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General error-based active disturbance rejection control for swift industrial
implementations
R. Madonski     S. Shao   H. Zhang   Z. Gao     J. Yang   S. Li

           

         
                                 
    
                     
   
                          
               
   

A B S T R A C T

In this article, a typical 2DOF active disturbance rejection control (ADRC) design is restructured into a 1DOF
form, thus making it compatible with standard industrial control function blocks and enhancing its market
competitiveness. This methodology integrates the previously separated components, such as the profile generator,
state observer, feedback controller, feedforward terms, and disturbance rejection, into one unified structure. In
doing so, certain ADRC components can be made simpler (or even obsolete) without sacrificing the nominal
control performance, which further simplifies the control synthesis and tuning. A generalized version of the error-
driven design is adopted and rigorously proved here using the singular perturbation theory. The experimental
verification of the utilized approach is carried out using a disturbed DC–DC buck converter.

1. Introduction

For active disturbance rejection control (ADRC Gao, 2006; Han,
2009), which is emerging as a viable general solution for industrial
control, a natural question arises about optimization of its practical
implementation. With a track record of successful deployments, includ-
ing power (Lotfi, Zomorodi, & Landers, 2016; Wu, Sun, & Lee, 2017),
motion (Chu, Sun, Wu, & Sepehri, 2018; Cortes-Romero, Jimenez-
Triana, Coral-Enriquez, & Sira-Ramirez, 2017; Michalek & Kielczewski,
2017), and process control (Madonski, Nowicki, & Herman, 2014;
Zheng, Chen, & Gao, 2009), the aspiration now is to make ADRC
schemes even simpler in terms of design and tuning, thus making
them more competitive in the industrial control market. By comparison,
most of the industrial control algorithms, whether already incorporated
in programmable logic controllers (PLCs) or available as standalone
solutions, are implemented as single blocks in one degree-of-freedom
(1DOF) error-driven forms. Such design, most likely resulting from the
omnipresent use of PID, favors practitioners, since its compact design
eases implementation and commission as well as simplifies training of
the control personnel.

On the other hand, in the majority of existing ADRC-based tech-
niques, a 2DOF design is commonly adopted, in which the output-
based inner-loop extracts the lumped information about the uncer-
tain/unmodeled parts of the dynamics (denoted as total disturbance)
by means of an extended state observer (ESO) and on-line cancels
their effect on the controlled signal, while the outer-loop governs the
remaining simplified system. Although such approach is often desired

in control research, as it allows to design, tune, and analyze controller
and observer parts separately, it may not be appealing for control
practitioners, as it requires implementation and commission of several,
interconnected structures. There have been studies focused on seamless
integration of already existing 1DOF controllers (mostly PID-type) with
the ADRC methodology (e.g. Herbst, 2016; Madonski, Gao, & Lakomy,
2015; Madonski, Nowicki, & Herman, 2016; Nowak et al., 2018; Xue,
Madonski, Lakomy, Gao, & Huang, 2017). It was shown that such
transition is possible and beneficial, but may be relatively troublesome
for first-time users, as they may not be familiar with the disturbance
rejection-based control design.

Such dissonance in design methodologies preemptively creates a
barrier for ADRC, which slows down its industrial expansion. In order to
eliminate it, a methodology of constructing a 1DOF ADRC solution can
be used. Typical elements seen in ADRC schemes (like profile generator,
state observer, feedforward and feedback controller) can be encapsu-
lated into a single block, representing solely the relation between the
tracking error and the control signal. It is made possible by expressing
the control objective, not in the typical output-based form, but in the
error-based form, a procedure that has been independently developed
in Michalek (2016) and Zhang (2017). The introduced error-driven
form not only gives the ability to restructure the typical ADRC into
commonly seen industrial forms, but also enables it to be implemented
in specialized embedded settings, in which only specific 1DOF forms of
governors can be utilized — for example see Fig. 1.



                                                                       

Fig. 1. Diagram of a digital compensator in PWM control scheme in TI-UCD9224
chip, which only accepts controllers implemented as three-pole three-zero transfer func-
tions (Using the UCD9224EVM-464 - user’s guide, 2017).

The overall idea is to make the implementation of ADRC resembling
that of currently used industrial solutions (like PID), hence making it
easier to deploy in real applications or to swiftly replace the existing
controller. Desirably, the goal is to make the single-block ADRC design
a ‘‘plug&play’’ industrial solution, thus allowing its wider utilization in
practice. In this work, a linearized and parametrized version of ADRC, as
seen in Gao (2003), is considered as a nominal case of an output-based
ADRC, from which the error-based version will be derived. Its choice
is justified by practical convenience, but supported with numerous
works, in which this simplified design was successful in governing even
complex, nonlinear systems (Godbole, Kolhe, & Talole, 2013; Guerra,
Arteaga-Perez, Gutierrez-Giles, & Maya-Ortiz, 2016; Madonski, Kordasz,
& Sauer, 2014; Ramirez-Neria, Sira-Ramirez, Garrido-Moctezuma, &
Luviano-Juarez, 2014; Wang, Li, Wang, & Li, 2017).

An additional practical advantage of expressing the ADRC in error-
based form is that in cases of trajectory tracking with unavailable ref-
erence time-derivatives (through measurement or a’priori knowledge),
these unknown signals can be treated as part of the total disturbance
and their effects can be estimated by the ESO (Michalek, 2016; Zhang,
2017). Such approach makes tools like differentiators obsolete, thus
greatly simplifying the control design procedure, especially for high-
order systems. It seems that such methodology corresponds to the very
spirit of the ADRC paradigm, which makes uncertainty consideration
a priority (Gao, 2014). This particular feature of ADRC has been
previously used (e.g. Dai, Yang, Wang, & Li, 2017; Xue & Huang, 2015,
2018), here however, its comprehensive analysis is given. This, together
with conducted theoretical, numerical, and experimental validation, is
considered to be the main contribution of this work.

The rest of the article is organized as follows. First, some illustrative
examples of the error-based ADRC scheme are shown in Section 2. A
numerical comparison is also performed here in order to highlight the
properties of both the typical output-based and the considered error-
based ADRC designs. Next section presents the generalized methodology
for developing the 1DOF compact ADRC design (with its rigorous the-
oretical analysis in the Appendix). In Section 4, hardware verification
of the proposed compact scheme is carried out for a challenging control
scenario based on reference voltage trajectory tracking in a buck power
converter. Section 5 concludes the work.

2. Error-based ADRC design: specific case

The idea of 1DOF ADRC in error-based form is shown first through a
case study using a generic second order (𝑛 = 2) plant model, which can
represent a wide range of physical systems with (practically) acceptable
accuracy (Fliess & Join, 2013). The control objective is to make the sys-
tem output 𝑦(𝑡) ∈ R track a reference trajectory 𝑟(𝑡) ∈ R by manipulating
the input signal 𝑢(𝑡) ∈ R. The goal is to globally minimize the trajectory
tracking error (𝑒(𝑡) ≜ 𝑟(𝑡) − 𝑦(𝑡)) in the presence of unknown system

dynamics and unpredictable external disturbance. Both system input
and output signals are available for controller synthesis. Additionally,
𝑟(𝑡) satisfies following assumptions:

A1. it is bounded and only known at current time instant 𝑡,
A2. its consecutive reference time-derivatives (�̇�, �̈�, �⃛�) exist for all 𝑡 ≥ 0

and are bounded,
A3. it is not known in advance, nor its consecutive reference time-

derivatives.1

2.1. Illustrative example

A generic control-affine second order system model is given as:

𝛹 (2) ∶ �̈� = 𝑓 + 𝑏0𝑢, (1)

where 𝑏0 ≠ 0 is the system uncertain input gain and 𝑓 ∈ R represents
a lumped combination of unknown dynamic terms, resulting from both
internal and external disturbances. Simple modification of (1) allows to
express the same system as:

𝛹 (2) ∶ �̈� = 𝑓 + 𝑏0𝑢 + �̂�0𝑢 − �̂�0𝑢,= 𝑓 + �̂�0𝑢, (2)

where �̂�0 ≠ 0 is a rough approximation of 𝑏0 and 𝑓 = 𝑓 + (𝑏0 − �̂�0)𝑢 now
also includes the uncertainty related to the input gain, hence it will be
referred to as the system total disturbance (Gao, 2014).

Instead of typical output-based approach of choosing state variables
as 𝒙 = [𝑥1 𝑥2 𝑥3] = [𝑦 �̇� 𝑓 ], seen in typical ADRC designs for second
order plant models, here the state variables are chosen by analyzing the
tracking error definition:

𝑒 ≜ 𝑟 − 𝑦 = 𝑥1,

�̇� ≜ �̇� − �̇� = �̇�1 = 𝑥2,

𝛴(2) ∶ 𝑒 ≜ �̈� − �̈� = �̈�1 = �̇�2
(2)
= �̈� − 𝑓

⏟⏟⏟
𝑓∗

−�̂�0𝑢 = 𝑥3 − �̂�0𝑢. (3)

As seen above, the goal is to choose a set of phase state variables that
would allow to incorporate the otherwise unavailable term r̈ as part of
the extended state variable, hence treat it as part of the total disturbance
(𝑥3 = 𝑓 ∗ ∈ R), to be estimated and compensated in the disturbance
rejection loop (designed later).

Remark 1. By reformulating the control task in error-based form, the
objective now is to stabilize the new output signal (𝑒) at zero with the
use of the same control input (𝑢), despite the influence of matched total
disturbance (𝑓 ∗).

The system (1) can thus be written in alternative coordinates 𝒙 =
[𝑥1 𝑥2 𝑥3] = [𝑒 �̇� 𝑓 ∗] in virtually extended form as:

𝛴(3) ∶

⎧

⎪

⎨

⎪

⎩

�̇�1 = 𝑥2,
�̇�2 = 𝑥3 − �̂�0𝑢,
�̇�3 = ̇𝑓 ∗,

(4)

where ̇𝑓 ∗ = �⃛� − ̇𝑓 . It is assumed here, and throughout this work, that
𝑓 ∗ is time-differentiable and ̇𝑓 ∗ is bounded.2 For the above system
expressed in error-based form, a corresponding (𝑛+𝑚)th order ESO, for
the considered plant model order 𝑛 = 2 and assumed polynomial-type
disturbance model order 𝑚 = 1, can be proposed as:

�̂�(3) ∶

⎧

⎪

⎨

⎪

⎩

�̇�1 = 𝑧2 + 𝑙1𝜖,
�̇�2 = 𝑧3 − �̂�0𝑢 + 𝑙2𝜖,
�̇�3 = 𝑙3𝜖,

aim
⟹

⎧

⎪

⎨

⎪

⎩

𝑧1 → 𝑥1,
𝑧2 → 𝑥2,
𝑧3 → 𝑥3,

(5)

1 This emulates a practical scenario in which the reference trajectory results
from a current action of an outer control system (e.g. cascade control) or from
a current interaction with a different system (e.g. multi-subsystems plant).

2 The validity of this assumption in both theoretical and practical considera-
tions has been studied extensively, for example, in Shao and Gao (2017) and Xue
and Huang (2015, 2018).

   



                                                                       

where 𝒛 = [𝑧1 𝑧2 𝑧3] = [�̂�1 �̂�2 �̂�3] is the vector of state variables estimates,
and 𝜖 ≜ 𝑒−𝑧1 ≡ 𝑒− 𝑒 is the observer estimation error. The main purpose
of this observer is to timely and precisely reconstruct the information
about the acting total disturbance (𝑧3 → 𝑓 ∗), which is essential for its
cancellations. Proper selection of gains {𝑙1, 𝑙2, 𝑙3} > 0 using the notion
of observer bandwidth (𝜔𝑜 > 0) will be discussed later.

The application of control action in form of: 𝑢 ≜
(

𝑢0 + 𝑓 ∗) ∕�̂�0 to the
system model (3), would reduce its dynamics to an idealized integral
chain 𝑒 = −𝑢0. In practice however, one would have to be satisfied with
either:

𝑢 =
𝑢0 + 𝑓 ∗

�̂�0
=

𝑘0𝑧1 + 𝑘1𝑧2 + 𝑧3
�̂�0

or 𝑢 =
𝑢0 + 𝑓 ∗

�̂�0
=

𝑘0𝑥1 + 𝑘1𝑥2 + 𝑧3
�̂�0

,

(6)

which choice by the control designer depends on the noisiness of the
tracking error (𝑒) and/or its derivative (�̇�). Proper selection of gains
{𝑘0, 𝑘1} > 0 using the notion of controller bandwidth (𝜔𝑐 > 0) will be
discussed later.

Remark 2. The above control actions can be seen as special cases of
conventional output-based ADRC with additional feed-forward, but with
the unknown terms estimated here on-line by the observer.

Combining left-hand side proposition from (6) with (5) gives:

�̇�1 = 𝑧2 + 𝑙1(𝑒 − 𝑧1) = −𝑙1𝑧1 + 𝑧2 + 𝑙1𝑒,

�̇�2 = 𝑧3 − (𝑘0𝑧1 + 𝑘1𝑧2 + 𝑧3) + 𝑙2(𝑒 − 𝑧1) = (−𝑘0 − 𝑙2)𝑧1 − 𝑘1𝑧2 + 𝑙2𝑒, (7)
�̇�3 = 𝑙3(𝑒 − 𝑧1) = −𝑙3𝑧1 + 𝑙3𝑒,

which in state-space can be expressed as:

�̇� = 𝑨𝒛 + 𝒍𝑒, where: 𝒛 =
⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

,𝑨 =
⎡

⎢

⎢

⎣

−𝑙1 1 0
−𝑙2 − 𝑘0 −𝑘1 0

−𝑙3 0 0

⎤

⎥

⎥

⎦

, 𝒍 =
⎡

⎢

⎢

⎣

𝑙1
𝑙2
𝑙3

⎤

⎥

⎥

⎦

. (8)

The transfer functions 𝑇1(𝑠) (from 𝐸(𝑠) to 𝑍1(𝑠)), 𝑇2(𝑠) (from 𝐸(𝑠) to
𝑍2(𝑠)), and 𝑇3(𝑠) (from 𝐸(𝑠) to 𝑍3(𝑠)) can be calculated as:

𝑻 = 𝑪(𝑠𝑰 −𝑨)−1𝒍, where: 𝑻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑇1(𝑠)

𝑇2(𝑠)

𝑇3(𝑠)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑍1(𝑠)
𝐸(𝑠)
𝑍2(𝑠)
𝐸(𝑠)
𝑍3(𝑠)
𝐸(𝑠)

⎤

⎥

⎥

⎥

⎥

⎦

,𝑪 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (9)

which allows to write the entire ADRC structure for second order
system (1) in a single, error-driven, compact transfer function:

𝐺ADRC(𝑠) =
𝑈 (𝑠)
𝐸(𝑠)

=
𝑘0𝑇1(𝑠) + 𝑘1𝑇2(𝑠) + 𝑇3(𝑠)

�̂�0

=
(𝑘0𝑙1 + 𝑘1𝑙2 + 𝑙3)𝑠2 + (𝑘0𝑙2 + 𝑘1𝑙3)𝑠 + 𝑘0𝑙3

�̂�0
[

𝑠2 + (𝑙1 + 𝑘1)𝑠 + 𝑙1𝑘1 + 𝑙2 + 𝑘0
]

𝑠
. (10)

2.2. Illustrative example (special case)

From analyzing the example in Section 2.1, it can be notices that in
the considered compact version of ADRC, the desired error dynamics
for the closed-loop system can be prescribed in the ESO already during
its design process, thus eliminating a need for constructing a dedicated
outer-loop feedback controller.3

In order to do that, the exemplary second order system model in
error-based form (3) can be artificially supplemented with term 𝜂 =
𝑘0𝑒 + 𝑘1�̇�, which gives:

𝑒 = �̈� − 𝑓 − �̂�0𝑢 + (𝜂 − 𝜂), (11)

3 Such methodology corresponds to the proposition seen in Michalek (2016).
It has been advocated there, however, that since both reference (𝑟) and output
(𝑦) are often available in practice at current time, it is thus reasonable to keep
proportional action 𝑢0 = 𝑘0𝑒 = 𝑘0(𝑟 − 𝑦) in order to robustify the control design
in the presence of estimation errors, inevitable in real applications.

Table 1
Comparison between the conventional 2DOF output- and the considered 1DOF error-based
ADRC for the considered exemplary second order system.

Criteria output-based ADRC error-based ADRC

Objective interpretation traj. follow. (𝑦 → 𝑟) zero stab. (|𝑒| → 0)
Control form 𝑢(𝑒, 𝑧2 , 𝑧3 , �̇�, �̈�) 𝑢(𝑒, 𝑧3)
System/Observer form 𝒙 = [𝑦 �̇� 𝑓 ∗], �̇�(𝒛, 𝑢, 𝑦) 𝒙 = [𝑒 �̇� 𝑓 ∗], �̇�(𝒛, 𝑢, 𝑒)
Total disturbance form 𝑓 ∗(𝑦, �̇�, 𝑢) 𝑓 ∗(𝑦, �̇�, �̇�, �̈�, 𝑢)
Extra assumptions �̇�, �̈� available –
Tuning parameters 𝜔𝑐 , 𝜔𝑜 , �̂�0 𝜔𝑐 , 𝜔𝑜 , �̂�0
Assumed models 𝑛 = 2, 𝑚 = 1 𝑛 = 2, 𝑚 = 1

�̄�(2) ∶ 𝑘0𝑒 + 𝑘1�̇� + 𝑒 = �̈� − 𝑓 + 𝑘0𝑒 + 𝑘1�̇�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑓∗

−�̂�0𝑢. (12)

The above system can be written with same set of coordinates 𝒙 =
[𝑥1 𝑥2 𝑥3] = [𝑒 �̇� 𝑓 ∗] as (cf.(4)):

�̄�(3) ∶

⎧

⎪

⎨

⎪

⎩

�̇�1 = 𝑥2,
�̇�2 = 𝑥3 − 𝑘0𝑥1 − 𝑘1𝑥2 − �̂�0𝑢,
�̇�3 = ̇𝑓 ∗,

(13)

for which the linear ESO takes the form (cf.(5)):

̂̄𝛴(3) ∶

⎧

⎪

⎨

⎪

⎩

�̇�1 = 𝑧2 + 𝑙1𝜖,
�̇�2 = 𝑧3 − 𝑘0𝑧1 − 𝑘1𝑧2 − �̂�0𝑢 + 𝑙2𝜖,
�̇�3 = 𝑙3𝜖,

aim
⟹

⎧

⎪

⎨

⎪

⎩

𝑧1 → 𝑥1,
𝑧2 → 𝑥2,
𝑧3 → 𝑥3.

(14)

For the modified system model (12), the control signal can be pro-
posed simply as disturbance rejection action 𝑢 = 𝑧3∕�̂�0, but when applied
to (12) gives the same desired closed-loop dynamics 𝑒+𝑘1�̇�+𝑘0𝑒 = 0, as
seen in the previous example. It means that this case is (theoretically)
analogous to the one seen in Section 2.1, and the transition to the
compact ADRC would result in the same transfer function 𝐺ADRC(𝑠) seen
in (10), but with different practical ramifications.

2.3. Comparison analysis

It is important now to show qualitatively and quantitatively the
differences between the typical output-based ADRC and the considered
error-based compact version. Table 1 compares two approaches using
several qualitative criteria. From the table, one can notice the disparity
in assumptions about the availability of certain signals for control
synthesis. The quantitative comparison, on the other hand, is performed
here in both time and frequency domains in Matlab/Simulink using a
second order system 𝐺(𝑠) = 𝑏∕(𝑠2 + 𝑎1𝑠 + 𝑎2), with 𝑎1 = 8, 𝑎2 = 15,
and 𝑏 = 1.

Time-domain analysis. Three disturbance rejection control schemes are
quantitatively compared in time-domain, namely output-based ADRC,
output-based ADRC with extra feed-forward (FF) term,4 and the compact
error-based ADRC. The derivation of the latter is done as shown in
Section 2.1. Tuning parameters are set the same for all three cases:
�̂�0 = 1, 𝜔𝑐 = 40 (controller bandwidth), and 𝜔𝑜 = 4𝜔𝑐 (observer
bandwidth). The ability to recover performance is tested by applying an
input-additive step disturbance at 𝑡 = 0.6 s. The results of simulations
are collectively presented in Fig. 2. From the figures, one can notice
that the error-based ADRC has similar performance in terms of error
minimization to the output-based ADRC with FF (which coincides with
Remark 2). It was expected that the output-based ADRC without feed-
forward would have the worst performance out of the tested cases,
since it is not supplemented with any additional information that could
potentially unburden the ESO. Interestingly enough, all three cases have
similar performance in case of disturbance rejection.

4 Since it is assumed (for practical reasons) that the time derivatives of the
reference signal (�̇�, �̈�) are not available for controller synthesis, the needed terms
are computed on-line with two tracking differentiators (TD) (Han, 2009), based
on the known reference signal (𝑟).

   



                                                                       

Fig. 2. Time-domain quantitative comparison of different ADRC designs.

Fig. 3. Frequency-domain analysis of influence of design parameters in error-based ADRC.

Frequency-domain analysis. A loop transfer function of the error-based
compact ADRC controller (10) and the considered second order system
𝐺(𝑠) can be derived as:

𝐿𝑜(𝑠) =
𝑏
�̂�0

⋅
(𝑘0𝑙1 + 𝑘1𝑙2 + 𝑙3)𝑠2 + (𝑘0𝑙2 + 𝑘1𝑙3)𝑠 + 𝑘0𝑙3

[

𝑠2 + (𝑙1 + 𝑘1)𝑠 + 𝑙1𝑘1 + 𝑙2 + 𝑘0
]

𝑠
. (15)

A Bode analysis is conducted for the above system in order to show
the influence of design parameters in the error-based compact ADRC.
The results are depicted in Fig. 3. It can be noted that the relations of
the design parameters on the behavior of the closed-loop system are
inherited from the conventional output-based ADRC (as seen in Gao,
2003). Same crucial importance of the input gain (�̂�0) can be spotted,
since it scales the entire control action thus significantly influencing the
tracking quality, as it evident from (6), (10), and (15).

2.4. Comments

Until now, following observations regarding the 1DOF compact
error-based form ADRC can be made.

In contrary to the typical output-based design, the error-based
ADRC does not rely on the availability of target derivatives (�̇�, �̈�,…)
for controller synthesis, which has beneficial practical implications.
Target derivatives would have to be otherwise measured, calculated
(if reference 𝑟 is known analytically in advance), or reconstructed in
real-time with a differentiator based on the known reference signal
(𝑟). Each one is problematic in engineering practice and the associated
problems complicate further if one considers governing high-order
systems and/or significantly noisy measurements. In the error-driven
ADRC, these signals are conveniently estimated by the ESO (as part of
the total disturbance).

The error-driven ADRC compact form combines the advantages of
two types of designs, as it is illustratively depicted in Fig. 4. One is the

   



                                                                       

Fig. 4. Illustrative justification of using 1DOF error-based compact ADRC design.

typical 1DOF industrial error-driven design (popularized by PID) and
the other is the 2DOF output-based ADRC (with two distinctive loops for
disturbance rejection and resultant system control). It should be noted,
however, that a compromise is made here between flexibility (offered
by the output-based design, in which typical elements like the profile
generator, observer, and controller can be designed, tuned, and tested
separately) and simplicity (offered by the error-based design, in which
the entire ADRC is encapsulated in a single block). As this work focuses
on potential deployments in industrial settings, the latter is of greater
interest here.

3. Error-based ADRC design: general case

3.1. Plant modeling

Based on the previous examples of the error-based ADRC, this
methodology is generalized here and a class of systems for which it can
be applied to is established. The derivation is based on a slightly mod-
ified version of a generic 𝑛th order SISO system model from Michalek
(2016). It uses both time-domain and 𝑠-domain, which is convenient in
this work as the goal is to derive a general single transfer function ADRC
solution5:

𝛹 (𝑛) ∶ 𝐴(𝑠)[𝑦] + 𝑓
(

𝑡, 𝑦, �̇�, �̈�, 𝑦(3),… , 𝑦(𝑛−1), 𝑝
)

= 𝐵(𝑠)[𝑢] +𝑤, (16)

where coprime polynomials 𝐴(𝑠) = 𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎1𝑠 + 𝑎0 and
𝐵(𝑠) = 𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 +⋯ + 𝑏1𝑠 + 𝑏0, both with uncertain parameters,
constitute the linear part of the system model, 𝑓 (⋅) with its uncertain
structure and parameters represents the combination of nonlinear parts
of the plant dynamics and overall parametric mismatch (𝑝), whereas 𝑤
describes collectively the acting external interferences.

Following assumptions are made on the above plant model, which
are not difficult to satisfy in practice.

A4. 𝐺(𝑠) ≜ 𝐵(𝑠)
𝐴(𝑠) is proper.

A5. Roots of 𝐵(𝑠) = 0 belong to the open (𝑏0 ≠ 0) left-half complex
plane.

A6. Both degree 𝑛 of polynomial 𝐴(𝑠) and sign of 𝑏0 are known.
A7. Total disturbance is time-differentiable with first time-derivative

bounded.

5 Following the source material (Michalek, 2016), notation 𝑣 = 𝐻(𝑠)[𝑥]
means that time-dependent signal 𝑣(𝑡) is a result of filtration of time-dependent
signal 𝑥(𝑡) with a filter described with a transfer function 𝐻(𝑠).

3.2. Expressing control task in error-based form

Here again, instead of following a conventional approach seen in
output-based ADRC design based on defining the resultant disturbance
as:

𝑑 ≜ 1
𝐵(𝑠)

[

𝑤 − 𝑓 (⋅)
]

, (17)

which then allows to express the system (16) as:

𝛹 (𝑛) ∶ 𝑦 = 𝐺(𝑠)[𝑢 + 𝑑]

A6
⟹ 𝑦(𝑛) = −

𝑛−1
∑

𝑗=0
𝑎𝑗𝑦

(𝑗) +
𝑚
∑

𝑖=0
𝑏𝑖
(

𝑢(𝑖) + 𝑑(𝑖)
)

− �̂�0𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓(𝑦(𝑗) ,𝑢(𝑖) ,𝑑(𝑖) ,𝑝) for 𝑗=0,…,𝑛−1, 𝑖=0,…,𝑚

+�̂�0𝑢, (18)

here, the utilized control modification deals with expressing the
trajectory-following task in error-based form.

Hence, by recalling the tracking error 𝑒(𝑡), one can substitute it to
the left-hand side of (18), which results in closed-loop error equation:

𝑒 ≜ 𝑟 − 𝑦
(18)
= 𝑟 − 𝐺(𝑠)[𝑢 + 𝑑]

= −𝐺(𝑠)
[

𝑢 + 𝑑 − 𝑟
𝐺(𝑠)

]

= −𝐺(𝑠)
[

𝑢 + 𝑑 − 𝑢𝑟
]

= −𝐺(𝑠)
[

𝑢 + 𝑑
]

, (19)

where 𝑢𝑟 = 𝐴(𝑠)[𝑟]∕𝐵(𝑠) = [𝑟]∕𝐺(𝑠) is the perturbing control action
caused by the reference trajectory 𝑟 and 𝑑 ≜ 𝑑 − 𝑢𝑟 is the new
resultant external perturbation affecting the system. Rewriting (19) in
time domain gives:

𝛴(𝑛) ∶ 𝑒(𝑛) +
𝑛−1
∑

𝑗=0
𝑎𝑗𝑒

(𝑗) = −
𝑚
∑

𝑗=1
𝑏𝑗𝑢

(𝑗) −
𝑚
∑

𝑗=0
𝑏𝑗𝑑

(𝑗) − 𝑏0𝑢. (20)

Similar to (35), the parametric mismatch related to the input gain
can be treated as part of the disturbance, which reduces the error
dynamics to:

𝛴(𝑛) ∶ 𝑒(𝑛) = −
𝑛−1
∑

𝑗=0
𝑎𝑗𝑒

(𝑗) −
𝑚
∑

𝑗=1
𝑏𝑗𝑢

(𝑗) −
𝑚
∑

𝑗=0
𝑏𝑗𝑑

(𝑗) −
(

𝑏0 − �̂�0
)

𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓(𝑒(𝑖) ,𝑢(𝑗) ,𝑑(𝑗) ,𝑝) for 𝑖=0,…,𝑛−1, 𝑗=0,…,𝑚

−�̂�0𝑢, (21)

where 𝑓 (⋅) is the lumped disturbance, which now also includes the effect
of uncertain input gain.

   



                                                                       

Table 2
General forms of controller gains for 𝑛th order plant model parametrized by frequency 𝜔𝑐
(here for 𝑛 = {1, 2, 3, 4}).
𝑛 ⋯ 𝑘3 𝑘2 𝑘1 𝑘0
1 ⋯ – – – 𝜔𝑐

2 ⋯ – – 2𝜔𝑐 𝜔2
𝑐

3 ⋯ – 3𝜔𝑐 3𝜔2
𝑐 𝜔3

𝑐

4 ⋯ 4𝜔𝑐 6𝜔2
𝑐 4𝜔3

𝑐 𝜔4
𝑐

⋮ . .
.

⋮ ⋮ ⋮ ⋮

3.3. Control rule design and tuning

As it was shown in Section 2.2, the desired error dynamics for the
closed-loop system can be shaped by bilaterally adding control term
∑𝑛−1

𝑖=1 𝑘𝑖𝑒(𝑖) to (21), resulting in:

�̄�(𝑛) ∶ 𝑒(𝑛) +
𝑛−1
∑

𝑖=1
𝑘𝑖𝑒

(𝑖) =
𝑛−1
∑

𝑖=1
𝑘𝑖𝑒

(𝑖) + 𝑓
(

𝑒(𝑖), 𝑢(𝑗), 𝑑(𝑗), 𝑝
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓∗(𝑒(𝑖) ,𝑢(𝑗) ,𝑑(𝑗) ,𝑝) for 𝑖=0,…,𝑛−1, 𝑗=0,…,𝑚

−�̂�0𝑢, (22)

where 𝑘𝑖 > 0 are design control coefficients (to be selected) and 𝑓 ∗(⋅)
is the total disturbance in the error-based representation (cf.(18)), to be
reconstructed and then timely rejected by the control input (𝑢).

Now, assuming temporary that the resultant disturbance is accu-
rately reconstructed with the ESO (i.e. 𝑓 ∗ = 𝑓 ∗) and that �̂�0 = 𝑏0, one
can propose a following governing action:

𝑢(𝑒, 𝑓 ∗) = 1
�̂�0

(

𝑢0(𝑒) + 𝑓 ∗) , (23)

where 𝑢0 ≜ 𝑘0𝑒 is arbitrary chosen to be just a simple proportional
output-feedback controller. By applying control action (23) to the
dynamics (22), one obtains the following closed-loop error dynamics:

𝑒(𝑛) + 𝑘𝑛−1𝑒
(𝑛−1) +⋯ + 𝑘1�̇� + 𝑘0𝑒 = 0, (24)

which determines the prescribed control behavior of the resultant
(theoretically) disturbance-free chain of integrators, in accordance to
gains 𝑘𝑖 > 0, for 𝑖 = 0,… , 𝑛 − 1.

Remark 3. One can notice the crucial importance of the ESO in timely
and accurately estimating uncertain term 𝑓 ∗. Compared to the typical
output-based ADRC, its reconstruction is additionally burdened here
with the uncertainty 𝑢𝑟, being the result of inclusion of unknown
reference time-derivatives effect. This is the consequence of obtained
major simplification related to reduced controller form and lack of
necessity for a differentiator.

Same popular and effective parametric synthesis of the controller,
based on pole-placement approach (Gao, 2003) and known from the
conventional ADRC tuning, can be used for the considered compact
error-based version. It is based on defining a frequency 𝜔𝑐 > 0, which
determines the desired bandwidth 𝛺𝑐 = [0, 𝜔𝑐 ] of the closed-loop sys-
tem. Comparison of the characteristic polynomial 𝑃𝑐 (𝑠) of dynamics (24)
with a desired polynomial 𝑃 ∗

𝑐 (𝑠) ≜ (𝑠 + 𝜔𝑐 )𝑛:

𝑃𝑐 (𝑠) ∶= 𝑃 ∗
𝑐 (𝑠),

𝑠(𝑛) + 𝑘𝑛−1𝑠
(𝑛−1) +⋯ + 𝑘1𝑠 + 𝑘0 ∶= (𝑠 + 𝜔𝑐 )𝑛, (25)

which places all the poles at one location −𝜔𝑐 , greatly simplifies the
tuning process, as it is reduced to a single parameter selection (𝜔𝑐)
for controller coefficients computation. Some general forms of the
controller gains for the 𝑛th order plant model parametrized by 𝜔𝑐 are
gathered in Table 2.

3.4. Disturbance observer design and tuning

Now, for system (22), a following set of state variables can be chosen:

𝑥1 ≜ 𝑒, 𝑥2 ≜ �̇�, … , 𝑥𝑛 ≜ 𝑒(𝑛−1), 𝑥𝑛+1 ≜ 𝑓 ∗, (26)

thus resulting in a (𝑛+1)th order extended state vector 𝒙⊤ = [𝑥1 𝑥2 …
𝑥𝑛+1] and extended disturbance vector 𝑭 ⊤ = [0 … 0 𝑥𝑛+1], in which the
extra virtual state variable represents the total disturbance. The system
model (22) in state-space can be now described in extended form as:

�̄�(𝑛+1) ∶

{

�̇� = 𝑨𝒙 + 𝒃𝑢 + 𝒉�̇� ,
𝑒 = 𝒄⊤𝒙,

(27)

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 −𝑘1 −𝑘2 ⋯ −𝑘𝑛−1 1
0 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
⋮
0

−�̂�0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒄 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Since the system (27) is observable, one can propose a following
(𝑛 + 1)th order ESO to estimate its states, which only uses practically
available plant input and output signals:

̂̄𝛴(𝑛+1) ∶

{

�̇� = 𝑨𝒛 + 𝒃𝑢 + 𝒍(𝑥1 − 𝒄𝑇 �̂�),
𝑒 = 𝒄⊤𝒛,

(28)

where 𝒛⊤ = [𝑧1 𝑧2 … 𝑧𝑛 𝑧𝑛+1] = [𝑒 ̇̂𝑒 … 𝑒(𝑛−1) 𝑓 ∗] is the vector of
state variables estimates, and 𝒍⊤ = [𝑙1 𝑙2 … 𝑙𝑛 𝑙𝑛+1] is the vector of
observer gains (to be selected).

It is notable that the prescribed error dynamics (24) is incorpo-
rated into the ESO structure (with the exception of 𝑘0), making the
state matrix 𝑨 dependent on the design coefficients 𝑘0,… , 𝑘𝑛−1. This
trivializes the outer-loop controller as it is reduced in (23) to just a
proportional output-error feedback action, regardless of the order of the
system dynamics. That feature is especially appealing to practitioners as
it simplifies the control, compared to conventional ADRC design, where
the outer loop requires the availability of the reference time-derivatives
up to the order of dynamics (Michalek, 2016; Zhang, 2017).

The pole-placement technique for observer gains parametrization,
known from the conventional ADRC design, can be used for the error-
based form as well. The goal is to place the roots of characteristic
polynomial 𝑃𝑜(𝜆) in the complex plane (desirably far) on the left-hand
side of the roots determined in Section 3.3. Following previous results
related to ESO tuning (Gao, 2003), it can be effectively done by forcing:

𝑃𝑜(𝜆) ∶= 𝑃 ∗
𝑜 (𝜆),

det(𝜆𝑰 −𝑯) ∶= (𝜆 + 𝜔𝑜)𝑛+1, (29)

where 𝜔𝑜 is a design frequency that determines the observer bandwidth
𝛺𝑜 = [0, 𝜔𝑜] and the estimation-error state matrix has the form:

𝑯 = 𝑨 − 𝒍𝒄⊤ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑙1 1 0 ⋯ 0 0
−𝑙2 0 1 ⋯ 0 0
−𝑙3 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−𝑙𝑛 −𝑘1 −𝑘2 ⋯ −𝑘𝑛−1 1
−𝑙𝑛+1 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

Some general forms of the observer gains for the (𝑛+1)th order plant
model parametrized by frequency 𝜔𝑜 are gathered in Table 3.

Finally, the derivation of a general form of the considered 1DOF
error-driven ADRC solution is based on combining the general governing
action (23) with the general observer form (28), following the procedure
seen in the example in Section 2. Expressing this combination in transfer

   



                                                                       

Table 3
General forms of observer gains for 𝑛th order plant model parametrized by frequency 𝜔𝑜
(here for 𝑛 = {1, 2, 3}).
𝑛 ⋯ 𝑙4 𝑙3 𝑙2 𝑙1
1 ⋯ – – 𝜔2

𝑜 2𝜔𝑜
2 ⋯ – 𝜔3

𝑜 3𝜔2
𝑜 − 𝑙1𝑘1 3𝜔𝑜 − 𝑘1

3 ⋯ 𝜔4
𝑜 4𝜔3

𝑜 − 𝑙1𝑘1 − 𝑙2𝑘2 6𝜔2
𝑜 − 𝑘1 − 𝑙1𝑘2 4𝜔𝑜 − 𝑘2

⋮ . .
.

⋮ ⋮ ⋮ ⋮

Fig. 5. Laboratory setup used in the experiments, with a - buck converter circuit, b -
dSpace DS 1103 real-time controller, c - DC input voltage, d - digital oscilloscope, e -
voltage and currents sensors, f - A/D converters, and g - PC-based dSpace ControlDesk
software.

function yields6:

𝑈 (𝑠) = 1
�̂�0

⋅
𝐿(𝑠)
𝑀(𝑠)

⋅

𝐸(𝑆)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[𝑅(𝑠) − 𝑌 (𝑠)],

𝐺ADRC(𝑠) =
𝑈 (𝑠)
𝐸(𝑠)

= 1
�̂�0

⋅
𝐿(𝑠)
𝑀(𝑠)

, (31)

for:

𝑀(𝑠) =
𝑛
∑

𝑖=0

( 𝑖
∑

𝑞=0
𝜅𝑞𝛽𝑖−𝑞

)

𝑠𝑛+1−𝑖, 𝐿(𝑠) =
𝑛
∑

𝑖=0

(𝑛−𝑖
∑

𝑞=0
𝜅𝑖+𝑞𝛽𝑛+𝑖−𝑞

)

𝑠𝑛−𝑖, (32)

where 𝛽𝑗 = 𝑙𝑗 for 𝑗 = 1, 2,… , 𝑛 + 1 and 𝜅𝑛−𝑖 = 𝑘𝑖 for 𝑖 = 0, 1,… , 𝑛 − 1
strictly corresponds to the design parameters of the outer-loop controller
and the observer, which can be straightforwardly computed based on
Tables 2 and 3. A rigorous mathematical proof of the considered error-
based control design is given in the Appendix.

4. Simulation and experimental validation

4.1. Preliminaries

In order to verify the compact error-based ADRC, a problem of
fast and precise output voltage tracking in a highly uncertain DC–DC
buck power converter is considered. The utilized rapid prototyping
platform is depicted in Fig. 5. A combination of software-in-the-loop
(SIL) and hardware-in-the-loop (HIL) experiments is performed using
dSPACE DS 1103 real-time controller. The implementation is realized
in Matlab/Simulink environment, while communication is established
using a dedicated real-time toolbox with sampling period 𝑇𝑠 = 200 us.

Based on Sira-Ramirez and Silva-Ortigoza (2006), a following aver-
age model of the considered converter is used in the conducted tests:

𝛹 (2) ∶

⎧

⎪

⎨

⎪

⎩

𝑑𝑣𝑜(𝑡)
𝑑𝑡 = 1

𝐶 𝑖𝐿(𝑡) −
1
𝐶𝑅𝑣𝑜(𝑡),

𝑑𝑖𝐿(𝑡)
𝑑𝑡 = 𝑉in

𝐿 𝑢(𝑡) − 1
𝐿𝑣𝑜(𝑡),

(33)

where 𝑢 ∈ [0, 1] is the duty ratio (control signal), 𝑣𝑜[V] is the aver-
age capacitor output voltage (controlled signal), 𝑖𝐿[A] is the average
inductor current, 𝑅[𝛺] is the load resistance of the circuit, 𝐿[H] is the

6 The formula happens to correspond to the system used for ADRC frequency
analysis in Xue and Huang (2015).

filter inductance, 𝐶[F] is the filter capacitance, and 𝑉in[V] is the input
DC voltage source. The structure of the above plant model is known,
but its parameters remain uncertain (and potentially time-varying). The
control objective is to make the average output voltage signal (𝑣𝑜) track
a given smooth trajectory (𝑣𝑟) by manipulating the duty ratio (𝑢), even in
the presence of plant parametric uncertainties and unmodeled external
disturbances.

Based on the expert knowledge about the used power circuit, it is
possible to a’priori obtain rough parameters of the plant mathematical
model, namely: 𝑉in0 = 20 V, 𝐿0 = 0.01 H, 𝐶0 = 0.001 F, and 𝑅0 = 50Ω,
which are used as nominal values in the upcoming tests. An open-loop
comparison between a real system and its utilized analytical description
in Fig. 6 shows that the plant model roughly captures main behavior of
the actual setting.

4.2. Control scheme implementation

Following the standard ADRC line of reasoning, the plant model
from is first reformulated, emphasizing the system causal input–output
relation:

𝛹 (2) ∶
𝑑2𝑣𝑜
𝑑2𝑡

= − 1
𝐶𝑅

⏟⏟⏟
𝑑1

𝑑𝑣𝑜
𝑑𝑡

− 1
𝐶𝐿

⏟⏟⏟
𝑑2

𝑣𝑜 +
𝑉in
𝐶𝐿

⏟⏟⏟
𝑏0

𝑢 +𝑤, (34)

where 𝑤 is additionally introduced to model the unknown (possibly
time-varying and nonlinear) matched external perturbation. Combining
all the uncertain (or unknown) terms of the above model, including the
uncertainty in modeling the input gain, results in a following compact
form:

𝛹 (2) ∶ �̈�𝑜 = 𝑑1𝑣𝑜 + 𝑑2�̇�𝑜 + 𝑏0𝑢 − �̂�0𝑢 +𝑤
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑓 (𝑡,�̇�𝑜 ,𝑣𝑜 ,𝑢,𝑝,𝑤)

+�̂�0𝑢 = 𝑓 + �̂�0𝑢. (35)

Now, it can be straightforwardly verified that the considered dynam-
ics of the buck converter (34) belongs to the class of systems defined
by (16), with 𝐴(𝑠) = 𝑑1𝑠 + 𝑑2 and 𝐵(𝑠) ≡ 𝑏0. For the same plant model,
after transforming the control task into error-based form, as shown
in (17) through (22), one gets the error dynamics of buck converter
system:

𝑒 ≜ 𝑣𝑟 − 𝑣𝑜 ⇒ �̇� ≜ �̇�𝑟 − �̇�𝑜 ⇒ 𝛴(2) ∶ 𝑒
(35)
= �̈�𝑟 − 𝑓

⏟⏟⏟
𝑓∗

−�̂�0𝑢. (36)

For such second order dynamics, it is clear that the ADRC controller
in form of (10) can be straightforwardly used as:

𝐺ADRC(𝑠) =
𝑈 (𝑠)

𝑉𝑟(𝑠) − 𝑉𝑜(𝑠)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐸(𝑠)

=
(𝑘0𝑙1 + 𝑘1𝑙2 + 𝑙3)𝑠2 + (𝑘0𝑙2 + 𝑘1𝑙3)𝑠 + 𝑘0𝑙3

�̂�0
[

𝑠2 + (𝑙1 + 𝑘1)𝑠 + 𝑙1𝑘1 + 𝑙2 + 𝑘0
]

𝑠
,

(37)

or in discrete form (using Tustin approximation) as:

𝐺ADRC(𝑧) =
𝑈 (𝑧)
𝐸(𝑧)

=
𝑇𝑠
2�̂�0

(𝐿3𝑧3 + 𝐿2𝑧2 + 𝐿1𝑧 + 𝐿0)
(𝑀2𝑧2 +𝑀1𝑧 +𝑀0)(𝑧 − 1)

,

with polynomial coefficients defined as:

𝐿3 = 4𝑙3 + 4𝑙1𝑘0 + 2𝑇𝑠𝑘0𝑙2 + 2𝑇𝑠𝑙3𝑘1 + 𝑇 2
𝑠 𝑙3𝑘0 + 4𝑘1𝑙2,

𝐿2 = −4𝑙3 − 4𝑘1𝑙2 + 2𝑘0𝑙2𝑇𝑠 + 3𝑘0𝑙3𝑇 2
𝑠 − 4𝑘0𝑙1 + 2𝑘1𝑙3𝑇𝑠,

𝐿1 = −2𝑇𝑠𝑙3𝑘1 − 4𝑙3 − 4𝑘1𝑙2 − 2𝑘0𝑙2𝑇𝑠 + 3𝑘0𝑘3𝑇 2
𝑠 − 4𝑘0𝑙1,

𝐿0 = 4𝑙3 + 4𝑘1𝑙2 + 4𝑙1𝑘0 + 𝑘0𝑙3𝑇
2
𝑠 − 2𝑘1𝑙3𝑇𝑠 − 2𝑘0𝑙2𝑇𝑠,

𝑀2 = 2𝑙1𝑇𝑠 + 2𝑘1𝑇𝑠 + 𝑘0𝑇
2
𝑠 + 𝑙2𝑇

2
𝑠 + 𝑘1𝑙1𝑇

2
𝑠 + 4,

𝑀1 = 2𝑙2𝑇 2
𝑠 + 2𝑙1𝑘1𝑇 2

𝑠 + 2𝑘0𝑇 2
𝑠 − 8,

𝑀0 = −2𝑘1𝑇𝑠 + 𝑘1𝑙1𝑇
2
𝑠 + 𝑘0𝑇

2
𝑠 + 𝑙2𝑇

2
𝑠 − 2𝑙1𝑇𝑠 + 4.

The observer and controller gains are again selected directly accord-
ing to Tables 2 and 3, which makes the entire considered control strategy

   



                                                                       

Fig. 6. Comparison between the real DC–DC buck power converter and its obtained model.

Fig. 7. Proposed 1DOF compact error-based ADRC for the DC–DC buck converter.

tuned only by three intuitive design parameters (𝜔𝑜, 𝜔𝑐 , and �̂�0). The
application of the compact error-based ADRC for the considered buck
converter is illustratively depicted in Fig. 7.

4.3. Conducted tests and obtained results

Three types of SIL tests are performed (SIL1-SIL3). First one
(SIL1) verifies the nominal performance of the error-based ADRC for
the buck converter system in terms of accuracy of smooth trajectory
tracking (being a square signal filtered by a stable second-order order
dynamics), energy consumption, and observer estimation precision. The
system is simulated with band-limited white measurement noise with
power 𝜎 = 10−11. Beyond this point, no re-tuning is done. In the next
test (SIL2), robustness of the closed system is investigated by emulating
parameters variations (𝑅 ≠ 𝑅0, 𝑉in ≠ 𝑉in0) as well as by checking
the performance recovery under various types of input disturbances
(constant, sawtooth, and harmonic). A quantitative comparison with a
conventional ADRC design scheme is conducted in SIL3 for a reference
signal with increased amplitude. Finally, the performance of the error-
based design is validated in HIL1. In all of the conducted runs and con-
sidered control algorithms, same tuning parameters have been chosen
and kept throughout the tests (with no retuning), namely: �̂�0 = 20 000,
𝜔𝑐 = 130, and 𝜔𝑜 = 50𝜔𝑐 . The parameters were chosen empirically,
following guidelines in Gao (2003), with a compromise between speed
of estimation/tracking and noise amplification.

The results of SIM1 are gathered in Fig. 8. One can notice that the
trajectory is tracked with an acceptable accuracy (|𝑒| < 0.15), while the
control signal does not reach the saturation boundaries (0 ≤ 𝑢 < 0.32).
The estimated total disturbance (𝑓 ∗) is compared here with a roughly
approximated total disturbance: 𝑓 ∗ ≈ 𝑒 + �̂�0𝑢 (cf.(36)) resulting in a
difference within close vicinity of zero (|𝜖𝑓 | < 0.1). This, together with
the achieved level of estimation error (|𝜖| < 5⋅10−3) can be an indication
that the total disturbance is being timely and precisely reconstructed by
the ESO. The outcomes of SIM2 are collectively shown in Fig. 9. Even
in the presence of external disturbance of various types, the tracking
accuracy is kept within practically satisfactory level (|𝑒| < 2.5). In case
of parametric robustness, the change of resistance (𝑅) did not have
much effect on the quality of closed-loop system. Variations in the input
voltage (𝑉in) did however influence the control results visibly, but for
this particular plant such changes are still practically acceptable. The

results of SIM3 are presented in Fig. 10. First, the compact error-driven
ADRC was compared with the conventional output-based ADRC with FF
in terms of tracking accuracy. No significant differences can be noted,
but it has to be underlined that the proposed compact version does
not require the information about the derivatives of the target signal,
which is a huge practical advantage. In case of output-based ADRC
with FF, two TDs had to be additionally implemented and tuned, which
complicated the overall control deployment. Lastly, the results of HIL1
are gathered in Fig. 11. The trajectory is tracked with an acceptable
accuracy (|𝑒| < 0.2), while the control signal does not exceed permissible
level (0 ≤ 𝑢 < 0.9). The estimation part is also satisfactory, despite the
presence of measurement noise from voltage sensor (|𝜖| < 0.015).

5. Conclusions

In this work, a 1DOF error-based ADRC formulation has been sys-
tematically analyzed. Such design allows the standard ADRC algorithm
(with all its beneficial features) to be realized in a compact, almost
plug&play form, commonly found in industrial control configurations.
With the ADRC expressed in error-based form, its typical components,
which were previously working separately, can now be bundled into
a single structure, easily implementable in industrial automation soft-
ware. This potentially increases the competitiveness of ADRC against the
ubiquitous PID-like controllers. The considered approach, in its general
form, has been rigorously proved here by means of singular perturbation
theory. Additionally, experimental tests using a power electronics device
have been successfully conducted to further validate the design.
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Appendix. Stability analysis of general error-based ADRC

The theoretical investigation of the generalized version of the com-
pact error-based ADRC is presented next and its analysis is based
on singular perturbation theory (Kokotovic, Khalil, & O’Reilly, 1999;
Shao & Gao, 2017). Compared to Shao and Gao (2017), here the
stability proof will not be divided explicitly into slow and fast dynamics
representing the controller and observer loops, respectively. In the
considered modified ADRC these two loops are incorporated into a
single closed-loop error dynamics. For the same reason, the analysis
below also contains (implicitly) the convergence of the estimation error.

First, the general expression given in (28) can be expressed alterna-
tively as:

�̇� =
(

𝑨 − 𝒍𝒄⊤
)

𝒒 + 𝒉𝜂, 𝜂 = ̇𝑓 ∗, (38)

   



                                                                       

Fig. 8. [SIL1] Nominal performance of the compact error-based ADRC.

Fig. 9. [SIL2] Robustness tests of the proposed compact error-based ADRC.

   



                                                                       

Fig. 10. [SIL3] Quantitative comparison with standard output-based ADRC scheme.

Fig. 11. [HIL1] Nominal performance of the compact error-based ADRC.

by defining 𝒒⊤ = [𝑞1 ⋯ 𝑞𝑛 𝑞𝑛+1] =
[

(𝑒 − 𝑒) ⋯
(

𝑒(𝑛−1) − 𝑒(𝑛−1)
)

(

𝑓 ∗ − 𝑓 ∗)].
Next, recalling both the estimation error matrix 𝑯 from (30) and

the pole-placement-based observer tuning from (29), one can induce,
by analyzing their forms for different orders ESOs, that in general case:

det(𝜆𝑰 −𝑯) = 𝜆𝑛+1 + 𝑝1𝜆
𝑛 + 𝑝2𝜆

𝑛−1 +⋯ + 𝑝𝑛−1𝜆
2 + 𝑝𝑛𝜆 + 𝑝𝑛+1, (39)

= (𝜆 + 𝜔𝑜)𝑛+1, (40)

for [𝑝1, 𝑝2,… , 𝑝𝑛, 𝑝𝑛+1] =
[

𝛽1𝜔𝑜, 𝛽2𝜔2
𝑜 ,… , 𝛽𝑛𝜔𝑛, 𝛽𝑛+1𝜔𝑛+1

𝑜
]

. That yields the
eigenvalues of the error matrix 𝑯 :

𝜆𝑚 {𝑯} = −𝜔𝑜, ∀𝑚 = 1, 2,… , 𝑛 + 1. (41)

As seen previously, the observer gains and the controller gains are
parametrized by the observer bandwidth (𝜔𝑜 > 0) and the controller
bandwidth (𝜔𝑐 > 0), respectively. In general case, they can be calculated
as:

𝑘𝑖 =
𝑛!

𝑖!(𝑛 − 𝑖)!
𝜔𝑛−𝑖
𝑐 , 0 ≤ 𝑖 ≤ 𝑛−1, and 𝛽𝑗 =

(𝑛 + 1)!
𝑗!(𝑛 + 1 − 𝑗)!

, 1 ≤ 𝑗 ≤ 𝑛+1.

(42)

The coefficients of (39) can be thus computed as:

𝑠1 =

𝑟1
⏞⏞⏞
𝑘𝑛−1 +𝑙1 = 𝛽1𝜔𝑜 ⇒

⇒ 𝑙1 = 𝛽1𝜔𝑜 − 𝑘𝑛−1,

𝑠2 =

𝑟2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑘𝑛−1𝑙1 + 𝑘𝑛−2 +𝑙2 = 𝛽2𝜔

2
𝑜 ⇒

⇒ 𝑙2 = 𝛽2𝜔
2
𝑜 − [𝑘𝑛−1𝛽1𝜔𝑜 − (𝑘𝑛−1)2 + 𝑘𝑛−2],

⋮ (43)

𝑠𝑛−1 =

𝑟𝑛−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑘2𝑙1 + 𝑘3𝑙2 +⋯ + 𝑘𝑛−1𝑙𝑛−2 + 𝑘1 +𝑙𝑛−1 = 𝛽𝑛−1𝜔

𝑛−1
𝑜 ⇒

⇒ 𝑙𝑛−1 = 𝛽𝑛−1𝜔
𝑛−1
𝑜 − [𝑘2𝑙1 + 𝑘3𝑙2 +⋯ + 𝑘𝑛−1𝑙𝑛−2 + 𝑘1],

𝑠𝑛 =

𝑟𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑘1𝑙1 + 𝑘2𝑙2 + 𝑘3𝑙3 +⋯ + 𝑘𝑛−1𝑙𝑛−1 +𝑙𝑛 = 𝛽𝑛𝜔

𝑛
𝑜 ⇒

⇒ 𝑙𝑛 = 𝛽𝑛𝜔
𝑛
𝑜 − [𝑘1𝑙1 + 𝑘2𝑙2 + 𝑘3𝑙3 +⋯ + 𝑘𝑛−1𝑙𝑛−1],

𝑠𝑛+1 = 𝑙𝑛+1 = 𝛽𝑛+1𝜔
𝑛+1
𝑜 = 𝜔𝑛+1

𝑜 ,

which allows the estimation error state matrix (30) to be rewritten as:

𝑯
(43)
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝛽1𝜔𝑜 + 𝑟1 1 0 ⋯ 0 0
−𝛽2𝜔2

𝑜 + 𝑟2 0 1 ⋯ 0 0
⋮ 0 0 ⋯ 0 0

−𝛽𝑛−1𝜔𝑛−1
𝑜 + 𝑟𝑛−1 ⋮ ⋮ ⋱ ⋮ ⋮

−𝛽𝑛𝜔𝑛
𝑜 + 𝑟𝑛 −𝑘1 −𝑘2 ⋯ −𝑘𝑛−1 1

−𝛽𝑛+1𝜔𝑛+1
𝑜 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (44)

   



                                                                       

Now, for the system given in (38), a following change of coordinates
is introduced: 𝑞1 = 𝜔−𝑛

𝑜 𝜉1, 𝑞2 = 𝜔−(𝑛−1)
𝑜 𝜉2,… , 𝑞𝑛+1 = 𝜉𝑛+1, with its general

form 𝑞𝑖 = 𝜔𝑖−(𝑛+1)
𝑜 𝜉𝑖, for 𝑖 = 1, 2,… , 𝑛 + 1, or expressed alternatively in

matrix representation as 𝒒 = 𝜦𝝃, with 𝜦 = diag
[

𝜔−𝑛
𝑜 𝜔−(𝑛−1)

𝑜 ⋯ 𝜔−1
𝑜 1

]

and 𝝃 = [𝜉1 𝜉2 ⋯ 𝜉𝑛 𝜉𝑛+1]. This allows to rewrite (38) as:

𝜦�̇� =
(

𝑨 − 𝒍𝒄⊤
)

𝜦𝝃 + 𝒉𝜂 = 𝑯𝜦𝝃 + 𝒉𝜂, (45)

which yields:
1
𝜔𝑜

�̇� = 𝑯𝑞𝝃 +
1
𝜔𝑜

𝒉𝜂 ⟹ 𝜀�̇� = 𝑯𝑞𝝃 + 𝜀𝒉𝜂, (46)

with 𝜀 = 1
𝜔𝑜

, and 𝑯𝑞 = 𝑨𝑞 + 𝜀𝑯𝜀, where:

𝑨𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝛽1 1 0 ⋯ 0 0
−𝛽2 0 1 ⋯ 0 0
⋮ 0 0 ⋯ 0 0

−𝛽𝑛−1 ⋮ ⋮ ⋱ ⋮ ⋮
−𝛽𝑛 0 0 ⋯ 0 1
−𝛽𝑛+1 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (47)

𝑯𝜀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟1 0 0 ⋯ 0 0
𝜀𝑟2 0 0 ⋯ 0 0
⋮ 0 0 ⋯ 0 0

𝜀𝑛−2𝑟𝑛−1 ⋮ ⋮ ⋱ ⋮ ⋮
𝜀𝑛−1𝑟𝑛 −𝜀𝑛−2𝑘1 −𝜀𝑛−3𝑘2 ⋯ −𝑘𝑛−1 0

0 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (48)

with 𝛽𝑖’s and 𝑘𝑖’s being defined in (42). Also, 𝑟𝑖’s are functions of 𝜔𝑜, 𝛽𝑖’s
and 𝑘𝑖’s, and they are completely determined in (43).

With above alternative representation, a proper stability analysis of
the general error-based compact ADRC can now be performed. First, the
observer error dynamics (46) with its initial condition writes:

𝜀�̇� = 𝑯𝑞𝜉 + 𝜀ℎ ⋅ 𝜂, 𝜉(0) = 𝜉0. (49)

It is an initial value problem of a standard singularly perturbed linear
system of differential equations with a small positive parameter 𝜀 = 1

𝜔𝑜
,

that depends on the observer bandwidth 𝜔𝑜. Note, that matrix 𝑯𝑞 and
the estimation-error state matrix 𝑯 are similar (𝑯 = 𝜦𝑯𝒒𝜦−1) and have
the same eigenvalues. Thus, 𝜆𝑖(𝑯𝑞) = 𝜆𝑖(𝑯) = −𝜔𝑜 and 𝜆𝑖(𝑨𝑞) = −1,
∀𝑖 = 1, 2,… , 𝑛 + 1, which implies 𝑯𝑞 is Hurwitz. As in Shao and
Gao (2017), it can be concluded that for a quite large class of total
disturbance 𝑓 ∗, if ‖

‖

𝜉0‖‖ = 𝑂(𝜀), i.e. 𝜉0 lies in the stable initial manifold,
there will be no danger of large magnitude transients in system (49) as
𝜀 → 0 for 𝑡 > 0, and same system is exponentially stable and uniformly
asymptotically stable (for stability within the stable initial manifold for
𝜉0 - it is not the stability in the Lyapunov sense). In the spirit of Theorems
3.1 and 4.1 of Shao and Gao (2017), main stability theorem is obtained
as below:

Theorem 1. If ‖
‖

𝜉0‖‖ = 𝑂(𝜀) and 𝜂 = ̇𝑓 ∗ exists, then:

(i) the asymptotic solution of (49),

𝜀�̇� = 𝑯𝑞𝜉 + 𝜀ℎ ⋅ 𝜂 = (𝑨𝑞 + 𝜀𝑯𝜀)𝜉 + 𝜀ℎ ⋅ 𝜂, 𝜉(0) = 𝜉0, (50)

is uniformly valid for all finite time 𝐿 with 0 ≤ 𝑡 ≤ 𝐿 < ∞, and it has
the following form:

𝜉(𝜀, 𝑡) = exp
(

𝑨𝑞
𝑡
𝜀

)

𝜉0 + 𝜀
[

𝑨−1
𝑞 ℎ ⋅ 𝜂 + exp

(

𝑨𝑞
𝑡
𝜀

){

𝑨−1
𝑞 ℎ ⋅ 𝜂(0)

}

− 𝑯0 ∫

𝑡

0
exp

[

𝑨𝑞

( 𝑡 − 𝑠
𝜀

)]

𝑨−1
𝑞 ℎ ⋅ 𝜂(𝑠)𝑑𝑠

]

+ 𝑂
(

𝜀2
)

; (51)

(ii) there exists 𝜀∗ > 0 such that for all 𝜀 ∈ [0, 𝜀∗] the system (49) is
exponentially stable as 𝜀 → 0;

(iii) for all 𝜉 ∈ 𝛺 =
[

−𝜌1, 𝜌2
]𝑛+1 ⊂ R𝑛+1 with 𝜌2 = 𝛾 max

{

𝜔𝑐 ,
1
𝜔𝑜

, ‖‖
‖

𝑯𝑞
‖

‖

‖

}

for some constant 𝛾 > 0, then there exists positive constant 𝐶2,
independent of 𝜀, and the solution of (49) satisfies:

‖𝜉(𝜀, 𝑡)‖ ≤ 𝜀𝐶1 exp
[

−
( 1
2
− 𝜀𝐶1𝐶2

) 𝑡
𝜀

]

, ‖𝜂‖⋅‖𝜉(𝜀, 𝑡)‖−1 ≤ 𝐶2, (52)

where 𝐶1 =
√

𝑛 + 1 + 1
𝜔𝑐

∑𝑛
𝑗=1

𝐿𝑗

𝑗!

‖

‖

‖

‖

(

𝑯𝑞 + 𝑰𝑛+1
)𝑗2‖

‖

‖

‖

with 𝑰𝑛+1 is the
𝑛 + 1 order identity matrix and:

𝑯0 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑛𝜔𝑛−1
𝑐 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑛𝜔𝑛−1

𝑐 0
0 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (53)

Comments: ad.(i) Theorem 1 states that the system (49) is expo-
nentially stable and uniformly asymptotically stable if ‖

‖

𝜉0‖‖ = 𝑂(𝜀) =
𝑂
(

1
𝜔𝑜

)

and 𝜂 = ̇𝑓 ∗ exists (the result holds, for stability within the stable
initial manifold for 𝜉0, it is not the stability in the Lyapunov sense). This
means that the stability results in Shao and Gao (2017) can be extended
to the proposed error-based compact ADRC, which the error dynamic
system (49) has a more general coefficient matrix 𝑯𝑞 = 𝑨𝑞 + 𝜀𝑯𝜀;
ad.(ii) If the total disturbance 𝑓 ∗ is a function of Sobolev class 𝑊 1,1

loc and
differentiable a.e. (an a.e. differentiable function is a function that is
differentiable except on a set of measure zero), then its weak derivative
is represented by a pointwise derivative (for details see Evans & Gariepy,
1991), thus all the results in Theorem 1 hold.
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