 60. DC Output Voltage and Op-amp Stages: PSpice Simulation 
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Figure 61 represents the experimental results of the controller. The op-amp is 

regulating at 5 V and controlled at 24 VAC.  

 
Figure 61. Op-Amp Stages and AC Control Voltage: Bench Testing 

 

Figure 62 represents the PSpice simulation of the AC control voltage and the op-amp 

stages. As can be viewed below, the PSpice simulation results match the experimental 

results of Figure 61.  

           Time
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Figure 62. AC Control Voltage and Op-Amp Stage: PSpice Simulation 
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2.5.4  Conclusion 
 

The PSpice simulation results match the bench testing results. This verifies that 

PSpice is an accurate tool for controller design. The results obtained in PSpice are 

accurate and can be used in order to verify controller operation before experimental 

testing.  

2.6  Linear AC Controller Test on EE-35 SBIR 1 and 2 Convertors 
 

The purpose of testing the linear AC regulator on the EE-35 convertors is to verify 

that the controller operates correctly and that the PSpice simulation accurately represents 

the performance of the controller with a stirling convertor.  

 
2.6.1  Equipment 
 

The following equipment was used to test the linear AC controller with the EE-35 

stirling convertors: EE-35 SBIR 1, EE-35 SBIR 2, Linear AC Controller, Rack 6. 

 
2.6.2  Procedure 

 
The controller was connected to the linear alternator of the convertors. The voltage 

potentiometer was initially set to 5.44 in order to produce an output voltage of 22 V. 

Then the hot end temperature was increased t C .  The buzz convertors started on 

the AC bus and then were transferred to the linear AC regulator controller. The pot was 

adjusted to 6.53 in order to produce a piston stroke of 3.75 mm with Buzz 2 as the 

reference. The convertors ran at this temperature for approximately 5 minutes and then 

the temperature was increased to . As the hot end temperature increased the pot 

o o300

Co400
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setting was decreased. After approximately 5 minutes at , the temperature was 

incr

ing temperatures. 

ese para w are used in order to odel in PSpice which accurately 

represents t ion controller at each of these te es. 

  
 

Co400

m r

eased to Co470 and once again the pot was decreased. The final pot setting was 5.72.  

2.6.3  Results 
 

Table IV represents the alternator voltage, alternator current, power output, and DC 

output voltage of the convertors. This data was obtained at three operat

Th meters belo

e operat

 create a m

h  of the peratu

ACV (V) I (A) outP (W) VDC (V) 
24.25 0.66 11.99 25.78 Co300  

Co400  24.56 1.16 22.27 24.12 
24.3 1.42 27.41 23.24 Co470  

Table IV. EE-35 SBIR 1 and 2 Run with Linear AC Regulator 
 

Figure 63 and Figure 64 represent the alternator voltage data obtained from the 

operation of the convertors with the linear AC regulator controller at .  Co470
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Figure 63. EE-35- 1 Alternator Voltage at 

 

+02 1.60E+02
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Voltage SBIR EE-35-2 at 470°C
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Figure 64. EE-35- 2 Alternator Voltage at  Co470

 
Figure 65 represents the PSpice simulation of the alternator voltage at . The 

open circuit voltage in PSpice was adjusted to 34.29 V and the output voltage 

potentiometer was set to 0.575. The open circuit voltage and voltage potentiometer were 

adjusted in order to meet the power output, current input, and DC output voltage obtained 

from the buzz run with the linear AC regulator controller. Table 4 lists the parameters 

that were obtained from the buzz run and therefore used to simulate at the corresponding 

temperature. PSpice does not have a temperature parameter. So in order to accurately 

compare the buzz run and the PSpice simulation their power output, current input, and 

DC voltage output need to match.  

Co470
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Figure 65. PSpice Simulation of Alternator Voltage at  Co470

 
Figures 66 and 67 represents the alternator voltage data obtained from the operation 

of the convertors with the linear AC regulator controller at .  Co400
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Figure 66. EE 35-1 Alternator Voltage at  Co400
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Voltage SBIR EE-35-2 at 400°C
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Figure 67. EE-35- 2 Alternator Voltage at  Co400

 
Figure 68 represents the PSpice simulation of the alternator voltage at . The 

open circuit voltage in PSpice was adjusted to 33.85 V and the output voltage 

potentiometer was set to 0.595. 

Co400
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Figure 68. PSpice Simulation of Alternator Voltage at  Co400

 
Figure 69 and Figure 70 represent the alternator voltage data obtained from the 

operation of the convertors with the linear AC regulator controller at .  Co300
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AC Voltage SBIR EE-35-1 at 300°C
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Figure 69. EE-35- 1 Alternator Voltage at C o300

 
AC Voltage SBIR EE-35-2 at 300°C
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Figure 70. EE-35-2 Alternator Voltage at  Co300

 
Figure 71 represents the PSpice simulation of the alternator voltage at . The 

open circuit voltage in PSpice was adjusted to 33.1 V and the output voltage 

potentiometer was set to 0.625.  

Co300
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Figure 71. PSpice Simulation Alternator Voltage at  Co300

 
2.6.4  Test Summary 
 

The PSpice simulation results match the operation of buzz SBIR 1 and 2 with the 

linear AC regulator controller. This verifies that PSpice is an accurate tool for controller 

design. The results obtained in PSpice are accurate and can be used in order to verify 

controller operation before experimental testing. The linear AC regulator controller was 

tested on a buzz SBIR 1 and 2, however it was designed for an ASC. As proved by the 

results listed above, the simulation of the controller for an ASC is accurate. So we can be 

certain that the operation of the controller with an ASC will resemble the results from the 

PSpice simulation.  

2.7  Efficiency Test 
 

An experiment was conducted to measure controller overall efficiency.  Power was 

applied to the input of the controller using an AC voltage source to simulate convertor 

power.  The voltage and current delivered to the input were measured to calculate power 

input.  The voltage and current delivered to the loads were also measured to calculate 
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power output.  The efficiency was then calculated as the ratio between the output and 

input power. True RMS meters were used for all measurements. True RMS meters 

measure the heating potential of an applied voltage. Unlike an “average-responding” 

measurement, a true RMS measurement is used to determine the power dissipated in a 

resistor. RMS amplitude measurement is the best way to relate AC quantities to DC 

quantities, or other AC quantities of differing waveform shapes. The output current of the 

linear AC regulator is not a pure sine wave. The output current meter was capable of 

measuring only up to 3 A, which limited the maximum power input to 41 W for this 

experiment.  At this power level, the efficiency measured 98.6%.  Table V lists the 

theoretical and experimental efficiencies. It should be noted that instrument error was not 

considered during experimental testing. The theoretical efficiency was calculated through 

PSpice simulation. The theoretical and experimental efficiencies were measured at the 

same point in the circuit. The output current was measured as the current through the four 

stages. The input current was measured before the diode bridge. The circuit model 

predicted a controller efficiency of 95.5% at approximately 130 We, which is the 

ma imum output of the ASRG simulator. 

 

Experimental Simulation (low 
p

Simulation  (full 

x

 ower) power) 

Power Input 
(W) 44.33 40.00 129.41 

 Power Output 
(W) 43.72 38.27 123.88 

Efficiency (%) 95.49 98.64 95.68 
Table V. Linear AC Regulator Efficiency Summary 
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2.8
 

B

convertors was demonstrated up to their maximum combined power output of 130 We.   

ntainer. The loads and their heat sinks 

c r surfaces of the container. 

2.9
 

  Linear AC Controller and ASRG Simulator Integration 

Following successful checkout on the EE-35 convertors, the linear AC controller was 

integrated into the ASRG simulator electronics support. Stable operation of the FT  

Stability was qualitatively evaluated by observing the linear alternator voltage.  While 

operating at full power, the alternator voltage did not deviate more than 1 mV. A 

photograph of the controller integrated into the support electronics can be seen in Figure 

72. The controller occupies the left half of the co

Linear AC 
regulator 

Loads and 
heat sinks 

(4) 

 
Figure 72. Linear AC regulator controller integrated into ASRG simulator support 

l t i

are lo ated on the oute

  Conclusion 

PSpice was the main instrument in designing the controller. Initially, six controllers 

were evaluated. After thorough analysis in PSpice of each of the controllers, tables of 

pros and cons were created in order to eliminate three of the six controllers. After three of 
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the controllers were eliminated, the linear AC regulator, digital hybrid, and buck 

converter with zener remained. A list of evaluation criteria were then developed; 

housekeeping power, reliability, complexity, stability, robustness, and size. The linear 

AC regulator was chosen for further design because it maximized the performance of the 

convertor. The linear AC regulator had the least amount of required housekeeping power, 

most stable, least complex and small in size. The completed controller can be viewed in 

Figure 73 below. The controller was housed in a box 4” X 5.5” X 4.37” minus the load 

modules.  

 

 
Figure 73. Completed Linear AC Regulator Controller 

The linear AC regulator was then assembled, bench tested, and run on the EE35 SBIR 

1 and 2 convertors. After analyzing the bench testing and buzz run results, it can be 

concluded that PSpice accurately represents the behavior of the controller. So, since the 

controller was run on buzz convertors as opposed to ASCs, which it was originally 

designed for, it is safe to say that the simulations of the linear AC regulator controller 

with an ASC convertor resemble the actual performance of the controller with the 

convertors.  The efficiency of the controller was measured to be 98.64%. Following 

successful checkout on the EE-35 convertors, the linear AC controller was integrated into 

the ASRG simulator electronics support. Stable operation of the FTB

 

 convertors was 

demonstrated up to their maximum combined power output of 130 We. 
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 76

Plans have been made to replace the sensing diode bridge in the linear AC regulator 

with a true RMS-to-DC converter. This component computes the true root-mean-square 

value of a non-sinusoidal AC input signal and gives an equivalent DC output level. The 

true RMS value of a waveform is a more useful quantity than the average rectified value 

since it relates directly to the power of the signal. This modification theoretically 

eliminates the need for the user to constantly adjust the potentiometer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER III 
 

CONSTANT POWER CIRCUIT 
 

 

The circuit will maintain the stirling convertor output to its maximum, 130 W, while 

the Li-ion batteries provide additional power. When the load increases, the power from 

the stirling controller will reach its maximum and current will start to be drawn from the 

battery. The circuit design started with block diagrams and as knowledge was attained 

blocks were transformed into components.  

 
3.1  DC-DC Converter 
 

The DC-DC converter monitors the voltage and current provided by the stirling 

convertors. This voltage and current is monitored at the output of the linear AC 

controller. The TRM pin of the DC-DC converter adjusts the output according to the 

amount of power supplied by the convertors. The trim pin is driven by a 2N2222 BJT. 

The output of the DC-DC converter is between 24 and 28 V depending on the current and 

voltage. When the current required by the load exceeds the current available from the 

controller, then the DC-DC converter output will be 28 V. The Li-ion batteries supply the 

additional power required by the load.  
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A test was performed on the DC-DC converter, PAH350S24-28, in order to determine 

the value of the trimming voltage and internal resistors. The trim voltage is 1.225 V. The 

two internal resistors are 1 Ωk  each. Figure 74 represents the test set-up provided by 

[10].  

 
Figure 74. DC-DC Converter Trim Test Set Up 

 
Table VI displays the data used to determine the value of the internal resistance. 

Potentiometer VIN (V) Output Voltage Adjustment (V) Trim (V) 
200 Ω  18.218 14-15.26 0.110 
1  Ωk 19.374 14-18.64 0.405 
10  Ωk 18.535 14-25.67 1.020 
500  Ωk 19.49 29.36-37.11 1.3446-2.0223

Table VI. DC-DC Converter Adjustable Resistor Test 
 
The following equation and graph from [10] in Figure 75 was also used to calculate the 

internal resistance and trim voltage. It can be verified from the formula that the measured 

value of voltage trim is correct as 1.225 V.  

 
Figure 75. DC-DC Converter Trim Calculation 
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A component was created in PSpice after the voltage trim and internal resistors values 

were obtained. Currently, the PSpice part was written in code format and was created by 

[9]. This code can be viewed in the appendix. 

3.2  Current Sensor 
 

A current sensor is used to detect the current supplied to the load. The current sensor 

selected for the design is HY10-P. The current sensor output is 4 V for a 10 A input. A 

hierarchical model was created in PSpice. Figure 76 shows the model created for this 

component. 

out-out+

in-in+

+ -

H1
H

GAIN = 0.4

 
Figure 76. Current Sensor PSpice Hierarchical Model 

 
The current sensor provides a voltage output proportional to the current through the 

load.  This output signal is fed to one of two multiplier inputs.  

3.3  Multiplier 
 

A multiplier is used to measure the power supplied to the load. The voltage across the 

load and current through the load is multiplied. This is done with an analog multiplier 

integrated circuit (IC). The multiplier gives a voltage output proportional to the power 

supplied to the load. This will determine if the batteries should start producing power. 

The multiplier IC has been chosen as the AD734. The gains of the multiplier and the 

connections for the multiplier were completed with the help of [13]. The voltage input of 

the multiplier was scaled with a voltage divider. The output of the current sensor was 
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used as the second input to the multiplier. The current sensor and the voltage divider were 

both scaled based on the following transfer function provided by [13]. 

 

10
)21)(21( YYXXOutput −−

=   

 
Where X is the current sensor output and Y is the scaled voltage across the load. The 

voltage was based a 28 VDC output from the DC-DC converter and was multiplied with 

the voltage divider to provide 9.6 V. The maximum current supplied by the output of the 

controller is 6.5 A. The conversion of the current sensor is 2.5 A/V. The current sensor 

input is 2.6 V. The output of the multiplier is 2.5 V.  

 
( )( ) V

V
VVOutput 5.2

10
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==  

 
3.4  Design Process 
 
3.4.1  First Step 
 

At first, the constant power circuit design was implemented with block diagrams. The 

block diagram can be viewed in Figure 77. In this step blocks were used gain insight into 

the logic behind the constant power circuit. It was determined that the power would be 

measured by the voltage across the load and the current through the load. The amount of 

power would be controlled so an error amp would be needed to compare the desired to 

the actual.   

Source

Load
Power Meter

Error Amp

0  
Figure 77. First Step Constant Power Circuit Design Process 
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3.4.2  Second Step 
 

Each block was considered as to find a component that would perform that operation 

in the block. A multiplier was added to the block diagram as shown in Figure 78 because 

it is known that multiplying voltage and current gives power. A DC-DC converter would 

substitute the source block because it can be used to limit and control the voltage across 

the load.  

 

Error Amp
LoadMultiplier

DC-DC
Converter

0.01

0  
Figure 78. Second Step Constant Power Circuit Design Process 

 
3.4.3  Third Step 
 

PSpice was used to implement each of the blocks as shown in Figure 79. Components 

that had not been chosen were implemented in PSpice by the ABM library. A DC-DC 

converter model was inserted into PSpice to convert the voltage supplied by the 

controller to 24 VDC or 28 VDC. A sensing resistor was placed at the output of the DC-

DC converter to measure the current through the load. The op-amp is connected as an 

error amplifier. A 2.5 V reference on the non-inverting terminal was used to compare the 

voltage and current across the load. The current and voltage across the load was 

multiplied by an ABM component. The output of the op-amp was fed to a limiter. The 

limiter started at 0 and allowed voltage adjustment up to 2.75 V. At this point, the exact 

trim voltage of the DC-DC converter was not known.  
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Figure 79. Third Step in Constant Power Circuit Design Process 

 
3.4.4  Fourth Step 
 

At this point the limiter was replaced with a MOSFET to control the trim voltage as 

shown in Figure 80. 
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Figure 80. Fourth Step in Constant Power Circuit Design Process 

 
3.4.5  Final Design 
 

A signal from the DC output of the linear AC controller is fed to the input of the DC-

DC converter. The output of the DC-DC converter changes between 24 and 28 V based 
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on the TRM pin. The TRM pin is activated by the collector of a transistor. As the power 

demand of the load changes, the TRM pin adjusts up or down to maintain the power at 

130 W. The transistor is driven by an error amplifier which compares the power of the 

load represented by a voltage from the multiplier with a reference. The reference voltage 

is calculated based on the transfer function of the multiplier. The reference voltage was 

set to provide a maximum of 130 W and 6.5 A. The final design of constant power circuit 

can be viewed in Figure 81.  
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Figure 81. Final Design Constant Power Circuit 

 
3.5  Simulation Results 
 

Figure 82 represents the power output of the DC-DC converter for a 5 ohm load. The 

power output is maintained at approximately 132.85 W independent of an increase in 

load. This is the purpose of the constant power circuit; to maintain the power output of 

the linear AC controller when the load increases.  

 83



 

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms
-I(PS3:OUT+)*V(PS3:OUT+)

50W

100W

150W

200W

 
Figure 82. Constant Power Circuit Power 

 
Figure 83 represents the output voltage of the DC-DC converter. The output voltage 

is 25.74 V for a 5 ohm load. The output voltage of the DC-DC converter changes based 

on the load. As the load is decreased, the output voltage of the converter increases. This 

voltage is adjusted between 24 and 28 V via the trim pin of the converter. The maximum 

converter output voltage is 28 V.  
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Figure 83. Constant Power Circuit Output Voltage  
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Figure 84 represents the output of the current sensor. The output of the current sensor 

is 2.06 V with a 5 ohm load. As the load decreases, the output of the current sensor 

increases.  
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Figure 84. Constant Power Circuit Current Sensor Output  

 
Figure 85 represents the output of the multiplier. The output of the multiplier is 2.5 V 

with a 5 ohm load. The output of the multiplier is scaled based on the current through the 

load and the voltage across it. The output of the multiplier is compared with the 2.5 V 

reference on the non-inverting terminal of the op-amp.  
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Figure 85. Constant Power Circuit Multiplier Output 

 
Figure 86 represents the output of the op-amp. The output of the op-amp with a 5 

ohm load is 0.568 V. This indicates that the difference between the multiplier output and 

the voltage reference is minimal. As the difference between the multiplier output voltage 

and 2.5 V reference on the op-amp increases, the op-amp reaches its rail voltage. The 

output of the op-amp is at plus or minus rail based on the multiplier output voltage.  

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms
V(ERROR)

0.2V

0.4V

0.6V

0.8V

1.0V

 
Figure 86. Constant Power Circuit Op-Amp Output  
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Figure 87 represents the trim voltage of the DC-DC converter. The maximum trim 

voltage is 1.225 V. This voltage is reached when the output of the converter is 28 V. The 

trim voltage of the constant power circuit is 1.03 V with a 5 ohm load. This trim voltage 

indicates that the DC-DC converter was adjusted above 24 V but did not reach 28 V. As 

the load decreases, the trim voltage increases to 1.225 V at a maximum.  
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Figure 87. Constant Power Circuit Trim Voltage  
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Figure 88 represents the current produced by the load. The 5 ohm load current is 5.16 

A.  
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Figure 88. Constant Power Circuit Current  

 
3.6  Constant Power Bench Test 
 

A bench test was performed on the constant power circuit to verify that the 

simulations in PSpice accurately described the operation of the circuit.  

 
3.6.1  Equipment 
 

The following equipment was used for the constant power circuit bench test: 

Breadboard, Tektronix TDS3054 Oscilloscope, Dale 10 ohm load, Agilent 34401A 

multimeter, BK Precision 1760A DC Power Supply, Mastech HY3005C DC Power 

Supply, Fluke 77 multimeter, Fluke 87V multimeter, Fluke 76 multimeter.  

 
3.6.2  Procedure 
 

The constant power circuit was built up on a bread board according to Figure 81. The 

circuit was tested with a 10 ohm load. At 28 V this load produces 2.8 A of current. The 
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output of the DC-DC converter, output of the multiplier, output of the current sensor, 

output of the op-amp, and trim voltage were monitored on both multimeters and 

oscilloscopes.  

3.6.3  Results 
 
 The circuit operated correctly and the waveforms were similar to those obtained 

through simulation in PSpice. Table VII displays the bench test data of the constant 

power circuit with a 10 ohm load. It should be noted that instrument error was not 

considered during experimental testing. 

Load 
(ohms) 

Vin 
(DCV) 

Vref 
(DCV) 

DC-DC Out 
(DCV) 

Multiplier Out 
(DCV) 

Trim 
(DCV) 

Out Current Sensor 
(DCV) 

Current 
(A) 

10 20.0007 1.5 27.95 1.14 1.1171 1.0489 2.66 
Table VII. Constant Power Circuit – Bench Test Data 

Figure 89 represents the output voltage of the DC-DC converter with a 10 ohm load. 

The output is 27.95 V. 

 

Figure 89. Constant Power Circuit Bench Test -DC-DC Output Voltage 
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Figure 90 represents the output of the multiplier with a 10 ohm load. The output of 

the multiplier was 1.14 V. 

 

Figure 90. Constant Power Circuit Bench Test – Output of Multiplier 

Figure 91 represents the trim voltage on the DC-DC converter with a 10 ohm load. 

The trim voltage was 1.12 V. The trim voltage changes as the load increases and 

decreases. The maximum trim voltage is 1.225 V. This is set by the internal circuitry of 

the DC-DC converter.  
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Figure 91. Constant Power Circuit Bench Test – Trim Voltage 

Figure 92 represents the output of the current sensor with a 10 ohm load. The output 

of the current sensor was 1.05 V.  

 

Figure 92. Constant Power Circuit Bench Test- Current Sensor Output 

 



 

CHAPTER IV  
 

LI-ION BATTERY CHARGER 
 
 

The battery charger will be used to charge the Li-ion batteries. When the load 

increases and the stirling convertors are at maximum power, the batteries will supply the 

additional power needed by the load. Li-ion batteries require a specific charging scheme 

to operate effectively.  

4.1  Lithium Ion Battery 
 

The lithium ion cells are a high energy Lithium-ion chemistry that utilizes a mixed 

metal oxide cathode material and a graphitic intercalation anode. They have an organic 

solvent-based electrolyte with an inorganic lithium electrolytic salt. Lithium ion 

chemistry provides a much higher energy density and specific energy than other systems. 

The tolerance of a lithium ion battery is ± .05V/cell. 
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4.2  Charging Technique 
 

A taper charge, constant voltage charge, with C/50 limit will be used to charge the 

Lithium ion batteries. The C refers to the capacity of the battery in Amp Hours (AH).  

The capacity of the battery is 55 AH. Based on the specifications in [4], the charger has a 

voltage limit of 4.1V/cell, a maximum charge current of C/5, a charge cutoff of C/50. 

Since there are 8 cells then charger voltage limit is equal to 32.8 V, charger current limit 

is equal to 3.5 A, and charger cutoff current is equal to 1.1 A. The charger will use a 

constant voltage, a current limit, and turn off when the current falls below 1.1 A. full 

charge is reached after the voltage has reached the upper voltage threshold and the 

current has dropped and leveled at 1.1 A. So, battery voltage rises slowly during the 

charge eventually the current tapers down, and the voltage rises to a float voltage level of 

4.1 V/cell.  

No trickle charge is used because the Li-ion battery is unable to absorb overcharge. 

Trickle charge could cause plating of metallic lithium, a condition that renders the cell 

unstable. Li-ion batteries are designed to operate safely within their normal operating 

voltage but become increasingly unstable if charged to higher voltages. Overcharging can 

also cause the cells to heat up.  

4.3  Battery Life 

Battery life can be improved by limiting the time at which the battery stays at 4.1 

V/cell. Prolonged high voltage promotes corrosion, especially at elevated temperatures.  
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4.4  Design Process 
 
4.4.1  First Step 
 

At first, the battery charger was implemented with block diagrams. The block 

diagram can be viewed in Figure 93. Similar to the design process of the constant power 

circuit, the blocks were used to gain insight into the logic behind the battery charger. It 

was determined that the battery charger would require circuitry to limit the charge 

voltage of the battery and control the charge current. The Li-Ion battery charger must be 

turned off when the current reaches 1.1 A in order to prevent damage to the batteries. A 

block was implemented to designate this requirement. Based on experience from the 

constant power circuit, it was known that a DC-DC converter would be suitable for 

controlling the charge current and limiting the charge voltage.   

Voltage Limit Current Limit

DC-DC
Converter

Controller

Lithium Ion 
Battery

Trim

Current
Sensor Switch

Current Limit
End of Charge

 
Figure 93. Battery Charger First Step 

 
4.4.2  Second Step 
 

Each block was considered as to find a component that would perform that operation 

in the block. The charge voltage can be limited by placing an adjustable resistor on the 

trim pin of the DC-DC converter. This was known based on the DC-DC converter test 

performed. This was discussed in Section 4.1. The charger current was controlled by an 

error amplifier. The output of the DC-DC converter adjusts to control the voltage at 3.5 
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A. An error amplifier is used to compare the actual current as measured by the current 

sensor to a reference voltage. This reference voltage is calculated as follows:  

 

V
VA

Areference 4.1
/5.2

5.3
==  

 
When the current draw from the battery decreases, the transistor becomes an open 

circuit and the adjustable resistor is activated limiting the charge voltage to 32.8 V. The 

battery specifications limit a charge voltage to 4.1 V/cell. The battery has 8 cells giving a 

32.8 V charge voltage. The vpulse component in PSpice was used to simulate the battery. 

This component simulates a battery effectively because it changes as a ramp function. 

The resistor in series with this component is used to represent the current draw of the 

battery.  
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Figure 94. Battery Charger Second Step 

 
4.4.3  Final Design 

Figure 95 displays the final design of the battery charger. The final design includes 

the cut off circuit. The cut off circuit is designed to disconnect the battery from the 

battery charger when the current decreases to 1.1 A. A signal from the output of the 
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current sensor is connected to the non-inverting terminal of the op-amp. The op-amp 

compares the output of the current sensor with 0.44 V. The output of the current sensor is 

measured in voltage. A voltage of 0.44 V at the output of the current sensor is equivalent 

to 1.1 A. Initially, a push button must be pressed to energize the relay. Many options 

were considered to energize the relay such as a flip-flop or timer. However, the push 

button was the most efficient. The relay is connected between the current sensor and the 

battery. The relay is connected normally open. When the relay is energized then the 

switch is closed. When the relay is not energized then the switch opens. The op-amp is 

connected as a comparator so that the output of the op-amp is either at the positive or 

negative rail. This signal is sent to the base of the transistor which is used to energize or 

de-energize the relay.  
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Figure 95. Battery Charger Final Design 

 
 
 
 
 
 
 
 

 96



 

4.5  Simulation Results 
 

The battery charger was simulated in PSpice with a 5 and 25 ohm load. The cut off 

circuit of the battery charger was not simulated. The relay used in the design does not 

have a PSpice model and simulating a relay in PSpice is not reliable. The cutoff circuit 

was bench tested.  

Figure 96 represents the PSpice simulation of the output of the DC-DC converter with 

a 25 ohm load. The output of the DC-DC converter is 32.806 V. The potentiometer is set 

so that the maximum output voltage of the DC-DC converter is 32.8 V. This voltage 

corresponds to the maximum charging voltage of the batteries. As the current draw of the 

battery decreases below 3.5 A the output of the DC-DC converter increases.  

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms
V(HF:IN+)

10V

20V

30V

40V

50V

 
Figure 96. Battery Charger Simulation – Output of DC-DC Converter 

 
Figure 97 represents the output of the DC-DC converter with a 5 ohm load. The 

output of the DC-DC converter was 17.501 V. The output of the DC-DC converter 

decreases as the load increases in order to maintain the current at 3.5 A.  
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           Time
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Figure 97. Battery Charger Simulation – Output of DC-DC Converter - 5 ohm load 

  
Figure 98 represents the simulation of the output of the current sensor. The output of 

the current sensor was 0.524979 V with a 25 ohm load. 

           Time
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Figure 98. Battery Charger Simulation – Output of Current Sensor – 25 ohm load 
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Figure 99 represents the simulation of the output of the current sensor with a 5 ohm 

load. The output of the current sensor was 1.4 V.  

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms
V(SENSOR)

0.5V

1.0V

1.5V

2.0V

2.5V

 
Figure 99. Battery Charger – Simulation – Output of Current Sensor – 5 ohm load 

 
Figure 100 represents the simulation of the trim voltage. The trim voltage was 0.306 

V with a 5 ohm load. The trim voltage will increase as the output of the DC-DC converter 

increases and will increase above 1.225 V due to the potentiometer.  

           Time

0s 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms
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100mV

200mV

300mV

400mV

500mV

 
Figure 100. Battery Charger Simulation – Trim Voltage 5 ohm load 
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Figure 101 represents the simulation of the trim voltage with a 25 ohm load. The trim 

voltage was 1.65 V 
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Figure 101. Battery Charger Simulation – Trim Voltage – 25 ohm load 

 
Figure 102 represents the simulation of the current with a 25 ohm load. The current 

was 1.31 A. 

           Time
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Figure 102. Battery Charger – Simulation- Current with 25 ohm load 
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Figure 103 represents the simulation of the current with a 5 ohm load. The current 

was 5 A. 

           Time
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Figure 103. Battery Charger – Simulation – Current with 5 ohm load 

 
4.6  Battery Charger Bench Testing  
 

A bench test was performed on the battery charger to verify that the simulations in 

PSpice accurately described the operation of the circuit.  

4.6.1  Equipment 
 

The following equipment was used during the bench test of the battery charger: 

breadboard, Tektronix TDS3054 Oscilloscope, Hewlett Packard 6060B DC Electronic 

Load, Agilent 34401A multimeter, Kikusui PAD Regulated DC Power Supply, BK 

Precision 1760A DC Power Supply, Mastech HY3005C DC Power Supply, Fluke 77 

multimeter, Fluke 87V multimeter, Fluke 76 multimeter. 

4.6.2  Procedure 
 

The battery charger was built up on a bread board according to Figure 87. The cutoff 

circuit was tested separately from the current control and voltage limit portion. The 
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circuit was tested with a DC electronic load. The load was changed between 4-20 ohms. 

At each of these loads, the output of the DC-DC converter, trim, current and output of the 

current sensor were monitored with multimeters and an oscilloscope.  

4.6.3  Results 
 

Table VIII represents the data obtained from each of the four multimeters at 5 load 

values. It should be noted that instrument error was not considered during experimental 

testing. 

VIN (DCV) Load (ohms) 
Current Sensor Out 

(VDC) 
Current 

(A) 

DC-DC 
Converter Out 

(VDC) 
Trim 

(VDC) 
19.941 20 0.6508 1.609 32.48 1.546 
19.941 15 0.8478 2.124 32.47 1.5217
19.941 10 1.2386 3.134 32.62 1.4768
19.941 8 1.3627 3.451 29.21 1.183 
19.941 5 1.396 3.513 19.22 N/A 

Table VIII. Battery Charger Bench Test Results 

Table IX represents the bench test data taken with a 5 and 25 ohm load. These values 

can be used to compare the PSpice simulations with the bench test data.  

Load 
(ohms) 

Input 
Voltage 
(DCV) 

Trim 
(V) 

DC-DC 
Output 

(V) 

Load 
Current 

(A) 
Sensor 

(V) 
25 19.603 1.5916 32.8 1.286 0.502 
5 19.603 0.3318 19.44 3.478 1.369 

Table IX. Experimental vs. Simulation Operation  

The cutoff circuit was tested. The relay opened (disconnected the battery) when the 

current was at 1.1 A. The relay was closed when the current was greater than 1.1 A.  
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Figure 104 represents the DC-DC output voltage with a 5 ohm load. The output 

voltage is 19.44 V.  

 

Figure 104. Battery Charger Bench Test – DC-DC Output Voltage – 5 ohm load 

Figure 105 represents the output of the current sensor with a 5 ohm load. The output 

of the current sensor was 1.369 V.  

 

Figure 105. Battery Charger – Bench Test – Output of Current Sensor – 5 ohm load 
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Figure 106 represents the trim voltage with a 5 ohm load. The trim voltage was 0.33 

V.   

 
Figure 106. Battery Charger – Bench Test – Trim Voltage – 5 ohm load 

 
 

Figure 107 represents the DC-DC converter output voltage with a 25 ohm load. The 

DC-DC converter output voltage was 32.8 V. This would be expected with a 25 ohm load 

because the current is decreasing and the voltage limit portion of the circuit is performing 

to maintain the charge voltage at 32.8 V.   

 
Figure 107. Battery Charger – Bench Test – DC-DC Converter Out – 25 ohm load 
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Figure 108 represents the trim voltage with a 25 ohm load. The trim voltage was 1.59 

V because the DC-DC converter output is increasing to maintain the charge voltage. 

 
Figure 108. Battery Charger – Bench Test – Trim Voltage – 5 ohm load 

 
Figure 109 represents the output of the current sensor with a 25 ohm load. The output 

of the current sensor was 0.5 V.  

 
Figure 109. Battery Charger – Bench Test – Output Current Sensor – 25 ohm load 
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4.6.4 Summary 
 

The data in Table VIII and Table IX verifies that the battery charger current control 

and voltage limit are operating correctly. The current is controlled when the current 

sensor output is at 1.4 V or above. This indicates that the battery is drawing less than 3.5 

A. When the battery is drawing less than 3.5 A the battery is charging and the voltage 

limit circuit is operating. As indicated in Table VIII the DC-DC converter output voltage 

is 32.5 V when the current is less than 3.5 A. The PSpice simulations with a 25 and 5 

ohm load match the bench test results.  
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CHAPTER V 
 

 SYSTEM INTEGRATION 
 
 
5.1  Constant Power Circuit Pspice Integration 
 

Figure 110 represents the constant power circuit integrated with the controller. 
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Figure 110. Integration of Constant Power Circuit and Linear AC Regulator 



 

Figure 111 represents the output power of the DC-DC converter, input power of the 

linear AC regulator, DC-DC converter output voltage, and the DC output of the linear AC 

regulator. The power output of the linear AC regulator is 138.57 W and the constant 

power circuit maintains this power at 131.19 W even if the load demand increases. The 

figure below verifies that the constant power circuit is operating correctly and is 

compatible with the linear AC regulator. The DC output voltage of the linear AC 

regulator is 19.342 V. The output of the DC-DC converter is 25.65 V.  
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Figure 111. Simulation of Constant Power Circuit and Linear AC Regulator 

 
5.2  System Integration Bench Test 
 

The purpose of the system integration bench test is to verify that the constant power 

circuit and battery charger operate together properly.  

5.2.1 Equipment 
 

The following equipment was used for the integration bench test: breadboard, 

Tektronix TDS3054 Oscilloscope, Hewlett Packard 6060B DC Electronic Load, Agilent 

34401A multimeter, Kikusui PAD Regulated DC Power Supply, BK Precision 1760A 
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DC Power Supply, Mastech HY3005C DC Power Supply, Fluke 77 multimeter, Fluke 

87V multimeter, Fluke 76 multimeter. 

5.2.2 Procedure 

The integration test was set up according to Figure 7. The DC electronic load was 

placed between the two diodes in Figure 7 where it reads Rover World Power Bus. The 

Li-ion battery was represented by a DC power supply. To start, the voltage reference on 

the constant power circuit was changed to meet different power demands. The voltage 

reference was set to 0.75 V, which allows maximum power at 15 ohms. The voltage 

reference was also set to 1.12 V, which allows a maximum power at 10 ohms. Once the 

voltage reference was adjusted then the DC power supply voltage was adjusted to 

represent the voltage of a Li-ion battery. This voltage must be set below the maximum 

constant power circuit output voltage. The DC electronic load was set for resistances 

from 7-15 ohms. When the DC power supply started drawing current, this represented the 

Li-ion batteries supplying additional power to the load.  

5.2.3 Results 

Table X represents the integration test data with a constant power circuit reference 

voltage of 0.75 V. This set point limits the current to 1.399 A for a 20 ohm load.  

A
VA
ohmsVoutsensor 399.1

4/10
20/98.27_ ==  

Constant Power 
Current (A) 

Battery 
Current (A) 

Constant Power 
Voltage (V) 

Vref Constant 
Power (V) 

Load 
(ohms) 

Battery 
Voltage (V) 

Vin 
(V) 

1.3 0 27.98 0.75 20 25 19.67 
0.99 0.59 25.73 0.75 15 25 19.67 
1.86 0 25.27 0.75 15 20  19.67

Table X. Integration Test - Maximum Power at 15 ohm Load 
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Table X demonstrates that the integration of the constant power circuit and battery 

charger was successful because the battery voltage was greater than the constant power 

voltage when the battery drew current. It should be noted that instrument error was not 

considered during experimental testing. 

Table XI shows the results of the integration test at higher power. This test was 

performed with loads from 7-12 ohms. The voltage reference was set so that a maximum 

power was reached at 10 ohms. The data shows that the battery voltage was set greater 

than the constant power circuit and the battery started supplying additional power. It can 

also be seen that when the maximum power of 10 ohms was reached then the batteries 

started supplying current. Table XI confirms that the constant power circuit maintains 

maximum power when the batteries supply additional power because this table shows 

that the constant power current and voltage remain constant as the load increases and the 

battery supplies additional power to the load.  

Constant Power 
Current (A) 

Battery 
Current (A) 

Constant Power 
Voltage (V) 

Vref Constant 
Power (V) 

Load 
(ohms) 

Battery 
Voltage (V) 

Vin 
(V) 

2.09 0 27.97 1.12 12 26.529 19.67
0.91 1.5 26.57 1.12 10 26.529 19.67
0.93 2.04 26.47 1.12 8 26.529 19.67
0.98 2.37 26.44 1.12 7 26.529 19.67

Table XI. Integration Test – Maximum Power at 10 ohm Load 
 

5.2.4 Test Summary 

The integration of the constant power circuit and the battery charger was successful. 

The battery supplied additional power when the linear AC regulator reached its maximum 

power output. It also demonstrated that the diodes in the circuit operated properly 

because the batteries did not supply power unless the battery voltage was greater than the 

constant power circuit output voltage. 

 



 

CHAPTER VI 

CONCLUSION 

  

This paper discussed the design of support equipment for the ASRG simulator. The 

ASRG simulator and support equipment will be used on a lunar concept rover. At this 

time, a rover is in the process of being built. When it is completed, the ASRG simulator 

and Li-ion batteries will be used to power the rover.  

The linear AC regulator will be used to control the ASRG simulator. A survey of six 

controllers was performed in order to choose a controller that would work effectively in a 

rover application. The initial evaluation of the six controllers included voltage 

monitoring, load staging, power dissipation technique, tuning, necessity of a DC-DC 

converter, and the power factor controller. When the initial evaluation was complete, 

three controllers were eliminated. The final evaluation included efficiency, number of 

components, and stability. The linear AC controller exceeded the other controllers in all 

categories. The linear AC regulator has the highest efficiency. This is important in this 

application. Various tests were performed on the linear AC regulator including bench 

testing, integration of controller and EE-35’s, and efficiency testing.  
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A constant power circuit was designed to maintain the power at the output of the 

linear AC controller at its maximum when the batteries supply additional power to the 

load. The constant power circuit was designed and simulated in Pspice. The constant 

power circuit was bench tested on a bread board to verify that it was operating properly. 

This test also verified that the simulations in PSpice were accurate.  

The battery charger was designed for constant voltage charging. The battery charger 

also protects the batteries by controlling the charger cut off current at 1.1 A. The battery 

charger was designed and simulated in PSpice. The battery charger was bench tested on a 

bread board to verify that it was operating properly. This test also verified that the 

simulations in PSpice were accurate.  

An integration test of the constant power circuit and battery charger was performed. It 

was verified that the constant power circuit was maintained at maximum power while the 

batteries were supplying additional power. It also confirmed that the batteries supply 

additional power when the battery voltage exceeds the output voltage of the constant 

power circuit.  
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CHAPTER VII 

FUTURE WORK 

  

Plans have been made to add an adjustable resistor to the trim pin on the constant 

power circuit DC-DC converter. This will allow batteries greater than 28 V to be 

integrated into the system.  

The battery charger design may be modified to accommodate other batteries than a 

Li-ion battery. Each battery requires a specific charging method.  

The ASRG simulator and support equipment will be demonstrated on a lunar concept 

rover when the rover design is complete.  

The tolerances of the instruments used during experimental testing were not 

considered. These tolerances will be considered in the future. This will aid in explaining 

the large difference between the experimental and theoretical efficiency of the linear AC 

regulator. 
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APPENDIX 



 

APPENDIX A 
(PSpice Code for DC-DC Converter Model) 

 
The following code was written in the PSpice model editor. 
 
Rover PHA300 24V to 28V DC-DC Convertor 
* ideal spice model 
* active input and output 
* 7/30/2007 
* modified trim circuit 
* 
usage:      name  in+ in- out+ out- trim 
.subckt PAH300 1 2 3 4 5 
GIN 2 1 VALUE={((V(3)-V(4))/(V(1)-V(2)))*I(EOUT)} 
VTRIM 6 4 DC 1.225V 
EOUT 3 4 Value={22.857*(v(7)-v(4))} 
RTRIM1 6 7 1K 
RTRIM2 7 5 1k 
.ends PAH300 
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