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ROBOTIC’S CONTROL USING ACTIVE DISTURBANCE REJECTION 

CONTROL  

OUSAMA SAID KHAIRALLAH 

ABSTRACT 

 
Conventional robotics control has been set in stone since the sixties. The world has 

been waiting too long for a new age of control to change the world of Robotics. Active 

Disturbance Rejection Control (ADRC) is a newly reformed Control methodology.  It has 

been used, in very limited applications, as a replacement for PID control.  In this thesis, I 

will cover the different aspects of the kinematics and dynamics of a robotic manipulator.  

I will also examine the feasibility of using ADRC to control a robotic manipulator. 

To explain ADRC, a simple example that demonstrates the concepts and theory of 

Active Disturbance Rejection Control will be discussed.  Using this example, the 

establishment of relevance to the mathematical module; of a rotary prismatic robotic 

manipulator will be accomplished. A control system for the module using Matlab 

software and mathematical computations will be implemented.   
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CHAPTER I 

INTRODUCTION AND HISTORICAL BACKGROUND 

 

 

 

1.1 Historical Overview 

Robots have been in place since the Golden age of Greece when mankind’s 

understanding of the laws of motion first started to evolve. Robots incorporated the 

structure of these laws and gave these theoretical laws a physical manifestation.  In the 

year 270 BC, a Greek engineer named Ctesibus created organs and water clocks with 

movable fingers [1].  In 1921 the word "robot" was used in a play called Rossum's 

Universal Robots written by Czech writer Karel Capek [1].  Twenty years later, in 1941, 

Isaac Asimov a renowned science fiction writer, used the term "robotics" to describe the 

technology of robots and expected the rise of the robot industry [2].  One year later 

Asimov brought the laws of robotics to life in his story “Runaround,” in which he defined 

the "Three Laws of Robotics":  

o A robot shall not injure a human or put a human in harms way.  



2 

o A robot must obey the orders of humans as long no conflict will occur 

with law number one.  

o A robot must protect its own existence as long no conflict will be done 

with the First or Second Law [1]. 

Six years later Norbert Wiener published a book regarding "Cybernetics" that 

influenced artificial intelligence research [2].
 
 Finally, eight years later in 1956, the first 

robotics company in the world was established by George Devol and Joseph 

Engelberger [1].  

The robotic age as we know it today began in 1961when the first industrial robot, 

called UNIMATE [1], was put to work in the General Motors automobile company in 

New Jersey.  The first artificial robotic arm controlled by a computer was implemented in 

1963.  Called the Rancho Arm [2], this robotic arm had six joints that were used to obtain 

the flexibility of the human arm.  

Robots continued to trickle gradually into the industrial world until the year 1974, 

when robotics control took a big leap forward.  A small robotic arm (the Silver Arm) was 

designed to performed small-parts assembly using feedback from touch and pressure 

sensors [1].  This robot marked the beginning age of feedback control in the robotics 

world.  

In 1979 a TV camera was mounted on a cart that crossed a room filled with chairs 

without human assistance.  The cart camera took pictures in the room and fed them back 

to the computer, which determined the distance between the cart and the chairs and 

defined the path of motion.  This was the beginning of the use of machine vision with 

robots [1]. 
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Robots continued to evolve through the seventies, taking the shape that we see them 

in now.  As the robot has evolved, so also robotic control systems have evolved to 

accommodate the changes that industrial demand has brought to this technology. 

 

1.2 Definitions 

A robot is a reprogrammable, multifunctional manipulator designed to move 

objects, parts, tools, or specialized devices through variable programmed motions for the 

performance of a variety of tasks [3].  

A robotic manipulator is a composition of links that are connected to each other by a 

set of joints. There are two different types of joint configurations: the rotary (Revolute) 

joint and the liner (Prismatic) joint.  The combination of multiple sets of links and joints 

is what defines the Kinematic chain [3]. A Revolute joint allows travel in a rotary motion 

relative to a plane between two links; it is known as an (R) type joint.  A Prismatic joint 

allows travel in a linear fashion with respect to a plane between two links; it is known as 

a (P) type joint. 

In this thesis project, a robot manipulator of the type RP will be evaluated and 

developed as the system to be controlled using the Active Disturbance Rejection Control 

system. We will start with the development of the mathematical model; then obtain the 

control system and the simulations. To obtain such a model, we must first evaluate the 

the forward kinematics of multi-link robotic manipulator.  
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CHAPTER II 

FORWARD KINEMATICS FOR MULTI-LINK ROBOTS 

2.1 Forward Kinematics 

Forward kinematics for a solid robot can be defined as the relationship between the 

joints of the robot and the position and orientation of the end effector.  The variables in 

the robot systems are the rotation angles in the case of rotational joint design and the 

extending of the link in the prismatic joint design.  

To develop the forward kinematics of a robot manipulator, we need to set up a set of 

restriction rules to eliminate any hardship during the analysis of the forward kinematics.  

This convention or set of rules is called "The Denavit-Hartenberg Convention". The 

Denavit-Hartenberg Convention, known as the DH convention, is a set of rules that can 

be used to select the frames of reference in robotics application.  Without this set of rules 

the robot frame of reference could get very complicated.  The convention pertains in 

multiples of transformation Ai shown as the product of four basic transformations: 
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(2.1) 

 

Where X axis and the Z axis are the only permitted axes of operation, no action 

would be done on the Y axis. The variables and the constant terms are defined as follows: 

θi is the joint angle (variable), αi is the link twist, di is the link offset (variable), ai is the 

link length. All the terms above are for a specific link and joint; in this case defined as 

link(i) and joint(i). 

Now that we have introduced the forward kinematics and related the Cartesian 

position and orientation of the end effector to the position of the joints, it is time to 

address the relationship between the end effector velocities and the joints velocities. This 

relationship is defined in a set of matrices that is called the Jacobian. 

A Jacobian matrix is a set of first order partial derivatives of a system. This matrix 

describes the derivatives of any scalar function. In this case, the concentration is on the 

general form of the Jacobian matrix for a robotic manipulator. This form of Jacobian is 

defined for an n-link robot configuration for a set of linear and angular velocities. 

2.2 Skew Matrices  

We also need to take into consideration the Skew Symmetric matrices, which will 

be useful in future, analysis of the Jacobian matrix. The skew symmetric matrices are 
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helpful in developing the rotation matrices that would be used in the derivation of the 

velocity matrix relating the coordinate systems, respectively.  

For an n x n matrix, S is defined as the skew matrix if and only if     S
T
 + S = 0. 

So for a 3x3 skew matrix it will have the following form: 

0
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where all the diagonal values are zeros as shown and the symmetry is consistent 

and for a unit vector kji ,, , respectively,  
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The skew symmetric matrices are shown below, respectively,  
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Some of the useful skew symmetric matrices properties are listed below: 

1. The linear property: )()()( ybSxaSbyaxS +=+  

2. For any two vectors a, b the vector cross product: a x b = S (a)b 

3. For any R ∈ SO(3) and a ∈ R
3
 where SO(3) is the 3x3 skew symmetric matrix  

and R
3
 is a 3x3 rotational matrix 

RS(a)R
T
 = S(Ra) 

4. For any n x n skew symmetric matrix S and any vector nRY ∈ : 0=SYY T  
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2.3 Derivation of the Jacobian 

Let us derive the Jacobian for an n-link robot with joint variables q1, q2… , qn  

So 









=

10

)()(
)(

00

0 qoqR
qT nn

n

 
(2.5) 

 

where 
0

nT  is the transformation matrix, 
0

nR  is the orientation transformation,
0

no  is the 

end-effector position; and iq  represents the joint variables. All the variables are a 

function of time as the robot changes position.  

Let 
0

nω  be the angular velocity of the end effector and 
0

nv be the linear velocity of the end 

effector.  

Let the linear velocity be the derivative of the end effector position.   
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Let ( ip ) be a point on the ridged frames dependent on ( i ) and 
0

1−iz  be the axis of 

rotation. 
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2.4 Joint types  

As discussed in the Introduction, there are two types of joints in robotic 

manipulators: Prismatic joints and Revolute joints. Let us examine these in more detail. 

2.4.1 Type 1: Prismatic Joints 

In this type of joint the motion is a totally linear translation.  This type of motion is 

always parallel to the axis 1−iz  and the magnitude is the translation id
•

, where id is a 

variable defined in the DH convention.  

So 
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(2.8) 

 

The case of prismatic joint Jvi is shown below: 

1−= ii zJv  (2.9) 

 

2.4.2 Type 2:  Revolute Joints 

For a revolute joint )(i  we set one joint to be moving and all the other joints to be 

fixed; the linear velocity of the end effector is the cross product of the angular velocity 

and the distance between the two centers of mass or two joints, dependent on the 

configuration.  

1−

•

= ii zθω  (2.10) 

1−−= in oor  (2.11) 

)( 11 −− −×=⇒×= iniii oozJvrJv ω  (2.12) 
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2.4.3 Combining the Linear and Angular Velocity Jacobians 

In this section we can summarize the Jacobian for the linear and angular velocities 

for each of the revolute and the prismatic joints.  

)(
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After describing the Forward Kinematics of a multi-link manipulator, we can move into a 

new section defining the robot dynamics. During this analysis the mathematical model 

will be described in terms of energy characteristics and we will define the connection 

between the forward kinematics and the robot dynamics. The Jacobian that was 

formulated in the chapter above will be used as the linking chain in the next chapter.  
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CHAPTER III 

DYNAMICS OF MULTI-LINK ROBOTS 

3.1 Robot Dynamics 

In the previous sections, kinematics modeling covered only the motion aspect of the 

robotic manipulator without taking into consideration any effect of forces or torques on 

the motion of the robot. Robot dynamics is useful in the analysis of forces and torques on 

the motion of robot manipulators. A set of dynamic equations will be used to construct 

the representation of robot dynamics. These dynamic equations are called Euler-Lagrange 

equations; that is, the Euler-Lagrange equations provide an energy dynamic approach to 

any mechanical system that could be used to analyze the system for any force or torque 

effect on the system. For simplicity, the Lagrangian is developed and shown for a simple 

one degree of freedom system as follows: From Newton’s Second Law for a mass m that 

moves in the vertical direction, 

energykineticofcasetheinymkand

y

k

dt

d
ym

y
dt

d
ym

dt

d
ym

followsaswrittenbecanequationtheofsidehandlefttheand

mgfym

2

2

2

1

2

1
)(

:

•

•

•

•

•••

••

=

∂

∂
=









∂

∂
==

−=

 (3.15) 
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p
mgy

y
mg

penergypotentialtheforalsoand

=⇒
∂

∂
=

∂

∂
=

 
(3.16) 

To determine the set of Euler-Lagrange equations, we must determine the kinetic 

and the potential energy of the system. We must then obtain the difference between the 

two sets of energies, which is called the Lagrangian. 

2

1
2

mgyympkLSo −=−=
•

 (3.17) 

To obtain a generalized form for the Lagrangian, we must obtain the system in terms of a 

general form that attains to all the robotic manipulators. So the equation of motion can be 

defined as shown below in terms of a differential of the partial derivatives of both kinetic 

and potential energies.  

kk

k

k

k
k

qtoappliedforcedgeneralizetheisand

yofformdgeneralizetheisqformgeneralaas

nk
q

L

q

L

dt

d
followsas

mgfymwritecanweequationsbothfor

y

p

y

L

ytorespectwithLofderivativetheforand

y

k

y

L

ytorespectwith

Lofderivativepartialthetakingafter

τ

τ ..,,.........1;:

)(

==
∂

∂
−

∂

∂

−=

∂

∂
=

∂

∂

∂

∂
=

∂

∂

•

••

••

•

 (3.18) 

3.2 Kinetic and Potential Energy 

In this section the relationship between the robot manipulator’s DH convention and 

the energy concepts will be developed to determine the dynamics of the robot consistent 

with the kinematics of the manipulator. Looking at the kinetic energy of an object, we 
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can see that it is the sum of two different types of kinetic energies.  One is caused by the 

linear motion (translational) and the other is caused by the rotational motion.  

So the total kinetic energy is the sum of both energies.  

ωω Ivmvk TT

2

1

2

1
+=  (3.19) 

Where (I) is a 3X3 symmetric matrix called the Inertia Tensor, v is the linear velocity 

Jacobian vector andω  is the angular velocity Jacobian; the angular velocity vector can be 

found from the skew matrix TRRS
•

=)(ω where (R) is the orientation transformation of 

the defined object. To obtain the angular kinetic term the inertia tensor must be defined as 

follows: 

















ΙΙΙ

ΙΙΙ

ΙΙΙ

=ΙΙ=

zzzyzx

yzyyyx

xzxyxx

T
whereRRI  (3.20) 

 

3.2.1 Multiple Link Robot Kinetic Energy 

From the Jacobian velocities ii JJv ω,  we can analyze the velocities of the link i. 

In terms of the Jacobians and the derivative joint variable (q)  

)(
•

= qqJv ivi  (3.21) 

)(
•

= qqJ ii ωω  (3.22) 

 

Now we suppose that the total mass of the manipulator is located at the center of mass of 

each link, respectively, and we take the origin to be the center of mass itself. As we 

know, the total kinetic energy is equal to the sum of the linear and angular kinetic 
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energies. Using (3.19), we can develop the kinetic energy equation of the multi-link 

manipulator as shown below: 

So from this equation 

ωω Ivmvk TT

2

1

2

1
+=  (3.19) 

we can develop the kinetic energy of the manipulator as a sum of all the linear and 

angular kinetic energies of all the links; however, here the velocity Jacobians are used to 

include the relationship between the motion equations and the kinetic energy of the 

manipulator as shown below: 

{ })()()()()()(
2

1

1

•

=

•









+= ∑ qqJqRIqRqJqJqJmqK

n

i

i

T

iii

T

iiv

T

ivi

T

ωω  (3.23) 

{ })()()()()()()(
1









+= ∑

=

n

i

i

T

iii

T

iiv

T

ivi qJqRIqRqJqJqJmqDLet ωω
 

(3.24) 

)(
2

1 ••

= qqDqkso
T

 (3.25) 

 

3.3 Potential Energy for a Multi-Link Robot Manipulator 

After concluding the kinetic energy equations for a multi-link manipulator in the 

section above, and to obtain the total energy involved with the robot, we must include the 

potential energy that is stored in the robot. Let us take a robot with an n-link 

configuration; the only source of potential energy comes from the gravitational potential 

that the robot holds. (P) is the potential energy symbol, (g) is the gravity vector, and rci is 

the vector associated with the coordinates of the center of mass for any robot link i. 

ci

T

ii rgmP =  (3.26) 

 

So the total potential energy of the robot manipulator is the sum of all the potential 

energies of each link i.  
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1 1

∑ ∑
= =

==
n

i

n

i

ci

T

ii rgmPP  (3.27) 

To obtain the full system analysis as shown before, we must obtain the Lagrangian 

equation. To do so, we must show the kinetic energy equation again and develop the full 

system analysis as shown below. Let the kinetic energy to be a quadratic function of the 

vector 
•

q as shown before: 

)(
2

1 ••

= qqDqk

T

 (3.23) 

After showing the kinetic energy interim of a matrix, we can split the kinetic energy 

equation into its sub entities so let dij be the entries of X
n
 inertia matrix D(q) ⇒ 

)(
2

1
∑

••

=
ji

jiij qqqdk  (3.28) 

and to obtain the Lagrangian (L) we must  let the potential energy be independent of the 

velocity of joint, so (L) is defined as a difference between the kinetic energy and the 

potential energy.   

)()(
2

1
qPqqqdPkL

ji

jiij −=−=⇒ ∑
••

 (3.29) 

To obtain the full mathematical model of the robotic manipulator; there must be a 

derivation of the Euler-Lagrange function where the system is the sum of the dynamics 

for each of the following: acceleration, the velocity, and the position. This sum would 

define the relations and the attributes of the dynamics with the kinematics of the system, 

giving the math model a more full and complete description of the actual system. So we 

can start by taking the partial derivative of the Lagrangian (L) with respect to the k
th

 

position.  

2

1

,

∑
∂

∂
−

∂

∂
=

∂

∂ ••

ji k

ji

k

ji

k q

P
qq

q

d

q

L
 (3.30) 
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Furthermore, the partial derivative of the Lagrangian (L) with respect to the k
th

 velocity is 

just the second partial derivative of the position: 

∑
•

•
=

∂

∂

j

jjk

k

qd

q

L
 

(3.31) 

∑∑
••••

• ∂

∂
+=

∂

∂
⇒

ji

ji

i

jk

jj

jk

k

qq
q

d
qd

q

L

dt

d

,

 (3.32) 

So k is changing from 1 to n dependent of the number of degrees of freedom of the robot 

manipulator; in our case the number of degrees of freedom is k = (2). 

Then Euler – Lagrange equations can be shown as follows: 

2

1

,

k

kji

ji

k

ji

i

jk

jj

jk
q

P
qq

q

d

q

d
qd τ=

∂

∂
+









∂

∂
−

∂

∂
+∑∑

••••

 (3.33) 

We can replace the sum of the partial derivatives of (d kj ) with respect  

to (q) by a sum of partial derivatives 







∑

••

ji

jikji qqc
,

  

 

This sum is defined in terms of both the first order derivative of the 

elements of (q) and the position. All the equations are shown below:  
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 (3.34) 
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(cijk ) are known as the “Christoffel symbols”. 

k

k
q

P
gLet

∂

∂
=  (3.35) 

As a result the Euler – Lagrange equations can be expressed as a sum of the elements 

(dkj) the acceleration factors, a sum of the elements (cijk) the velocity factors, and the 

potential energy factors (gk) shown below: 

∑∑∑
= =

••

=

••

==++
n

i

n

j

kkjikji

jj

jk nkgqqqcqqd
1 11

.,,.........1)()( τ  (3.36) 

Per the Matrix format, the equation above can be converted into a set of matrices in terms 

of the acceleration, the velocity, and the acceleration as shown below: 

τ=++
••••

)(),()( qgqqqCqqD  (3.37) 

 

3.4 Possible Design Problem 

One issue that we have to consider is the effect of the actuator on the robot 

manipulator and the effect on the trajectory tracking; this issue would only be considered 

if the dynamics of the actuator would affect the dynamics of the manipulator. In the 

industrial world, the output of the robot is the main thing to be considered and nothing 

else really matters.  If the robot can do the job consistently without crashing during the 

operation, the design would be considered successful. 

One way to obtain such a result is to over-size the actuators so that they can handle 

any torque exerted on the manipulator arm from the load and other links. In this thesis, 

we are concerned with the accurate tracking of the trajectory or path rather than the 

dynamics of the actuators. Therefore, we will assume that the actuators are large enough 

to handle the torque forces for the load and the link-to-link dynamics.   
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After developing the Euler – Lagrange dynamic equation, we can use it as the basis 

for the mathematical model and apply the Active Disturbance Rejection control system to 

this model to obtain a controlled system with the minimum amount of error. This control 

system will be defined in the next chapter and the relations between the system and 

ADRC will be developed during this analysis.  
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CHAPTER IV 

ACTIVE DISTURBANCE REJECTION CONTROL 

 

 

4.1 Introduction to ADRC 

The general idea behind ADRC is to use an estimate of the disturbances and the 

unknown parts of the module and cancel these unknown terms to obtain a controlled 

system. This control theory was proposed by Professor Han; Dr. Gao [4]then used it to 

develop the parameterization concept of ADRC. To explore the ADRC concept in greater 

depth, we will take a second order system as shown below: 

dbuyayay ++−−=
•••

21  (4.38) 

where (y) is the output of the system, (u) is the input of the system, (d) is the external 

disturbance. Now we will analyze the system using the ADRC concept. Let’s consider 

the following: 

 

 

Let ),,( dyyf
•

 the system general unknown terms and disturbances so: 
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dyayadyyf

+=

⇒+−−=

•••
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 (4.39) 

where the control system will generate an estimate of the function ( f ) denoted (
∧

f ) 

so the control input would be defined as follows: 

b

fu
u

∧

−
= 0  (4.40) 

So if we apply the control to the above equation, we can see that the (b) terms will cancel 

each other, leaving us with the second integrator of (y) equal to the difference of the error 

and the error estimate and the initial desired control; the error will be canceled, leaving 

the output equal to the input as shown in the following: 

controldesiredtheisuwhereuy

leavingitselfcancelwillb

ffthen

eandffeif

b

fu
bfy

00

0

0

0

=

≈−

≈−=

−
+=

••

∧

∧

∧
••

 
(4.41) 

 

Using this concept would estimate the unknown and nonlinear parts of the model, 

stabilize the output, and drive it to the desired input.  Furthermore, to obtain this result, 

Dr. Han has suggested using the Extended State Observer (ESO) to estimate the function 

shown above. ESO is the essence of the ADCR control theory; in the ESO, the whole 

concept is to present the function f as an Extended State, giving the second order system 

an additional state and making it a third order ADRC [4]. 
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4.2 Extended State Observer  

The ESO states can be given as follows: where (x1) is the first state variable, (x2) is 

the second state variable, and (x3) is the extended state variable that would be used as an 

essential part of the control system to estimate the error (f). This setup of the extended 

state observer makes the observer a third order observer for a second order system usage. 

fx

xx

xx

=

=

=

•

3

2

1

 (4.42) 

As shown above, we added the third state equal to the function that we want to 

eliminate, hinting at the idea of the ESO. 
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Now we can obtain the state space module accordingly from the equations developed 

above (4.41) the state space representation is shown below in (4.42).  
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To obtain the ESO of this system using the parameterization concept of Dr. Gao, we can 

set up the equations using the estimation of the system and the gain vector (L) as follows: 
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 (4.45) 

Using the parameterization concept developed by Dr. Gao, we can show the vector 

(L) interims of 0ω  as follows: 
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Making a state representation of the observer model to be shown in detail below in 

equations (4.47) and (4.48), the representation is in a state equation format. This 

representation is confined to a single input single output system. 
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so the control law to obtain a pure double integrator system is 
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We can select the gains to make a critically damped system by making both controller 

gains based on a single parameter called the controller bandwidth cω , as proposed by  

Dr. Gao “Let cdcp KandK ωω 22 == ” [4]. 

After introducing the Active Disturbance Rejection Control system and the general 

system dynamic in the form of the Euler – Lagrange equation, we can set up the 

mathematical module of the RP manipulator. The mathematical analysis in the next 

section will be conclusive to a step by step solution of a two-degree of freedom robotic 

manipulator.   
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CHAPTER V 

MATHEMATICAL MODELING  

5.1 Mathematical Model of an RP Manipulator 

With robotic modeling and ADRC control in mind, we will now show the 

mathematical analysis of the robotic math model step by step and then obtain the 

appropriate ADRC control according to the model. 

5.2 Forward Kinematics and DH Convention for an RP Manipulator 

Starting with the Forward kinematics of the robot as proposed in the introduction, 

we need to obtain the DH convention of the RP robot manipulator.  
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Figure 1. Joint Link System Drawing 

We start the robotic manipulator setup by drawing the joint link system as shown 

above. We then set up the DH parameter table for a two-link RP manipulator as shown in 

the table below: 

Table I DH Parameter Table 

Link  iα  iθ  id  ia  

1 0 ∗

1q  0 

2

1a
 

2 90 90 0 ∗

2q  
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To obtain the matrix configuration of the DH convention, we will do the following: 

The robotic manipulator will make the first transformation; which will contain a rotation 

across the Z-axis of a variable angle q1; the center of mass then will be translated from 

the joint position to the middle of the link a1. The transformation is shown in equation 

(5.51). 

Xon
a

nTranslatioqofZonrotation

a
SCS

a
CSCa

CS

SC

AAT qqq

qqq

qq

qq

2

1000

0100
2

0

2
0

1000

0100

0010
2

001

*

1000

0100

00

00

1

1

1

1
1

21

1

0 111

111

11

11






















−

=





































 −

==

 

(5.51) 

The second transformation will be obtained by rotating across the Z-axis at an 

angle of 90 degrees, followed by a rotation across the X-axis at an angle of 90 

degrees as well, and then followed by a translation on the X-axis with a 

variable length 2q . The total transformation is the multiplication of both the 

first transformation and the second transformation. 
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These mathematical calculations were done using Matlab using the values defined in 

Table 1: so T1Zero as shown in (5.53) is the first transformation and T2Zero  as shown in 

(5.54) is the total transformation.  
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5.3 Jacobian Matrices for RP manipulator   

After obtaining the transformation matrixes of the system, we can obtain the 

Jacobians of the system using Matlab as well. J1 is defined as the total Jacobian of the 

first joint including all the linear velocity Jacobian terms and the angular velocity 

Jacobian. 
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Similarly, we can find J2 where (J2) is the total Jacobian of the second joint 

including the linear and angular velocity Jacobian terms; all the rest of the calculations 

for the Jacobians will be attached as a Matlab file.  
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Now we will set up the inertia matrix addressed in the dynamics portion of the 

mathematical module. Also known as the Inertia Tensor, these matrices are useful in the 

analysis of the D Matrix to obtain the inertial frame of the system.  
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(5.57) 

To obtain the Euler-Lagrange equation we must calculate the D matrix where D is a 

composition of the Jacobian Matrices, the Inertia Tensor Matrices, the masses, and the 

transformation matrices. The combination is shown in (5.58) below: 
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After Solving the D Matrix for the supposed parameters using Matlab software and then 

canceling all the opposite but equal terms, we will obtain the final form of the D matrix 

as shown in (5.59) below: 
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Now we can calculate the C matrix, also known as the coupling matrix. The C 

matrix is the relation between the two joint dynamics, giving us the nonlinear terms that 

would make the system as a nonlinear system in nature.    
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(5.60) 

After calculating the C matrix using Matlab, the result is as follows: 

















∗−∗−

∗+∗∗+∗
=

•

••

0)
2

1
(

)
2

1
()

2

1
(

11222

1122221222

qamqm

qamqmqamqm
C  (5.61) 

 



29 

Using the potential energy, we will now calculate the g(q) matrix.  
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After obtaining all the related matrices implicitly including the D matrix, the C matrix, 

and the G matrix, we can assemble the total system into the form shown below in 

equation (5.62); after using Matlab to calculate the math model, it is totally confined in 

this equation.   
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(5.62) 

 cont. 

 

 

Looking at the mathematical model above (5.62) we can see that the system is 

nonlinear in nature due to the nonlinear terms such as etcqqq ,)sin(, 112
&& ., which makes it 

difficult to analyze; however, the beauty of Active Disturbance Rejection Control System 

is that it can be used as a linear controller to control nonlinear systems.  

 

In the next chapter, the control system will be analyzed using the work of the 

mathematical model developed in this chapter and using ADRC as a control 

methodology. To understand the system better, the math model will be processed as a 

link per link approach, dividing the two-link manipulator into two separate systems 

linked with the feedback form the encoder system of each arm.     
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CHAPTER VI 

IMPLEMENTING ADRC CONCEPT IN THE RP MANIPULATOR 

 

 

Let us evaluate the D matrix, which is the matrix factor of the acceleration, or in 

other terms, the double integrator factor of the position.  We can see that it is a symmetric 

matrix, and that would help us to perform a substitution of the complicated equations 

with single terms such as (a, b, etc).  Let the first term be (a) and the second term be (b) 

as shown below: 
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(6.63) 

But the term (a) is dependent on the position of the second link; i.e., a = a(t), and q2 is 

what (a) depends upon. 
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Now we can evaluate the dynamic function as shown below where we can replace the (q) 

terms with (y) terms to obtain a more uniform setup in the control’s world where (y) 

terms are known more widely. 
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(6.64) 

 

All notations are matrix-based and therefore the system is just a second order system and, 

as with a normal second order system, we can analyze the system even further as shown 

in (6.65). We will move the D matrix using its inverse into the right-hand side and 

leaving the double integrator on the left-hand side; let the error function be equal to the 

rest of the system. This would make it possible to control the system using ADRC. 
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For a clearer understanding of the system, the process will split the system from a 

multi input multi output system (MIMO) into two systems. These systems will be 

controlled in an individual fashion to make the control easier to observe and analyze. The 

two systems will be linked with feed back from the position of the second arm to obtain a 

fully dynamic control system. We can split the previous equation into two equations, as 

shown below in (6.66); also, the control output is defined in the same equation to 

eliminate any error from the system. 
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       then  

       the model is represented as shown below: 
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The total purpose of the control system is to drive the system to the desired control 

pattern; in this case, we want to eliminate all the disturbances and all the undefined 

variables and states to obtain a controlled system. 

6.1 State Observer Design  

Now we can set up the ESO for the model; the ESO plant can be defined as follows: 
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 (6.67) 

L is the gain vector defined such that the extended state observer eigenvector is in line 

with 0ω− as shown below.  



34 

















=
3

0

2

0

0

3

3

ω

ω

ω

L  
(6.67) 

cont. 

This is the special power of ADRC: to make the tuning parameter associated with 

only one tuning parameter, which makes it easy and simple to tune and to control. The 

control law shown before can be defined as bx /)ˆ( 30 −= ττ , making the system a double 

integrator system ( 0τ=y&& ).  This system can easily be controlled using a PD controller. 

210
ˆ)ˆ( xkxrk dp −−=τ  Where (kp) and (kd) are chosen to be ( cc ωω 2,2 ), respectively, to 

place all the closed loop poles at cω−
. By doing so, we can reduce the tuning parameters 

to one. 

To setup the ESO for the two-link manipulator, we will treat the system as two sets 

of systems controlled separately using two ESOs and using the output of the second 

position from the encoder as a relation factor into calculating the term (a). 

The ESO for the first arm could be represented as follows: 
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And the D matrix is zero. 
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For the second Arm, the ESO is represented in the same fashion as shown below: 
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Again, the D matrix is zero. Using the PD controller for both Arms, we setup the ADRC 

control to control the RP manipulator to obtain the desired pattern. We chose 0
2

1
ωω =c  

so we can tune only one parameter. 

After defining the Active Disturbance Rejection Control system and the 

Mathematical Model in the form of the Euler – Lagrange equation, we can setup a 

simulation analysis where the system will be tested under various simulated situations. 

This will demonstrate how robust and accurate the ADRC technology is in keeping the 

system under control. The simulations throughout the next chapter shall be done with the 

same bandwidth for each section for consistency.   
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CHAPTER VII 

SIMULATIONS 

 

7.1    Simulation without disturbances or noise 

 

We set up the system in Simulink model as shown below: 

 

Figure 2. System Setup in Simulink 

 

We then run the system using different parameters for tuning purposes at different 

oω  values as shown in the following graphs. 
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. 

Figure 3.  Output Tracking at a Frequency of 100 without Feed Forward 

1  

Figure 4. Output Tracking at a Frequency of 200 No Feed Forward 
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Figure 5. Output Tracking at a Frequency of 300 No Feed Forward 

 

Figure 6. Output Tracking at a Frequency of 400 No Feed Forward 
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Figure 7. Output Tracking at a Frequency of 500 No Feed Forward 

 

Figure 8. Output Tracking at a Frequency of 1000 No Feed Forward 
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Figure 9. Output Tracking at a Frequency of 10000 No Feed Forward 

 

7.2 Simulations with Feed Forward 

After running the simulation using Simulink without any type of feed forward, we 

can see that the system works well but could be tuned with less control if we used the 

feed forward. In any system, we can add the desired output according to our knowledge 

about the system.  In the second part of this simulation we will add the feed forward to 

the system and observe the differences between the control with feed forward and the 

control without feed forward. 
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We set up the system as follows: 

 

Figure 10. System Setup with Feed Forward 

 

Figure 11. Output Tracking at a Frequency of 100 with Feed Forward 
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Figure 12. Output Tracking at a Frequency of 200 with Feed Forward 

 

Figure 13. Output Tracking at a Frequency of 300 with Feed Forward 
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Figure 14. Output Tracking at a Frequency of 400 with Feed Forward 

 

Figure 15. Output Tracking at a Frequency of 500 with Feed Forward 
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Figure 16. Output Tracking at a Frequency of 1000 with Feed Forward 

 

Figure 17. Output Tracking at a Frequency of 10000 with Feed Forward 
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After adding the feed forward to the system, we can see that the output tracks the 

desired pattern much faster, as we expected, thus giving the system more robustness and 

accuracy. 

 

7.3 Adding Disturbance to the System  

To simulate any type of external disturbance that the system could encounter, in this 

section we will add a sinusoidal disturbance to the system to throw off the balance of the 

ideal system and help prove the robustness of the ADRC control. 

 

Figure 18. System Setup with Sinusoidal Disturbance 

We now run the system under the same tuning parameters used in both prior 

experiments. 
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Figure 19. Output Tracking at a Frequency of 100 with Disturbance 

 

Figure 20. Output Tracking at a Frequency of 200 with Disturbance 
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Figure 21. Output Tracking at a Frequency of 300 with Disturbance 

 

Figure 22. Output Tracking at a Frequency of 400 with Disturbance 
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Figure 23. Output Tracking at a Frequency of 500 with Disturbance 

 

Figure 24. Output Tracking at a Frequency of 1000 with Disturbance 
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Figure 25. Output Tracking at a Frequency of 100000 with Disturbance 

 

7.4 Adding Noise to the System Simulation of Sensor Noise 

These different simulations do not take into consideration any of the sensor noise 

that could be inserted from the encoder sensor. To account for extraneous noise, we will 

add noise to the system and simulate it again at all the same frequencies, and any other 

frequency needed to obtain the best result as shown below: 
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Figure 26. System Setup with Additional Noise 

 

 

Figure 27. Output Tracking at a Frequency of 100 with Noise 
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Figure 28. Output Tracking at a Frequency of 200 with Noise 

 

Figure 29. Output Tracking at a Frequency of 300 with Noise 
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Figure 30. Output Tracking at a Frequency of 400 with Noise 

 

Figure 31. Output Tracking at a Frequency of 500 with Noise 
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Figure 32. Output Tracking at a Frequency of 1000 with Noise 

 

Figure 33. Output Tracking at a Frequency of 1000 with Noise 
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7.5 Robust-Passivity Based Control Simulation 

In this section of the simulation, the RP manipulator was controlled using a 

previously studied control system.  A robust-passivity based control of an RP system was 

studied and simulated in previous studies of robotic control.  The simulation Simulink file 

is demonstrated below (Figure 34).  

 

Figure 34: Robust-Passivity Based Control of an RP manipulator  

 

The results of the simulation shown below represent the end-effector position 

tracking (Figure 35). The system was reproduced at an optimized gain of 600 rad/sec. It 

is worth noting that the same sensor noise that was used in section 7.4 is used in this in 

this simulation.  The end-effector position tracking is shown in full scale (Figure 35); 

nevertheless, a closer look was obtained using the zoom feature of the graph (Figure 36).  
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Figure 35: Using Robust-Passivity Based Control with noise 

 

 
Figure 36: Robust-Passivity Based control Zoom in with noise  
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CHAPTER VIII 

EVALUATION OF THE SIMULATION RESULTS 

8.1 Evaluation of the Ideal System Simulation 

After running the ideal system under different bandwidth frequencies, we can 

analyze the end-effector at both low and high frequencies. If we take a look at the system 

ran under 100 rad/sec frequency (Figure2), we can see that the output profile does not 

follow desired input profile very well. As the frequency is increased, the performance of 

the tracking improves dramatically and it is perfect at a frequency of 10000 rad/sec 

(Figure 9) where the tracking profile of the end-effector position tracked very well with 

no error.  

8.2 Evaluation of the System after Adding Feed Forward 

To increase the accuracy of tracking the profile, we could add the feed forward 

feature into the ideal system to improve tracking at low frequencies and to reduce the 

bandwidth needed to obtain a perfect system. After running the simulation with feed 

forward at a frequency of 100 rad/sec (Figure 11), the system was much improved with 

the feed forward and the system became perfect at the frequency of 500 rad/sec (Figure 

15). By adding the feed forward to the system, the tracking became much more accurate 

at lower frequencies and reduced the need of large bandwidth to control the system.  
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8.3 Evaluation of the System after Adding External & Internal Disturbances 

After the analysis of the system in the ideal world where disturbances don’t exist, 

the system must be evaluated in the real world applications; in such an environment it is 

unavoidable to have external and internal disturbances. A sinusoidal external disturbance 

was added to the system as well as a few changes to the internal parameters of the 

mathematical model and to the internal geometry of the system. After the addition of the 

disturbances to the model the simulation was run again with the same bandwidth that we 

ran in the ideal system analysis; as a result the system was out of control at the frequency 

of 100 rad/sec (Figure 19). However, as we gradually increased the frequency, the system 

regained control and at the frequency of 500 the system was fully under control with a 

minimal amount of error.  

This simulation showed the abilities of ADRC to control the system and to keep it in 

control under large changes to the system; furthermore, it showed immunity to any 

external disturbance. One of the features of ADRC is its capability of rejecting any kind 

of disturbance, internal or external. The changes of link weight, link height, and any 

changes to the function were compensated for without any problem.  

8.4 Evaluation of the System after Introducing Sensor Noise 

To complete the analysis of the real world system, we must add sensor noise to 

show the effects of output noise on the control system. To accomplish this, a white noise 

was added to the previous system simulation and the system was run with the same 

bandwidth used before. At the lower frequency levels the system lost control again, 

showing the effects of real world analysis on the system. At the frequency of 100 rad/sec 

the end-effector position couldn’t follow the desired input tracking.  
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As the bandwidth was increased the system showed much improvements, but the 

system went out of control again at a large bandwidth. This means that there is a cutoff 

frequency that was developed during this simulation. If we take a closer look at the 1000 

frequency, we can see that the noise in the encoder has distorted the output, which tells us 

that we need to find the correct tuning parameter below the cutoff frequency of 1000. 

This simulation gives us a better understanding of the real world system where too much 

control could cause the system to go out of control due to the noise factor in the sensors 

as shown in the following figures:  

 

Figure 37. Zoom in of the Output Tracking at a Frequency of 1000 with Noise 
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Figure 38. Zoom in of the Output Tracking at a Frequency of 10000 with Noise 

 

Figure 39. Output Tracking at a Frequency of 600 with Noise 
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Figure 40. Zoom in of the Output Tracking at a Frequency of 600 with Noise 

As we see in the graphs above, the optimal control frequency is below 1000 and 

above 500.  600 is an appropriate frequency to compensate between the disturbance and 

the noise. Applying too little control would not give an accurate path; applying too much 

control would cause distortion to the path.  This gives us a control window to obtain the 

best control for the system in the situation. We should note that this case of extreme noise 

normally would not occur unless the sensor was going bad.  

 

8.5 Evaluation of a Robust-Passivity Based control with Sensor Noise 

After simulating the Robust-Passivity Based control with sensor noise using the 

same noise ratio as in the previous system; the end-effector position was plotted (Figures 

35). A closer look was obtained using the zoom-in feature in Matlab (Figure 36); in 

which the actual path is colored in blue and the desired path is in green.  The actual path 



61 

is not very accurate and the tracing was all over the place. This indicates that the system 

was not in total control due to the sensor noise. Thus, the Robust-Passivity Based control 

was not able to reject all the sensor noise and obtain a controlled system.   

8.6 Active Disturbance Rejection Control vs. Robust-Passivity Based Control 

When comparing Figure 36 and 40 -in which the amount of noise and the 

bandwidth are the same- one can see that Figure 40 is under control and is well tracing 

the desired path, whereas in Figure 36 the system is not totally under control and the 

tracking is all over the place. Figure 36 represents the Robust-Passivity Based Control, 

while Figure 40 represents Active Disturbance Rejection Control. Based on this analysis; 

one can demonstrate that ADRC is a superior technology to Robust-Passivity Based 

Control. This suggests that ADRC is a new and revolutionary control system that could 

be superior over the Robust-Passivity Based Control.  
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CHAPTER IX 

CONCLUDING REMARKS 

ADRC is a new, upcoming technology that is very promising.  It has replaced PID 

control in many applications, but in the industrial world it is very difficult to break free 

from old habits and to replace a decent working control system with a new and 

nonconventional control solution.  However, in the robust world of robotics it is always 

possible to change a control system because accuracy and repeatability are the golden 

rules of the system; the smallest malfunction could cause significant damage in material 

as well as humans nearby. 

In this thesis and in my simulations I have proven that ADRC is capable of 

providing both accuracy and repeatability with a small marginal error that could be tuned 

to perfection. During my evaluations of the different possibilities of disturbances and 

noise, Active Disturbance Rejection Control showed very good capabilities of ignoring 

any noise and disturbances and keeping the system under control at all times in the 

correct tuning bandwidth.  
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The control system was able to maintain control under internal system changes as 

well; where ADRC does not care about the geometry of the system or the accuracy of the 

mathematical model, thus giving the world of control flexibility and the ability to obtain a 

controlled system of a model that is missing some of its model features. This capability 

could be very useful in a situation where we want to use a robotic arm in a different 

planet and the surrounding matter is not known exactly or is wrongly estimated. 

During this research, the mathematical model and the simulation of the system were 

developed; nevertheless no real demonstration was done on an actual robotic 

manipulator. Since no studies were done on an actual physical system; only the end- 

effector tracking was studied and the stability of the system was not tested.  Therefore, 

these topics could be part of a further study or a future research project.  However, such a 

study could be very costly in terms of equipments and tools.  

During the simulation, a comparison was developed between Active Disturbance 

Rejection Control (ADRC) and Robust-Passivity Based Control System.  This study 

concluded that ADRC can be more reliable system that could revolutionize the future and 

the world as we know it today.  ADRC is uniquely designed in such a way that no system 

has yet been proven more powerful. Nevertheless, the traditional system as we know is 

very hard to replace due to its proven effectiveness and low cost.  

In a simple cylindrical robotic arm the geometry is well known and easy to make a 

control system for such a robot. Nevertheless, the robotic world has advanced to a much 

more complicated geometries that make it harder to develop a sufficient mathematical 

model for the control system; therefore making it difficult to obtain a good control system 

that would have high levels of accuracy and reliability. ADRC has proven the ability to 
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disregard the geometry factor of the robot and even to disregard any disturbance; 

therefore, ADRC was successfully shown to be useful in making a control system that 

can be very accurate and reliable regardless of what the math model looks like. The RP 

manipulator study was a demonstration of the power of ADRC. The capabilities of such a 

system do not stop at a two-link manipulator but could be expanded into multi-link 

manipulators that could be studied in further doctorial level. 
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APPENDIX 

 

A.  Derivation of Two-Link Manipulator State 

The two-link manipulator State Derivative is defined as shown below: 
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The (a) term calculation is defined as shown below: 

function u=a_cal(q2,u0) 

m1=11.436; m2=2.9613; a1=1.0244; a2=0.49416; g=9.8; I1z=12.972; I2y=21.411; 

u=(1/4*m1*a1^2+m2*q2^2+m2*q2*a2+1/4*m2*a1^2+I1z+I2y)*u0; 

The forward kinematics of the two-link manipulator is shown below: 

function end_eff_pos=forward_kin_2link(q) 

Two-link planar manipulator: 

Calculate the position of the origin of the end-effector 

a1=0.6; a2=0.4; %using nominal quantities 

x=((a1/2)+q(2)+(a2/2))*cos(q(1)); 
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y=((a1/2)+q(2)+(a2/2))*sin(q(1)); 

end_eff_pos=[x;y]; 
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