2007

Reactivation Pathway of The Hydrogenase H-cluster: Density Functional Theory Study

Stefan Motiu
Cleveland State University

Daniela Dogaru
Cleveland State University

Valentin Gogonea
Cleveland State University, V.GOGONEA@csuohio.edu

Follow this and additional works at: http://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Publisher's Statement

Recommended Citation
Motiu, Stefan; Dogaru, Daniela; and Gogonea, Valentin, "Reactivation Pathway of The Hydrogenase H-cluster: Density Functional Theory Study" (2007). Chemistry Faculty Publications. 326.
http://engagedscholarship.csuohio.edu/scichem_facpub/326

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Reactivation Pathway of the Hydrogenase H-Cluster: Density Functional Theory Study

STEFAN MOTIU, DANIELA DOGARU, VALENTIN GOGONEA

Introduction

Hydrogenases are a family of enzymes that reversibly catalyze the transformation of protons and electrons to molecular hydrogen \((2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2)\). The exploration for alternative energy sources has engendered great interest in hydrogenase research [1–6]. However, these enzymes appear to be inactivated by exogenous ligands [7], such as \(\text{O}_2\) and \(\text{OH}^-\). Water also binds to the active site, in the resting state, of the enzyme [8, 9], \(\text{Fe}^2_\text{p}^\text{II} - \text{Fe}^2_\text{d}^\text{II}\) (where \(\text{Fe}_\text{p}\) is the proximal iron, and \(\text{Fe}_\text{d}\) is the distal iron).

The recently detailed structures of Fe-only hydrogenases, from *Clostridium pasteurianum* (CPI) [10,11] and *Desulfovibrio desulfuricans* (DdH) [12,13],
offer new opportunities for understanding their functions via biochemical pathways [7, 14]. It is now possible to determine the inhibitory mechanisms of O₂ and OH⁻ by performing density functional theory (DFT) calculations on the active site of these enzymes, i.e., the H-cluster. This cluster is composed of two iron atoms bridged by the di(thiomethyl)amine (DTMA) group, coordinated by endogenous cyanide, carbon monoxide, and the bridging carbonyl (CO_b) ligands. At the proximal metal, a cysteine-S bridging occurs to a [4Fe–4S] cubane, but in our investigation cysteine is replaced with CH₃–S, and the cubane is exchanged with H⁺ (Fig. 1).

By performing DFT calculations on the H-cluster, with OH⁻ bound to Fe₃ (redox states, Feᴵ⁻Feᴵ, Feᴵ⁻Feᴵᴵ, Feᴵᴵ⁻Feᴵᴵ), Liu and Hu [7] have inferred, based on agreement between the calculated and experimental vibrational frequencies of the three endogenous CO ligands, that OH⁻ is the oxygen species that inhibits hydrogenases.

Methods

The electronic structure of the H-cluster (Fe-only, and Ru-modified) was investigated by quantum mechanics (Gaussian 03 [15]), using the DFT method (B3LYP functional [16, 17]), with a variety of bases sets. Exploratory calculations have been performed with the 6-311G(d,p) basis set, and further refined with 6-311G(d,p) basis set. For Fe and Ru, an effective core potential (ECP) with a double-zeta polarization basis set (LANL2DZ) [18, 19] was used. In accordance with experimental and in-silico data, we selected low spin states (singlet and doublet) and low oxidation states (I and II) for the metal atoms [20–25].

Results and Discussion

Liu and Hu [7] showed (reactivation pathway I; Scheme 1) that Feᴵᴵ⁻OH⁻ (1) can be further reduced to Feᴵ⁻OH⁻ (2) but we found that the electron transfer is endothermic (ΔH = +12.31 kcal/mol; Table I) because the H-cluster (1) is already negatively charged (−1 a.u.). Feᴵ⁻OH⁻ (2) can be easily protonated to Feᴵ⁻OH₂ (3) because its proton affin-

TABLE I

<table>
<thead>
<tr>
<th>Metal combination</th>
<th>Reaction enthalpy</th>
<th>Reaction enthalpy</th>
<th>Reaction enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 → 2</td>
<td>2 → 3</td>
<td>3 → 4</td>
</tr>
<tr>
<td>Fe–Fe</td>
<td>+12.31b</td>
<td>−410.80</td>
<td>+5.92</td>
</tr>
<tr>
<td></td>
<td>+12.75c</td>
<td>−411.64</td>
<td>+5.89</td>
</tr>
<tr>
<td>Fe–Ru</td>
<td>+10.02</td>
<td>−406.49</td>
<td>+3.42</td>
</tr>
<tr>
<td></td>
<td>+10.37</td>
<td>−406.92</td>
<td>+3.38</td>
</tr>
<tr>
<td>Ru–Fe</td>
<td>+14.14</td>
<td>−413.96</td>
<td>+4.93</td>
</tr>
<tr>
<td></td>
<td>+14.51</td>
<td>−414.67</td>
<td>+4.89</td>
</tr>
<tr>
<td>Ru–Ru</td>
<td>+15.90</td>
<td>−412.58</td>
<td>+11.93</td>
</tr>
<tr>
<td></td>
<td>+16.12</td>
<td>−412.93</td>
<td>+11.80</td>
</tr>
</tbody>
</table>

*In kcal/mol.

b Results obtained at B3LYP/6-31+G(d,p) level.

c Results obtained at B3LYP/6-311+G(d,p) level.

The process whereby the H-cluster is set free, once again, of exogenous ligands, e.g., OH⁻, H₂O, at the active site, Fe_d⁻, in its reduced form. Thus, in its reactivated state, the H-cluster is enabled to engage in its (former) catalytic H₂ redox activity.

Calculations on Fe(I) have been previously reported in Refs. [7, 14, 21–24].
ity is +410.8 kcal/mol. The water dissociation from Fe²⁺–OH₂ (3) is also endothermic (ΔH = +5.92 kcal/mol).

Scheme 2 shows the reactivation pathway II in which the protonation step occurs first. This step proceeds because the proton affinity of Fe²⁺–OH⁻ (1) is still very large (+326.95 kcal/mol, Table II). Furthermore, Scheme 2 shows that water dissociation from Fe²⁺–OH₂ (2') is also exothermic (ΔH = −3.22 kcal/mol). In contrast, Cao and Hall [22] found that the removal of water from the distal iron of Fe²⁺–Fe²⁺ is rather endothermic (ΔH = +23 kcal/mol).

The difference in the reaction enthalpy calculated by Cao and Hall [22], relative to our result, may stem from the fact that the optimized structure, Fe²⁺–Fe²⁺ (3'), in Cao and Hall’s study, has the bridging carbonyl ligand (CO₇) midway between Fe₇ and Fe₆, which makes the H-cluster higher in energy than it is when CO₇ is bound (asymmetrically) closer to Fe₇ [Scheme 2, (3')]. However, we were unable to find a stationary point (energy minimum) at the B3LYP/6-31+G(d,p) level for the structure with symmetrically bound CO₇, but we obtained a partially optimized structure by constraining only the distance between CO₇ and Fe₆—the breaking bond—at 2.147 Å (the distance between CO₇ and Fe₆ was reduced from 2.040 Å to 1.873 Å during optimization). This quasi-symmetrical structure is 14 kcal mol⁻¹ higher in energy than the structure with CO₇ bound asymmetrically (3') to the two irons. Thus, a symmetrically CO₇-bound structure is expected to be even higher in energy. Hence, the removal of H₂O (Scheme 2) is exothermic, as the CO₇ has been shifted toward Fe₆, and this facilitates exogenous ligand bond breaking [14]. Another structural detail contributing to the difference in the reaction enthalpies, 2' → 3', is that in the reactivation pathway of Scheme 2 (same for Liu and Hu [7]), the nonbridging sulfur bound to Fe²⁺ is protonated. Also, owing to the different levels of theory used by each investigating group, inevitably different optimized geometries are obtained.

The result of this investigation, regarding water removal from Fe²⁺, corroborates an antithetical reactivation pathway, that is, the reduction of Fe²⁺–Fe²⁺ (3') is exothermic (unlike Scheme 1 [22]), for the CO₇ is bound only to Fe²⁺, and not to Fe²⁺. Our results indicate that water removal from Fe²⁺ is facilitated by concerted bond breaking of CO₇ from Fe²⁺ and bond contraction between CO₇ and Fe²⁺ (as the bridging carbonyl migrates toward Fe²⁺) (Table III). The reactivation of the H-cluster is complete upon reduction [26] of Fe²⁺ to Fe⁰. This reduction process is highly exothermic (ΔH = −62.41 kcal/mol; Table II).

This reaction pathway (Scheme 2) thermodynamically favors the reactivation of the H-cluster, and suggests that the H-cluster may not be permanently inhibited by OH⁻, or H₂O, nonetheless. It appears that as long as the H-cluster is supplied protons, its reactivation shall continue.

The following bimetal combinations within the H-cluster, i.e., Fe₇–Fe₇, Fe₇–Ru₇, Ru₇–Fe₇, and Ru₇–Ru₇, were theoretically investigated (Tables I and II) to elucidate which combinations are less sensitive to OH⁻ inhibition, and to determine whether the varied metal combinations perform thermodynamically better than the Fe–Fe H-cluster.

<table>
<thead>
<tr>
<th>Metal combination</th>
<th>Reaction enthalpya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 → 2'</td>
</tr>
<tr>
<td>Fe–Fe</td>
<td>−326.95b</td>
</tr>
<tr>
<td></td>
<td>−327.55c</td>
</tr>
<tr>
<td>Fe–Ru</td>
<td>−331.14</td>
</tr>
<tr>
<td></td>
<td>−331.50</td>
</tr>
<tr>
<td>Ru–Fe</td>
<td>−329.56</td>
</tr>
<tr>
<td></td>
<td>−330.21</td>
</tr>
<tr>
<td>Ru–Ru</td>
<td>−328.13</td>
</tr>
<tr>
<td></td>
<td>−328.52</td>
</tr>
</tbody>
</table>

a In kcal/mol.

b Results obtained at B3LYP/6-31+G(d,p) level.

c Results obtained at B3LYP/6-311+G(d,p) level.
Table I lists reaction enthalpies for the reactivation pathway I. For Fe₆–Ru₂ modified H-cluster the electron transfer is slightly less endothermic (-2.29 kcal/mol) than for Fe₆–Fe₄ H-cluster. The proton affinities for Ru₆–Fe₄, and Ru₆–Ru₂ are slightly larger than for Fe-only, except Fe₆–Ru₂. However, in the H₂O removal step, the bimetals Fe₆–Ru₂ and Ru₆–Fe₄ release water more readily than the Fe-only cluster. Conversely, calculations on Ru-only H-cluster indicate that Ru₄ binds water more firmly than Fe₄ (Table I).

In contrast, for the reactivation pathway II, protonation of bimetal combinations, i.e., Fe₆–Ru₂, Ru₆–Fe₄, and Ru-only, is highly exothermic (similar to the Fe-only H-cluster). However, water removal is endothermic for these bimetal combinations. Subsequently, the reduction process (Scheme 2) necessitates similar enthalpies of reaction for most bimetal combinations (Table II) mentioned above except for Ru₆–Fe₄ which is slightly more exothermic.

Conclusions

Reactivation pathway I consists of an endothermic electron transfer step, followed by an exothermic protonation step, and then an endothermic water removal step. For reactivation pathway II, the H-cluster protonation occurs first, followed by water removal, and then by electron transfer with all steps being exothermic.

Finally, we propose a reaction pathway for the reactivation of the hydrogenase H-cluster, in which all individual reaction steps are thermodynamically favored (Scheme 2).

Acknowledgments

Computational resources have been provided by the National Center for Supercomputer Applications (University of Illinois) and the Ohio Supercomputer Center.

References
