
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

Electrical Engineering & Computer Science 
Faculty Publications 

Electrical Engineering & Computer Science 
Department 

2015 

SPE: Security and Privacy Enhancement Framework for Mobile SPE: Security and Privacy Enhancement Framework for Mobile 

Devices Devices 

Brian Krupp 
Baldwin Wallace University, bkrupp@bw.edu 

Nigamanth Sridhar 
Cleveland State University, n.sridhar1@csuohio.edu 

Wenbing Zhao 
Cleveland State University, w.zhao1@csuohio.edu 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub 

 Part of the Electrical and Computer Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Original Citation Original Citation 
B. Krupp, N. Sridhar and W. Zhao, "SPE: Security and Privacy Enhancement Framework for Mobile 
Devices," Dependable and Secure Computing, IEEE Transactions on, 2015. 

Repository Citation 
Krupp, Brian; Sridhar, Nigamanth; and Zhao, Wenbing, "SPE: Security and Privacy Enhancement Framework for 
Mobile Devices" (2015). Electrical Engineering & Computer Science Faculty Publications. 337. 
https://engagedscholarship.csuohio.edu/enece_facpub/337 

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science 
Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer 
Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F337&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/337?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


SPE: Security and Privacy Enhancement
Framework for Mobile Devices

Brian Krupp, Member, IEEE, Nigamanth Sridhar, Member, IEEE, Wenbing Zhao, Senior Member, IEEE

Abstract—In this paper, we present a security and privacy enhancement (SPE) framework for unmodified mobile operating systems.
SPE introduces a new layer between the application and the operating system and does not require a device be jailbroken or utilize a
custom operating system. We utilize an existing ontology designed for enforcing security and privacy policies on mobile devices to build
a policy that is customizable. Based on this policy, SPE provides enhancements to native controls that currently exist on the platform
for privacy and security sensitive components. SPE allows access to these components in a way that allows the framework to ensure
the application is truthful in its declared intent and ensure that the user’s policy is enforced. In our evaluation we verify the correctness
of the framework and the computing impact on the device. Additionally, we discovered security and privacy issues in several open
source applications by utilizing the SPE Framework. From our findings, if SPE is adopted by mobile operating systems producers, it
would provide consumers and businesses the additional privacy and security controls they demand and allow users to be more aware
of security and privacy issues with applications on their devices.

Index Terms—Mobile Security, Mobile Privacy, Sensing, Encryption, iOS, Android

F

1 INTRODUCTION

Mobile computing devices are quickly becoming the plat-
form of choice for consumers and businesses. Given that
mobile devices started to outsell PCs in 2011 [1] and mobile
applications are freely available in marketplaces, consumers
are more likely to focus on mobile devices as their primary
personal computing platforms. Additionally, users perform
many of the same tasks that were performed previously
with traditional computers on their mobile devices.

Most devices are equipped with numerous sensors such
as cameras, microphones, GPS, accelerometers, and gyro-
scopes where users can share data about their environment
or habits quickly, but also unknowingly. Here are a few
examples of such unintentional sharing: (a) Facebook leaked
the phone number from a mobile device before the user
logged into the application [2]; (b) Angry Birds collected
user data, which was found to be used by the NSA to
profile users [3]; (c) out of 25,976 Android applications, 969
applications leaked location data and 347 recorded audio
without the user’s permission [4] (d) Path was found to geo-
tag photos even after a user disabled location services [5],
and sent user’s privacy data unknowingly by uploading a
user’s entire address book [6]. Even when a user permits
an application to access data on the device, the user is not
aware of what else the data is being used for, how often it is
being accessed, and with whom it is being shared — there
is no way to confirm that the application is truthful in how
it states the information will be used.

Along with privacy concerns there are security concerns
as well. Between 2011 and 2012 malware family count rose

• B. Krupp is with the Computer Science Department, Baldwin Wallace
University. E-mail: bkrupp@bw.edu

• N. Sridhar and W. Zhao are are with the Department of Electrical
Engineering and Computer Science at Cleveland State University. E-mail:
n.sridhar1@csuohio.edu, w.zhao1@csuohio.edu

from 6 to 67 [1] and between 2010 to 2011 malware samples
alone rose from 11,138 to 28,472, a 155% increase [7]. One
misconception is that malware is typically found only on
jailbroken devices or third party application stores, however
in September and October of 2011, 322 samples of malware
with zero-day vulnerabilities were found in Google Play [8].

The rapid growth in the mobile device ecosystem de-
mands viable solutions security and privacy concerns. Even
though mobile devices are becoming more powerful, there
still exist constraints on computing power, memory capacity,
and a virtual endless supply of energy that traditional com-
puting platforms offer today. These constraints limit mobile
devices from performing computationally expensive oper-
ations such as pattern-based intrusion detection or fuzzy
checking of privacy leakage. Even if computing power on
mobile devices were to increase, the effect on the device’s
battery would be unacceptable for a user. Additionally, the
user experience may be affected if more computationally
expensive operations are being executed while the user is
interacting with the device.

Recent research in this area has introduced novel meth-
ods for providing additional security and privacy controls.
However most of these methods require a modification to
the operating system or the device to be jailbroken (we
provide a survey in Section 6). In this paper we propose
the Security and Privacy Enhancement (SPE) framework for
mobile devices. The SPE Framework provides additional
protections without requiring a modification to the OS or
the device to be jailbroken, a problem that has not been
solved in other research. While SPE does not require a
device to be jailbroken or operating system to be modified,
it does require modification to the application. However,
the required modification to the application is completely
machine-automated, where the developer does not have to
do any work aside from passing the source code through
the injection framework. The details of this process are



described in more detail in Section 4.3. We believe this is a
more sustainable approach and has several advantages over
previous approaches that required an operating system to
be modified or jailbroken:

• When an OS is updated, a consumer does not have
to wait for other solutions to be incorporated into
the OS since SPE is integrated within the application.
The framework would only need to be updated
when significant API changes are made.

• Users would not need to jailbreak their device in
order to adopt SPE. Additionally, with each minor
release of the OS a user would not have to reinstall
a custom OS to have enhanced security and privacy
controls; they would be able to install the latest OS
version when it becomes available.

• SPE can be utilized on a stock device running a stock
OS. This approach allows maximum penetration into
the user base as users do not need a specific OS or
device. In contrast, other solutions that have focused
on modifying the OS such as Android can only be
applied to devices that run pure Android such as
Nexus devices.

• Since SPE intercepts calls to security and privacy sen-
sitive resources, it can guarantee that a consumer’s
policy is enforced. Unlike other solutions, the frame-
work does not attempt to recognize patterns where
false positives and false negatives can be returned.

• A consumer will not lose the inherent trust with an
OS or void their warranty by utilizing a modified OS
or jailbroken device.

In this paper, we describe the following contributions of
the SPE framework:

• SPE provides a verbose fine-grained policy model to
allow users to define additional security and privacy
controls on a mobile device. These policies include
constraints on precision as well as temporal and
spatial properties of sensing data, and more. These
policies are derived from a rigorous ontology [9],
which we briefly describe in Section 2.

• SPE implements a novel intent-based1 validation
engine; each application must specify its intent in
order to obtain access to a protected resource. If an
application wishes to share any data it is permitted to
access, it must specify an additional “chained intent”
stating such a purpose. This allows the framework
to understand how the application intends to access
data and what it intends to do with the data.

• SPE allows the user to understand an application’s
data needs, and to check if an application is truthful.
To enforce this, SPE will verify that the application
does not perform an action that is not explicitly
permitted. SPE also helps in detecting application
poisoning where a trusted application’s execution is
modified by configuration data.

• SPE will be released as an open source framework
for iOS, an operating system that cannot be modified
for additional security and privacy controls. Included

1. Intents in SPE differ from Intents in Android. The distinction is
described in Section 3.1

in this release is a client-side policy application to
allow consumers to manage their policies as well as
a point-and-click conversion assistant to transform an
application to utilize the SPE Framework.

The research presented here is an expansion of our initial
research in this domain reported in [10]. Since that begin-
ning, we have defined a detailed ontology for describing
security and privacy policies [9]. We use this ontology to
ensure that the coverage afforded by the framework is
complete. We also discuss our complete implementation of
the framework across all security and privacy components
that we identified. Using this complete implementation, we
provide evaluation results from testing several representa-
tive iOS applications with enhanced security and privacy
policies where we were able to detect several security and
privacy concerns. We also evaluate the correctness of the
framework to ensure that it enforces a user’s given policy,
and does so correctly. Lastly we evaluate the performance
impact of enforcing these enhanced security and privacy
policies as mobile devices are more constrained in resources
than traditional platforms.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 describe the policies and the SPE Framework.
In Section 4, we describe an implementation of the SPE
Framework that enforces policies on iOS applications that
users define using a client application. Section 5 evaluates
SPE across several applications with a focus on correctness,
detecting security and privacy concerns, and computational
overhead. After describing some relevant related research in
Section 6, we conclude with a summary of our contributions,
and some pointers to future work in Section 8.

2 POLICY MODEL

The policy model that is utilized by the SPE Framework
is derived from an ontology for enforcing security and
privacy policies on mobile devices, presented in [9]. In this
section we describe how the policy model was derived
and implemented for SPE. From the ontology, a policy
can exist primarily in two categories: privacy and security.
Additionally, a policy can be classified as a general policy
that contains spatial and temporal restrictions, or can exist
as a chainable policy that creates a relationship between a
privacy and security policy.

2.1 Privacy
Today privacy components are generally granted an “all or
nothing” access characteristic. For example, if a user permits
an application to access their photos, the application has
access to all photos on the device, there is no way to restrict
specific photos. Or if a user grants access to location data,
the user does not have the ability to set the level of precision
the application can retrieve location data or specify any kind
of temporal or spatial restrictions. These are the kind of
policies we aim to enhance with SPE.

2.1.1 Sensors
In this paper we focus our discussion primarily on the loca-
tion sensor, however these policies can be applied to other
sensors such as accelerometers or sound recorders. With



each sensor, we allow a Data Accuracy Allowed parameter
to be defined. This allows the user to specify precise data,
anonymous data, generalized data, no data, or bogus data
from a sensor. Three of these classifications with exception to
generalized data were presented in TISSA for Android [11].
Generalized allows for a predictable generalization of the
sensor data being retrieved. For example with location, a
generalized sensor accuracy policy would return a consistent
latitude/longitude for a particular region where anonymous
could be any point in particular region. This type of general-
ized data would be useful for applications such as weather
or radio streaming, where anonymity is useful for partici-
patory sensing applications. The five types of classifications
are enforced within the framework.

Users can also define spatial and temporal permissions
for sensors, such as: Time Restrictions and Location Restric-
tions. To remove the risk of an application detecting a user’s
exact location by specifying small regions and detecting
when a user enters those regions, we add an additional
permission of Permit Regional Monitoring With Restrictions.
This policy also ensures if regional monitoring occurs within
a designed spatial or temporal restriction, that regional
reporting will not occur. These policy settings allow a user to
have more fine grained control on how their location data
is accessed. Access to location data is a growing privacy
concern where one study found that out of 25,976 Android
applications, 969 applications leaked location data [4]. This
data can be used to examine a user’s daily patterns and
predict their location given a time interval.

Additionally, with sound and camera sensors the needs
for these privacy controls is accentuated. For example, a user
may be at a sensitive location such as a courtroom or a gov-
ernment classified location. Utilizing location restrictions, a
policy could be created to ensure that audio is not recorded
in these locations or that access to the camera is permitted.

2.1.2 Multimedia
The policies for multimedia focus on files stored on the
device such as video and pictures. Access to multimedia is
typically granted “all or nothing” with both read and write
permissions. To provide more control, a user can specify a
policy that separately defines read and write permissions.
Multimedia can also contain metadata that describes where
and when the element was captured. A user can specify ad-
ditional policies to protect these attributes by specifying Per-
mit Read Photo Date Attribute and Permit Read Photo Location
Attribute. An example of where this data was misused was
with the application Path where the application was found
to geotag photos after a user disabled location services [5].

Spatial and temporal restrictions can be placed on multi-
media as well. For example, a user can specify a date range
of photos that an application can not access. Additionally,
a user can specify restricted regions where if a photo was
captured in the region, an application cannot access the
photo. A user can also specify specific elements within
multimedia that an application cannot access, so if a user
wants to restrict specific photos, they are able to. These
additional policy attributes allow a user to still provide an
application access to their multimedia to take advantage of
an application’s features, while limiting what the applica-
tion can access and what operations can be performed.

2.1.3 Contacts & Calendar
Like multimedia, contacts and calendar data is typically
granted access to the entire library with read and write
permissions. This is a concern as this data can be leaked:
the social networking application Path was found to upload
a user’s entire address book without the user knowing [6].
Additionally, contacts and calendar data contain specific
attributes that an application may not require access to such
as first name, last name, address, phone numbers, and email
addresses. To protect against misuse of this data, a user
can specify Permit Read and Permit Write, Restrict Address
Access, Restrict Phone Number Access, and Restrict Email Ad-
dress Access. As an example of how these enhanced policy
attributes could be used, if a user was using an application
to make phone calls, the user could set Permit Write = false,
Restrict Address Access = true, Restrict Email Address = true.
As with other privacy data, calendar data allows for general
read/write access. Additionally, with calendar data, a user
can specify Restricted Dates. For both contacts and calendar,
a user can restrict access to specific contacts or events.

2.2 Security
SPE focuses on application-centric security concerns, pri-
marily focusing on enhancing the confidentiality of data that
exists on the device. This includes detecting and preventing
the leakage of data from being persisted on the device or
sent on the network. Preventing data being leaked to the
device may not seem important for sandboxed applications.
However, if a device is lost or stolen, the consumer may
want to ensure that their data is not stored in an unen-
crypted state. Additionally, a user may want to ensure that
data is not automatically synchronized to a cloud service
where that data could be further exposed. This type of
control would have prevented the recent iCloud breach [12].
The security policies are defined under the categories of
Communication, Data Persistence, and Credentials. SPE does
not focus on OS level security such as address space lay-
out randomization, application sandboxing, antivirus, and
intrusion detection systems.

2.2.1 Communication
In the Communication category we focus on network com-
munication where a user can define a Domain Policy that has
the following attributes: Permit Data, Require SSL, Permitted
Credentials, and Credentials Require SSL. These attributes
specify if a domain can receive data, if the connection
requires SSL, the credentials that can be transmitted, and if
SSL is required to send credentials. The Require SSL option
is used even though credentials may be sent over SSL, the
session token in the form of a cookie may be sent over a
non-SSL channel which can be read by an eavesdropper
and used to impersonate the user in an attack known as
“sidejacking” [13]. Each domain policy is specified for a
particular domain but can also contain wildcards to cover
multiple domains, for example: *.google.com.

2.2.2 Data Persistence
With Data Persistence we focus on providing policies that
specify what data can be persisted, if it should be encrypted,
and if it can be synchronized to a cloud service. These



Policy DB

Security

Privacy

User Data

Communication

Data Persistence 
Policy

Sensors

Contacts 
Policy

Calendar 
Policy

Network

Domain Policy

Credentials

Photos Policy

Location 
Policy

Fig. 1. Relationship of policy elements within policy model.

policies are specified with Can Persist to Device, Data En-
cryption Level, and Can Persist to Cloud. While both iOS and
Android offer disk encryption [14], [15], not all applications
may utilize encryption. The goal with this policy is to
allow consumers the ability to specify how data should be
encrypted. The Data Encryption Level is dependent on the
platform where for iOS, it utilizes Data Protection classes
specified in Apple’s iOS security document [16]. This policy
also mitigates the risk of data being retrieved from the
device if stored unencrypted. A malicious user can utilize a
filesystem browser, such as iExplorer, and open data stored
on the device without unlocking it if left unprotected. By
enforcing encryption, a user can ensure that if their device
is ever lost or stolen that the data is secure.

2.2.3 Credentials
With credentials we specify a basic permission: Access Al-
lowed. This permission allows the user to specify a global
policy on whether a particular credential can be used by
another application. This credential could be a username/-
password combination to their email, banking account or
any other service that would require authentication.

2.3 Chainable Policies
The ontology we utilize also specifies that policies can be
chained to one another [9]. This is implemented within the
SPE Framework to provide more fine grained control of
when an application gains access to privacy elements, how
and where that data can be transmitted or persisted to disk.
For example, a user may specify that for an application,
communication to a set of domains is permitted, however
sensitive photos may not be sent to that domain unless
they are encrypted. By attaching a domain policy to their
photo policy they can achieve this more granular level of
protection. Figure 1 shows the relationship between policies.

2.4 Policy Definition
The ontology for policies in SPE is comprehensive, and
the complete ontology is described in [9]. In this paper we
do not present every permutation. However to provide an
example, a user can define a policy such as this: “Facebook

can have my general location with exception between 7am
and 5pm, but not my home or work location and can only
share this data to domain facebook.com over SSL”.

To define this policy, we perform the following steps:

• Define Location Policy

– Set Data Accuracy Allowed = Generalized
– Add Time Restriction = {700,1700}
– Add Location Restriction = Home
– Add Location Restriction = Work

• Define Domain Policy

– Set Permit Data = TRUE
– Set Require SSL = TRUE
– Add Permitted Domain = ”*facebook.com”

• Location Policy attach Domain Policy

A user would create this policy through the SPE Policy
application. SPE Policy allows the user to define a policy and
make it accessible to applications. SPE Policy is described
in more detail in Section 4.4. With SPE, consumers have
much greater flexibility in defining the security and privacy
policies for an application.

3 SPE FRAMEWORK

Here we discuss the design of the Security and Privacy
Enhanced (SPE) framework and focus on the core com-
ponents including SPEIntents, class wrappers, and the
validation process. In the validation process we discuss how
a SPEIntent is validated for both truthfulness and against
a user defined policy.

3.1 SPEIntents
SPE uses a construct called SPEIntent to define an appli-
cation’s intent with a user-private resource. SPEIntents are
structured analogous to the policy model. As an example of
how a SPEIntent would be used, consider the following:
An application intends to communicate with a particular set
of URLs, the communication will be over a secure channel,
and a set of credentials will be sent. In this example, the
application would utilize a SPENetworkIntent. This type
of SPEIntent has a tight correlation of policies defined
in SPENetworkDomainPolicy. In this case, a SPEIntent
has two primary purposes: (i) It defines what operations
an application intends to perform so that at install time the
user can clearly see what these operations are, and (ii) It
detects the trustworthiness of an application by identifying
any attempts to violate intents by performing operations
that are not defined in the intent. The potential violation of
the trust can be intentional or can be caused from malware,
but in either case the user is able to realize the violation.

All SPE intents are subclasses of the main SPEIntent
class where internal properties and validation methods are
defined. SPEIntent also defines a delegate interface for the
consuming application to implement so that the application
can be notified of results of intent validation and handle it
appropriately for their application.

Each subclass of SPEIntent contains more specific
methods and properties based on the type of intent. For
intents that have common methods and attributes, there is a



SPEIntent

SPENetworkIntent SPELocationIntent

Communication 
Intent Interface

Sensor Data 
Intent Interface

Private Data 
Intent Interface

SPEAddressBookIntent

Extends

Implements

Fig. 2. SPEIntent relationships shown for intents subclassing from
main SPEIntent class and common interfaces for similar intents

defined interface for the intent to implement. For example,
all intents that relate to sensor data should implement meth-
ods that allow the application to specify if fuzzing, general,
or anonymous data is acceptable and the accuracy level
the application desires. Figure 2 shows this relationship
between the SPEIntent class, its subclasses, and protocols
that define common attributes across related intents.

When a SPEIntent is validated, either a protected
object is returned or an operation on a protected object is
performed. Since the application may have the same intent
for multiple object retrievals or operations, an intent can be
re-used across multiple protected objects. For example, in an
application that performs consistent network communica-
tion to a particular set of domains, a consuming application
can define the intent and reuse it for each new object that is
used to communicate over the network.

3.1.1 Chained Intents
SPEIntents can have a one-to-many relationship with
protected objects. However, a protected object can only
have one SPEIntent. A single object can be related to a
number of intents: a SPEIntent can be chained to another
SPEIntent depending on its type, much like how a policy
can be attached to another policy. This chaining is accom-
plished using the Decorator design pattern. For example, an
application could create a SPELocationIntent that can
be used to retrieve the location of the user. To transmit the
location data over the network, they would then chain a
SPENetworkIntent to the SPELocationIntent which
would further define the intent of the application in how
it intends on sending the location data over the network.
Chained intents provide flexibility in the framework so that
the application can attach both a SPENetworkIntent and
a SPEDataPersistIntent without bloating the imple-
mentation of the SPELocationIntent. It also allows re-
use within the application and has a tight correlation to an
attached policy where the chained intent will be validated
against an attached policy if one exist, otherwise it will
default to the user’s global policy.

3.2 Class Wrappers

The SPE Framework includes class wrappers for all of the
security- and privacy-sensitive classes within iOS. These
class wrappers are utilized to retrieve a protected object or
perform an operation on a protected object. These objects
can then only be instantiated and used through the SPE

Calling Application

User's Policy Protected Object

Framework Class Wrapper

1. Request Object 
with Intent

2. Verify Intent and 
Object Properties

3. Instantiate Protected
Object 

SPENetworkIntent
4. Return Object and/or

Call Delegate

Fig. 3. Request of protected object using framework class wrapper with
object being returned only after successful validation.

Framework, meaning the objects returned are immutable.
To minimize changes required in the application utilizing
the framework, the wrapper method’s implementation are
as close as possible to the original implementation for the
protected object. For example, in Objective-C if the consum-
ing application wanted to create a NSURLRequest object,
the changes are highlighted below:
Original Method:

1 NSURLRequest *request =
2 [NSURLRequest requestWithURL:url]

Wrapper Method:
1 NSURLRequest *request =
2 [SPEFramework requestWithURL:url
3 withIntent:speNetworkIntent];

The class wrappers reduce the complexity of verifying
the application’s use of the framework by checking to ensure
that each protected object is not directly instantiated or used.
Upon validation, the application will always be returned
an immutable object — any changes to the object’s state
have to be made through the framework. We recognize that
making these changes throughout an application may not
be feasible or impractical. To assist developers, we describe
a SPE Conversion Assistant in Section 4.3 that will automati-
cally enforce the SPE Framework on an application so that
manual modification of the source code is not needed.

3.3 Validation
The SPE Framework ensures the application is truthful by
examining the SPEIntent and the action being performed
against the user’s defined policy. If the properties within
the object being requested do not match what is described
in the intent (truthfulness) or if the intent violates the user’s
policy (policy violation) then no object is returned and the
delegate that the consuming application defined is notified
(Figure 3). If no policy violation occurred and the intent was
truthful, then the object is returned as well as a notification
to the delegate that validation was successful.

When an intent is validated, validation is performed
within the SPEIntent object using the reflection API to



Calling Application

SPEIntent 
Cache

Framework Static Method Wrapper

1. Request Mutation

2. Retrieve SPEIntent 
from Cache

Protected 
Object

7. Return Mutated Object 
and/or Call Delegate

Protected 
Object

Protected 
Object

3. Create Copy 
of Object

4. Perform Mutation
on Copy

User's Policy

5. Validate 
Intent and Tainted

Properties

6. If Validation
Update Cache

Fig. 4. Request of mutation of previously acquired protected object,
mutation is created on copy, validated with cached intent, and returned
as immutable.

determine the type of intent it is to validate itself appropri-
ately. When an application needs to make a change to the
protected immutable object that it received, it again goes
through the framework so validation can be performed.
The application invokes the corresponding operation on the
framework with the immutable copy of the protected object.
This way, the framework can perform the operation in a
manner that can be validated.

To reduce the burden of requiring the application to
pass with each call the protected object’s related intent, the
SPE Framework contains an Intent Cache which maps each
protected object to its related intent. Each wrapper method
in the SPE Framework will mark properties of the protected
object that will be mutated as “tainted” by utilizing a
Taint Descriptor. As part of validation, the framework will
create a mutable copy of the protected object, perform the
mutation on the copy, and then perform validation with
the properties that were tainted via the Taint Descriptor. If
validation succeeds, the framework will then change the
mutable object to immutable, update the Intent Cache by
replacing the previous object and its related intent with the
new immutable object. The object is then returned with the
mutation performed, or if there is an error the application is
notified. This process is depicted in Figure 4.

When validation is performed, the process can be com-
plex for properties that hold variable data. For example,
consider an HTTP POST request where the body of the
request can hold a variable amount of privacy data. Vali-
dation in this scenario is more complex and will consume
more resources as they have to be checked for any security
or privacy sensitive data. To perform this validation, SPE
delegates the responsibility of checking this variable data
to the Data Inspector. The Data Inspector’s responsibility is
to examine chained intents on the protected object for any
privacy or security data being utilized and then validate
both the object and the intent to ensure that the intent is
being truthful. To improve the efficiency of this process,
the Data Inspector examines the Intent Cache for sensitive
data that has been released to the application and check

for that data to exist. This reduces resource consumption
by not having to check each privacy and security sensitive
component on the mobile device and only check those that
have been accessed through the SPE Framework.

4 IMPLEMENTATION

Thus far, we have described the general concepts that define
SPE. In this section, we present some salient details of our
implementation of SPE for iOS. Most related research is
targeted at Android, since that source code base is open
to modification. Our goal, however, is a framework that is
immediately accessible without OS modifications.

4.1 SPEIntents

The SPE Framework has a base SPEIntent class that
it derives from. This class is used for validating itself
against defined policies whether they be global poli-
cies or attached policies. To group like SPEIntents to-
gether, we created several protocols. Some of these to note
are: SPEChainableIntentProtocol, which allows for
chained intents, and SPESensorDataIntentProtocol,
which allows the application to set desired and minimum
data accuracy requirements. For example, a navigation ap-
plication would need to have precise location; if it just had
the user’s general location it would not be able to function
properly. If the minimum sensor accuracy is not met, SPE
validation will succeed; however, SPE will let the applica-
tion respond appropriately and perhaps make a better case
to the user why they need more precise location. These
general protocols allow SPE to perform similar validation
across similar SPEIntents.

The class hierarchy of SPEIntent and its subclasses are
analogous to the policies described in Section 2. For exam-
ple, with a SPEPhotoIntent an application can specify
that it intends to modify photos, that it will require the date
attribute, and that it will require the location attribute. The
corresponding policy allows the user to set restricted dates,
restricted locations, and if the application can read the date
and location attributes as well as write to the library. Within
a policy a user can permit the application to read photos.
However within a SPEIntent, read access is not specified
as it is implied a read operation would occur.

4.2 Validation

All validation is performed within the SPEIntent; the
intent will use introspection to first find what protocol
the intent conforms to and from there deduce the correct
subclass of SPEIntent. As mentioned earlier, this allows
for maximum re-use of validation within the intent. When
performing the validation there are two areas that SPE
focuses on: (1) Is the SPEIntent truthful with its action,
and (2) Does the SPEIntent comply with the user defined
policy. To check if the SPEIntent is truthful, we improve
the efficiency of how this is performed by tainting properties
and operations of a protected object using a class wrapper.
Because all mutations and instantiations of an object occur
through the class wrappers provided by the SPE Frame-
work, portions of the SPEIntent that have previously been



validated need not be revalidated. To validate a policy in-
tent, we use an internal representation of the policy database
in memory for the application and check the operations and
instantiations of the protected object.

To validate attached data policies and chained
SPEIntents, we created a SPEShareableDataPolicy
protocol that allows a SPEPolicyDataPersist and/or
SPEPolicyNetworkBranch to be attached to a pri-
vacy SPEIntent. For chained intents, we created a
SPEChainableIntentProtocol which allows intents to
be chained to a privacy related intent. When we validate
the intent, we first validate the privacy intent against the
privacy policy. If this passes, we then iterate through each
chained intent and pass the shareable data policy which will
have potentially an attached network or data persist policy.
So when we validate chained intents, we are validating
against the relevant attached policy if it exists, otherwise
we validate the chained policy against the global network
or data persistence policy for the application.

Here is the general validation algorithm:
validation = true
if Validate Privacy Intent to Privacy Policy then

for all Chained Intents as Chained Intent do
if not Validate Chained Intent to Attached Policy
then
validation = false
break

end if
end for

else
validation = false

end if
When we cache protected objects, we use a

NSDictionary to store a mapping to a singleton copy of
the validated object during the life of the application. If a
validated object was a singleton itself, we store an identifier
in the cache to the singleton so that it can be retrieved.

4.2.1 Sensor Accuracy and Privacy

With sensor accuracy and privacy, our goal is not to create
a better privacy-preserving algorithm for location (that is
the focus in other research), rather our focus is on providing
broad methods of preserving privacy and show its effective-
ness and effect on the OS. With the location policy, there are
several levels that a user can define in their policy: precise,
anonymous, generalized, no data, or bogus data.

Consider a coordinate location, say (-29.6404955,
144.7000729). If the policy setting is anonymous, we utilize
a random number generator to generate a random number
between -.04 and .04 and add it to the latitude and longitude
(approximately a 2 mile radius around a given location). To
compute the generalized location, we take only 1 significant
digit for latitude and 2 significant digits for longitude which
provides a consistent generalized location for a user given a
specified area they exist in. If the policy setting is bogus, we
generate a random location by generating random latitude
and longitude values, and if the policy setting is no data
we simply return nothing. For the heading, if it is generalized
we set it to 0 (North), if it is anonymous or bogus we pick a
random direction to return to the application.

Consuming Application

1. Get Core
Location Manager

3. Set Delegate

CLLocationManager Proxy Delegate

Delegate

SPE Framework

2. Return Location
Manager

4. Set Delgate with Reference 
to Consuming App's Delegate

Fig. 5. Depicts proxy delegate utilized in SPE Framework to enforce
location scrubbing and policies.

Implementing a class wrapper for location is more inter-
esting; in iOS, a delegate is used when retrieving locations,
so we needed to proxy the data being retrieved from the
device. To accomplish this, we implement a proxy delegate
that receives location updates, heading updates, and region
updates. It will then notify the delegate within the applica-
tion if validation passes of each location update (Figure 5).
The proxy delegate also performs fuzzing and scrubbing
based on the accuracy set. So if a user set their permitted
location accuracy to generalized, the proxy delegate will
capture the data and fuzz it before it is returned to the
application. By utilizing a proxy delegate, we minimize
the changes an application would need to make to gather
locations from a user. Further, validation and scrubbing
is done when the application attempts to directly access
location and heading.

4.2.2 Proxying Privacy Data
Several libraries require that privacy data is enumerated us-
ing a block in Objective-C. This adds complexity for SPE to
perform validation on the data being returned as the block
can be called asynchronously. However much like a proxy
delegate, we implement a proxy block that will check the
data being sent back from the library being consumed and
perform validation and scrubbing as necessary. An example
of this is when accessing the photo library, ALAssets are
returned through a block. SPE will utilize the proxy block
to wrap the original block passed in from the application
to proxy the request and perform the necessary validation.
This again allows us to check against the policy and intent
for both truthfulness and policy violations. Additionally,
the proxy block allows the framework to scrub data such
as removing date and location attributes from a photo if a
user’s policy did not permit access to those elements.

4.2.3 Temporal and Spatial Restrictions
When a user defines a location restriction, she can specify a
point and the radius around that point to specify a restricted
region. This type of spatial restriction is represented as
a CLCircularRegion in iOS. These restrictions can be
applied to policies that have spatial restrictions, e.g., an
application attempting to retrieve the user’s current location



Fig. 6. Screenshot of SPE Conversion Assistant converting an open
source application.

or an application attempting to access a photo taken at
a restricted location. To test if a location falls within one
of these restricted regions, we utilize the iOS convenience
method in the CLCircularRegion class:

1 - (BOOL)containsCoordinate:
2 (CLLocationCoordinate2D)coordinate;

When a user defines a temporal restriction, we provide
a simple policy where the user can specify the time of day.
Temporal restrictions can be applied to location as well as
other policies including photos. The combination of these
temporal and spatial policies allow a user to define with
more granular access to their privacy data.

4.2.4 Notifications
SPE supports two types of notifications. To en-
sure that the application implementing the framework
can handle different policy settings, the application
can implement the SPEResponseDelegate protocol,
which includes two methods: didReceiveSuccessful-
Validation will be called with the successful intent, and
didReceiveDeniedValidation will be called with an
NSError object and the SPEIntent that was denied. In
order to ensure that the user is informed of any kind
of policy violations and truthfulness mismatches with the
intent, the framework sends a UILocalNotitification
that also shows a UIAlertView and allows the user to
dismiss future alerts. If the user dismisses future alerts, they
can still see the notifications in the Notification Center. If
an application attempts to validate several intents without
checking whether they were successful or not, we display an
aggregate UIAlertView letting the user know that several
violations occurred.

4.3 SPE Conversion Assistant

The class wrappers included in SPE attempt to stay as close
as possible to the the original Objective-C implementations
of protected methods. However it may be infeasible or
impractical for an application to adopt these methods in
place of existing methods. To address this situation we
created the SPE Conversion Assistant which is a point-and-
click solution that will inject the SPE Framework into an

Fig. 7. Screenshots of SPE Policy application showing a restricted
location being specified and general location policies.

application’s source code. It does this by injecting code into
the application delegate that swaps out implementations of
protected methods with SPE’s own implementation. Once
the call is intercepted, SPE performs the validation just
as if the call was made to it directly through one of the
class wrappers. Part of this approach is known to the iOS
development community as method swizzling, which takes
advantage of the Objective-C runtime to exchange method
implementations at runtime. Figure 6 shows the SPE Con-
version Assistant interface to perform a conversion of one
of the open source applications we evaluated. A developer
does not need access to the SPE framework’s source code in
order to integrate SPE into their application.

The SPE Framework is compiled into a static library that
is linked to the application when it is built. The source code
of the implementation of the SPE Framework is not open for
modification when integrating within an application.

4.4 Policy Management
To allow a user to manage their policies, we created the SPE
Policy application. Using the SPE Policy application a user
can generate a policy and store it on a dedicated web server
or a cloud service of their choosing. Because the policy file
can be publicly accessible, it is encrypted using a credential-
based key using the PBKDF2 algorithm [17].

When an SPE-converted application is first launched,
SPE will prompt the user for the location of the policy file
and the credentials to decrypt it. It will then download the
file and install it for utilization by the SPE Framework. If
the application is restarted, SPE will check if a policy file
was installed and prompt the user to unlock the existing
policy file using their credentials or it will allow the user to
download a new policy file. Figure 7 shows the SPE Policy
application with location restrictions being configured.

5 EVALUATION

The primary goal of the SPE Framework is to protect the
user from apps that misuse personal data. Such misuse may



App Name Description Nature of Violation
AlienBlue Commercial open source Reddit client for iOS No violations reported.
CamLingual Read and translate signs using OCR Location/Unencrypted Write to Disk
Congress Application for tracking activity in congress Block Google Analytics Data/Location
CycleStreets Plan a cycle journey within the UK Location/Unencrypted Write to Disk/Network
Doppio Allow you to find closest Starbucks location Location
FoxBrowser Full fledged browser with Firefox Sync support Block Google Analytics Data/Location/Unencrypted

Write to Disk
Hacker News Client Social news website on computer hacking and startup

companies
No violations reported.

IRCCloud IRC Chat client Insecure Network
Plain Note Simple note taking client with ability to synchronize notes Insecure Sync of Notes on Network
Scanvine News Aggregator Unencrypted Write to Disk
Sol Weather application Location
Spika Instant messaging application Unencrypted Write to Disk/Network/Location
The White House Shell application that White House utilizes Block Google Analytics Data
Wikipedia Popular crowdsourced internet encyclopedia Location

TABLE 1
List of apps used for SPE Framework evaluation

either stem from malicious design on the part of the app
developer, or it may be “accidental”: a developer may use
a third-party library, which in turn misuses personal data.
The SPE Framework provides a way for app developers to
be open and clear about their intentions of how personal
data from a user is being used.

The SPE Framework, in its current state, requires the
source code of the application that is being monitored.
As such, in order to fully evaluate the capabilities of the
framework, we need access to app source code. In [10],
we presented a preliminary evaluation of the framework’s
capabilities by testing it against apps that we created for
the purpose of testing. These apps did make data mis-
use violations, and the SPE Framework correctly identified
those violations. For the evaluation in this paper, the SPE
Conversion Assistant was utilized as it allows an application
to be easily integrated with the SPE Framework.

5.1 Security and Privacy Enhancements Evaluation

For the purpose of this evaluation presented here, we did
not use any applications we wrote ourselves. Instead, we
identified apps written by other developers. Our evaluation
is performed on a set of open-source iOS apps that are
available for download from the iTunes App Store. The
source code for these apps are all available for download
from the GitHub source code repository. We found a total
of 35 apps that were available both on GitHub and the App
Store. However, not all of these apps were suitable for use in
the evaluation. Out of these apps, the source code for 15 of
them were not in a state where it would compile and build.
A further 6 apps would not actually run on an iOS device
or simulator. We finally arrived at the list of 14 apps (listed
in Table 1 that would work for the evaluation. Out of the 14
apps that we tested, only 2 did not report a violation.

For this evaluation we built a policy using the SPE Policy
application that would only allow network communication
to the required domains for the targeted application. The
policy did not allow access to privacy information on the
device, which allowed us to monitor what privacy elements
were accessed by the application as the framework would
alert violations to the policy. The application has access to
the policy file (Sec. 4.4). Once this file is generated, it was

then stored on Google Drive and made publicly accessible
via a dedicated URL. We used the SPE Conversion Assistant
to inject the SPE Framework into each application . We then
ran each application on an iPhone 5 or an iPad 3 depending
on what devices the application supported.

When opening the application the SPE Framework
prompts for both a URL to the policy file and the credentials
to decrypt the policy file. After the policy was downloaded
to the device and installed, we then ran the application and
performed any required account setup that may be required
to utilize the application. Using the policy we defined, we
were able to determine what violations the SPE Framework
were able to find, and adjust the policy as needed to allow
the application to perform its expected operations.

5.1.1 Location Violations
Several of the applications we tested attempted to use
the user’s location. The applications that had a legitimate
use case for the user’s location were CycleStreets, Doppio,
Sol, and Wikipedia. However there were cases where the
location data was not yet required for the application to
function, or the precise location of the user was not required.

With CycleStreets we found that the location was being
requested before the user set up a route based on their cur-
rent location. With Doppio and Wikipedia, a user may want
to provide an anonymous location within their region so
that they can view information around their current location
without providing their exact location. For example, if a user
is using Doppio to find Starbucks in their region, they would
not have to provide their exact location to find Starbucks
in the area. Instead, this location could be anonymized
or generalized using the SPE Framework. Likewise with
Wikipedia, if a user is looking for information about a city
they are in, they again would not need to provide the exact
location. Additionally, with the weather application Sol, an
exact location is not required to get the forecast for the area.
In these scenarios, SPE can be utilized to enforce generalized
or anonymous location data.

While the above applications had legitimate use cases to
request the user’s location, Camlingual and Spika did not
have legitimate use cases. Camlingual’s sole functionality
is to provide OCR capabilities to photos that a user takes
using their mobile device; access to the user’s location is



not required. Additionally, Spika requested the location of
the user even though it was not required for the application
to function. Lastly the Congress application does not need
access to the user’s location, however if the user wanted
to provide it it could also be generalized or anonymized to
provide the same functionality.

FoxBrowser was an exception to applications requesting
access to the user’s location. FoxBrowser did not explicitly
request the user’s location, however if the user visited a web
page that requested the user’s location, the request would
be made. Because the SPE Framework utilizes method
swizzling to intercept calls to protected resources, even
though the location request was not explicitly defined in
FoxBrowser, SPE was still able to enforce a location policy.

5.1.2 Network Violations
In several apps the SPE Framework was able to block data
leaving the device to unauthorized endpoints, over un-
trusted channels, or to the Google Analytics service. In Cy-
cleStreets, the SPE Framework was able to block network re-
quests that were not destined to the openstreetmap.org
domain. In Plain Note, the framework was able to block
notes from being synchronized over a non-SSL channel. If
a user had sensitive data in a note that they created, they
would not want it to be insecurely transferred to a cloud
service or in general restrict it from being transmitted off
the device. In IRCCloud, the framework was able to block
communication to non-SSL endpoints. This is particularly
useful in this application as available networks for the user
to connect to was returned in a non-SSL request and could
be spoofed. With a spoofed response, a user’s credentials
could be sent to an endpoint the user did not intend to
send to. In Congress, FoxBrowser, and the White House,
the framework was able to block data being transmitted
to the Google Analytics service. By ensuring that network
data only goes to required endpoints, consumer’s can limit
private date from being transmitted to advertising services.

5.1.3 Disk Violations
There were several apps (CamLingual, CycleStreets, Scan-
vine, and Spika) that attempted to write data to disk without
explicitly requiring the data to be encrypted. This is a
concern as this data could contain user information and if
the device is ever lost or stolen, a malicious user could gain
access to this data without unlocking the device.

5.1.4 Discussion
AlienBlue and Hacker News Client were the only applica-
tions that did not report a violation. The SPE Framework
still was able to enforce a user’s defined policy, however the
applications did not access privacy data or send data over
the network unencrypted or write data to disk unencrypted.

From this evaluation we are able to demonstrate the ef-
fectiveness of the SPE Framework. The evaluation presented
here can be performed against any application where the
source code is available. With our evaluation we did not
specifically seek applications that appeared to be malicious,
had previous reports of leaking privacy data, or had security
concerns. Instead our evaluation included any application
for which we could obtain the source code, build, and run

the application in the simulator or device. With all apps that
fit this criteria, the SPE Framework is able to be successfully
integrate within the application using the SPE Conversion
Assistant. Because the SPE Framework intercepts requests
to methods that request access to security and privacy
sensitive elements, the SPE Framework is able to guarantee
enforcement of the user’s defined policy. This enforcement
is also guaranteed against third-party libraries, which was
shown by blocking requests to the Google Analytics service.
In comparison to other previously proposed methods, SPE
does not attempt to identify patterns of malicious behavior
which can report false positives and false negatives. SPE
also does not attempt to perform taint analysis of privacy
data which is also subject to reporting false positives [18].

5.2 Performance Evaluation
While our main goal is to look at policy enforcement, we
also evaluate the performance overhead of using the SPE
framework. To evaluate the overhead we created an applica-
tion that focused on individual units of the framework. All
test cases were repeated one hundred times on an iPhone
5 and the results were averaged. The performance tests
were focused on individual components of the framework
to clearly identify where more overhead was observed.

5.2.1 Network Access
To evaluate network access we utilized a policy that allowed
communication to a specific domain, required SSL, and
permitted a credential to be sent over SSL. In Test A the
application’s intent was truthful and it followed the user-
defined policy. In Test B the application attempted to send a
network request to a domain it did not intend to, simulating
an intent being untruthful. In Test C, the intent was truthful,
however it did not abide to the policy. Finally in Test
D, the intent was truthful however it attempted to inject
credentials in the request it was not permitted to use from
the user policy (Figure 8).

While the observed computing overhead seems signifi-
cant, this test did not actually send the network request onto
the network. We did not send the request as the response
time could be inconsistent and mocking the network would
only provide a constant delay to both tests. From observing
the overhead, it may seem counter-intuitive that the truthful
case took longer to execute. However since the truthfulness
of the intent is checked first and passed, the request was
then validated against the policy which took longer to per-
form. Additionally, this overhead difference was expected as
with each network request, the Data Inspector described ear-
lier in the paper scans the data in the request to ensure that
none of the data that has been requested by the framework
is being leaked in the network request without intent.

5.2.2 Data Persistence
To evaluate data persistence, we wrote a medium sized
image (378 KB) to the local filesystem (Figure 9). In Test A,
the intent was truthful and the policy was followed. In Test
B, the intent was untruthful but the policy was followed. In
Test C, and D, we mirrored Test A and B respectively with
requiring encryption. In contrast to our network evaluation,
the difference here is smaller between operations that use



A B C D

0

1

2

3

3.4

2.96 2.9

2.42

0.17 0.15 0.13 0.22

Test Performed

Ex
ec

ut
io

n
Ti

m
e
×
10

−
4

SPE No SPE

Fig. 8. Network Testing with NSURLRequest - Intent Truthfulness, Abid-
ing Policy, Credential Injection

A B C D
0

2

4

6

6.4

5.18

3.85

4.53

2.77 2.91 2.9 3.08

Test Performed

Ex
ec

ut
io

n
Ti

m
e
×
10

−
4

SPE No SPE

Fig. 9. Data Persistence Testing with NSData - Intent Truthfulness and
Encryption

SPE and those that do not. This can be attributed to the
actual data persist operation being performed whereas in
the other case, the request is never sent over the network.
We also observed that when not using encryption, the
validation and execution of tasks using the SPE Framework
contains less of an overhead.

5.2.3 Photo Library
To evaluate photos, we enumerated through 25 photos
on the device, retrieved date and location attributes, and
created a UIImage object from the photo (Figure 10). In Test
A, SPE was utilized to scrub date and location attributes of
the photo with a truthful intent. Test B was similar to Test
A, however with the intent not being truthful. Test C did
not scrub date and location attributes and the intent was
truthful. Finally in Test D, SPE was not used at all.

From our observations, utilizing SPE showed a marginal
overhead even when attributes were scrubbed. This is in
stark contrast to our network evaluation, but unlike the net-
work evaluation we were enforcing policies against proper-
ties of a photo and not examining data for potential privacy
leakage. With our photo evaluation, we only included one
non-SPE test as there is only primarily one method to access
the photo library.

5.2.4 Location Evaluation
Evaluation of location sensing is interesting as there is
an inherent delay in receiving location updates. We tested

A B C D
0

2

4

6

6.51 6.62 6.51

5.47

Test Performed

Ex
ec

ut
io

n
Ti

m
e

SPE No SPE

Fig. 10. Photo Library Access with Scrubbing and Intent Truthfulness

A B C D
0

5

10

15

20 19.61 19.58 20.22
18.81

Test Performed

Ex
ec

ut
io

n
Ti

m
e

SPE No SPE

Fig. 11. Location Testing with Anonymization, Spatial and Temporal
Restrictions

receiving 25 location updates five times to get an average re-
sponse time (Figure 11). Test A evaluated a spatial restriction
that the device did not violate and likewise Test B utilized
a temporal restriction that the device did not violate. Test C
used anonymization to “scrub” the location data. In Test D,
the SPE framework was not used to enforce policies or use
the proxy delegate described earlier.

In this evaluation we did not include region monitoring
as that would require the device to enter and exit regions
which we believe would not provide much value. From
our observations, the computing overhead appeared small
compared to the overall operation of receiving location data.

5.2.5 Performance Evaluation Discussion
Our performance evaluation examined several different per-
mutations of using the SPE Framework. Only in the net-
work evaluation did we observe a significant proportional
overhead. This overhead was expected as the data within a
network request is inspected for any privacy data that was
requested and may have been leaked. Future work can focus
on improving the detection of any privacy data being leaked
in locations such as the body of an HTTP request. However
efficient methods for doing this was not the focus of our
research. Additionally, during our evaluation of the several
iOS open source applications that we tested against, we did
not perceive a noticeable delay.

The policy that the user defines will also have an impact
on performance. For example, the more restricted locations
a user specifies, the longer it would take for the framework



to enforce the policy. The focus of this evaluation was to
examine the core concepts of the framework against a policy.

In our evaluation, we focused primarily on execution
time to measure the performance overhead of SPE and to
ensure that there was no delay in user experience. CPU and
energy is more difficult to measure in the targeted evalua-
tion we created that evaluated different aspects of utilizing
SPE. However both CPU and energy can be expressed as
functions of execution time, at least to a limited extent where
they would be proportional.

To measure the memory footprint we used the Instru-
ments application that is available with the Xcode IDE and
analyzed memory consumption across several of the open
source apps we tested. With each application we utilized a
policy that was fairly restrictive and could be considered
a moderate size policy. Overall we found the memory
footprint to be small. For example, a SPENetworkIntent
consumed 128 bytes and a SPEPhotoIntent consumed 112
bytes. A user’s policy in memory had an overhead of
approximately 1.2 KB. Lastly the SPEMethodRegistry, which
is responsible for holding the runtime implementation of
methods SPE is protecting, only consumed 64 bytes. Overall
we found the average memory consumption of SPE to be
approximately 1.7 KB while running the applications. The
larger a policy is and the more complex rules that SPE
would have to enforce could increase memory consumption,
however based on our findings utilizing a moderate size
policy file, memory overhead is less of a concern.

6 RELATED WORK

There has been a good amount of work focusing on enhanc-
ing the security and privacy controls on mobile devices [19].
In this section we review how some of that work relates to
the work described in this paper.

Taming Information Stealing Smartphone Applications
(TISSA) provides lightweight protection, application trans-
parency, and is built on top of existing Android security
mechanisms. The implementation required less than one
thousand lines of code and had a low performance overhead
[11]. TISSA focused on four types of user data: contacts,
phone identity, call logs, and location data. They provide the
option to return for these values one of three return value
types: none for no data being returned, anonymous for an
anonymous version of the data, and bogus to provide a fake
result [11]. TISSA required modification to the Android OS.

IdentiDroid focuses on anonymity by proposing a cus-
tom Android OS that ensures applications cannot identify a
user [21]. IdentiDroid takes a unique approach by shadow-
ing data that identifies the user and block runtime permis-
sions that lead access to identifying data. Their evaluation
demonstrated that their solution is highly effective with
minimal impact to the applications on the device.

The Android Runtime Security Policy Enforcement Frame-
work (SEAF) focuses on dynamic behavior of the application
and validates applications by exercising permission pat-
terns [22]. This allows SEAF to define certain patterns that
could be malicious such as READ CONTACTS, INTERNET,
which can indicate misuse by sending user’s contacts over
the Internet [22]. This framework also exhibits low overhead
and requires a modification to the Android OS.

TaintDroid uses dynamic taint analysis to monitor vari-
ables, method calls, and data on the filesystem to determine
if data is being leaked [18]. TaintDroid showed success by
only incurring a 14% overhead from 30 applications that it
monitored and was able to identify 68 instances of misuse
[18]. However it was acknowledged that dynamic context-
based privacy sensitive information such as latitude and
longitude coordinates could be hard to detect as they could
be just random floating point numbers [18].

AndroidLeaks take a different approach as the previously
mentioned work. Instead of modifying the OS, they propose
a static analysis framework for Android by using WALA
and performing reachability analysis [4]. They create a set
of mappings from Android APIs that can leak data, and
they also look at popular advertisement libraries. They then
use ded and dex2jar to convert applications into Java source
code or byte code and if an application has one source and
one sink, they perform static taint analysis to determine if it
reaches the sink. To check for privacy leakage on callbacks,
they taint data so that when it comes back via a callback,
they can see if that data is being used.

PSiOS focuses on iOS, however it does require the device
to be jailbroken as it requires including a shared library
with each application [23]. With their approach, the enforce-
ment framework is applied to all applications and provides
fine grained privacy controls. In their research they evalu-
ated several popular applications to prove its effectiveness.
While their solution does not require modification to the
source code, the inherent trust in the OS is lost with the
device being jailbroken.

Other related work includes RecDroid where they take
a novel approach by recognizing that permissions granted
when the application is first run is not effective, and their
approach utilizes export recommendations to modify per-
missions at runtime on Android [24]. Papamartzivanos et
al. [25] proposed a cloud solution that utilizes crowdsourc-
ing to identify privacy leaks in mobile applications. Their
solution uses this information to alert users and the commu-
nity of application misbehaviors. Chin et al. [26] performed
a study across 60 smartphone users to find out what tasks
users feel comfortable performing on their smartphone, why
applications are selected by users, and from this study
they provide recommendations for smartphone platforms.
In another study Liu et al. [27] analyzed the permissions
users granted to mobile applications on Android and real-
ized that the permission model is to complex and could be
reduced. The platform they propose requires the device to
be rooted and allows the user to choose between three dif-
ferent settings where settings can be changed at a later time
dynamically. Beresford et al. [28] proposed MockDroid where
a user could mock an application’s access to a resource and
allow the user to determine if the application could function
without having access to a particular resource. They rely on
the idea that an application has to be resilient enough to
where if access to a resource is not available, that the appli-
cation could still function. This allows a user to be selective
on what resources an application can access while still being
able to function. As with other previously mentioned work,
Mockdroid required a modified Android OS. The MOSES
framework for Android is a policy based framework that fo-
cuses on isolating software and data on the device [20]. With



MOSES, security profiles can be defined to effectively build
virtual environments within the operating system to isolate
applications. This is done through dynamic switching be-
tween different security profiles. MOSES showed minimal
overhead in both latency and battery.

Finally, ProtectMyPrivacy (PMP) [29] is another solution
that helps mitigate and detect privacy leaks on iOS. Their
approach is significantly different: they utilize a crowd-
sourced engine that cannot be significantly impacted by one
user and they were able to recommend protection settings
for over 97.1% of the 10,000 most popular apps. Their
solution requires a jailbroken iOS device, however, but they
have had success in the Cydia app store where at the time
of publication they had 90,621 users.

Much of the recent related work presented here has fo-
cused on jailbreaking the device or modifying the operating
system to provide the consumer with additional security
and privacy controls. To modify the operating system, the
OS needs to be open source (only Android as of now). Even
with only Android being open source, most devices carry
a modified version of the OS that is not open source but
maintained by the device manufacturer. So most of these
proposals can only be applied to those devices that run 100%
pure Android such as Nexus devices.

7 DISCUSSION

While SPE provides a way for developers to be open and
clear about their intentions, developers may require an
incentive to adopt the framework. Demand for adoption of
SPE can be driven by consumers and businesses, similar to
businesses demanding applications to adopt MDM frame-
works. The advantage with SPE is the change in the applica-
tion is small and automated. Additionally, developers that
adopt SPE do not have to consider the framework during
development since the framework is injected at runtime.
However, applications supporting SPE can earn the trust
of consumers by adopting the framework.

Using the runtime modification approach to inject SPE
into an application, future enhancements can be made to
strengthen the detection capabilities in the Data Inspector.
Currently the Data Inspector can detect data that has not been
modified by being encoded, encrypted, or some other trans-
formation. Using the Objective-C runtime, SPE can perform
data flow analysis to detect when data is being included
in a request that leaks data from the device. Additional
future work includes verifying that an application is using
an unmodified version of the SPE Framework. By using
SPE’s interception implementation, verification can be built
into the static library to ensure that the framework has
not been modified and is enforcing the user’s policy. Ad-
ditionally, an external entity can verify that an application
implementing SPE is using an unmodified version of the
framework through a challenge response mechanism and
comparing a generated signature of the static library with
existing signatures.

We also recognize that maintaining the policy for the
SPE Framework can be cumbersome for users. We are cur-
rently working on a follow up framework that dynamically
constructs a policy for the user based on user choices and
machine learning algorithms.

8 CONCLUSION

In this paper we have presented the Security and Privacy
Enhanced (SPE) framework. We described the policy model
it utilizes, the core design of the framework, and details
on an implementation that allows a consumer or business
to effectively ensure that security and privacy policies are
enforced. Additionally, we proposed a novel approach that
uses intents to describe to the user how the application will
use their data and enforce these intents. Compared to recent
research that has focused on modifying open mobile operat-
ing systems or jailbreaking closed-source operating systems
like iOS, the SPE Framework takes a different approach.
While the SPE Framework does require modification to the
application, it does not require modification to the OS or
for a device to be jailbroken or rooted. We believe this is a
more sustainable approach as OS updates do not impact the
SPE Framework unless there are significant API changes.
Frequent updates to mobile operating systems have led
to fragmentation, with modifications to Android by both
carriers and device manufacturers. Additionally, a consumer
does not need to compromise the built-in security of their
device by jail breaking or rooting the device; with SPE they
add another layer of protection. Lastly with SPE a consumer
can use a stock device with a stock operating system. Based
on the results of our evaluation, SPE is highly effective and
prevents several privacy and security concerns from several
iOS applications. In the near future we plan on releasing the
SPE Framework, SPE Conversion Assistant, and SPE Policy
application as open source projects. From this, an external
entity can be created for developers to retrieve the SPE
Framework to incorporate within their application or the
framework could be tied into the workflow for application
submission.

9 ACKNOWLEDGMENTS

This work is partially supported by a NSF CAREER award
(CNS-0746632) and by a CSU Doctoral Research Award.
A preliminary version of this article was presented at the
Workshop on Mobile Cloud and Social Computing [10].

REFERENCES

[1] Symantec, “Internet security threat report volume 19,” Symantec,
Mountain View, Tech. Rep., 2014.

[2] ——, “Norton mobile insight discovers face-
book privacy leak,” February 2014. [On-
line]. Available: http://www.symantec.com/connect/blogs/
norton-mobile-insight-discovers-facebook-privacy-leak

[3] J. Ball, “Angry birds and ’leaky’ phone apps targeted by
nsa and gchq for user data,” February 2014. [Online].
Available: http://www.theguardian.com/world/2014/jan/27/
nsa-gchq-smartphone-app-angry-birds-personal-data

[4] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
automatically detecting potential privacy leaks in android
applications on a large scale,” in Proceedings of the 5th international
conference on Trust and Trustworthy Computing, ser. TRUST’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 291–307. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-30921-2 17

[5] C. Welch, “Path allegedly geotagging photo posts even after
users disable location services (update),” February 2013. [Online].
Available: http://www.theverge.com/2013/2/1/3941554/
path-allegedly-geotagging-posts-when-location-services-disabled

[6] K. Bostic, “Path app again accused
of unacceptable address book access.” [On-
line]. Available: http://appleinsider.com/articles/13/04/30/
path-app-again-accused-of-unacceptable-address-book-access



[7] Juniper, “2011 mobile threats report,” Juniper, Sunnyvale, Tech.
Rep., 2012.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,”
in Proceedings of the 10th international conference on Mobile
systems, applications, and services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 281–294. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307663

[9] W. Z. Brian Krupp, Nigamanth Sridhar, “An ontology for enforc-
ing security and privacy policies on mobile devices,” in Proceedings
of the 6th International Conference on Knowledge Engineering and
Ontology Development (KEOD’14), 2014.

[10] B. Krupp, N. Sridhar, and W. Zhao, “A framework for enhancing
security and privacy on unmodified mobile mobile operating
systems,” in The First International Workshop on Mobile Cloud and
Social Computing, 2013.

[11] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
information-stealing smartphone applications (on android),”
in Proceedings of the 4th international conference on Trust
and trustworthy computing, ser. TRUST’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 93–107. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2022245.2022255

[12] “Hundreds of intimate celebrity pictures leaked online following
alleged iCloud breach,” Sep. 2014. [Online]. Available: http:
//bit.ly/1vEPD60

[13] B. Adida, “Sessionlock: securing web sessions against
eavesdropping,” in Proceedings of the 17th international
conference on World Wide Web, ser. WWW ’08. New York,
NY, USA: ACM, 2008, pp. 517–524. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367568

[14] Z. Wang, R. Murmuria, and A. Stavrou, “Implementing and
optimizing an encryption filesystem on android,” in Proceedings
of the 2012 IEEE 13th International Conference on Mobile Data
Management (mdm 2012), ser. MDM ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 52–62. [Online]. Available:
http://dx.doi.org/10.1109/MDM.2012.31

[15] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R. Wein-
mann, iOS Hacker’s Handbook. Wiley, 2012. [Online]. Available:
http://books.google.com/books?id=KmAMKpWhOwUC

[16] Apple, “ios security,” October 2014. [Online]. Available: https://
www.apple.com/iphone/business/docs/iOS Security Feb14.pdf

[17] B. Kaliski, “Pkcs 5: Password-based cryptography specification,”
2000. [Online]. Available: https://www.ietf.org/rfc/rfc2898.txt

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,”
in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[19] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on secu-
rity for mobile devices,” Communications Surveys Tutorials, IEEE,
vol. 15, no. 1, pp. 446–471, First 2013.

[20] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses:
Supporting operation modes on smartphones,” in Proceedings of
the 17th ACM Symposium on Access Control Models and Technologies,
ser. SACMAT ’12. New York, NY, USA: ACM, 2012, pp. 3–12.
[Online]. Available: http://doi.acm.org/10.1145/2295136.2295140

[21] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino, “Identidroid:
Android can finally wear its anonymous suit,” Trans. Data
Privacy, vol. 7, no. 1, pp. 27–50, Apr. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2612163.2612165

[22] H. Banuri, M. Alam, S. Khan, J. Manzoor, B. Ali, Y. Khan,
M. Yaseen, M. N. Tahir, T. Ali, Q. Alam, and X. Zhang,
“An android runtime security policy enforcement framework,”
Personal Ubiquitous Comput., vol. 16, no. 6, pp. 631–641, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.1007/s00779-011-0437-6

[23] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz,
“Psios: Bring your own privacy &#38; security to ios devices,”
in Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’13. New
York, NY, USA: ACM, 2013, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/2484313.2484316

[24] B. Rashidi, C. Fung, and T. Vu, “Recdroid: A resource access
permission control portal and recommendation service for
smartphone users,” in Proceedings of the ACM MobiCom Workshop
on Security and Privacy in Mobile Environments, ser. SPME ’14.

New York, NY, USA: ACM, 2014, pp. 13–18. [Online]. Available:
http://doi.acm.org/10.1145/2646584.2646586

[25] D. Papamartzivanos, D. Damopoulos, and G. Kambourakis, “A
cloud-based architecture to crowdsource mobile app privacy
leaks,” in Proceedings of the 18th Panhellenic Conference on
Informatics, ser. PCI ’14. New York, NY, USA: ACM, 2014,
pp. 59:1–59:6. [Online]. Available: http://doi.acm.org/10.1145/
2645791.2645799

[26] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of
the Eighth Symposium on Usable Privacy and Security, ser. SOUPS
’12. New York, NY, USA: ACM, 2012, pp. 1:1–1:16. [Online].
Available: http://doi.acm.org/10.1145/2335356.2335358

[27] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?” in
Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. New York, NY, USA: ACM, 2014, pp. 201–212.
[Online]. Available: http://doi.acm.org/10.1145/2566486.2568035

[28] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid:
Trading privacy for application functionality on smartphones,”
in Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’11. New York,
NY, USA: ACM, 2011, pp. 49–54. [Online]. Available: http:
//doi.acm.org/10.1145/2184489.2184500

[29] Y. Agarwal and M. Hall, “Protectmyprivacy: detecting and
mitigating privacy leaks on ios devices using crowdsourcing,”
in Proceeding of the 11th annual international conference on
Mobile systems, applications, and services, ser. MobiSys ’13. New
York, NY, USA: ACM, 2013, pp. 97–110. [Online]. Available:
http://doi.acm.org/10.1145/2462456.2464460

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2016


	SPE: Security and Privacy Enhancement Framework for Mobile Devices
	Original Citation
	Repository Citation


	TDSC2465965.pdf

