
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

ETD Archive

2012

Productivity at the Cost of Efficiency: an Analysis of Advanced C# Productivity at the Cost of Efficiency: an Analysis of Advanced C#

Programming Programming

Andrew Darovich
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

 Part of the Computer Sciences Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Darovich, Andrew, "Productivity at the Cost of Efficiency: an Analysis of Advanced C# Programming"
(2012). ETD Archive. 361.
https://engagedscholarship.csuohio.edu/etdarchive/361

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/361?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

PRODUCTIVITY AT THE COST OF EFFICIENCY: AN ANALYSIS OF

ADVANCED C# PROGRAMMING

ANDREW DAROVICH

Bachelor of Science in Computer and Information Science

Cleveland State University

December 2009

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN COMPUTER AND INFORMATION SCIENCE

at the

CLEVELAND STATE UNIVERSITY

May 2012

This thesis has been approved

For the department of COMPUTER SCIENCE

and the College of Graduate Studies by

Thesis Chairperson, Dr. Ben Blake

Department and Date

Dr. Timothy Arndt

Department and Date

Dr. Haodong Wang

Department and Date

iii

PRODUCTIVITY AT THE COST OF EFFICIENCY: AN ANALYSIS OF

ADVANCED C# PROGRAMMING

ANDREW DAROVICH

ABSTRACT

In this modern age of computer programming, there are many

advanced features at our disposal. These are designed with

elegance in mind and are put in place to allow programmers

to be more productive. They are often meant to remove the

need to know machine and system specifics so that

programmers can focus on the higher level tasks at hand.

What this analysis focuses on is examining what happens

behind the scenes when using these advanced features.

Performance for various new features of C# such as

anonymous methods, reflection, and iterators were examined

alongside more traditional programming styles in order to

determine if these advanced features designed for

productivity have any negative impacts on program

efficiency.

The outcome of this analysis is that these new features are

highly beneficial and should be used whenever possible as

they have a negligible effect on efficiency. Even when

used haphazardly, these new features have proven to be just

as efficient as standard programming methods.

iv

TABLE OF CONTENTS

 PAGE

ABSTRACT…… iii

LIST OF TABLES…… vi

LIST OF FIGURES……………………………………………………………………………………………………… vii

CHAPTER

I. INTRODUCTION…………………………………………………………………………………… 1

1.1 The Rise of C# ……………………………………………………………… 1

1.2 Scope of Research………………………………………………………… 4

1.2.1 Related Research…………………… 6

1.3 Text Overview…………………………………………………………………… 7

II. ANONYMOUS PROGRAMMING…………………………………………………………… 9

2.1 Delegates……………………………………………………………………………… 9

2.1.1 Action and Func……………………… 15

2.2 Anonymous Methods………………………………………………………… 16

2.2.1 Lambdas…………………………………………… 18

2.3 Analysis Versus Procedural Programming… 20

2.3.1 Anonymous Programming……… 20

2.3.2 Lambdas…………………………………………… 29

III. DYNAMIC PROGRAMMING………………………………………………………………… 42

3.1 The Common Language Runtime……………………………… 42

3.1.1 Just In Time Compilation 44

3.1.2 Reflection…………………………………… 54

3.2 Iterators Via Yield…………………………………………………… 66

v

IV. CONCLUDING REMARKS…………………………………………………………………… 76

4.1 Final Verdict…………………………………………………………………… 76

BIBLIOGRAPHY…… 82

APPENDICES…… 85

 A. Full Class Listings and Disassemblies………………… 86

vi

LIST OF TABLES

Table Page

I. Test System……………………………………………………………………………………………………… 5
II. Anonymous vs. Std. Procedural……………………………………………………… 22

III. Anonymous vs. Std. Procedural w/ Longer Processes… 27
IV. Lambda vs. Procedural…………………………………………………………………………… 31
V. Lambda LINQ Search vs. Std. Procedural Search…………… 36

VI. Lambda LINQ Sort vs. Std. Procedural Sort……………………… 36
VII. Local Variable vs. Array’s Length Property…………………… 47

VIII. Local Variable vs. List’s Count Property………………………… 50
IX. New Operator Vs. Reflection…………………………………………………………… 65
X. List Use Vs. Yield Return………………………………………………………………… 68

XI. Memory Consumption For Yield Return……………………………………… 69

vii

LIST OF FIGURES

Table Page

1. Simple Delegate Signature………………………………………………………………… 9

2. Delegates In Action With Resultant Output……………………… 11

3. The Disassembly of a Delegate……………………………………………………… 12

4. A Simple Lambda to Cube a Number……………………………………………… 18

5. Various Lambdas in Action………………………………………………………………… 19

6. Lambdas Within Extension Methods……………………………………………… 19

7. Performing Calculations w/ Anonymous and Standard

Procedural Programming………………………………………………………………………… 21

8. Abridged MSIL Disassembly………………………………………………………………… 25

9. Lambda and Procedural Searches…………………………………………………… 30

10. Inefficient Lambdas in Procedural Form……………………………… 32
11. Searching and Sorting with Lambdas and Procedural

Programming……………………………………………………………………………………………………… 35

12. MSIL Disassembly of Searching & Sorting w/ Lambdas
 & Procedural Programming…………………………………………………………………… 37

13. Reflecting Upon LINQ Extension Methods……………………………… 39
14. List.Sort()’s Behind the Scenes Footage…………………………… 40
15. Local/Non Local Lengths……………………………………………………………………… 47
16. Local Variable vs. Count Property…………………………………………… 50
17. Using Reflection to Access Private Methods…………………… 55
18. Retrieving Handlers Without Reflection……………………………… 60
19. Dynamically Generating Handlers Via Reflection………… 61

viii

20. Effective Use of Yield Return……………………………………………………… 67
21. The State Machine for Yield Return………………………………………… 71

1

CHAPTER I

INTRODUCTION

1.1 The Rise of C#

 In the world of computer programming, C quickly

emerged as the language of choice for everything from

operating systems to video games. This language gave the

programmer the power to construct sophisticated programs

without having to interact directly with the CPU. One of

the finest examples of the power of C is the UNIX operating

system. Another example is the groundbreaking,

revolutionary Doom engine, written by John Carmack of id

Software.

This flexibility and power was not without problems.

The programmer was left to manage his or her own memory

use. It was also up to the programmer to create his or her

own library to perform various algorithms.

2

The solution to these problems arrived in the form of

C++. As the name implies, C++ is simply “C plus 1”. With

C++, the programmer could make use of the new Standard

Template Library to perform many algorithms and operations

with ease. The programmer was also given some facilities

to provide cleaner memory management. Most notably, C++

introduced classes to the realm of programming. Now, a

programmer could construct truly object oriented programs.

C++ reigned as king for over a decade. Its

versatility has caused it to remain heavily in use today in

many different fields. However, because of its C-based

roots, it still falls prey to memory management issues,

among other problems; the biggest of which is portability.

In the current age of programming, portability is a highly

desirable trait.

Of the various portable languages, C# has emerged as

quite a powerhouse, standing toe to toe with Java. As of

May 2012, C# is the 5th most popular language on the TIOBE

Index, bested only by C, Java, C++, and Objective C. This

is no surprise considering these languages have been out

considerably longer than C# and are more established.

However, this does not mean that C# is to be taken lightly.

It is strongly tied into the .NET framework. As a result,

it has many useful features that allow programs to be

3

deployed to various platforms without modification to the

source code. These range from anonymous programming, to

dynamic runtimes.

Much like Java, C# is known as a “managed” language.

This means that a programmer can make use of all of the

powerful features of the language without ever having to

concern himself with the memory and machine specific

details of the target platform. Like the Java Virtual

Machine used with Java programming, C# makes use of the

Common Language Runtime (CLR) which allows for various

assemblies to be made from the C# program and deployed to

any compatible architecture. No modifications to the

source code are required. The code compiles into

Intermediate Language (IL), which is then passed into the

CLR (or JVM with Java). From here, the IL is then

translated to machine language for the target architecture.

This feature and many others are part of what makes C#

a highly effective language. However, there may still be

problems, even with such a feature filled language.

4

1.2 Scope of Research

The features of C# that make it managed and highly

versatile can also have a negative impact on the programs

efficiency. What may result in more productivity for the

programmer could also mean less efficiency for the program

itself. The fact remains that something has to be doing

all of the memory management and type casting. The dynamic

qualities of the language are magic in the literal sense.

That is, the real work (the trick) is hidden behind the

scenes and the programmer is only exposed to the clean-cut

code that results from it. What this means is that if the

programmer is not doing it, leaving it all up to C# and its

managed features, the program may take efficiency hits at

run time. These efficiency hits could have possibly been

avoided by taking care of all of these details beforehand

using standard procedural programming methods that have

been in use for over 30 years.

To prove this point, the research that will be covered

herein will focus on some of the more predominant features

of the language in detail. Sample programs using features

such as lambdas and reflection will be created and run

alongside their procedural programming counterparts.

Timings for each will be gathered and compared. Also, the

programs will be disassembled so that the resultant

5

Intermediate Language (IL) can be analyzed. This will

allow us to see the “magic” that goes on behind the scenes.

The target outcome is to prove that the features of C#

that make it a desirable language do in fact have a

negative impact on the overall program efficiency and

should only be used when the circumstances truly call for

it.

All tests will be run on a machine with the following

specifications:

It should be noted that standard benchmarking programs

need not be utilized for the research herein. This is

because we are examining the effects of runtime and memory

use caused by the features researched within the scope of

this paper. This means we will be examining their runtimes

and memory consumption in comparison to the rest of the

experimental programs used to gather timings. I/O bound

and CPU intensive applications alike will both be affected

the same by the runtime incurred from the features

examined.

6

1.2.1 Related Research

There does not seem to be a great deal of direct IL

disassembly published to date, or direct timing

comparisons. Instead, it seems that the focus is on JIT

compilation optimization strategies. Therefore, in order

to explore the features in question more thoroughly,

research in the fields of various compiler optimizations

such as “just in time” (JIT) compilation within languages

such as C# and Java will also be examined.

The reason for this is that optimizations performed by

the compiler will have an impact on how important it is for

the programmers themselves to actually perform these tasks.

It may be the case that in the rapidly evolving

computer programming world, the behind the scenes

activities that the framework does for the programmer are

doing a job of creating efficient programs without

sacrificing readability and maintainability that is often

destroyed by optimizations carried out by the programmer.

These advances may be closing the book on the old way of

programming and instead opening a new world of dynamic,

flexible, and still efficient programming.

Researching the materials that have focused on these

types of machine created optimizations will be a crucial

aid in determining if this hypothesis is in fact true.

7

1.3 Text Overview

Because the majority of the research that will be

performed focuses on the inner workings of C#, most of the

texts used are of the reference nature. These books are

directly from Microsoft, and this should ensure that the

most up to date information is used. The Microsoft

Developer Network (MSDN) and its various publications will

also be referenced frequently, as this is the most accurate

source of information regarding C#.

With that in mind, the first step is to analyze the

anonymous programming paradigm in detail. This will

include delegates and their various shorthand approaches,

along with anonymous methods.

We will begin by performing a brief overview of the

approaches, while hinting at possible efficiency issues

that may arise.

Once we have detailed all of the anonymous programming

methods, we will compare them to their procedural

equivalents to see which performs faster, and why.

After this is completed, the dynamic programming

capabilities of C# will be examined in the same manner.

Dynamic programming with respect to this paper means code

that is generated dynamically at run-time. This is not to

be confused with the dynamic programming concept used to

8

solve a complex problem by subdividing it into smaller,

simpler problems, and combining these smaller solutions to

form the whole solution.

Investigation into dynamic programming will include

investigating reflection, the CLR, and yield return

statements in detail to examine how they may be utilized to

generate code dynamically for us.

9

CHAPTER II

ANONYMOUS PROGRAMMING

2.1 Delegates

Before anonymous programming can be fully explored,

one must first understand the concept of delegates within

C# as they are the key component to an anonymous method.

Delegates are C#’s answer to the function pointers found in

C/C++. As we will soon see, they are not the exact

equivalent. Per the MSDN, delegates allow methods to be

passed as parameters, can be used to define callback

methods, and can be chained together.

A delegate (as shown in Figure 1 below) takes the

following form:

10

What this will then allow the programmer to do is

assign methods with similar signatures to it to perform

operations.

With the above example, what we can do now is create a

class named delegateClass which is full of various

mathematical functions that operate on two integers:

add(int x, int y), sub(int x, int y), mul(int x, int y),

div(int x, int y), and pow(int x, int y). This is a very

contrived example, but it demonstrates the properties of a

delegate quite clearly.

Now, we are able to create an instance of our

delegateClass class, and pass the methods inside into

various delegates, as demonstrated below in Figure 2. The

entire delegateClass definition appears in the Appendix A

for further reference.

11

 With this simple example demonstrating delegates

shown, we can now explore the inner workings of a delegate.

As Wagner states in his book, Effective C#, a delegate is

most commonly used for event driven programming, typically

in the form of callbacks.

 The reason these are not an exact equivalent to a

function pointer also comes from something noted by Wagner

that prompted further investigation. Wagner states:

“Delegates are objects that reference a method”. So,

rather than being a simple pointer, they are a class that

contains a pointer! Disassembling the aforementioned

delegate example proves this to be the case as shown in

Figure 3. The delegate keyword is converted into a class,

which then contains a method called Invoke() which is our

12

reference method. This convolutes things quite

significantly. Thankfully, and most importantly with

respect to our research, the work is all done behind the

scenes by the compiler.

 This sort of setup is a requirement of C#, being that

it is a managed programming language. The programmer does

not have the luxury of communicating directly with

addresses due to type safety. As Jeffrey Richter points

out in his article, “An Introduction to Delegates”,

delegates are commonly used as a callback mechanism, which

agrees with the explanation given by Wagner. The delegate

construct carries with it the number and types of

parameters expected by the function, the return types, and

calling conventions. This provides a programmer with the

type safety required by C#; the unsafe possibilities of

pointers to functions possible (and probable) within C/C++

are a distant memory in the land of C#.

The interesting design of a delegate also allows for

the concept of delegate chaining. An article entitled

“Internals of Delegate Chaining” by Aarthi Saravanakumar

13

details this concept quite well. Inside this article we

see that delegates are chained together by the use of a

Combine() method. The overall result of delegate chaining

is a linked list full of cloned versions of all the methods

that have been chained. This detail alone begins to build

up concern about the impact of using delegates within a

program where efficiency is desired. Use of the Clone

method results in a shallow copy or deep copy of the object

in question. Cloning operates in O(n) time (per the MSDN),

which implies that the more you do it, the more time you

will spend. This is in contrast to function pointers in

C/C++, which do not clone anything, and simply reside in

memory, ready to be used when needed.

Richter’s article contains a final segment

(Demystifying Delegates) that delves deep into the

complexities of delegates with the goal being to explain

how to use delegates efficiently. In this portion, we

again see the now known fact that delegates are not simple

pointers. We also again see the Invoke() method. Richter

elaborates on this detail to explain what actually happens

when a delegate is called. The compiler generates the code

to call Invoke() for you since the method in question does

not actually exist. Programmers themselves are not allowed

to call Invoke() explicitly. Richter also states that the

14

compiler and the CLR (Common Language Runtime, more on this

later.) hide the complexity of delegates on purpose and do

the processing for us so that we can focus on the design of

our programs rather than the complexities of the system.

This confirms that concerns about the existence of behind

the scenes work are valid, and should be investigated

further.

15

2.1.1 Action and Func

 The one downside to delegates thus far has been with

the setup of them. This setup can often negate the

supposed elegance of delegates. To remedy this, C#

introduces two keywords, Action and Func, which allow you

to forego the usual setup of a delegate and keep it inline.

Actions are a type of delegate that can be used to

pass a method as a parameter without ever explicitly

declaring a custom delegate. It can be seen as a sort of

short hand for delegate declarations. Actions have no

return types, and take in no parameters. They are

essentially the ultimate solution for quick, parameter-

less void functions.

 A similar keyword, Func, operates the same, yet again

acting as shorthand for delegates. However, with Func, you

are able to specify a return type. Both of these keywords

serve to clean up delegate use and make it much more

streamlined. However, we must not forget that this

shorthand does not mean the work involved with setting up a

delegate is gone. It just means we have passed the baton

to the compiler yet again.

16

2.2 Anonymous Methods

We have already seen the core building block of

anonymous programming in action, but now it is time to

explore the concept further through Anonymous Methods, a

newer feature to C# that allows the use of delegates

without defining named methods.

As the name implies, an anonymous method has no name.

It is simply defined in-line and placed right into a

delegate. Because of this, the programmer is then leaving

a significant amount of the work up to the compiler. This

includes inferring the type, and performing the wrapping

required of delegates in C#.

An article by Juval Lowy in the MSDN magazine entitled

“Create Elegant Code With Anonymous Methods, Iterators, And

Partial Classes” details the common uses of anonymous

methods. This includes using them in place of delegates in

places where a delegate type is the expected input. This

article also serves to point out that there are in fact

many ways a programmer can create and use anonymous

methods.

Unfortunately, as stated by Lowy, the resultant MSIL

(Microsoft Intermediate Language) generated by the compiler

can be quite different for each different approach to using

anonymous methods.

17

In the case of the anonymous method using class member

variables and method arguments, Lowy demonstrates that the

code generated is fairly compact. What we will see is the

addition of a private method to the class followed by the

standard delegate instantiation. It is fairly cut and dry,

with minimal overhead.

The issues begin when the anonymous method wishes to

use outer variables, meaning local variables or parameters

from the containing method. In this case, the compiler

does far more work.

First the compiler creates a private nested class with

a back reference to the containing class. This nested

class contains public member variables corresponding to

every single outer variable that is used. Next, the

compiler creates a public method with a signature matching

the delegate in question. Then, the compiler replaces the

anonymous method definition that sparked this entire effort

with this nested class. This means it must also take care

of all of the assignments for the cloned outer variables.

Finally, the compiler creates a new delegate object, wraps

the public method from the nested class, and calls the

delegate, thus invoking the method. With all of the

processing required, one can begin to see some of the

potential pitfalls of anonymous methods.

18

2.1.1 Lambdas

Another way a programmer can make use of anonymous

functionality is through the use of lambdas. Lambdas may

be a new feature to C#. However, they are not a new

programming concept. Functional programming languages such

as LISP have been making use of lambdas for decades now.

Lambdas in C# provide a very simple, very elegant way

to define the anonymous functions we have already covered.

They are also a key component to using LINQ extension

methods within C#.

In the traditional sense, a lambda takes a form that

avoids ambiguity by having you define the number and order

of the parameters, as shown in Figure 4.

 The simplicity of a lambda allows you to define

complex functions easily so that you may then explore

function implementations and computation easily. This also

allows for nested expressions, which are part of why

lambdas are regarded as very elegant.

 Figure 5 demonstrates a few cases of using a lambda in

place of the standard anonymous function style. The

results are pretty streamlined.

19

 One of the more predominant uses of lambdas in C#

comes from the use of LINQ extension methods. These

standard query methods often expect a lambda to be used as

the passed in parameter, as shown in figure 6:

 This again serves as proof that lambdas can allow for

some very clean, very concise code. What the code is doing

need not even be explained through comments within the code

or within this document. It is alarmingly apparent that

this statement searches through books (presumably a list of

strings), and tries to find a string containing “Dragon”

that it can assign to title. This sort of feature of C# is

what makes anonymous programming very desirable.

20

2.3 Analysis Versus Procedural Programming

2.3.1 Anonymous Programming

Now that we have the basic overview of anonymous

programming, complete with possible pitfalls brought to

attention, we can begin to dissect these features.

We will be performing various operations with

anonymous programming, gathering the timings (in

milliseconds), and then comparing them to the same thing

done the standard (procedural way).

Our first experiment is using anonymous methods to

perform some calculations. We will be using two anonymous

styles (one with outer variables used and one without), and

one standard procedural style.

The source code appears in Figure 7, and the timings

appear in Table II. Assume that MyDelegate and MyDelegate2

are simple void delegates with no parameters.

21

22

Table II: Anonymous vs. Standard Procedural

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Run #

C
P

U
 T

im
e

 (
m

s
)

Outer Variable Delegates 0.324 0.3132 0.3333 0.3105 0.3171

No Outer Variable Delegates 0.1792 0.1777 0.2113 0.1894 0.1792

Standard Procedural 0.0035 0.0038 0.0035 0.0038 0.0035

1 2 3 4 5

The results we find here are expected, but the

extremity is still a bit shocking. Because of the work

involved to setup a delegate, it is definitely a given that

it should take more time. What we see here in this initial

test is that using anonymous programming methods incur

quite a bit of startup overhead, causing this simple

function call to take over 50 times as long to complete.

The MSIL generated by this program when disassembled

using ILDASM sheds some light on what is happening. An

abridged version of the resultant MSIL is shown in Figure

8. Loads, stores, and other commonplace operations such as

loop condition checking have been omitted for the sake of

space.

What we are left with are the delegate setup portions

mentioned herein. Each process is separated by a

horizontal line. The full figure appears in Appendix A for

23

reference purposes. What we see is that the first method

which uses outer variables produces code that duplicates

the variable i for use internally by the delegate call

(note the use of the dup instruction). We do not see the

same behavior when we setup a delegate chain in our second

process since it copies the variable to a local before

passing it into the anonymous method. This avoids the

problem of having to create instance variable copies for

use within the anonymous method. This means that either

method requires some form of copying. It’s up to the

programmer to avoid doing it poorly.

The first process also generates and loops over a

larger amount of code, which helps explain why it takes the

longest of our 3 styles. One of the biggest things to note

with this method is that it calls the Invoke() method more

than once. This is necessary to avoid printing incorrect

values, as stated in Figure 7. While it gives us the

desired output, it does not give us the desired

performance. Despite this, it was very easy to write; on

the surface it is not much different than our second

process.

The second process demonstrates the better way to

achieve the same result. Because we have created a

delegate chain, we only call the Invoke() method one single

24

time. The entire delegate chain is then executed properly.

This means that the only real overhead we incur here is

setting up the delegate in the standard way.

The third process demonstrates the standard procedural

way of achieving the desired output. We see here that

there is little MSIL generated. It is fairly

straightforward, as expected from something as simple as a

for-loop. We skip the overhead of delegates and simply

execute our instructions.

25

26

 Even though anonymous methods, when setup optimally,

still incur a performance hit due to setting up the

delegate class and combining delegates when requested, it

is still possible that their use should be encouraged. In

this small example we see that the performance difference

is quite great. However, if the setup performance hit of

the delegate remains constant, we may see that this

performance hit stops mattering when we begin performing

computations and handling larger scale processes. The

reason for this line of thinking is that currently, we are

dealing with fractions of a millisecond. The performances

of these 3 processes are different relative to each other,

but in reality, may not be that different at all.

 To test this idea out, we will again use the same 3

processes. This time however, we will need to simulate a

longer computation than what is already done. This will be

accomplished by having the function sleep for thirty

seconds per run. The resultant test takes roughly seven

and a half minutes to complete, with about two and a half

minutes going to each of the three processes we have setup.

This should be more than sufficient when compared to modern

software which typically takes care of its processes in

under a minute.

27

 We see here in Table III that after sleeping for 30

seconds per function call, that there is little difference

in the performance of these processes. Even the poorly

executed anonymous method’s performance does not appear

different enough to matter. We even see that the anonymous

approach often operates as fast as the standard procedural

approach.

The accompanying line graph within Table III also

shows the general impact of anonymous method overhead when

used. Initially we see a terrible overhead impact much

like we saw in Table II. However, we quickly see that as

28

the execution time increases steadily from .1ms to 1ms and

beyond, that the overhead impact decreases significantly,

eventually approaching 0%.

 What this means is that as computation time increases,

the impact of an anonymous methods setup decreases. The

setup of the anonymous method does remain fairly constant,

so it will always take roughly the same amount of time to

setup, even if the function itself takes a long time to

execute.

 This of course means that anonymous methods are indeed

a great tool to use within a project and should most

certainly be used whenever a programmer needs or wishes to

use one. The low impact of their overhead and heightened

design possibilities (callbacks and event driven

programming) make anonymous methods quite versatile. The

overhead penalty incurred would only have a detrimental

effect to programs which require operations that operate at

the fraction of a millisecond level. Any program requiring

very precise, almost instantaneous execution would

generally want to avoid usage of anonymous methods. On the

other hand, any program that is higher level and contains

many different modules and design elements would most

certainly benefit from the elegant flow that an anonymous

method can provide.

29

2.3.2 Lambdas

Lambdas are a bit of a different case than standard

anonymous programming. They are typically used in

conjunction with LINQ extension methods and can operate as

arguments to these methods. We will not need to examine

the anonymous method setup as done previously, since

lambdas operate the same in that regard and merely operate

as a sort of short hand, much like Action and Func.

What we will instead be examining is a lambda’s

performance when used in place of standard procedural ways

of programming.

Our example in Figure 9 creates a list of 2,000,006

strings. We have placed various book titles within the

list at the beginning, middle, and end. What we then do is

search for some of the titles using lambdas, and again

using standard procedural programming.

The results in Table IV show that lambdas can be quite

a silent killer to program efficiency if not used

correctly. Further, as we can see in the coding example,

it is fairly easy to set lambdas up in efficiently due to

their short hand nature and streamlined appearance. Things

that appear to be short and sweet may turn out to be long

and sour.

30

31

Table IV: Lambda vs. Procedural

0

100

200

300

400

500

Run #

T
im

e
 (

m
s
)

Lambda Search

Procedural Search

Lambda Search 470 469 472 472 474

Procedural

Search

202 200 203 202 203

1 2 3 4 5

 What our current, deceptive lambda search is doing in

standard procedural form is shown in Figure 10. To

elaborate, the lambda traverses the entire list in search

of the string in question. Once it finds the string or

reaches the end of the list, it returns. This means that

each string we search for requires us to traverse the

entire list again. In our example, this means our best

case lambda search would be 21; the case where our 6

strings are the first six entries in the list, in the same

order that we search for them. Our worst case on the other

hand, is 12,000,036. This is what would happen if none of

our search strings exist in the list and we are forced to

run to the end each time. It should be noted that it is

indeed possible for this lambda setup to outperform our

procedural form, if, for example, our list was sorted and

32

we searched for everything in alphabetical order AND all of

the books in question appear in the front portion of the

list so that the accumulated traversals are less than the

procedural’s. However this is highly unlikely, and should

also not be counted on. Searching should always be setup

to accommodate the average and/or worst case.

 Our procedural version from Figure 9 will traverse the

list 2,000,006 times, always. It is a guaranteed run time.

It could be further optimized using Boolean variables to

exit the for-loop if all books are found in order to

achieve similar best case run times as the lambda.

 This was just a simple test of lambdas, and we can

already see that their easy to use nature can introduce

some dangerous pitfalls that can go unnoticed. What this

implies is that lambdas are best used in cases where they

are simply taking the place of an already created anonymous

method to improve readability. They should also be used if

the situation truly requires a lambda. Cases such as this

would include many of the calls to LINQ extension methods

33

much like what we have seen here, as you are not able to

use them otherwise.

These cases often deal with performing queries on

various data sources and may involve SQL like mechanisms,

so it would be the programmer’s duty to make sure the

lambdas are being used in a manner that doesn’t sacrifice

efficiency. Examples of these kinds of lambda uses, along

with their procedural counterparts are shown in Figure 11.

We can see in these particular cases that the lambdas do

provide cleaner looking code, and do in fact operate

quicker, based off of the timings shown in Table V and

Table VI.

The disassembly of the sample programs sheds some

light on why this happens. Examining the MSIL in Figure 12

shows us the true power of using LINQ extension methods,

complete with lambdas. What we see is that the anonymous

method created via the lambda within each of our LINQ

extension method calls is placed into memory (via ldftn).

Then, the usual anonymous method setup occurs, and our LINQ

extension method is called. It’s as straightforward in the

MSIL as it is in the C# code.

The amount of code generated for the LINQ search call

is both shorter, and less involved. As we can see with the

procedural search method, aside from the lengthier amount

34

of code, the compiler has also generated a try/catch

statement for us to handle any exceptions that occur while

performing the string comparison.

The LINQ style proves to be far more efficient and

powerful for both our search case, and our sort case. The

sort case is particularly better with LINQ because we don’t

incur the overhead of having our class inherit from

IComparable and implement CompareTo() to perform our class

sort. LINQ’s internal workings allow it to quickly search

and sort our data before our procedural style can even

search the data in the first place. So, while the two Sort

styles are about the same amount of code within MSIL, the

LINQ method is far superior due to the setup of LINQ, and

the fact that sorting lists composed of classes incurs some

overhead that LINQ does not have to concern itself with.

We did find that in some cases, LINQ operated slower.

However, the difference was negligible, inconsistent, and

only occurred with smaller datasets. These findings imply

that the overhead of LINQ is similar to that of anonymous

methods. Again meaning that it is a problem at first, but

the scalability of it quickly makes it a powerful tool to

leverage in practice.

35

36

Table V: Lambda LINQ Search vs. Standard

Procedural Search

0.1
200.1
400.1
600.1
800.1

1000.1
1200.1
1400.1
1600.1

Run #

T
im

e
 (

m
s

) Lambda LINQ Search

Procedural Search Without
LINQ

Lambda LINQ
Search

0.155 0.152 0.149 0.216 0.249

Procedural
Search
Without LINQ

1166 1164 1174 1198 1603

1 2 3 4 5

Table VI: Lambda LINQ Sort vs. Standard Procedural Sort

0.1

10000.1

20000.1

30000.1

40000.1

Run #

T
im

e
 (

m
s

)

Lambda LINQ Sort

Procedural Sort Without LINQ

Lambda LINQ
Sort

0.2335 0.2341 0.2527 0.2605 0.2158

Procedural Sort
Without LINQ

39555 39464 39450 39537 39628

1 2 3 4 5

37

38

Again referring to both Tables V and VI, we see that

the difference in run-times between the LINQ methods and

the standard procedural approaches is quite radical. In

order to figure out why, these LINQ extension methods must

be viewed closer. Using .NET Reflector, we are able to

investigate what goes on with LINQ extension methods, as

shown in Figure 13. What we see is that the LINQ method

Where() makes use of something interesting known as a yield

return. We will cover this in detail in the next section.

To put it simply for now, what it does is take advantage of

the enumerable type within C#, which helps explain why our

LINQ search went far faster than the rather brute force

approach taken with procedural code that uses basic

comparisons and builds a List() on the fly.

We also see that the OrderBy() method makes use of the

OrderedEnumerable type, which essentially allows the

framework itself to craft our sorted list for us as it is

built. This is done instead of implementing a CompareTo()

method and a standard Sort() function which as we see in

Figure 14, does not perform very optimally for us. The

work for List.Sort() is passed off to the Array class, and

then to an ArraySortHelper, which ends up calling the C#

implementation of the quicksort algorithm. By nature, this

algorithm will run in O(n log n) time on average. When we

39

see larger portions of data, much like our example, this

algorithm will run well when compared to other conventional

sort algorithms. However, LINQ’s OrderBy() method has the

advantage of being setup to take advantage of Enumerables,

and the rest of the C# framework. This allows it to create

our new data structure quickly and efficiently, in a manner

similar to that of a best time Insertion sort (which runs

in O(n) time). This proves it to be quite powerful and

versatile.

40

41

 With this, we see that C# provides us with many great

facilities to design very robust, elegant programs. We also

see that the efficiency is not at great risk when taking

advantage of these features.

 The next frontier is dynamic programming.

42

CHAPTER III

DYNAMIC PROGRAMMING

3.1 The Common Language Runtime

The Common Language Runtime is the .NET Framework’s

means to allow for portable code while using C#. It is the

virtual machine that the .NET framework uses. This is

where Just-In-Time (JIT) compilation takes place. This is

also where some of the other features of the .NET framework

take place, including memory management and type-safety

mechanisms. The CLR is essentially the manager of this

managed language.

The CLR provides some features inherent to managed

programming such as type safety and memory management AKA

“garbage collection”. These features are imposed on a

programmer using C# no matter what. So, because we are

unable to use C# without these features, we will not be

examining them further. Suffice it to say, the garbage

43

collection and dispose patterns employed by the CLR are

more than adequate for managed programming. Further, the

type safety mechanisms in place, much like what we have

seen put into place when we make use of delegates and

anonymous programming, are part of what makes C# as

effective as it has become. Two key features of the CLR

however, are being brought under examination. They are the

JIT compiler, and Reflection

Our code written in C# is translated by the compiler

into MSIL, and from there, the JIT compiler transforms it

into native code for the target architecture. The question

becomes now, is this JIT compilation approach “good enough”

to rely on? Or, should a programmer be wary that they

still need to massage their code by hand to get the

efficiency they desire?

44

3.1.1 Just In Time Compilation

Of all of the features within the CLR, JIT compilation

has drawn much attention, as this is the main force of

optimization with managed code. The JIT compiler is the

last piece of optimization before the CLR completely

translates MSIL into native code. This means that if this

compiler is not very optimal, the end-result on each

platform will not be very good. It may also introduce

radically different performance from one architecture to

the other. This would ruin the concept of portability.

One of the biggest hurdles to overcome with JIT

compilation is that it runs under time constraints. It is

unable to make use of more conventional means of

optimization since it is done “Just in Time”. Obviously,

the optimization cannot be done just in time if it takes a

long amount of time to complete.

Sasha Goldshtein’s “JIT Optimizations” article

examines some of the optimization strategies used by the

CLR, mainly focusing on using method inlining and frequency

analysis. He first points out the simple fact that range

check optimizations within loops can be broken quite

easily. This is our first sign that it may still be up to

the programmer to perform their own optimizations as much

as possible.

45

However, he then points out that methods are inlined

if they are 32 bytes or less in length, do not contain

complex branching logic, and do not use exception handling.

What this then means is that larger functions will not be

inlined. This is a normal occurrence. In C/C++, only

small, tightly knit functions are usually inlined into the

code. Essentially, a function should only be inlined if

the function can complete its processes faster than the

overhead for calling that same function can. Otherwise,

there is little point to it.

The function inlining optimizations are interesting

because of the fact that Goldshtein points out that it is

theoretically impossible to perfectly inline virtual method

calls because the JIT does not inline interface method

calls. Instead, it performs an optimization that does not

use naïve interface method dispatching.

He then goes on to examine flow analysis and frequency

analysis to explore JIT optimizations. The end conclusion

is that the frequency of method calls and the resultant

optimizations have little impact on performance. One could

interleave various method calls, or call them sequentially,

and it would have little difference because of the way the

JIT compiler decides to optimize.

46

This does not raise much concern, as what it means

really is that one programmers design patterns will not be

drastically different than another’s. The JIT compiler and

its optimizations seem to have created a middle ground for

programming within C#.

The real question here is are there other smaller

optimizations that could be made that cry back to the

assembly language days where hand massaging code could

produce far superior code. We do not have the luxury of

inlining assembly language within a C# program as one would

be able to with C/C++, but we do have the option to emit

code on the fly.

This, however, is not what will be experimented with,

as it is not quite the same thing. Emitting code within C#

on the fly is more of a dynamic process than an optimizing

process, as you are simply emitting classes, methods, and

other things on the fly. You are basically telling the C#

compiler what sort of MSIL to generate, and are still

forced to comply with all of the conventions of C# in that

regard.

What we will instead be investigating is if careful

code setup can produce noticeably faster code for us.

The first test is to see if copying an array’s length

to a local variable to use for loop condition checking is

47

faster than using the array’s length property with each

check, as shown in Figure 15.

The results of this test show that there is little

difference between the two, so it generally makes more

sense to just use the built in property of the array in

order to keep cleaner code. Obvious cases where this would

not apply are the cases where you need the length outside

of the loop as well. Table VII shows the results of this

test, and demonstrate the negligible differences of the two

approaches.

Table VII: Local Variable vs. Array's Length Property

0.1

0.15

Run #

T
im

e
 (

m
s

)

Use of local variable

Use of array's length property

Use of local
variable

0.1525 0.1436 0.1511 0.1511 0.1622

Use of array's
length property

0.1576 0.1597 0.1576 0.1549 0.1689

1 2 3 4 5

48

 Doing this again with a list instead of an array

yields different results. Figure 16 shows the approach

taken, and Table VIII shows the result. This time, we see

initially that using List.Count takes about twice as long

to complete each time. Disassembling this, we see that it

is because Count is retrieved via a function call, rather

than retrieving a variable. This makes sense due to the

fact that a list’s size is able to be changed and thus must

have some sort of way to iterate and count the list.

Therefore, the amount of work done varies depending on

the size of the list in question. As the line graph in

Table VIII shows, the overhead is always higher using the

Count property than if we were to use a local variable, and

its best case scenario seems to fall within the 87-88%

range starting at a length of 15,000. However, the result

is similar to the anonymous method investigation in that

the overhead involved is outweighed significantly by

convenience whenever the complexity of the program as a

whole increases. Even with large lists, the time it takes

to process the loop condition information is under one

second and tends to take about 400ms in our largest list

size case that reached the limit of the memory on our test

system.

49

This amount of work will quickly be made irrelevant by

the actual computations that will take place in the loop in

question. In our largest case, any operation that takes at

least 401ms will be taking longer than the overhead of our

property usage, thus making it become more and more worth

it to use as we approach 1 second long operations, or even

longer.

It is implied now that in order for it to be the most

useful to use a local variable instead of the Count

property, we must be working with very small datasets. In

Table VIII, we see this is at a size of 1500, as this is

when our overhead for using the Count property exceeds 100.

Even so, the performance gain at this level would only be

beneficial if we are working with very time sensitive

applications. This is because we will still only be

gaining fractions of a millisecond. Because of this, it is

likely that the speed difference between both styles of

coding will be unnoticed, so it makes more sense to use the

Count property. This property removes the need to manage a

variable whose main purpose is to act as our for-loop

condition exit value. So again, the only time it would

make a great deal of sense to use a local variable is if we

intend to use the length outside of the loop as well.

50

 This now shows that most “hand rolled” optimizations

brought on by being mindful of the code will not cause much

benefit to the end result. Because the language as a whole

is many levels above the bare metal, the more prevalent

optimizations are not possible.

51

 More on the futility of hand done optimizations comes

from Jeffery Richter’s book “CLR via C#”. Early on in this

book, he states that the CLR’s use of the JIT compiler

produces very efficient code. He even challenges readers

to try it for themselves, which is what we have done here.

One of the key reasons for the JIT compilation being so

powerful is that it knows a lot of things ahead of time,

including CPU architecture. This allows it to take

advantage of any possible nuances certain architectures may

have. These specific advantages are far more important and

vital to optimized code than the various tricks we may

attempt on our own.

 Significant research has gone into the topic of JIT

compilation, mainly on the topic of trace-based JIT

optimizations as a means to further improve JIT

compilation. What it does is take advantage of run-time

profiling to optimize the most frequently executed paths

within the code while also providing a means to bail out if

this path becomes invalid.

 This was demonstrated in Dr. Andreas Gal’s

dissertation entitled “Efficient Bytecode Verification and

Compilation in a Virtual Machine”. The work done in this

paper demonstrates that trace based dynamic compilation can

produce versatile results that further reduce the benefit

52

of using hand-done optimizations. This agrees with what

we’ve seen previously through our own experimentation.

Gal’s trace-tree based dynamic compiler also managed to out

perform traditional Java Virtual Machines (JVMs) that were

used during testing. The only competition came from

HotSpot. However, HotSpot was not created with embedded

systems in mind whereas Gals’ trace-tree was. This means

that HotSpot may compete in terms of speed, but cannot

compete in terms of file size and memory consumption.

 In a paper entitled “The Essence of Compiling With

Traces” by Shu-yu Guo and Jens Palsberg, we see further

exploration of the same trace based compilation concept.

This time, however, we see the investigation of sound

optimizations with trace compilation. The paper details

ways to determine if traces are correct. In order for them

to be correct, they must “do the same thing” as the

original code. The conclusion that follows is that by

using bisimulation to overcome the explicit definitions of

JIT compilation and using confluence to maintain continuity

with operation correctness, one can create sound

optimizations with trace based JIT compilation.

 This research provides a great foundation for further

improvements to JIT compilation in the future. It also

helps show that in its current state, JIT compilation is

53

versatile enough that programmers do not need to concern

themselves with trying to coax the compiler into doing more

efficient things for them; it’s already taken care of. In

order to obtain more robust results from JIT compilation,

one would need to look outside the realm of their own code

and explore improving the JIT compilation at its very core

using methods shown here, or perhaps by a new method

altogether.

54

3.1.2 Reflection

In Effective C#, Bill Wagner briefly mentions a

process known as reflection with regards to getting the

name of a calling method. While mentioning it, he states

that it greatly simplifies tasks, but also states that it

is an expensive process. Simple but expensive is a bit of

a red flag when efficiency is the question. So, we need to

find out just how expensive reflection is. Is the

simplification of code worth the expensiveness of

reflection? Also, what exactly is expensive about it?

The MSDN states that reflection is useful for the

following:

• Accessing attributes in your programs meta data

• Examining and instantiating types in an assembly

• Building new types at runtime

• Performing late binding

Moreover, we see that reflection can be used to

perform some things that would not normally be possible

without reflection. What is demonstrated in Figure 17 is

that by using reflection, one can access a private member

within a class. This is not recommended or encouraged, but

it is indeed possible. Without reflection, there is no way

to access this private method; reflection can be used to

55

bypass some of C#’s rules. This is dangerous. However,

some things that are dangerous in programming do have

useful applications.

 We see here in this simple example that one can

extract methods off of an instance and reflect upon them

dynamically to invoke different pieces of a class. This

shows part of the real power and benefit to using

reflection.

 However, the power is not free. It comes with

significant overhead, and the use of reflection is

notoriously referred to as being an expensive (as stated by

Wagner) drain on performance. Using numerical data

borrowed by Eric McMullen in his article “Get Drunk on the

56

Power of Reflection.Emit”, we see that the use of

reflection is indeed slower than the standard new operator

as far as creating objects per second: 708,160 for

Reflection and 3,160,493 for the new operator. This is a

significant difference.

 It should be noted that reflection often incurs a one

time performance hit at load-time. After this, the results

are typically cached for fast retrieval. This means you

can generate many things at run time and create very

dynamic code that only incurs a performance hit once.

 Research has shown that the Reflection debate is split

in half. There are those who agree that it is bad news and

should be avoided as much as possible, and there are those

who argue that it is not as bad as it seems, and it opens

up many possibilities for dynamic code with minimal

overhead. There are many online discussions that debate

the benefits of using them.

 We are of the thought that reflection is not something

that should be used constantly, as it can lead to difficult

to maintain code that also runs very poorly.

 What we have discovered here is that reflection is a

difficult process to spell out specifically. Because of

its dynamic nature, reflection can be applied to many

different scenarios and it is difficult to discern when it

57

should actually be used. There is always an efficiency hit

implied whenever reflection is used, and you can’t coax

reflection into performing on par with conventional methods

as there aren’t any to compare it to. So, determining when

to use it and when to shy away from it is up to the

programmer’s discretion based off of their current

situations and goals. If you can afford the couple of

seconds of reflecting, it is probably worth it to use it if

you gain a lot of flexibility from the use of it. Again

going back to McMullen’s numerical data, we see that the

amount of objects created per second for reflection, while

slower than the standard new operator, is not really an

awful number. Being able to create that many objects per

second is most certainly more than enough for an

application to perform its tasks.

 This is very similar to the anonymous method data we

created previously. We are essentially dealing with

fractions of a second in performance difference. This is

again something that is not very prevalent. The true

performance bottlenecks of an application are more likely

to rear their heads elsewhere, most likely in the form of

I/O or network access. This sort of bottleneck is out of

the hands of the C# programmer.

58

Figure 18 shows an example of reflection NOT being

used to return various handlers, and Figure 19 shows the

same sort of process via reflection. The basic premise of

this example with respect to reflection is that we create a

small database of possible handlers and store them in a

dictionary by their string names. Whenever we need one, we

check the dictionary for the existence of that handler, and

dynamically build and return it out to the user.

 Reflection is certainly not required for this, and the

code could be simplified significantly by simply returning

the handlers via the new operator rather than building the

dictionary of handler types that get dynamically generated

(as shown in Figure 18). However, the use of reflection

does allow us to create a fairly versatile database of

handlers with a minimal amount of code. It may seem less

straight forward because it is dynamic and thus will incur

the normal reflection runtime penalties, but it will

provide us with the means to add or remove handlers with

ease. We now have a one-stop shop for any handler. If it

turns out that we need to change how a handler is used

(perhaps the signature of the constructor needs changed),

we only need to modify the reflection portion one single

time. With the approach taken in Figure 18, we would have

59

to change each and every one of the handlers function

calls.

 On the other hand, the standard returning of handlers

via the new operator approach allows us to simply check the

DisplayType in question, and return the appropriate

handler. We will be able to debug this code in the

standard way, and the code itself is more straightforward.

However, because it is not dynamically generated, if we

ever change the way we deal with handlers being returned,

we will need to change every place in which the new

operator appears in. Reflection would only require us to

change it in the spot where we dynamically generate it

since we are retrieving the handler by a simple string name

and letting reflection do the real work for us.

60

61

62

63

 Upon utilizing the two versions, we can see in Table

IX that the time for reflection is somewhat high in the

first pass as it sets itself up, and each subsequent pass

is significantly faster. It is still never as fast as the

new operator is, but we can see that reflection is allowing

64

the handlers created to be cached and reused without having

to regenerate them each time. The new operator is roughly

50% faster than reflection once reflection does its initial

run. However, we yet again see that this is all fractions

of a second, so it is very likely that the scenario in

question and many others like it will allow for reflection

to be used. The design benefits gained from reflection can

outweigh the performance hit that is always implied and

incurred with reflection, especially when the performance

hit is again something that is not even discernable to the

programmer or user of a program.

Because a programmer can know ahead of time that

reflection causes this kind of performance impact, they may

also be able to plan for and expect it in the design phase

of their program so that it does not come as a surprise to

them later on. Table IX demonstrates this expected

overhead with a line graph. This graph serves to show the

sort of overhead a programmer should expect when using

reflection to dynamically generate types versus doing it

with the standard new operator. It is certainly steep at

first, and improves significantly with each subsequent run.

We still see here that the overhead is costly, so this

should be planned for if reflection is to be used.

65

 Reflection as a whole has turned out to be a very

flexible, very detailed feature of C#. Its power is

something that is left up to the user’s creativity to

really take full advantage of it. One thing that was noted

was the use of the Yield operator within the reflection

example. It is also a new device of C#, so it needs to be

examined.

66

3.2 Iterators Via Yield

While experimenting with reflection, we noted the use

of a new operator called “yield”. Researching this via the

MSDN and the book “Accelerated C# 2008” by Trey Nash, we

discovered that this is commonly used within iterator

blocks. What it allows us to do is to step through a

collection such as an IEnumerable one at a time, returning

the item, and keeping track of where it left off for the

next pass. This can be beneficial when looping through

potentially large sets of data.

With respect to efficiency, most signs seem to point

to it being more efficient with regard to iterating over

large lists that you do not intend to fully traverse. This

is beneficial to the memory consumption of your program

since entire lists will not need to be stored in memory in

order to be dealt with. Instead, you will be returned each

piece as you require it. It is also beneficial in the

event that you break out of a loop before building a list

since you would be short cutting out of iterating over the

entire list.

The best way to verify this is to experiment. What we

have done is demonstrate the benefit of using yield return

rather than a standard list in Figure 20. We see that

using the list style causes us to build up the entire list

67

before being able to even process it. Since we are simply

iterating over the list to find a value, we find that it is

much more efficient to use yield return, as we may not even

care about the later portions of the list.

68

What yield does is allow us to search on the fly for

what we wish to find, instead of having to keep track of

the entire list. Table X shows the timings from running

this test that works on a list containing all powers of two

up to the 32nd degree. We then search for the middle-case

(216) to simulate an average search case.

Table X: List Use vs. Yield Return

0

10000

20000

30000

40000

Run #

T
im

e
 (

m
s

)

List use

Yield Return Use

List use 35998 35999 35998 35998 35998

Yield Return Use 17001 17001 17001 17001 17001

1 2 3 4 5

We see that the timing difference is quite

significant; yield return performs over 50% faster,

consistently. This average case timing difference will

only increase as the lengths of the collections in question

grow. In the event that what we do with yield return ends

up reaching the end of the list, the timings will be equal.

So, this means that yield returning through a list in this

matter will never perform worse than a standard list.

69

Also, upon running some memory profiling built into

Visual Studio 2010, we can see that the yield return

version is better with regards to memory. In Table XI, we

see that using a standard list uses over 85% of the memory

that our entire test program uses. The yield return usage

counts for a mere 8% of our overall program. This is

pocket change for our system. It is clear that the use of

yield return allows for the traversal of large data

structures with far less impact on the memory of the

system. This is a strong point to consider if you are

within tight memory constraints.

Table XI: Memory Consumption for Yield Return

86%

8%

4%

2%

List.Add(int32)

getPowers2(int32, int32)

getPowers(int32, int32)

List.ctor()

In an article by Jon Skeet entitled “Iterator block

implementation details: auto-generated state machines”, we

see a detailed explanation of what transpires behind the

scenes with iterators in C#. The main point of focus in

this article is the fact that yield return creates a state

70

machine behind the scenes. This is what allows collections

to be rapidly traversed with minimal overhead. The

majority of this work is done within the function

MoveNext(), as stated by Skeet. This function is

implemented by the compiler for us when we make use of

iterators, and it is not something we as programmers have

to actually implement or call. The compiler sets

everything up for us. Figure 21 shows the MoveNext()

implementation generated for our particular use of yield

return. This implementation is on par with the examples

demonstrated by Skeet in his own article, and serves to

explain just how the state machine is being handled. The

compiler keeps track of its current state. These states

can be the current iterator location, or other states such

as -2 which indicates that GetEnumerator() has not been

called, 0, which is the ready state, and -1, which

indicates that the iterator is running, or that it is

finished execution.

When stepping through the code line by line with a

debugger, some non traditional C# behavior takes place with

respect to the IEnumerable. This functions as a visual

demonstration of what yield return does. We’ve set an

IEnumerable instance equal to a function which returns an

IEnumerable. Our foreach loop inspects this IEnumerable as

71

if it were a normal function, and exits out when a yield

return is hit. It keeps track of where it left off for the

next iteration of the loop. This is the state machine in

action (Figure 21).

Within this state machine created by the compiler, we

also see an exciting relic of the past in the form of a

goto statement. The elusive, never to be used, “spaghetti-

code” generating beast from the days of BASIC has now been

shown to be beneficial and even required for the use of

yield return to function properly. Not that goto

statements are really that bad in the first place, as they

are just the same as your standard jmp (jump to label)

72

instruction in assembly languages such as 6502, z80, and

8086. This just serves to prove that taboo coding

practices of the past have their place in today’s

programming world, and should not be ignored.

Despite the increased performance we can experience

using iterators, we should note that they are also limited

in their uses and can even produce dangerous and/or

inefficient code almost on accident (much like lambdas).

This was hinted at in Skeet’s article when he noted that

calling GetEnumerator() from other threads, or when the

current state machine is not in state -2, will result in a

new instance being generated to keep track of the new

state. This means you now have two counters to deal with.

This can keep occurring, and may result in a mess of

inconsistency.

These iterators can also produce inefficient

operations disguised as extremely concise portions of code

as demonstrated in an article entitled “All About

Iterators”, by Wes Dyer. In the section detailing the cost

of iterators, Dyer first examines the Concat() sequence

operator. This operation contains two foreach statements

which each contain a yield return statement. His test of

this statement reveals that the runtime is proportional to

the square of the number of Concat()s composed together,

73

or, O(m2). This was determined by taking Concat’s time

complexity of O(m+n), where m is the number of items in

sequence 1, and n is the number of items in sequence 2. In

his example, n is always 1. This means that the calls will

then have times ranging from O((m-1)+1) to O((m-2)+1), all

the way to O(1+1). Since there are m calls like this, we

get O(m2).

Taking this one step further, Dyer examines

recursively defined data structures that are traversed with

yield return, specifically, a preorder traversal. This is

done with a foreach doing the traversal by yield returning.

This foreach is placed within another foreach that gets all

of the children nodes. So, a nested foreach of yield

return statements. This produces very clean, very concise

code (3 simple lines). However, the recursive yield return

statements cause extra allocations of memory that need not

actually be done.

A more appropriate way to take care of this same

operation is to use a stack to keep track of what to do as

the traversal takes place. It avoids the recursive

iterator allocations. As a result, it causes the same

operation to perform over twice as quickly, with less

memory allocation overall. However, the greatest cost of

traversal in either case is still determined by the node

74

count (O(bd), where b is the branching factor and d is the

depth).

Dyer concludes by referencing a paper written by Bart

Jacobs, Frank Piessens, and Wolfram Shulte in which they

detail the use of nested iterators to improve their

effective performance. This would allow for things such as

Concat() and recursive iterator use to perform much better.

This is achieved by avoiding redundant evaluation of

sequences with Concat() and by keeping track of things with

a stack much like Dyer suggested for recursive operations.

They then demonstrate that recursive operations could

be done by using a yield foreach along with yield return

statements to recursively operate. This nested iterator

style would operate linearly. Currently, a C# iterator

would have quadratic performance while achieving the same

outcome. This will get very inefficient very quickly with

little incentive to actually use it, as the nested

iteration pattern would operate far quicker, and with less

allocation.

Also noted in “C# In Depth”, is that the use of yield

returns cannot ever guarantee that the iterator will ever

be revisited. It is entirely possible that the caller may

never return to finish evaluating the rest of a collection.

This may not always be a problem, but it should at least be

75

noted that yield returns do not guarantee complete

traversal. This also means it is generally poor form to

allow for a collection to be modified inconsistently. If a

collection is conditionally modified (elements are added or

removed), the yield return position will suddenly become

incorrect. We will not return to where we expect to, and

may then create problems for ourselves either by revisiting

an element we already processed, or skipping over elements

altogether.

Despite these small quirks, our findings agree quite

well with both Jon Skeet and Wes Dyer’s conclusion that the

proper use of iterators allow for very clean code that

removes a lot of tedium from the programmer’s plate and

even serve to make the program itself operate quicker. The

quirks of iterators and the use of yield return are even

difficult to stumble upon without really trying to create a

problem, so it is generally a good idea to use them when

possible. You gain memory efficiency, cleaner code, and

faster traversal results, all through the use of a new

feature of C#.

76

CHAPTER IV

CONCLUDING REMARKS

4.1 Final Verdict

 We have covered many topics of C# ranging from

anonymous programming, all the way to dynamic programming

using reflection and fast iterators.

 What we have ultimately discovered is that the

original hypothesis claiming that the efficiency of

computation is sacrificed in the name of productivity is

often false.

 The work done behind the scenes by the compiler is in

fact surprisingly close to optimal. With respect to

anonymous programming, we see that the overhead required to

set these functions up is quickly surpassed by the runtime

of more important operations within a program. This one

time setup cost typically happens faster than a human can

even recognize, and the productivity gained from it is very

77

impactful. Anonymous functions allow for very streamlined,

tight code to be created by bypassing normal conventions.

Because of the advances of computing, this anonymous

style of programming costs almost nothing in the grand

scheme of things and it opens the C# language up to the

benefits of clean, event driven programming through the use

of delegates. Without anonymous programming methods, event

driven programming would not be nearly as clean, or nearly

as versatile. We can leave the archaic event driven

programming styles behind us and move on to straight

forward, flexible event handling.

Even greater than this, we see that the current state

of JIT compilation is quite powerful and takes into account

the paranoia of seasoned assembly programmers who are now

using C#. The end result is very optimal code that is

produced on the fly for us. We need not concern ourselves

with the specifics of a given platform to gain the most

speed because it is done for us. The JIT works in

conjunction with the CLR and allows us to target specific

platforms and take advantage of the slight nuances of one

architecture versus another, all with the same exact C#

code.

The current state of JIT compilation within C# is so

versatile that we see that the only way for it to truly be

78

improved would be to introduce some very advanced,

specialized design philosophies into the mix such as trace

compilation. This kind of JIT compilation strategy would

of course benefit more than just the C# JIT compiler. It

would affect JIT compilation for any programming language

which uses its philosophies in it’s’ design. Until these

JIT optimization strategies are fully realized, we can rest

assured that the current status of the JIT compilation

strategies used by the CLR are more than adequate to

produce very tight, streamlined code that is not

susceptible to flaws brought on by code poorly written by

the user. It also works so well that we need not try to

massage our code in order to gain extra efficiency. It is

smart enough to do it for us.

 Further proof of the effective use of C# comes from

reflection, where the programmer can use seemingly

unconventional means to produce dynamic code. The

possibilities of reflection are almost endless. For

example, the programmer could generate an entire class on

the fly and let the compiler take care of all of the

details, storing the result dynamically for use later.

This stored result eliminates the need to generate it on

the fly again and again, which saves us from penalizing

79

ourselves constantly to take advantage of the dynamic

nature of reflection.

While we do experience some overhead and incur a bit

of a runtime penalty with reflection, the case is similar

to anonymous programming. The performance impact is

quickly outweighed by the benefits gained. The dynamic,

flexible nature of reflection often proves to win out over

the performance hit incurred by letting the compiler take

care of the work for us. We saw that the runtime penalty

incurred often becomes insignificant, as evidenced by the

fact that both reflection and standard new operation usage

generate a substantial amount of objects per second.

Finally, we looked at the use of iterators with yield

return. The result was that we can achieve amazing memory

performance gains with improved runtime performance as well

when we iterate over structures by processing elements one

at a time.

We did see that there are some cases where the use of

yield return could perform poorly, but we also saw how to

avoid these pitfalls, along with speculation on future

improvements to these iterators. As a whole, the

performance gain, and concise code produced by the use of

iterators means their use should be strongly encouraged.

80

The current speculation on improvements to them also shows

some promise that they could get even better in the future.

Nearly every downfall with the new features within C#

has really come down to simple preference. With anonymous

programming, a programmer simply needs to decide if they

would like to impact performance slightly and quite

possibly insignificantly, while gaining the benefits of

streamlined code. They will need to understand that they

may have a performance hit at first, but will eventually

cross a threshold where the rest of their program’s runtime

outweighs the anonymous overhead.

With reflection, they again need to decide if they

would like to take a performance hit while gaining the

benefit of dynamic, flexible code that is cached for future

use and may even allow them to achieve things not easily

done without reflection.

Every instance of using the wide array of C# features

boils down to the programmer weighing the pros and cons of

each feature. Fortunately, even if the programmer does not

do a good job of weighing the pros and cons, the compiler

itself is effective enough that it will manage to optimize

out problematic code so that the runtime of a poorly

planned out program will not be drastically different than

a similar program written more carefully.

81

What this finally means is that the old style of

programming is on its way towards entering a sort of

hibernation. We as programmers do not need to concern

ourselves as much with the underlying semantics of how the

machine operates anymore. We can instead focus on the

higher level design of a program to ensure that we get the

most out of the language. We do this by utilizing all of

the features of the C# language that have been provided to

us. It’s a new frontier, and we should tread into it

confidently, using these new tools to our utmost advantage.

82

BIBLIOGRAPHY

Bouakaz, Adnan, Isabelle Puaut, and Erven Rohou.

"Predictable Binary Code Cache: A First Step Towards

Reconciling Predictability and Just-In-Time

Compilation." Web.

Lowy, Juval. "C#: Coding With Anonymous Methods, Iterators,

And Partial Classes." Web.

<http://msdn.microsoft.com/en-

us/magazine/cc163682.aspx>.

Dyer, Wes. "Yet Another Language Geek." All About

Iterators. Web.

<http://blogs.msdn.com/b/wesdyer/archive/2007/03/23/al

l-about-iterators.aspx>.

Gal, Andreas. Efficient Bytecode Verification and

Compilation in a Virtual Machine. Thesis. University

of California, Irvine, 2006. Print.

Goldshtein, Sasha. "JIT Optimizations." - CodeProject. Web.

<http://www.codeproject.com/Articles/25801/JIT-

Optimizations>.

Grunwald, Daniel. "ILSpy - Yield Return." SharpDevelop

Community. Web.

<http://community.sharpdevelop.net/blogs/danielgrunwal

d/archive/2011/03/06/ilspy-yield-return.aspx>.

83

Guo, Shu-yu, and Jens Palsberg. "The Essence of Compiling

with Traces." Web.

McMullen, Eric. "Get Drunk on the Power of

Reflection.Emit." DevX. Web.

<http://www.devx.com/dotnet/Article/28783/1954>.

Meier, JD, Srinath Vasireddy, Ashish Babbar, Rico Mariani,

and Alex Mackman. "Chapter 5 - Improving Managed Code

Performance." Web.

<http://msdn.microsoft.com/en-

us/library/ff647790.aspx>.

Nash, Trey. Accelerated C 2008. Berkeley, CA: Apress,

2007. Print.

Richter, Jeffrey. CLR via C#. Redmond, WA: Microsoft, 2006.

Print.

Richter, Jeffrey. ".NET: An Introduction to Delegates."

Web.

<http://msdn.microsoft.com/en-

us/magazine/cc301810.aspx>.

Robinson, Simon. Advanced .NET Programming. Birmingham:

Wrox, 2002. Print.

Saravanakumar, Aarthi. ".NET Framework - Internals Of

Delegate Chaining." EggHeadCafe. Web.

<http://www.eggheadcafe.com/articles/dotnet_delegates.

asp>.

84

Skeet, Jon. "Iterator Block Implementation Details: Auto-

generated State Machines." C# in Depth: Iterator Block

Implementation Details. Web.

<http://csharpindepth.com/Articles/Chapter6/IteratorBl

ockImplementation.aspx>.

Wagner, Bill. Effective C: 50 Specific Ways to Improve

Your C. Upper Saddle River, NJ: Addison-Wesley, 2010.

Print.

85

APPENDIX

86

APPENDIX A
(Full Class Listings and Disassemblies)

87

88

89

90

91

	Productivity at the Cost of Efficiency: an Analysis of Advanced C# Programming
	Recommended Citation

	Microsoft Word - Title.doc

