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I. INTRODUCTION

WE PRESENT in this paper an analysis of the asymptotic behavior as E + O+ of solutions of the
coupled system of equations on (0, 1)

for f(u, u’) = u or u’, satisfying the Dirichlet boundary conditions ~(0, E) = ~(1, E) = 0 and
v(O,e) = vO,v(l,s) = vi. Sucha system arises naturally in seeking simple models whose solu-
tions have the qualitative properties of solutions of the more complicated system of partial
differential equations

u” = v

(1.1)

&V# + f(u, u’)v’ = 0,

v2y := yxx + y,, = -w

(l/Re)V’o - w,,wX + y,o,, = 0,
(KY) in 0, (1.2)

that govern the steady-state distribution of the vorticity w in the limit of infinite Reynolds
number Re; cf. for example [1, Chapter 5; 10, Chapter 71. Here I// is the streamfunction asso-
ciated with the two-dimensional velocity field u : = (ur , u2, 0), that is, u, = w, and u2 = - vX,
and Q is a bounded, open subset of the plane. It was this motivation that led Parter and his
co-workers (cf. [5, 61) to study the system (1.1) for certain choices of the boundary values v,,
and vi by a judicious use of the maximum principle and a priori estimates. Unfortunately their
elegant and useful treatment has been overlooked by most workers in asymptotic analysis who
are now attempting to study even more challenging systems of singularly perturbed differential
equations and by most, if not all, fluid dynamicists who study viscous flow at large Reynolds
number. In this paper we approach (1.1) more from the point of view of asymptotic analysis
than did Parter et al., in the hope that the techniques displayed may prove useful in the study
of more complicated systems of ordinary and partial differential equations, such as (1.2).

The outline of the paper is as follows. In Section 2 we describe the results from singular per-
turbation theory and the maximum principle that are needed in the discussion of (1.1). The next
section contains a discussion of the problem u” = v, EV” + uv’ = 0, while the last section,
Section 4, contains a discussion of the problem u” = v, EV” + u’v’ = 0.

    



                           

2. ELEhlENTARY ESTI,LlATES

For the convenience of the reader we collect in this section some elementary results from the
theory of singularly perturbed boundary value problems and the theory of a priori estimates.

Let us consider first the linear problem on (0, 1)

EW” + g(x)w’ = 0, w(0, E) = A, w(l,&) = B, (2.1)

where g is a continuous function on [0, 11. On any closed subinterval of (0, 1) the limit of w(x, E)
is a constant whose value depends upon the function g and the boundary values A, B, since the
reduced equation w’ = 0 has only constant solutions. If there is a constant k such that
g(x) 1 k > 0 in [0, 11, then as E --+ 0’ the solution of (2.1) satisfies

w(x, E) = B + @()A - B/ exp[ - kx/eJ) in 10, 11, (2.2)

that is, there is a boundary layer of width (3(e) at x = 0. While if g(x) i -k < 0 in [0, 11, then
there is a boundary layer of width O(E) at x = 1; to wit,

w(x, E) = A + (3(/B - Al exp[-k(1 - X)/E]) in [0, 11. (2.3)

These results are classical; cf. for example [S, Chapter 3; 3, Chapter 41 or simply integrate the
constant coefficient equations EW” f kw’ = 0. In other words, if g(x) < 0 near x = 0 then there
can be no boundary layer at x = 0, and if g(x) > 0 near x = 1 there is likewise no boundary
layer at x = 1. What happens (or does not happen!) if g has a zero in [0, l]? The answer here
is not as simple. If g(x).> 0 in (0, I] and g(0) = 0, then a relation like (2.2) still obtains, only
with the exponential term replaced by a more complicated function (cf. (3.5) below), that is,
there is a boundary layer at x = 0 but its structure is more involved and it may be thicker than
O(E). Similarly, if g(x) c 0 in [0, 1.) and g(l) = 0, then there is a boundary layer at x = 1 more
complicated than the one described by (2.3). These results can be found in [8, Chapter 8; 3,
Chapter 41, or simply integrate an equation like EW’ + x”w’ = 0, n a natural number.

Suppose now that g has a single interior zero, say g&J = 0,O < x,, < 1, with g’(x,,) # 0.
Then there are two cases, depending upon whether g’(x,) < 0 or g’(x,,) > 0. The first
case is illustrated by setting g(x) = x0 - x, that is, g(x) > 0 for 0 I x < x,,, g(x,) = 0
and g(x) < 0 for x0 < x I 1, and taking A < 0 < B. Then w’(x, E) > 0 in [0, I] (w’(x, E) =
const * exp[(x2 - 2xx,)/(2&)]), and so we can rewrite the equation in (2.1) as EW”/W’ = x - x0,
that is, E (In w’(x, E))’ = x - x0 or

E ln( w’( 1, a)/w’(O, E)) = l/2 - x0. (2.4)

There are then three subcases. If 0 < x0 < l/2 then (2.4) tells us that ~‘(1, E) > ~‘(0, E), and
it follows that the solution of (2.1) has a boundary layer at x = 1 as E -+ O+ (cf. (2.3) with
k := 1 - x0). If l/2 c x0 < 1 then (2.4) implies that ~‘(1, E) < ~‘(0, E), and so the solution of
(2.1) has a boundary layer at x = 0 as E -+ O+ (cf. (2.2) with k : = x,,). Finally, if x0 = l/2 then
(2.4) implies that ~‘(0, E) = ~‘(1, E). In order to see how w behaves in this case, let us ten-
tatively set

w(x, e) - c + (A - c) exp[ -x/(2&)] + (B - c) exp[ - (1 - x)/(2&)], (2.5)

where the limiting value c is to be determined. It follows that ~‘(0, E) = w’( 1, E) as E + Of if
and only if -(A - c)/(~E) = (B - c)/(~E), that is, c must be equal to (A + B)/2, the average
of the boundary values. These results for g(x) = x0 - x are likewise classical (cf. 141).



                                        

In order to illustrate the case g’(x,) > 0 we set g(x) = x - x,,, that is, g(x) < 0 for
0 5 x < x0, g(.u,) = 0 and g(x) > 0 for x0 < x 5 1. With such a g we can rule out immediately
the occurrence of boundary layer behavior at either endpoint, since g has the “wrong” sign
near x = 0 and x = 1. The only asymptotic behavior available to the solution of (2.1) as E -+ O+
is then interior (shock) layer behavior of the form

lim w(x, E) =
L

A,0 5 x I x0 - 6,

E-o+ 8,x, + 61x1 1,

for 6 a small positive constant. The interior layer at x0 can be viewed as a two-sided “boundary
layer” centered at x0 across which there is a change in the convexity of w. Note that the sign
of g is compatible with such a layer since g(x) < 0 for x < x0 (cf. (2.3)) and g(x) > 0 for x > x0
(cf. (2.2)).

Other forms of asymptotic behavior are displayed by solutions of (2. l), depending upon the
nature of g; however, the ones just described are sufficient for our purposes here. We turn
finally to a description of a priori estimates in the study of the problem

UM = v, u(0, E) = 0, U(1, E) = 0,
(1.1)

EV” + f(f.4, U’)V’ = 0, v(0, E) = VO) V(1) E) = v, .

The basic result is the following. If there exist smooth functions (Yi, /3;(i = 1, 2) such that
ai 5 Pi, ai(O9 e) 5 O 5 Pi(O, c), cri(19 e) S O 5 Pi(l* e), a1(09 c) S v0 5 PZ(O* a), az(l9 E) 5
vi I &(l, E), and for x in (0, 1)

4 2 P*, p;’ I 012

Eoc; + f(tl, z)ol; L 0, E& + f(u, z)p; I 0,

for all u in [a,, j3J and z in lR, then the problem (1.1) has a (unique) solution (u, v) = (u, v)(x, E)
such that for x in [0, l]

a,&, E) 5 0, E) 4 P,(.L E)
(2.6)

cQ(x, E) c: v(x, E) 5 &(x, E).

The existence and uniqueness of the solution were proved by Dorr and Parter [5], while the esti-
mates (2.6) follow as in [2, Chapter 1). An easy consequence of (2.6) is contained in the next
result, which is obtained by setting ol,(x, E) := M(x’ - x)/2, pi(x, E) := m(x2 - x)/2,
cu,(x, E) := m and &(x, E) := M, for m := minlv,, vi1 and A4 := maxlv,, v,].

LEMMA 2.1. The solution (u(x, E), v(x, E)) of problem (1.1) satisfies the estimates

M(x2 - x)/2 5 U(X, E) 5 m(x2 - x)/2

m i v(x, E) I M,

for x in [0, l] and all E > 0.

(2.7)

Armed with these estimates and the asymptotic theory, we proceed to study the asymptotic
behavior of (u(x, E), v(x, a)) as E --* 0’ ’ m the two representative cases f := u and f := u’.



                           

3. THE FIRST CASE

The first problem is

El)
u” = v, u(0, E) = u(l, E) = 0,

EV” + uv’ = 0, v(0, E) = vg, v(1, E) = v, ,

which illustrates the effect of a driving term like u(x, E) itself on the behavior of solutions of the
perturbed equation for v. It was first considered by Dorr and Parter in [5] in the case when the
boundary values v,, and v, have the same sign. Our discussion of (El) divides naturally into four
cases, depending upon the signs of v,, and vr .

Case 1. v. z 0, v, 2 0. Lemma 2.1 tells us that for x in [0, l]

M(x2 - x)/2 5 u(x, E) I m(x2 - x)/2, (3.1)

where M := max(v,, v,] and m := min(v,, v,). Thus, if v. = v, = 0 then u = 0, v = 0 is the
solution of (El). If v. > 0 and v1 > 0 then (3.1) implies that u(x, E) < 0 in (0, l), and we antici-
pate the occurrence of a boundary layer in v at x = 1, with lim v(x, E) = v. for

E-o+
0 _( x I 1 - 6, in view of the discussion in Section 2. Finally, if v. = 0 or v, = 0 then u 5 0
in [0, l] but u f 0 since v f: constant, and so we again look for a boundary layer in v at x = 1,
with v(x, E) -+ v. in [0, 1 - 61. Now in a neighborhood of x = 1, U(X, E) - /(x2 - x)/2 =
(//2)x(x - 1) - (1/2)(x - 1) [where I := v. if v. > 0 and I := v, if v. = 01, that is, to lowest
order in E, the equation for v in the boundary layer near x = 1 reduces to
EV” + (//2)(x - 1)~’ = 0. Introducing the stretched variable < := (1/2e)“‘(x - 1) into this
equation and setting Q(c$, E) := v(1 + <(//2~)-“~, E) give us finally the scaled boundary layer
equation

i+<;=O [.:=d/d<]

together with the boundary condition

J(0, E) = v,

and the matching condition

lim C([, E) = 0 (with E > 0 fixed).
f---m

The solution of (3.2)-(3.4) is found to be

C(r. c) = v,(l + erf[U2”2]),

(3.2)

(3.3)

(3.4)

where erf[z] : = (2/~“~) j; exp[ -s2] d.s is the usual error function satisfying lim erf[z] = - 1.
7.’ -m

Thus, to lowest order in E, the solution of the v-problem is

v(x, e) - v. + vr(1 + erf[(l/4)“*(x - 1)/e”2]), 01x5 1,

revealing clearly that the thickness of the boundary layer at x = 1 is of order &t/2.

(3.5)



                                        

Case 2. v,, 5 0, v, s 0. Fortunately we can reduce this case to the previous one by making the
changes of variable r : = 1 - x, C(r, E) : = - u( 1 - r. E) and P(r, E) : = - ~(1 - r, E), resulting in
the new system

$1 = 0, qo, E) = q1, E) = 0,

EC” + lx’ = 0, 9(0,&) = 0, := -v,, 9(1, E) = 0, := - Yg,

where now ‘:= d/dr. Since t, L 0 and 9, 2 0 we know that the solution of the t-problem
satisfies (cf. (3.5))

P(r, E) - 9, + 9,(1 + erf[(U4)“*(r - 1)/e”*],

for 1: = - v1 if vr < 0 and i: = - v0 if vr = 0, that is, the solution of the original v-problem
satisfies

v(x, E) - vr + v,(l + erf[ - (1^/4)“*x/e”*]) in [0, 11.

In other words, for v,, < 0 and/or vr < 0 there is a boundary layer at x = 0 whose thickness is
of order et’* and lim v(x, E) = vr for 0 < 6 5 x i 1.

E-o+

Case 3. v. > 0, vr < 0. In order to study the solution of (El) in this case we note that
v’(x, E) < 0 in [0, l] and EV”/V’ = -u, that is,

s

1
c ln(lv’(1, c)l/lv’(O, &)I) = - u(s, E) d.s. (3.6)

0

We proceed with the aid of (3.6) to show what types of asymptotic behavior the solution v(x, E)
cannot display as E -+ O+. First of all, we see that

lim v(x, E) f c in (0, 1)
E-O+

for c a nonzero constant in the interval (v,, vo). This follows because if v(x, E) -+ c then
]v’(O, E)] = O(E-“*)and Iv’(1, &)I = O(e-“*)(cf. (3.5)), that is, ,l&+ E ln(lv’(1, c)l/lv’(O, &)I) =

0; however, lim (- 5; U(S, E) ds) = c/12 # 0, in contradiction of (3.6). The latter relation
E-o+

follows because U” = v - c in (0, 1) and ~(0, E) = ~(1, E) = 0, that is, u(x, E) - c(x* - x)/2. It
is also not possible that lim v(x, E) = 0 in (0, 1). The reason is that in this case v(x, E) > 0

E-o+
for x near 0 and v(x, E) < 0 for x near 1; whence, u”( = v) is positive near x = 0 and negative
near x = 1, and so u(x, E) is negative near 0 and positive near 1. Thus the sign of u does not
allow boundary layer behavior in v at either endpoint. Finally, we can eliminate the limits
lim v(x, E) = v. in [0, 1) and lim v(x, E) = v, in (0, 11, on the grounds that again the sign of

E-o+ E-o+
u(x, E) near x = 1 or x = 0 does not permit boundary layer behavior (cf. Section 2).

The only type of asymptotic behavior in v that we have not excluded is then interior (shock)
layer behavior, wherein

lim v(x, E) =
I

v~,o~x~x~-6,
r-0+ v,,xo+61xs 1,

for some point x0 in (0, 1). To see why such behavior is permissible, let us examine the sign of
u(x,~)forxcx~andx>x~.Forxcx~v(x,~)-v~>Oandsou”-v~,O<x<x~,with



                           

~(0, E) = 0 and u(x,, E) - 0, that is, u(x, E) - v,x(x - x,)/2 I 0 as E -, O’, while for
x > x, v(x, E) - v, < 0 and so u(x, E) - - v,(l - x)(x - x,)/2 z 0 as a * O+. Consequently
U(X, E) passes through zero at x = x0 like a positive multiple of x - x,, , making an interior layer
in v at x0 possible (cf. Section 2). It only remains to determine the location x, of the layer. Again
we make use of the relation (3.6). Since ~‘(0, E) and v’( 1, E) are of the same size as E --t 0’ (there
are no boundary layers!), we know that lim E ln(lv’(l, s)(/Iv’(O, &)I) = 0, and so (3.6) implies
that E-o+

” I

lim
!

u(s, E) ds = 0.
E-o+ 0

(3.7)

But we just saw that as E --* Of u(x, E) - v,x(x - x0)/2 in [0, x0] and U(X, E) - - v,(l - x) x
(x - x0)/2 in [x0, 11, and so the relation (3.7), in conjunction with the dominated convergence
theorem (cf. [9; Chapter l]), implies that

-x0

?

1
[ lim u(s, e)] du +

0 E-O+ i x0

[,“F+ U(S, a)] ds = 0,

that is,

-x0 '1

(vom

!
s(s - x0) ds = - (v,/2)

s

(s - I)(s - x0) ds
0 x0

or voxi = - v,(l - x0)3. Therefore, the interior layer is located at

.u, := (- vJ’3/[(- $)“3 + 4”].

We can now proceed as in case 1 and describe this layer in terms of an error function centered
at this value of x0.

Case 4. v. < 0, v, > 0. Taking a cue from the previous case we can eliminate all possible types
of limiting behavior for the solution v(x, E), except the correct one. First of all, we note that
interior layer behavior is not possible here. To see this, suppose that for some x, in (0, 1)

lim v(x, E) =
L

vo,Orxlx, - 6,

E-o+ v,,xi + 85x5 1.

Then, as in case 3, we have u(x, E) - - v,x(x, - x)/2 2 0 in [0, x,] and U(X, E) -
- v,(l - x)(x - x,)/2 i 0 in [xi, 1) as e + 0+, that is, u(x, E) passes through zero at x, like a
positive multiple of - (x-xi). Thus the signs of u near xi are incompatible with the existence of
an interior layer there (cf. Section 2). It is also not possible that v(x, E) --t v. in [0, 1) or
u(x, E) -t v, in (0, I] as E -+ 0’. To see this suppose, for example, that the former relation
obtains. Then ~‘(0, E) - 0, ~‘(0, E) 2 0 and v’(l) E) = O(E-“2) as E + 0’; consequently,
lim [& In v’(l) E) - c In ~‘(0, E)] = lim (- e In ~‘(0, E)) > 0. However, lim (- 1: u(s, e)) ds =

E-o+ &-Of &-Of
-J: (vo/2)(s2 - s) d.s = v,/12 < 0, in contradiction of the relation (3.6). A similar argument

eliminates the latter relation as well. Finally we can eliminate the possibility that
lim v(x, E) = c in (0, l), for c a nonzero constant in the interval (v,, vr). For should this limit

e-o+



                                        

be obtained, then ~‘(0, E) = O(E-i”) and ~‘(1, E) = O(E-I’*) as E + 0’ (there are boundary
layers of width O(e”‘) at the endpoints!), and so lim E ln(v’(1, e)/v’(O, E)) = 0. However, we

E-o+
see that ,c~+ (- j,!, U(S, E) d.s) = - 5; (c/2)@* - s) d.s = c/12 # 0, in contradiction of (3.6).

This leaves us with the only possible type of limiting behavior that has not been excluded,
namely

lim v(x, E) = 0 forxin [6,1 - 61.
e-O+

To see why this limit is permissible, note that ~‘(0, E) and ~‘(1, E) are the same size as E -+ 0’;
consequently, lim E In (~‘(1, e)/v’(O, E)) = 0 as before. But now u(x, E) - 0 in [0, l] as

E-o+
& + Of, since u” = v - 0 in (0, l), and so lim (-SA U(S, E) ds) = 0, in conformity with the

E-o+
relation (3.6). The sign of u(x, E) near x = 0 and x = 1 is also compatible with the existence of
boundary layers in v there.

We can summarize our results for (El) in the form of a boundary value portrait (cf. Fig. l),
where the abbreviation BL(x)[ZL(x)] denotes the term “boundary layer at x” [“interior layer at
x”].

” + 0 + BL(O) + EL(I) v--v0 + BL(I)

Y-V, + BL(O) v-+ :; + IL(X,)

Fig. I.

4. THE SECOND CASE

We take as our second problem

(E2)
u” = v, U(0, E) = U(1) E) = 0,

EV” + u’v’ = 0, m E) = vo, W,E) = VI,

in order to illustrate the effect of a driving term like u’(x, E) on the behavior of solutions of the
perturbed equation for v. It was first studied by Parter et al. [5, 61 for all choices of the bound-
ary values vo, v1 . Fortunately there is an immediate observation that simplifies dramatically our
consideration of the different types of asymptotic behavior available to the function v; namely,



                           

for all values of E > 0

v’(0, E) = v’(1, E). (4.1)

If v. = v, then this result is trivial, while if v. # v, then v’(x, E) > 0, [v/(x, E) < 0] in [0, 1] if
v. < vI[vo > vJ. Therefore E V/v’ = - u’, that is, E ln(v’( 1, &)/v’(O, E)) = - $ u’(s, E) d.s =
~(0, E) - u( 1, E) = 0, leading directly to (4.1). An important consequence of this observation is
the fact that if the solution v(x, E) displays boundary layer behavior it must have boundary
layers at both endpoints. The discussion of (E2) now proceeds by examining the following four
cases.

Case 1. v. 2 0, v, :, 0. As in case 1 of Section 3 we utilize the a priori estimate on u provided
by lemma 2.1

M(x* - x)/2 5 u(x, E) 5 m(x* - x)/2, 05x5 1, (4.2)

where M:= max(v,, vI) and m := min(v,, v,]. Thus if v. = v, = 0 then u E 0, v = 0 is the
solution of (E2). The two subcases v. > 0, vI > 0 and v. = 0 or v, = 0 will be considered
separately. First of all, if v. > 0 and v, > 0 then U(X, E) < 0 in (0, 1) and u’f’x, E) < 0 near
x = 0, while u’(x, E) > 0 near x = 1. Consequently the sign of u’(x, E) at the endpoints does not
allow v to have boundary layers. But ~‘(0, E) = v’( 1, E) by virtue of (4.1) and so if v. # v, , the
only possible asymptotic behavior available to v is interior (shock) layer behavior at some point
x0 in (0, l), that is,

lim v(x, E) =
i

v,,05x5x0--6,

e-o+ v,,x, + 85x5 1.

Such behavior is indeed possible by virtue of the fact that if U” - v. for x < x0 and U” - v1 for
x > x0 then u’(x, E) - vo(x - x0) for x < x0 and u’(x, E) - v,(x - x0) for x > x0, that is, in a
neighborhood of x0, the v-equation reduces to the equation E v” + k(x - xo)v’ = 0, for k a
positive constant. It remains only to determine the location x0 of the interior layer. To this end,
we note that if U(X, E) - U(x) as E --t O+ for x # x0, then U(x) must satisfy the following (five)
conditions: U(O) = 0, U(1) = 0, U(x,‘) = U(x;) and CJ’(x,‘) = U’(x;) = 0. We do know that
U”= v,forxzzx,and CJ”= v, . forxzx,, therefore, for x 5 x0 U(x) = v,x*/2 + c,x + c2
and for x 2 x0 U(x) = v, x2/2 + d, x + d2, where c, , c,, d, and d2 are constants. Since U(O) =
U(1) = 0, we have that c2 = 0 and d, + d2 = - v,/2, and the three remaining conditions allow
us to determine c, , d, and x0. Since U’(x;) = U’(x,‘) = 0 we find that c, = - voxo and
d, = - v,xo, that is, U(x) = u,x(x - 2x0)/2 for x I x0 and U(x) = v,(x - 1)(x + 1 - 2x0)/2
for x 2 x0. Finally, in order that c/(x;) = U(x,‘) we must have - ~~$12 = - vl(l - x0)*/2,
that is,

x0 := VI 1/2/(v;/2 + 412 
) = l/(1 + (vo/vJ”*). (4.3)

Suppose now that either v. = 0 or v, = 0; let us say that v. = 0, since the discussion of the
case v, = 0 proceeds analogously. The behavior of the solution of the v-equation in this case
is a limiting form of the behavior just observed. To wit, if in formula (4.3) we set v. equal to
zero then x0 is equal to 1; whence, there is an “interior” layer at x = l! In reality there is a
boundary layer at x = 1 (with lim v(x, E) = v. = 0 in [0, 1 - S]) whose structure is described

E-o+
by an error function, since ~‘(0, E) = ~‘(1, E) must of course obtain (cf. (3.5)). In [7] we coined



                                        

Fig. 2.

the term “S-layer” to describe this situation; cf. Fig. 2. In the remaining case vi = 0 there is
a “Z-layer” (backwards S-layer) at x = 0, with lim v(x, E) = v, = 0 in [6, I].

E-o+

Case 2. v. I 0, v, 5 0. The reader will see immediately that this case is not the reflection of case
1, in the sense that there is no change of variable of the type employed in showing the
equivalence of cases 1 and 2 for problem (El). The present cases 1 and 2 are fundamentally dif-
ferent from each other. It is convenient to consider first the subcase v. < 0, v, < 0 and to delay
considering the subcase v. = 0 or vt = 0 until later.

If v. < 0 and vi < 0 then from the estimate (4.2)

A4(xZ - x)/2 I u(x, E) 5 m(x2 - x)/Z, 05x51,

for A4 := maxlv,, v,) and m := minlv,, vi), we see that U(X, E) > 0 in (0, l), u’(x, E) > 0 near
x = 0, u’(x, E) < 0 near x = 1, and u’(x, E) passes through zero at some point x0 in (0, 1) like a
positive multiple of -(x - x0). Consequently, the solution of the v-equation cannot exhibit
interior layer behavior at x0; however, the sign of U/(X, E) at the endpoints is compatible with
the existence of boundary layers in v there. It follows that the only limiting behavior available
to v is boundary layer behavior at each endpoint, that is, lim v(x, E) = c, 6 I x % 1 - 6, for

E-o+
c a constant strictly between v. and vi, In order to determine c we proceed as follows. We know
that U” = v - c as E -+ O+, and so u(x, E) - c(x2 - x)/2, giving us u’(x, E) - c(2u - 1)/2. In
particular, ~‘(0, E) = -c/2 and u’( 1, E) = c/2, and so we see that for x in [0, l] as E -, O+

v(x, E) - c + (v, - c) exp[ - ICX/.s] + (vi - c) exp[ - k(1 - X)/E], (4.4)

where k := ICI/Z. Therefore ~‘(0, E) = v’(l) E) if and only if - k(v, - C)/E = k(v, - C)/E or
c := (v. + vJ2. We conclude that for x in [0, l]

v(x, E) - (v. -b vi)/2 + (v. - vi)/2 exp[ - kx/e]

+ (vi - v,)/2exp[-k(1 - X)/E], (4.5)

where k : = Iv0 + v,]/4, showing that the thickness of each boundary layer is of order E.



                           

If now vu = 0 or v, = 0 then it is easy to see that the appropriate limiting form of (4.5)
obtains, that is, lim v(.u, E) = v,/2[v,/2] if v0 = O[v, = 01.

E-D+

Case 3. v,, < 0, v, > 0. By arguing as in case 2 we see immediately that the only possible asymp-
totic behavior available to v is twin boundary layer behavior, that is,

lim V(X, E) = c
&_-Of

for x in [a, 1 - 61, (4.6)

where c is a constant in the interval (v,, v,).
Let us note, to begin with, that the constant c in (4.6) must be nonpositive. For LO’ = v - c,

and so u(x, E) - c(x’ - x)/2 as E -+ O+; whence, the signs of 10(x, E) required for boundary
layer behavior at the endpoints ~‘(0, E) - -c/2 2 0 and u’( 1, E) - c/2 I 0 obtain provided
c 5 0. The discussion now divides into three subcases. Suppose first that v,, + v, > 0; we will
show that c < 0 is impossible. If c < 0 then ~‘(0, E) - - c/2 > 0 and u’(l) E) = c/2 < 0, and
it follows that the relation (4.4) obtains for x in [0, I]. By the same argument that led to (4.5)
we see that c must equal (vO + v,)/2 > 0. It follows then that c must in fact be zero if
v0 + v, > 0, that is,

lim v(x, E) = 0
E-O+

for s in [a, 1 - 61. (4.7)

Since this is a somewhat nonintuitive result we check that it is self-consistent. The condition
v0 + v, > 0 says that vt > ]vO/, and so in view of (4.7), there exists a unique point r = <(E) in
(0, 1) such that u”(x, E) < 0 for 0 I .Y < C(E), I(“(<, E) = 0 and u”(x, E) > 0 for r(a) < x 5 1,
with lim r(c) = 1. (This point C$ is simply the unique point in (0, 1) where v(C;(.s), E) = 0; its

existence follows from the fact that v’(x, E) > 0 in [0, 11.) Therefore, in the boundary layer at
x = 0, v”(x, E) < 0, with of course ~‘(0, E) > 0; however, the boundary layer at x = 1 is more
complicated, in that ((a) is an inflection point for v. To see that this is consistent with the
behavior of u’, rewrite the v-equation as

&VI’ = - u’v’. (4.8)

Then slightly to the left oft, u”(x, E) > 0 and u’(x, E) < 0; at x = rv”(x, E) = 0 and U/(X, E) = 0;
and to the right of r, v”(x, E) < 0 and u’(,Y, E) > 0. Thus this behavior is compatible with the
equation (4.8).

Suppose next that v0 + v, < 0. We will show that c = 0 is now impossible. If v -+ 0 in (0, 1)
as E --t Of then in view of the fact that Iv01 > vr there exists a unique point q = V(E) in (0, I)
such that z/(x, E) < 0 for 0 I a(&), u”(u, E) = 0 and z/(x, E) > 0 for V(E) < x I 1, with
lim V(E) = 0. (The existence of q follows from the same argument that gave us the existence

E-o+
of r.) In the boundary layer at x = 0 v”(x, E) > 0 for 0 I x c V(E), v”(q, E) = 0 and v”(,Y, E) < 0
for x slightly to the right of q. In turn, we see that u’(x, E) > 0 for 0 I x < V(E), u’(q, E) = 0
and u’(x, E) < 0 for x slightly to the right of q. But these relations are now incompatible with
the relation (4.8). For instance, we know that v” > 0 for 0 5 x < 17; however, (4.8) tells us that
v” = - E-~u’v’ <’ 0 there. We conclude that for v0 + vr < 0 the limiting value c of w(x, E) must



                                    

be negative; in fact, c must equal (vO + v,)/2, that is,

lim v(x, E) = (v, + v,)/2 for x in [a, 1 - 61.
&-of

    

(4.9)

This follows directly from (4.4) by repeating the argument given there.
Finally, for the remaining case v. + v, = 0, we see with little difficulty that

lim v(x, E) = 0 for x in [a, 1 - 61.
c--Of

Case 4. v. > 0, v, < 0. Fortunately the asymptotic behavior of v(x, E) in this case is the same
as that described in the previous case. To see this simply introduce the changes of variable
r:= 1 -x, ti(~, E) := ~(1 - r, E) and $(r, E) := v(1 - T, E) into (E2), and observe that for x in

16, 1 - 4

and

as before.

lim v(x, E) = (v. + vJ2 if v. + v, < 0
&-Of

lim v(x, e) = 0 if v. + v, 2 0,
E-o+

We summarize our results for (E2) in the form of a boundary value portrait (cf. Fig. 3).

v .+ (vo + v,)/2 + BLCO) + EL(I)

Fig. 3.
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