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ABSTRACT 
Biogeography-based optimization (BBO) is a new evolutionary 
algorithm based on the science of biogeography. We propose two 
extensions to BBO. First, we propose blended migration. Second, 
we modify BBO to solve constrained optimization problems. The 
constrained BBO algorithm is compared with solutions based on a 
genetic algorithm (GA) and particle swarm optimization (PSO). 
Numerical results indicate that BBO generally performs better 
than GA and PSO in handling constrained single-objective 
optimization problems. 

Categories and Subject Descriptors: G.1.6 [Numerical 
Analysis]: Optimization – constrained optimization; stochastic 
programming. 

General Terms: Algorithms. 

Keywords: evolutionary algorithm, biogeography-based 
optimization, constrained optimization. 

1. INTRODUCTION 
Many optimization problems in science and engineering have 
constraints. Evolutionary algorithms (EAs) have been successful 
for a wide range of constrained optimization problems [8]. 
Biogeography-based optimization (BBO) is a new evolutionary 
algorithm for global optimization that was introduced in 2008 [11]. 
It is modeled after the migration of species between habitats. One 
key feature of BBO is that the original population is not discarded 
after each generation. It is rather modified by migration. Another 
key feature is that BBO uses the fitness of each solution to 
determine its migration rates. BBO has demonstrated good 
performance on unconstrained benchmark functions [11]. It has 
also been applied to real-world optimization problems such as 
sensor selection [11], power system optimization [10], 
groundwater detection [4], and satellite image classification [9]. 

In BBO, there are two main operators: migration and mutation. 
We propose a new migration operator called blended migration, 
which is a generalization of the standard BBO migration operator, 

2. BLENDED BBO 

We propose two extensions to BBO. First, we use the blended 
crossover operator of the GA [6] to derive a blended migration 
operator for BBO. Second, we generalize BBO to constrained 
optimization problems. We adapt a method for constrained 
optimization which emphasizes the distinction between feasible 
and infeasible solutions in the search space [1], [3]. 
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and which is motivated by blended crossover in GAs [6]. Blended 
migration is defined as 

H ( s) ←α H ( s) + (1−α ) H ( )  s (1)i i j 

where Hi is the ith candidate solution in the BBO population, s is 
its solution feature, and α is a real number between 0 and 1. 
Equation (1) means that a solution feature of solution Hi is not 
simply replaced by a feature from solution  Hj. Instead, a new 
feature in a BBO solution is comprised of two components: the 
migration of a feature from another solution, and the migration of 
a feature from itself. The BBO algorithm, generalized for blended 
migration, is shown in Figure 1. 

For each solution Hi
    For each solution feature s
        Select solution Hi with probability ∝ (1 − fitnessi) 

If Hi is selected then 
            Select Hj with probability ∝ fitnessj

 If Hj is selected then 
Hi(s) ← αHi(s) + (1−α)Hj(s) 

end 
end 

        Probabilistically mutate Hi
 next solution feature 

next solution 

Figure 1. BBO Algorithm with fitness is normalized to [0, 1].  
α = 0 for standard BBO, and α > 0 for blended BBO. 

3. CONSTRAINED OPTIMIZATION 
In this paper we incorporate a method into BBO for constraint-
handling based on feasibility rules which have demonstrated 
promising performance [1], [3]. Note from Figure 1 that the 
migration procedure modifies each solution to create a new 
solution. For constrained BBO, we check each solution to see if it 
is better than its version before migration. The new solution will 
replace its previous version only if it is better than its previous 
version. This is similar to a (μ+λ) evolutionary strategy where the 
next generation is chosen from both parents and children [2]. 

For constrained problems, when a solution H1 is compared to a 
solution H2, solution H1 is considered better if and only if: 
1) Both solutions are feasible, but H1 has a cost that is less than 

or equal to that of H2; or, 
2) H1 is feasible and H2 is not; or, 
3) Both solutions are infeasible, but H1 has a smaller overall 

constraint violation. 
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4. SIMULATION RESULTS 
We used a representative set of constrained benchmark functions 
to test the proposed approach [5], [7]. Simulation parameters were: 
1) Population size: 50 
2) Number of features per solution (problem dimension): 20 
3) Mutation probability: 5% per solution feature 
4) Number of elite solutions per generation: 2 
5) Maximum number of fitness function evaluations: 10,000 
6) Number of Monte Carlo simulations per experiment: 30 

Number of successes (NS) represents the number of simulations 
for which f(x) − fmin ≤ 0.0001 with feasible x, where fmin is the best 
known solution from [7]. We compare BBO, Blended BBO, GA, 

and PSO. The proposed constraint-handling method is adapted in 
an identical way for all four algorithms. Table 1 shows the results 
of solving the constrained benchmark functions. BBO 
outperforms GA and PSO on 8 of 13 benchmarks, and Blended 
BBO outperforms BBO on 10 of 13 benchmarks. This includes 
not only mean results and number of successes, but also standard 
deviation, which implies that BBO and blended BBO are more 
robust than GA and PSO. 

We conclude that: (1) BBO is a competitive algorithm for solving 
constrained optimization problems; (2) constrained BBO 
outperforms GAs and PSO for the benchmark problems in this 
paper; and (3) Blended migration outperforms BBO. 

Table 1. Results obtained on constrained benchmark problems: the mean solution found over 30 Monte Carlo simulations, the 
standard deviation of the 30 solutions, and the number of successes (NS). The best results are shown in red boldface. 

Fn. 
BBO GA PSO Blended BBO 

Mean Std Dev NS Mean Std Dev NS Mean Std Dev NS Mean Std Dev NS 
g01 1.1E−03 4.7E−04 20 3.5E−02 8.4E−03 15 2.9E−03 4.4E−03 15 2.7E–05 9.0E–06 30 
g02 0.00 0.00 30 1.3E−01 6.6E−01 10 1.1E−02 4.9E−02 14 0.00 0.00 30 
g03 3.3E−02 8.3E−03 12 2.7E−01 7.9E−02 10 2.8E−02 6.0E−04 12 3.1E-05 9.2E-05 30 
g04 1.3E+01 9.4E+00 0 3.0E+02 1.8E+02 0 3.9E+01 3.5E+01 0 2.5E+00 3.2E+00 2 
g05 5.5E−08 5.9E−07 22 5.0E−06 5.7E−05 18 2.4E−01 1.1E−01 4 8.5E-09 9.0E–09 30 
g06 3.0E−01 4.1E−01 16 9.0E+01 8.7E+00 6 2.1E−01 5.9E−02 18 1.4E–01 5.2E-01 16 
g07 2.2E+00 7.6E−01 3 8.5E+00 6.4E+00 2 9.0E+00 7.9E+00 2 3.5E–01 1.5E–01 8 
g08 5.8E−11 4.4E−12 30 1.0E−12 2.6E−13 30 7.5E−08 9.0E−08 30 7.2E-12 2.6E-12 30 
g09 0.00 0.00 30 3.1E+00 2.2E+00 3 1.7E+00 6.9E+00 10 0.00 0.00 30 
g10 7.4E+01 9.0E+00 5 9.2E+00 2.4E+00 3 3.9E+00 1.9E+00 5 5.5E+01 1.9E+00 1 
g11 0.00 0.00 30 0.00 0.00 30 1.3E−03 3.5E−03 15 0.00 0.00 30 
g12 3.8E−07 6.1E−08 30 1.4E−05 5.4E−06 15 7.8E−05 9.9E−06 22 8.5E–08 1.5E–08 30 
g13 2.9E−01 2.4E−02 7 9.2E+00 1.0E−01 7 1.8E+00 8.4E−01 7 5.7E–02 3.2E–02 10 
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