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PRODUCTIVITY AT THE COST OF EFFICIENCY: AN ANALYSIS OF 

ADVANCED C# PROGRAMMING 

ANDREW DAROVICH 

ABSTRACT 

In this modern age of computer programming, there are many 

advanced features at our disposal.  These are designed with 

elegance in mind and are put in place to allow programmers 

to be more productive.  They are often meant to remove the 

need to know machine and system specifics so that 

programmers can focus on the higher level tasks at hand. 

   
What this analysis focuses on is examining what happens 

behind the scenes when using these advanced features.  

Performance for various new features of C# such as 

anonymous methods, reflection, and iterators were examined 

alongside more traditional programming styles in order to 

determine if these advanced features designed for 

productivity have any negative impacts on program 

efficiency. 

 
The outcome of this analysis is that these new features are 

highly beneficial and should be used whenever possible as 

they have a negligible effect on efficiency.  Even when 

used haphazardly, these new features have proven to be just 

as efficient as standard programming methods.   
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CHAPTER I 

INTRODUCTION 

 

 

1.1 The Rise of C# 

 In the world of computer programming, C quickly 

emerged as the language of choice for everything from 

operating systems to video games.  This language gave the 

programmer the power to construct sophisticated programs 

without having to interact directly with the CPU.  One of 

the finest examples of the power of C is the UNIX operating 

system.  Another example is the groundbreaking, 

revolutionary Doom engine, written by John Carmack of id 

Software.   

This flexibility and power was not without problems. 

The programmer was left to manage his or her own memory 

use.  It was also up to the programmer to create his or her 

own library to perform various algorithms.   
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The solution to these problems arrived in the form of 

C++.  As the name implies, C++ is simply “C plus 1”.  With 

C++, the programmer could make use of the new Standard 

Template Library to perform many algorithms and operations 

with ease.  The programmer was also given some facilities 

to provide cleaner memory management.  Most notably, C++ 

introduced classes to the realm of programming.  Now, a 

programmer could construct truly object oriented programs. 

C++ reigned as king for over a decade.  Its 

versatility has caused it to remain heavily in use today in 

many different fields.  However, because of its C-based 

roots, it still falls prey to memory management issues, 

among other problems; the biggest of which is portability.  

In the current age of programming, portability is a highly 

desirable trait. 

Of the various portable languages, C# has emerged as 

quite a powerhouse, standing toe to toe with Java.  As of 

May 2012, C# is the 5th most popular language on the TIOBE 

Index, bested only by C, Java, C++, and Objective C.  This 

is no surprise considering these languages have been out 

considerably longer than C# and are more established.  

However, this does not mean that C# is to be taken lightly.  

It is strongly tied into the .NET framework.  As a result, 

it has many useful features that allow programs to be 
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deployed to various platforms without modification to the 

source code.  These range from anonymous programming, to 

dynamic runtimes.   

Much like Java, C# is known as a “managed” language.  

This means that a programmer can make use of all of the 

powerful features of the language without ever having to 

concern himself with the memory and machine specific 

details of the target platform.  Like the Java Virtual 

Machine used with Java programming, C# makes use of the 

Common Language Runtime (CLR) which allows for various 

assemblies to be made from the C# program and deployed to 

any compatible architecture.  No modifications to the 

source code are required.  The code compiles into 

Intermediate Language (IL), which is then passed into the 

CLR (or JVM with Java).  From here, the IL is then 

translated to machine language for the target architecture. 

This feature and many others are part of what makes C# 

a highly effective language.  However, there may still be 

problems, even with such a feature filled language. 
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1.2 Scope of Research 

The features of C# that make it managed and highly 

versatile can also have a negative impact on the programs 

efficiency.  What may result in more productivity for the 

programmer could also mean less efficiency for the program 

itself.  The fact remains that something has to be doing 

all of the memory management and type casting.  The dynamic 

qualities of the language are magic in the literal sense. 

That is, the real work (the trick) is hidden behind the 

scenes and the programmer is only exposed to the clean-cut 

code that results from it.  What this means is that if the 

programmer is not doing it, leaving it all up to C# and its 

managed features, the program may take efficiency hits at 

run time.  These efficiency hits could have possibly been 

avoided by taking care of all of these details beforehand 

using standard procedural programming methods that have 

been in use for over 30 years.  

To prove this point, the research that will be covered 

herein will focus on some of the more predominant features 

of the language in detail.  Sample programs using features 

such as lambdas and reflection will be created and run 

alongside their procedural programming counterparts.  

Timings for each will be gathered and compared.  Also, the 

programs will be disassembled so that the resultant 
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Intermediate Language (IL) can be analyzed.  This will 

allow us to see the “magic” that goes on behind the scenes.   

The target outcome is to prove that the features of C# 

that make it a desirable language do in fact have a 

negative impact on the overall program efficiency and 

should only be used when the circumstances truly call for 

it.   

All tests will be run on a machine with the following 

specifications: 

 

It should be noted that standard benchmarking programs 

need not be utilized for the research herein.  This is 

because we are examining the effects of runtime and memory 

use caused by the features researched within the scope of 

this paper.  This means we will be examining their runtimes 

and memory consumption in comparison to the rest of the 

experimental programs used to gather timings.  I/O bound 

and CPU intensive applications alike will both be affected 

the same by the runtime incurred from the features 

examined.  
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1.2.1 Related Research 

There does not seem to be a great deal of direct IL 

disassembly published to date, or direct timing 

comparisons.  Instead, it seems that the focus is on JIT 

compilation optimization strategies.  Therefore, in order 

to explore the features in question more thoroughly, 

research in the fields of various compiler optimizations 

such as “just in time” (JIT) compilation within languages 

such as C# and Java will also be examined.   

The reason for this is that optimizations performed by 

the compiler will have an impact on how important it is for 

the programmers themselves to actually perform these tasks. 

It may be the case that in the rapidly evolving 

computer programming world, the behind the scenes 

activities that the framework does for the programmer are 

doing a job of creating efficient programs without 

sacrificing readability and maintainability that is often 

destroyed by optimizations carried out by the programmer.  

These advances may be closing the book on the old way of 

programming and instead opening a new world of dynamic, 

flexible, and still efficient programming. 

Researching the materials that have focused on these 

types of machine created optimizations will be a crucial 

aid in determining if this hypothesis is in fact true.
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1.3 Text Overview 

Because the majority of the research that will be 

performed focuses on the inner workings of C#, most of the 

texts used are of the reference nature.  These books are 

directly from Microsoft, and this should ensure that the 

most up to date information is used.  The Microsoft 

Developer Network (MSDN) and its various publications will 

also be referenced frequently, as this is the most accurate 

source of information regarding C#. 

With that in mind, the first step is to analyze the 

anonymous programming paradigm in detail.  This will 

include delegates and their various shorthand approaches, 

along with anonymous methods.   

We will begin by performing a brief overview of the 

approaches, while hinting at possible efficiency issues 

that may arise. 

Once we have detailed all of the anonymous programming 

methods, we will compare them to their procedural 

equivalents to see which performs faster, and why. 

After this is completed, the dynamic programming 

capabilities of C# will be examined in the same manner.  

Dynamic programming with respect to this paper means code 

that is generated dynamically at run-time.  This is not to 

be confused with the dynamic programming concept used to 
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solve a complex problem by subdividing it into smaller, 

simpler problems, and combining these smaller solutions to 

form the whole solution. 

Investigation into dynamic programming will include 

investigating reflection, the CLR, and yield return 

statements in detail to examine how they may be utilized to 

generate code dynamically for us. 
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CHAPTER II 

ANONYMOUS PROGRAMMING 

 

 

2.1 Delegates 

Before anonymous programming can be fully explored, 

one must first understand the concept of delegates within 

C# as they are the key component to an anonymous method.  

Delegates are C#’s answer to the function pointers found in 

C/C++.  As we will soon see, they are not the exact 

equivalent.  Per the MSDN, delegates allow methods to be 

passed as parameters, can be used to define callback 

methods, and can be chained together.   

A delegate (as shown in Figure 1 below) takes the 

following form: 
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What this will then allow the programmer to do is 

assign methods with similar signatures to it to perform 

operations. 

With the above example, what we can do now is create a 

class named delegateClass which is full of various 

mathematical functions that operate on two integers: 

add(int x, int y), sub(int x, int y), mul(int x, int y), 

div(int x, int y), and pow(int x, int y).  This is a very 

contrived example, but it demonstrates the properties of a 

delegate quite clearly. 

Now, we are able to create an instance of our 

delegateClass class, and pass the methods inside into 

various delegates, as demonstrated below in Figure 2.  The 

entire delegateClass definition appears in the Appendix A 

for further reference.  
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 With this simple example demonstrating delegates 

shown, we can now explore the inner workings of a delegate.  

As Wagner states in his book, Effective C#, a delegate is 

most commonly used for event driven programming, typically 

in the form of callbacks. 

 The reason these are not an exact equivalent to a 

function pointer also comes from something noted by Wagner 

that prompted further investigation.  Wagner states: 

“Delegates are objects that reference a method”.  So, 

rather than being a simple pointer, they are a class that 

contains a pointer!  Disassembling the aforementioned 

delegate example proves this to be the case as shown in 

Figure 3.  The delegate keyword is converted into a class, 

which then contains a method called Invoke() which is our 
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reference method.  This convolutes things quite 

significantly.  Thankfully, and most importantly with 

respect to our research, the work is all done behind the 

scenes by the compiler.   

 

 This sort of setup is a requirement of C#, being that 

it is a managed programming language.  The programmer does 

not have the luxury of communicating directly with 

addresses due to type safety.  As Jeffrey Richter points 

out in his article, “An Introduction to Delegates”, 

delegates are commonly used as a callback mechanism, which 

agrees with the explanation given by Wagner.   The delegate 

construct carries with it the number and types of 

parameters expected by the function, the return types, and 

calling conventions.  This provides a programmer with the 

type safety required by C#; the unsafe possibilities of 

pointers to functions possible (and probable) within C/C++ 

are a distant memory in the land of C#.  

The interesting design of a delegate also allows for 

the concept of delegate chaining.  An article entitled 

“Internals of Delegate Chaining” by Aarthi Saravanakumar 



13 

details this concept quite well.  Inside this article we 

see that delegates are chained together by the use of a 

Combine() method.  The overall result of delegate chaining 

is a linked list full of cloned versions of all the methods 

that have been chained.  This detail alone begins to build 

up concern about the impact of using delegates within a 

program where efficiency is desired.  Use of the Clone 

method results in a shallow copy or deep copy of the object 

in question.  Cloning operates in O(n) time (per the MSDN), 

which implies that the more you do it, the more time you 

will spend.  This is in contrast to function pointers in 

C/C++, which do not clone anything, and simply reside in 

memory, ready to be used when needed.   

Richter’s article contains a final segment 

(Demystifying Delegates) that delves deep into the 

complexities of delegates with the goal being to explain 

how to use delegates efficiently.  In this portion, we 

again see the now known fact that delegates are not simple 

pointers.  We also again see the Invoke() method.  Richter 

elaborates on this detail to explain what actually happens 

when a delegate is called.  The compiler generates the code 

to call Invoke() for you since the method in question does 

not actually exist.  Programmers themselves are not allowed 

to call Invoke() explicitly.  Richter also states that the 
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compiler and the CLR (Common Language Runtime, more on this 

later.) hide the complexity of delegates on purpose and do 

the processing for us so that we can focus on the design of 

our programs rather than the complexities of the system.  

This confirms that concerns about the existence of behind 

the scenes work are valid, and should be investigated 

further. 
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2.1.1 Action and Func 

 The one downside to delegates thus far has been with 

the setup of them.  This setup can often negate the 

supposed elegance of delegates.  To remedy this, C# 

introduces two keywords, Action and Func, which allow you 

to forego the usual setup of a delegate and keep it inline. 

Actions are a type of delegate that can be used to 

pass a method as a parameter without ever explicitly 

declaring a custom delegate.   It can be seen as a sort of 

short hand for delegate declarations.  Actions have no 

return types, and take in no parameters.  They are 

essentially the ultimate solution for quick, parameter- 

less void functions. 

 A similar keyword, Func, operates the same, yet again 

acting as shorthand for delegates.  However, with Func, you 

are able to specify a return type.  Both of these keywords 

serve to clean up delegate use and make it much more 

streamlined.  However, we must not forget that this 

shorthand does not mean the work involved with setting up a 

delegate is gone.  It just means we have passed the baton 

to the compiler yet again. 
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2.2 Anonymous Methods 

We have already seen the core building block of 

anonymous programming in action, but now it is time to 

explore the concept further through Anonymous Methods, a 

newer feature to C# that allows the use of delegates 

without defining named methods. 

As the name implies, an anonymous method has no name.  

It is simply defined in-line and placed right into a 

delegate.  Because of this, the programmer is then leaving 

a significant amount of the work up to the compiler.  This 

includes inferring the type, and performing the wrapping 

required of delegates in C#.   

An article by Juval Lowy in the MSDN magazine entitled 

“Create Elegant Code With Anonymous Methods, Iterators, And 

Partial Classes” details the common uses of anonymous 

methods.  This includes using them in place of delegates in 

places where a delegate type is the expected input.  This 

article also serves to point out that there are in fact 

many ways a programmer can create and use anonymous 

methods. 

Unfortunately, as stated by Lowy, the resultant MSIL 

(Microsoft Intermediate Language) generated by the compiler 

can be quite different for each different approach to using 

anonymous methods. 
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In the case of the anonymous method using class member 

variables and method arguments, Lowy demonstrates that the 

code generated is fairly compact.  What we will see is the 

addition of a private method to the class followed by the 

standard delegate instantiation.  It is fairly cut and dry, 

with minimal overhead.   

The issues begin when the anonymous method wishes to 

use outer variables, meaning local variables or parameters 

from the containing method.  In this case, the compiler 

does far more work.   

First the compiler creates a private nested class with 

a back reference to the containing class.  This nested 

class contains public member variables corresponding to 

every single outer variable that is used.  Next, the 

compiler creates a public method with a signature matching 

the delegate in question.  Then, the compiler replaces the 

anonymous method definition that sparked this entire effort 

with this nested class.  This means it must also take care 

of all of the assignments for the cloned outer variables.  

Finally, the compiler creates a new delegate object, wraps 

the public method from the nested class, and calls the 

delegate, thus invoking the method.  With all of the 

processing required, one can begin to see some of the 

potential pitfalls of anonymous methods.   



18 

2.1.1 Lambdas 

Another way a programmer can make use of anonymous 

functionality is through the use of lambdas.  Lambdas may 

be a new feature to C#. However, they are not a new 

programming concept.  Functional programming languages such 

as LISP have been making use of lambdas for decades now. 

Lambdas in C# provide a very simple, very elegant way 

to define the anonymous functions we have already covered.  

They are also a key component to using LINQ extension 

methods within C#. 

In the traditional sense, a lambda takes a form that 

avoids ambiguity by having you define the number and order 

of the parameters, as shown in Figure 4. 

 

 The simplicity of a lambda allows you to define 

complex functions easily so that you may then explore 

function implementations and computation easily.  This also 

allows for nested expressions, which are part of why 

lambdas are regarded as very elegant. 

 Figure 5 demonstrates a few cases of using a lambda in 

place of the standard anonymous function style.  The 

results are pretty streamlined. 
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 One of the more predominant uses of lambdas in C# 

comes from the use of LINQ extension methods.  These 

standard query methods often expect a lambda to be used as 

the passed in parameter, as shown in figure 6: 

 

 This again serves as proof that lambdas can allow for 

some very clean, very concise code.  What the code is doing 

need not even be explained through comments within the code 

or within this document.  It is alarmingly apparent that 

this statement searches through books (presumably a list of 

strings), and tries to find a string containing “Dragon” 

that it can assign to title.  This sort of feature of C# is 

what makes anonymous programming very desirable.
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2.3  Analysis Versus Procedural Programming 

2.3.1 Anonymous Programming 

Now that we have the basic overview of anonymous 

programming, complete with possible pitfalls brought to 

attention, we can begin to dissect these features.   

We will be performing various operations with 

anonymous programming, gathering the timings (in 

milliseconds), and then comparing them to the same thing 

done the standard (procedural way). 

Our first experiment is using anonymous methods to 

perform some calculations.  We will be using two anonymous 

styles (one with outer variables used and one without), and 

one standard procedural style.  

The source code appears in Figure 7, and the timings 

appear in Table II.  Assume that MyDelegate and MyDelegate2 

are simple void delegates with no parameters. 
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Table II: Anonymous vs. Standard Procedural

0
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C
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im
e

 (
m

s
)

Outer Variable Delegates 0.324 0.3132 0.3333 0.3105 0.3171

No Outer Variable Delegates 0.1792 0.1777 0.2113 0.1894 0.1792

Standard Procedural 0.0035 0.0038 0.0035 0.0038 0.0035

1 2 3 4 5

 
The results we find here are expected, but the 

extremity is still a bit shocking.  Because of the work 

involved to setup a delegate, it is definitely a given that 

it should take more time.  What we see here in this initial 

test is that using anonymous programming methods incur 

quite a bit of startup overhead, causing this simple 

function call to take over 50 times as long to complete.   

The MSIL generated by this program when disassembled 

using ILDASM sheds some light on what is happening.  An 

abridged version of the resultant MSIL is shown in Figure 

8.  Loads, stores, and other commonplace operations such as 

loop condition checking have been omitted for the sake of 

space. 

What we are left with are the delegate setup portions 

mentioned herein.  Each process is separated by a 

horizontal line.  The full figure appears in Appendix A for 
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reference purposes.  What we see is that the first method 

which uses outer variables produces code that duplicates 

the variable i for use internally by the delegate call 

(note the use of the dup instruction).  We do not see the 

same behavior when we setup a delegate chain in our second 

process since it copies the variable to a local before 

passing it into the anonymous method.  This avoids the 

problem of having to create instance variable copies for 

use within the anonymous method. This means that either 

method requires some form of copying.  It’s up to the 

programmer to avoid doing it poorly. 

The first process also generates and loops over a 

larger amount of code, which helps explain why it takes the 

longest of our 3 styles.  One of the biggest things to note 

with this method is that it calls the Invoke() method more 

than once.  This is necessary to avoid printing incorrect 

values, as stated in Figure 7.  While it gives us the 

desired output, it does not give us the desired 

performance.  Despite this, it was very easy to write; on 

the surface it is not much different than our second 

process.  

The second process demonstrates the better way to 

achieve the same result.  Because we have created a 

delegate chain, we only call the Invoke() method one single 
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time.  The entire delegate chain is then executed properly.  

This means that the only real overhead we incur here is 

setting up the delegate in the standard way.   

The third process demonstrates the standard procedural 

way of achieving the desired output.  We see here that 

there is little MSIL generated.  It is fairly 

straightforward, as expected from something as simple as a 

for-loop.  We skip the overhead of delegates and simply 

execute our instructions. 
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 Even though anonymous methods, when setup optimally, 

still incur a performance hit due to setting up the 

delegate class and combining delegates when requested, it 

is still possible that their use should be encouraged.  In 

this small example we see that the performance difference 

is quite great.  However, if the setup performance hit of 

the delegate remains constant, we may see that this 

performance hit stops mattering when we begin performing 

computations and handling larger scale processes.  The 

reason for this line of thinking is that currently, we are 

dealing with fractions of a millisecond.  The performances 

of these 3 processes are different relative to each other, 

but in reality, may not be that different at all. 

 To test this idea out, we will again use the same 3 

processes.  This time however, we will need to simulate a 

longer computation than what is already done.  This will be 

accomplished by having the function sleep for thirty 

seconds per run.  The resultant test takes roughly seven 

and a half minutes to complete, with about two and a half 

minutes going to each of the three processes we have setup.  

This should be more than sufficient when compared to modern 

software which typically takes care of its processes in 

under a minute. 
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 We see here in Table III that after sleeping for 30 

seconds per function call, that there is little difference 

in the performance of these processes.  Even the poorly 

executed anonymous method’s performance does not appear 

different enough to matter.  We even see that the anonymous 

approach often operates as fast as the standard procedural 

approach.   

The accompanying line graph within Table III also 

shows the general impact of anonymous method overhead when 

used.  Initially we see a terrible overhead impact much 

like we saw in Table II.  However, we quickly see that as 
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the execution time increases steadily from .1ms to 1ms and 

beyond, that the overhead impact decreases significantly, 

eventually approaching 0%.   

 What this means is that as computation time increases, 

the impact of an anonymous methods setup decreases.  The 

setup of the anonymous method does remain fairly constant, 

so it will always take roughly the same amount of time to 

setup, even if the function itself takes a long time to 

execute.  

 This of course means that anonymous methods are indeed 

a great tool to use within a project and should most 

certainly be used whenever a programmer needs or wishes to 

use one.  The low impact of their overhead and heightened 

design possibilities (callbacks and event driven 

programming) make anonymous methods quite versatile.  The 

overhead penalty incurred would only have a detrimental 

effect to programs which require operations that operate at 

the fraction of a millisecond level.  Any program requiring 

very precise, almost instantaneous execution would 

generally want to avoid usage of anonymous methods.  On the 

other hand, any program that is higher level and contains 

many different modules and design elements would most 

certainly benefit from the elegant flow that an anonymous 

method can provide. 
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2.3.2 Lambdas 

Lambdas are a bit of a different case than standard 

anonymous programming.  They are typically used in 

conjunction with LINQ extension methods and can operate as 

arguments to these methods.  We will not need to examine 

the anonymous method setup as done previously, since 

lambdas operate the same in that regard and merely operate 

as a sort of short hand, much like Action and Func. 

What we will instead be examining is a lambda’s 

performance when used in place of standard procedural ways 

of programming. 

Our example in Figure 9 creates a list of 2,000,006 

strings.  We have placed various book titles within the 

list at the beginning, middle, and end.  What we then do is 

search for some of the titles using lambdas, and again 

using standard procedural programming.   

The results in Table IV show that lambdas can be quite 

a silent killer to program efficiency if not used 

correctly.  Further, as we can see in the coding example, 

it is fairly easy to set lambdas up in efficiently due to 

their short hand nature and streamlined appearance.  Things 

that appear to be short and sweet may turn out to be long 

and sour. 
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Table IV: Lambda vs. Procedural
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 What our current, deceptive lambda search is doing in 

standard procedural form is shown in Figure 10.  To 

elaborate, the lambda traverses the entire list in search 

of the string in question.  Once it finds the string or 

reaches the end of the list, it returns.  This means that 

each string we search for requires us to traverse the 

entire list again.  In our example, this means our best 

case lambda search would be 21; the case where our 6 

strings are the first six entries in the list, in the same 

order that we search for them.  Our worst case on the other 

hand, is 12,000,036.  This is what would happen if none of 

our search strings exist in the list and we are forced to 

run to the end each time.  It should be noted that it is 

indeed possible for this lambda setup to outperform our 

procedural form, if, for example, our list was sorted and 
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we searched for everything in alphabetical order AND all of 

the books in question appear in the front portion of the 

list so that the accumulated traversals are less than the 

procedural’s.  However this is highly unlikely, and should 

also not be counted on.  Searching should always be setup 

to accommodate the average and/or worst case. 

 

 Our procedural version from Figure 9 will traverse the 

list 2,000,006 times, always.  It is a guaranteed run time.  

It could be further optimized using Boolean variables to 

exit the for-loop if all books are found in order to 

achieve similar best case run times as the lambda. 

 This was just a simple test of lambdas, and we can 

already see that their easy to use nature can introduce 

some dangerous pitfalls that can go unnoticed.  What this 

implies is that lambdas are best used in cases where they 

are simply taking the place of an already created anonymous 

method to improve readability.  They should also be used if 

the situation truly requires a lambda.  Cases such as this 

would include many of the calls to LINQ extension methods 
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much like what we have seen here, as you are not able to 

use them otherwise.   

These cases often deal with performing queries on 

various data sources and may involve SQL like mechanisms, 

so it would be the programmer’s duty to make sure the 

lambdas are being used in a manner that doesn’t sacrifice 

efficiency.  Examples of these kinds of lambda uses, along 

with their procedural counterparts are shown in Figure 11.  

We can see in these particular cases that the lambdas do 

provide cleaner looking code, and do in fact operate 

quicker, based off of the timings shown in Table V and 

Table VI. 

The disassembly of the sample programs sheds some 

light on why this happens.  Examining the MSIL in Figure 12 

shows us the true power of using LINQ extension methods, 

complete with lambdas.  What we see is that the anonymous 

method created via the lambda within each of our LINQ 

extension method calls is placed into memory (via ldftn).  

Then, the usual anonymous method setup occurs, and our LINQ 

extension method is called.  It’s as straightforward in the 

MSIL as it is in the C# code. 

The amount of code generated for the LINQ search call 

is both shorter, and less involved.  As we can see with the 

procedural search method, aside from the lengthier amount 
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of code, the compiler has also generated a try/catch 

statement for us to handle any exceptions that occur while 

performing the string comparison. 

The LINQ style proves to be far more efficient and 

powerful for both our search case, and our sort case.  The 

sort case is particularly better with LINQ because we don’t 

incur the overhead of having our class inherit from 

IComparable and implement CompareTo() to perform our class 

sort.  LINQ’s internal workings allow it to quickly search 

and sort our data before our procedural style can even 

search the data in the first place.  So, while the two Sort 

styles are about the same amount of code within MSIL, the 

LINQ method is far superior due to the setup of LINQ, and 

the fact that sorting lists composed of classes incurs some 

overhead that LINQ does not have to concern itself with.  

We did find that in some cases, LINQ operated slower.  

However, the difference was negligible, inconsistent, and 

only occurred with smaller datasets.  These findings imply 

that the overhead of LINQ is similar to that of anonymous 

methods.  Again meaning that it is a problem at first, but 

the scalability of it quickly makes it a powerful tool to 

leverage in practice. 
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Table V: Lambda LINQ Search vs. Standard 

Procedural Search
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Table VI: Lambda LINQ Sort vs. Standard Procedural Sort
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Again referring to both Tables V and VI, we see that 

the difference in run-times between the LINQ methods and 

the standard procedural approaches is quite radical.  In 

order to figure out why, these LINQ extension methods must 

be viewed closer.  Using .NET Reflector, we are able to 

investigate what goes on with LINQ extension methods, as 

shown in Figure 13.  What we see is that the LINQ method 

Where() makes use of something interesting known as a yield 

return.  We will cover this in detail in the next section.  

To put it simply for now, what it does is take advantage of 

the enumerable type within C#, which helps explain why our 

LINQ search went far faster than the rather brute force 

approach taken with procedural code that uses basic 

comparisons and builds a List() on the fly. 

We also see that the OrderBy() method makes use of the 

OrderedEnumerable type, which essentially allows the 

framework itself to craft our sorted list for us as it is 

built.  This is done instead of implementing a CompareTo() 

method and a standard Sort() function which as we see in 

Figure 14, does not perform very optimally for us.  The 

work for List.Sort() is passed off to the Array class, and 

then to an ArraySortHelper, which ends up calling the C# 

implementation of the quicksort algorithm.  By nature, this 

algorithm will run in O(n log n) time on average.  When we 
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see larger portions of data, much like our example, this 

algorithm will run well when compared to other conventional 

sort algorithms.  However, LINQ’s OrderBy() method has the 

advantage of being setup to take advantage of Enumerables, 

and the rest of the C# framework.  This allows it to create 

our new data structure quickly and efficiently, in a manner 

similar to that of a best time Insertion sort (which runs 

in O(n) time).  This proves it to be quite powerful and 

versatile. 
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 With this, we see that C# provides us with many great 

facilities to design very robust, elegant programs. We also 

see that the efficiency is not at great risk when taking 

advantage of these features.   

 The next frontier is dynamic programming. 
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CHAPTER III 

DYNAMIC PROGRAMMING 

 

 

3.1 The Common Language Runtime 

The Common Language Runtime is the .NET Framework’s 

means to allow for portable code while using C#. It is the 

virtual machine that the .NET framework uses.  This is 

where Just-In-Time (JIT) compilation takes place.  This is 

also where some of the other features of the .NET framework 

take place, including memory management and type-safety 

mechanisms.  The CLR is essentially the manager of this 

managed language. 

The CLR provides some features inherent to managed 

programming such as type safety and memory management AKA 

“garbage collection”.  These features are imposed on a 

programmer using C# no matter what.  So, because we are 

unable to use C# without these features, we will not be 

examining them further.  Suffice it to say, the garbage 
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collection and dispose patterns employed by the CLR are 

more than adequate for managed programming.  Further, the 

type safety mechanisms in place, much like what we have 

seen put into place when we make use of delegates and 

anonymous programming, are part of what makes C# as 

effective as it has become.  Two key features of the CLR 

however, are being brought under examination.  They are the 

JIT compiler, and Reflection 

Our code written in C# is translated by the compiler 

into MSIL, and from there, the JIT compiler transforms it 

into native code for the target architecture.  The question 

becomes now, is this JIT compilation approach “good enough” 

to rely on?  Or, should a programmer be wary that they 

still need to massage their code by hand to get the 

efficiency they desire? 
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3.1.1 Just In Time Compilation 

Of all of the features within the CLR, JIT compilation 

has drawn much attention, as this is the main force of 

optimization with managed code.  The JIT compiler is the 

last piece of optimization before the CLR completely 

translates MSIL into native code.  This means that if this 

compiler is not very optimal, the end-result on each 

platform will not be very good.  It may also introduce 

radically different performance from one architecture to 

the other.  This would ruin the concept of portability.   

One of the biggest hurdles to overcome with JIT 

compilation is that it runs under time constraints.  It is 

unable to make use of more conventional means of 

optimization since it is done “Just in Time”.  Obviously, 

the optimization cannot be done just in time if it takes a 

long amount of time to complete.   

Sasha Goldshtein’s “JIT Optimizations” article 

examines some of the optimization strategies used by the 

CLR, mainly focusing on using method inlining and frequency 

analysis.  He first points out the simple fact that range 

check optimizations within loops can be broken quite 

easily.  This is our first sign that it may still be up to 

the programmer to perform their own optimizations as much 

as possible. 
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However, he then points out that methods are inlined 

if they are 32 bytes or less in length, do not contain 

complex branching logic, and do not use exception handling.  

What this then means is that larger functions will not be 

inlined.  This is a normal occurrence.  In C/C++, only 

small, tightly knit functions are usually inlined into the 

code.  Essentially, a function should only be inlined if 

the function can complete its processes faster than the 

overhead for calling that same function can.  Otherwise, 

there is little point to it.   

The function inlining optimizations are interesting 

because of the fact that Goldshtein points out that it is 

theoretically impossible to perfectly inline virtual method 

calls because the JIT does not inline interface method 

calls.  Instead, it performs an optimization that does not 

use naïve interface method dispatching. 

He then goes on to examine flow analysis and frequency 

analysis to explore JIT optimizations.  The end conclusion 

is that the frequency of method calls and the resultant 

optimizations have little impact on performance.  One could 

interleave various method calls, or call them sequentially, 

and it would have little difference because of the way the 

JIT compiler decides to optimize. 
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This does not raise much concern, as what it means 

really is that one programmers design patterns will not be 

drastically different than another’s.  The JIT compiler and 

its optimizations seem to have created a middle ground for 

programming within C#.   

The real question here is are there other smaller 

optimizations that could be made that cry back to the 

assembly language days where hand massaging code could 

produce far superior code.  We do not have the luxury of 

inlining assembly language within a C# program as one would 

be able to with C/C++, but we do have the option to emit 

code on the fly. 

This, however, is not what will be experimented with, 

as it is not quite the same thing.  Emitting code within C# 

on the fly is more of a dynamic process than an optimizing 

process, as you are simply emitting classes, methods, and 

other things on the fly.  You are basically telling the C# 

compiler what sort of MSIL to generate, and are still 

forced to comply with all of the conventions of C# in that 

regard. 

What we will instead be investigating is if careful 

code setup can produce noticeably faster code for us.   

The first test is to see if copying an array’s length 

to a local variable to use for loop condition checking is 
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faster than using the array’s length property with each 

check, as shown in Figure 15. 

 

The results of this test show that there is little 

difference between the two, so it generally makes more 

sense to just use the built in property of the array in 

order to keep cleaner code.  Obvious cases where this would 

not apply are the cases where you need the length outside 

of the loop as well.  Table VII shows the results of this 

test, and demonstrate the negligible differences of the two 

approaches. 

Table VII: Local Variable vs. Array's Length Property
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 Doing this again with a list instead of an array 

yields different results.  Figure 16 shows the approach 

taken, and Table VIII shows the result.  This time, we see 

initially that using List.Count takes about twice as long 

to complete each time.  Disassembling this, we see that it 

is because Count is retrieved via a function call, rather 

than retrieving a variable.  This makes sense due to the 

fact that a list’s size is able to be changed and thus must 

have some sort of way to iterate and count the list.   

Therefore, the amount of work done varies depending on 

the size of the list in question.  As the line graph in 

Table VIII shows, the overhead is always higher using the 

Count property than if we were to use a local variable, and 

its best case scenario seems to fall within the 87-88% 

range starting at a length of 15,000.  However, the result 

is similar to the anonymous method investigation in that 

the overhead involved is outweighed significantly by 

convenience whenever the complexity of the program as a 

whole increases.  Even with large lists, the time it takes 

to process the loop condition information is under one 

second and tends to take about 400ms in our largest list 

size case that reached the limit of the memory on our test 

system.   
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This amount of work will quickly be made irrelevant by 

the actual computations that will take place in the loop in 

question.  In our largest case, any operation that takes at 

least 401ms will be taking longer than the overhead of our 

property usage, thus making it become more and more worth 

it to use as we approach 1 second long operations, or even 

longer.   

It is implied now that in order for it to be the most 

useful to use a local variable instead of the Count 

property, we must be working with very small datasets.  In 

Table VIII, we see this is at a size of 1500, as this is 

when our overhead for using the Count property exceeds 100.  

Even so, the performance gain at this level would only be 

beneficial if we are working with very time sensitive 

applications.  This is because we will still only be 

gaining fractions of a millisecond.  Because of this, it is 

likely that the speed difference between both styles of 

coding will be unnoticed, so it makes more sense to use the 

Count property.  This property removes the need to manage a 

variable whose main purpose is to act as our for-loop 

condition exit value.  So again, the only time it would 

make a great deal of sense to use a local variable is if we 

intend to use the length outside of the loop as well. 
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 This now shows that most “hand rolled” optimizations 

brought on by being mindful of the code will not cause much 

benefit to the end result.  Because the language as a whole 

is many levels above the bare metal, the more prevalent 

optimizations are not possible.    
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 More on the futility of hand done optimizations comes 

from Jeffery Richter’s book “CLR via C#”.  Early on in this 

book, he states that the CLR’s use of the JIT compiler 

produces very efficient code.  He even challenges readers 

to try it for themselves, which is what we have done here.  

One of the key reasons for the JIT compilation being so 

powerful is that it knows a lot of things ahead of time, 

including CPU architecture.  This allows it to take 

advantage of any possible nuances certain architectures may 

have.  These specific advantages are far more important and 

vital to optimized code than the various tricks we may 

attempt on our own.     

 Significant research has gone into the topic of JIT 

compilation, mainly on the topic of trace-based JIT 

optimizations as a means to further improve JIT 

compilation.  What it does is take advantage of run-time 

profiling to optimize the most frequently executed paths 

within the code while also providing a means to bail out if 

this path becomes invalid.   

 This was demonstrated in Dr. Andreas Gal’s 

dissertation entitled “Efficient Bytecode Verification and 

Compilation in a Virtual Machine”.  The work done in this 

paper demonstrates that trace based dynamic compilation can 

produce versatile results that further reduce the benefit 
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of using hand-done optimizations.  This agrees with what 

we’ve seen previously through our own experimentation.  

Gal’s trace-tree based dynamic compiler also managed to out 

perform traditional Java Virtual Machines (JVMs) that were 

used during testing.  The only competition came from 

HotSpot.  However, HotSpot was not created with embedded 

systems in mind whereas Gals’ trace-tree was.  This means 

that HotSpot may compete in terms of speed, but cannot 

compete in terms of file size and memory consumption.   

 In a paper entitled “The Essence of Compiling With 

Traces” by Shu-yu Guo and Jens Palsberg, we see further 

exploration of the same trace based compilation concept.  

This time, however, we see the investigation of sound 

optimizations with trace compilation.   The paper details 

ways to determine if traces are correct.  In order for them 

to be correct, they must “do the same thing” as the 

original code.  The conclusion that follows is that by 

using bisimulation to overcome the explicit definitions of 

JIT compilation and using confluence to maintain continuity 

with operation correctness, one can create sound 

optimizations with trace based JIT compilation.   

 This research provides a great foundation for further 

improvements to JIT compilation in the future.  It also 

helps show that in its current state, JIT compilation is 
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versatile enough that programmers do not need to concern 

themselves with trying to coax the compiler into doing more 

efficient things for them; it’s already taken care of.  In 

order to obtain more robust results from JIT compilation, 

one would need to look outside the realm of their own code 

and explore improving the JIT compilation at its very core 

using methods shown here, or perhaps by a new method 

altogether. 
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3.1.2 Reflection 

 
In Effective C#, Bill Wagner briefly mentions a 

process known as reflection with regards to getting the 

name of a calling method.  While mentioning it, he states 

that it greatly simplifies tasks, but also states that it 

is an expensive process.  Simple but expensive is a bit of 

a red flag when efficiency is the question.  So, we need to 

find out just how expensive reflection is.  Is the 

simplification of code worth the expensiveness of 

reflection?  Also, what exactly is expensive about it? 

The MSDN states that reflection is useful for the 

following: 

• Accessing attributes in your programs meta data 

• Examining and instantiating types in an assembly 

• Building new types at runtime 

• Performing late binding 

Moreover, we see that reflection can be used to 

perform some things that would not normally be possible 

without reflection.  What is demonstrated in Figure 17 is 

that by using reflection, one can access a private member 

within a class.  This is not recommended or encouraged, but 

it is indeed possible.  Without reflection, there is no way 

to access this private method; reflection can be used to 
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bypass some of C#’s rules.  This is dangerous.  However, 

some things that are dangerous in programming do have 

useful applications.  

 

 We see here in this simple example that one can 

extract methods off of an instance and reflect upon them 

dynamically to invoke different pieces of a class.  This 

shows part of the real power and benefit to using 

reflection. 

 However, the power is not free.  It comes with 

significant overhead, and the use of reflection is 

notoriously referred to as being an expensive (as stated by 

Wagner) drain on performance.  Using numerical data 

borrowed by Eric McMullen in his article “Get Drunk on the 



56 

Power of Reflection.Emit”, we see that the use of 

reflection is indeed slower than the standard new operator 

as far as creating objects per second:  708,160 for 

Reflection and 3,160,493 for the new operator.  This is a 

significant difference.   

 It should be noted that reflection often incurs a one 

time performance hit at load-time.  After this, the results 

are typically cached for fast retrieval.  This means you 

can generate many things at run time and create very 

dynamic code that only incurs a performance hit once. 

 Research has shown that the Reflection debate is split 

in half.  There are those who agree that it is bad news and 

should be avoided as much as possible, and there are those 

who argue that it is not as bad as it seems, and it opens 

up many possibilities for dynamic code with minimal 

overhead.  There are many online discussions that debate 

the benefits of using them. 

 We are of the thought that reflection is not something 

that should be used constantly, as it can lead to difficult 

to maintain code that also runs very poorly. 

 What we have discovered here is that reflection is a 

difficult process to spell out specifically.  Because of 

its dynamic nature, reflection can be applied to many 

different scenarios and it is difficult to discern when it 
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should actually be used.  There is always an efficiency hit 

implied whenever reflection is used, and you can’t coax 

reflection into performing on par with conventional methods 

as there aren’t any to compare it to.  So, determining when 

to use it and when to shy away from it is up to the 

programmer’s discretion based off of their current 

situations and goals.  If you can afford the couple of 

seconds of reflecting, it is probably worth it to use it if 

you gain a lot of flexibility from the use of it.  Again 

going back to McMullen’s numerical data, we see that the 

amount of objects created per second for reflection, while 

slower than the standard new operator, is not really an 

awful number.  Being able to create that many objects per 

second is most certainly more than enough for an 

application to perform its tasks. 

 This is very similar to the anonymous method data we 

created previously.  We are essentially dealing with 

fractions of a second in performance difference.  This is 

again something that is not very prevalent.  The true 

performance bottlenecks of an application are more likely 

to rear their heads elsewhere, most likely in the form of 

I/O or network access.  This sort of bottleneck is out of 

the hands of the C# programmer.   
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Figure 18 shows an example of reflection NOT being 

used to return various handlers, and Figure 19 shows the 

same sort of process via reflection.  The basic premise of 

this example with respect to reflection is that we create a 

small database of possible handlers and store them in a 

dictionary by their string names.  Whenever we need one, we 

check the dictionary for the existence of that handler, and 

dynamically build and return it out to the user. 

 Reflection is certainly not required for this, and the 

code could be simplified significantly by simply returning 

the handlers via the new operator rather than building the 

dictionary of handler types that get dynamically generated 

(as shown in Figure 18).  However, the use of reflection 

does allow us to create a fairly versatile database of 

handlers with a minimal amount of code.  It may seem less 

straight forward because it is dynamic and thus will incur 

the normal reflection runtime penalties, but it will 

provide us with the means to add or remove handlers with 

ease.  We now have a one-stop shop for any handler. If it 

turns out that we need to change how a handler is used 

(perhaps the signature of the constructor needs changed), 

we only need to modify the reflection portion one single 

time.   With the approach taken in Figure 18, we would have 
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to change each and every one of the handlers function 

calls.    

 On the other hand, the standard returning of handlers 

via the new operator approach allows us to simply check the 

DisplayType in question, and return the appropriate 

handler.  We will be able to debug this code in the 

standard way, and the code itself is more straightforward.  

However, because it is not dynamically generated, if we 

ever change the way we deal with handlers being returned, 

we will need to change every place in which the new 

operator appears in.  Reflection would only require us to 

change it in the spot where we dynamically generate it 

since we are retrieving the handler by a simple string name 

and letting reflection do the real work for us. 
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 Upon utilizing the two versions, we can see in Table 

IX that the time for reflection is somewhat high in the 

first pass as it sets itself up, and each subsequent pass 

is significantly faster.  It is still never as fast as the 

new operator is, but we can see that reflection is allowing 
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the handlers created to be cached and reused without having 

to regenerate them each time.  The new operator is roughly 

50% faster than reflection once reflection does its initial 

run.  However, we yet again see that this is all fractions 

of a second, so it is very likely that the scenario in 

question and many others like it will allow for reflection 

to be used.  The design benefits gained from reflection can 

outweigh the performance hit that is always implied and 

incurred with reflection, especially when the performance 

hit is again something that is not even discernable to the 

programmer or user of a program.   

Because a programmer can know ahead of time that 

reflection causes this kind of performance impact, they may 

also be able to plan for and expect it in the design phase 

of their program so that it does not come as a surprise to 

them later on.  Table IX demonstrates this expected 

overhead with a line graph.  This graph serves to show the 

sort of overhead a programmer should expect when using 

reflection to dynamically generate types versus doing it 

with the standard new operator.  It is certainly steep at 

first, and improves significantly with each subsequent run.  

We still see here that the overhead is costly, so this 

should be planned for if reflection is to be used. 
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  Reflection as a whole has turned out to be a very 

flexible, very detailed feature of C#. Its power is 

something that is left up to the user’s creativity to 

really take full advantage of it.  One thing that was noted 

was the use of the Yield operator within the reflection 

example.  It is also a new device of C#, so it needs to be 

examined. 
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3.2 Iterators Via Yield 

While experimenting with reflection, we noted the use 

of a new operator called “yield”.  Researching this via the 

MSDN and the book “Accelerated C# 2008” by Trey Nash, we 

discovered that this is commonly used within iterator 

blocks.  What it allows us to do is to step through a 

collection such as an IEnumerable one at a time, returning 

the item, and keeping track of where it left off for the 

next pass.  This can be beneficial when looping through 

potentially large sets of data.  

With respect to efficiency, most signs seem to point 

to it being more efficient with regard to iterating over 

large lists that you do not intend to fully traverse.  This 

is beneficial to the memory consumption of your program 

since entire lists will not need to be stored in memory in 

order to be dealt with.  Instead, you will be returned each 

piece as you require it.  It is also beneficial in the 

event that you break out of a loop before building a list 

since you would be short cutting out of iterating over the 

entire list. 

The best way to verify this is to experiment.  What we 

have done is demonstrate the benefit of using yield return 

rather than a standard list in Figure 20.  We see that 

using the list style causes us to build up the entire list 
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before being able to even process it.  Since we are simply 

iterating over the list to find a value, we find that it is 

much more efficient to use yield return, as we may not even 

care about the later portions of the list.  
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What yield does is allow us to search on the fly for 

what we wish to find, instead of having to keep track of 

the entire list.  Table X shows the timings from running 

this test that works on a list containing all powers of two 

up to the 32nd degree.  We then search for the middle-case 

(216) to simulate an average search case. 

Table X: List Use vs. Yield Return
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List use 35998 35999 35998 35998 35998

Yield Return Use 17001 17001 17001 17001 17001

1 2 3 4 5

 

We see that the timing difference is quite 

significant; yield return performs over 50% faster, 

consistently.  This average case timing difference will 

only increase as the lengths of the collections in question 

grow.  In the event that what we do with yield return ends 

up reaching the end of the list, the timings will be equal.  

So, this means that yield returning through a list in this 

matter will never perform worse than a standard list.   
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Also, upon running some memory profiling built into 

Visual Studio 2010, we can see that the yield return 

version is better with regards to memory.  In Table XI, we 

see that using a standard list uses over 85% of the memory 

that our entire test program uses.  The yield return usage 

counts for a mere 8% of our overall program.  This is 

pocket change for our system.  It is clear that the use of 

yield return allows for the traversal of large data 

structures with far less impact on the memory of the 

system.  This is a strong point to consider if you are 

within tight memory constraints.   

Table XI: Memory Consumption for Yield Return

86%

8%

4%

2%

List.Add(int32)

getPowers2(int32, int32)

getPowers(int32, int32)

List.ctor()

 

In an article by Jon Skeet entitled “Iterator block 

implementation details: auto-generated state machines”, we 

see a detailed explanation of what transpires behind the 

scenes with iterators in C#.  The main point of focus in 

this article is the fact that yield return creates a state 
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machine behind the scenes. This is what allows collections 

to be rapidly traversed with minimal overhead.  The 

majority of this work is done within the function 

MoveNext(), as stated by Skeet.  This function is 

implemented by the compiler for us when we make use of 

iterators, and it is not something we as programmers have 

to actually implement or call.  The compiler sets 

everything up for us.  Figure 21 shows the MoveNext() 

implementation generated for our particular use of yield 

return.  This implementation is on par with the examples 

demonstrated by Skeet in his own article, and serves to 

explain just how the state machine is being handled.  The 

compiler keeps track of its current state.  These states 

can be the current iterator location, or other states such 

as -2 which indicates that GetEnumerator() has not been 

called, 0, which is the ready state, and -1, which 

indicates that the iterator is running, or that it is 

finished execution.  

When stepping through the code line by line with a 

debugger, some non traditional C# behavior takes place with 

respect to the IEnumerable.  This functions as a visual 

demonstration of what yield return does.  We’ve set an 

IEnumerable instance equal to a function which returns an 

IEnumerable.  Our foreach loop inspects this IEnumerable as 
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if it were a normal function, and exits out when a yield 

return is hit.  It keeps track of where it left off for the 

next iteration of the loop.  This is the state machine in 

action (Figure 21).   

 

Within this state machine created by the compiler, we 

also see an exciting relic of the past in the form of a 

goto statement.  The elusive, never to be used, “spaghetti-

code” generating beast from the days of BASIC has now been 

shown to be beneficial and even required for the use of 

yield return to function properly.  Not that goto 

statements are really that bad in the first place, as they 

are just the same as your standard jmp (jump to label) 
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instruction in assembly languages such as 6502, z80, and 

8086.  This just serves to prove that taboo coding 

practices of the past have their place in today’s 

programming world, and should not be ignored. 

Despite the increased performance we can experience 

using iterators, we should note that they are also limited 

in their uses and can even produce dangerous and/or 

inefficient code almost on accident (much like lambdas).  

This was hinted at in Skeet’s article when he noted that 

calling GetEnumerator() from other threads, or when the 

current state machine is not in state -2, will result in a 

new instance being generated to keep track of the new 

state.  This means you now have two counters to deal with.  

This can keep occurring, and may result in a mess of 

inconsistency. 

These iterators can also produce inefficient 

operations disguised as extremely concise portions of code 

as demonstrated in an article entitled “All About 

Iterators”, by Wes Dyer.  In the section detailing the cost 

of iterators, Dyer first examines the Concat() sequence 

operator.  This operation contains two foreach statements 

which each contain a yield return statement.  His test of 

this statement reveals that the runtime is proportional to 

the square of the number of Concat()s composed together, 
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or, O(m2).  This was determined by taking Concat’s time 

complexity of O(m+n), where m is the number of items in 

sequence 1, and n is the number of items in sequence 2.  In 

his example, n is always 1.  This means that the calls will 

then have times ranging from O((m-1)+1) to O((m-2)+1), all 

the way to O(1+1).  Since there are m calls like this, we 

get O(m2).   

Taking this one step further, Dyer examines 

recursively defined data structures that are traversed with 

yield return, specifically, a preorder traversal.  This is 

done with a foreach doing the traversal by yield returning.  

This foreach is placed within another foreach that gets all 

of the children nodes.  So, a nested foreach of yield 

return statements.  This produces very clean, very concise 

code (3 simple lines).  However, the recursive yield return 

statements cause extra allocations of memory that need not 

actually be done. 

A more appropriate way to take care of this same 

operation is to use a stack to keep track of what to do as 

the traversal takes place.  It avoids the recursive 

iterator allocations. As a result, it causes the same 

operation to perform over twice as quickly, with less 

memory allocation overall.  However, the greatest cost of 

traversal in either case is still determined by the node 
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count (O(bd), where b is the branching factor and d is the 

depth). 

Dyer concludes by referencing a paper written by Bart 

Jacobs, Frank Piessens, and Wolfram Shulte in which they 

detail the use of nested iterators to improve their 

effective performance.  This would allow for things such as 

Concat() and recursive iterator use to perform much better.  

This is achieved by avoiding redundant evaluation of 

sequences with Concat() and by keeping track of things with 

a stack much like Dyer suggested for recursive operations.   

They then demonstrate that recursive operations could 

be done by using a yield foreach along with yield return 

statements to recursively operate.  This nested iterator 

style would operate linearly.  Currently, a C# iterator 

would have quadratic performance while achieving the same 

outcome.  This will get very inefficient very quickly with 

little incentive to actually use it, as the nested 

iteration pattern would operate far quicker, and with less 

allocation. 

Also noted in “C# In Depth”, is that the use of yield 

returns cannot ever guarantee that the iterator will ever 

be revisited.  It is entirely possible that the caller may 

never return to finish evaluating the rest of a collection.  

This may not always be a problem, but it should at least be 
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noted that yield returns do not guarantee complete 

traversal.  This also means it is generally poor form to 

allow for a collection to be modified inconsistently.  If a 

collection is conditionally modified (elements are added or 

removed), the yield return position will suddenly become 

incorrect.  We will not return to where we expect to, and 

may then create problems for ourselves either by revisiting 

an element we already processed, or skipping over elements 

altogether. 

Despite these small quirks, our findings agree quite 

well with both Jon Skeet and Wes Dyer’s conclusion that the 

proper use of iterators allow for very clean code that 

removes a lot of tedium from the programmer’s plate and 

even serve to make the program itself operate quicker.  The 

quirks of iterators and the use of yield return are even 

difficult to stumble upon without really trying to create a 

problem, so it is generally a good idea to use them when 

possible.  You gain memory efficiency, cleaner code, and 

faster traversal results, all through the use of a new 

feature of C#. 
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CHAPTER IV 

CONCLUDING REMARKS 

 

 

4.1 Final Verdict 

 We have covered many topics of C# ranging from 

anonymous programming, all the way to dynamic programming 

using reflection and fast iterators.  

 What we have ultimately discovered is that the 

original hypothesis claiming that the efficiency of 

computation is sacrificed in the name of productivity is 

often false.     

 The work done behind the scenes by the compiler is in 

fact surprisingly close to optimal.  With respect to 

anonymous programming, we see that the overhead required to 

set these functions up is quickly surpassed by the runtime 

of more important operations within a program.  This one 

time setup cost typically happens faster than a human can 

even recognize, and the productivity gained from it is very 
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impactful.  Anonymous functions allow for very streamlined, 

tight code to be created by bypassing normal conventions.   

Because of the advances of computing, this anonymous 

style of programming costs almost nothing in the grand 

scheme of things and it opens the C# language up to the 

benefits of clean, event driven programming through the use 

of delegates.  Without anonymous programming methods, event 

driven programming would not be nearly as clean, or nearly 

as versatile.  We can leave the archaic event driven 

programming styles behind us and move on to straight 

forward, flexible event handling. 

Even greater than this, we see that the current state 

of JIT compilation is quite powerful and takes into account 

the paranoia of seasoned assembly programmers who are now 

using C#.  The end result is very optimal code that is 

produced on the fly for us.  We need not concern ourselves 

with the specifics of a given platform to gain the most 

speed because it is done for us.  The JIT works in 

conjunction with the CLR and allows us to target specific 

platforms and take advantage of the slight nuances of one 

architecture versus another, all with the same exact C# 

code.   

The current state of JIT compilation within C# is so 

versatile that we see that the only way for it to truly be 
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improved would be to introduce some very advanced, 

specialized design philosophies into the mix such as trace 

compilation.  This kind of JIT compilation strategy would 

of course benefit more than just the C# JIT compiler.  It 

would affect JIT compilation for any programming language 

which uses its philosophies in it’s’ design.  Until these 

JIT optimization strategies are fully realized, we can rest 

assured that the current status of the JIT compilation 

strategies used by the CLR are more than adequate to 

produce very tight, streamlined code that is not 

susceptible to flaws brought on by code poorly written by 

the user.  It also works so well that we need not try to 

massage our code in order to gain extra efficiency.  It is 

smart enough to do it for us.   

 Further proof of the effective use of C# comes from 

reflection, where the programmer can use seemingly 

unconventional means to produce dynamic code.  The 

possibilities of reflection are almost endless.  For 

example, the programmer could generate an entire class on 

the fly and let the compiler take care of all of the 

details, storing the result dynamically for use later.  

This stored result eliminates the need to generate it on 

the fly again and again, which saves us from penalizing 
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ourselves constantly to take advantage of the dynamic 

nature of reflection. 

While we do experience some overhead and incur a bit 

of a runtime penalty with reflection, the case is similar 

to anonymous programming.  The performance impact is 

quickly outweighed by the benefits gained.  The dynamic, 

flexible nature of reflection often proves to win out over 

the performance hit incurred by letting the compiler take 

care of the work for us.  We saw that the runtime penalty 

incurred often becomes insignificant, as evidenced by the 

fact that both reflection and standard new operation usage 

generate a substantial amount of objects per second. 

Finally, we looked at the use of iterators with yield 

return.  The result was that we can achieve amazing memory 

performance gains with improved runtime performance as well 

when we iterate over structures by processing elements one 

at a time.    

We did see that there are some cases where the use of 

yield return could perform poorly, but we also saw how to 

avoid these pitfalls, along with speculation on future 

improvements to these iterators.  As a whole, the 

performance gain, and concise code produced by the use of 

iterators means their use should be strongly encouraged.  
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The current speculation on improvements to them also shows 

some promise that they could get even better in the future. 

Nearly every downfall with the new features within C# 

has really come down to simple preference.  With anonymous 

programming, a programmer simply needs to decide if they 

would like to impact performance slightly and quite 

possibly insignificantly, while gaining the benefits of 

streamlined code.  They will need to understand that they 

may have a performance hit at first, but will eventually 

cross a threshold where the rest of their program’s runtime 

outweighs the anonymous overhead. 

With reflection, they again need to decide if they 

would like to take a performance hit while gaining the 

benefit of dynamic, flexible code that is cached for future 

use and may even allow them to achieve things not easily 

done without reflection.   

Every instance of using the wide array of C# features 

boils down to the programmer weighing the pros and cons of 

each feature.  Fortunately, even if the programmer does not 

do a good job of weighing the pros and cons, the compiler 

itself is effective enough that it will manage to optimize 

out problematic code so that the runtime of a poorly 

planned out program will not be drastically different than 

a similar program written more carefully. 
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What this finally means is that the old style of 

programming is on its way towards entering a sort of 

hibernation.  We as programmers do not need to concern 

ourselves as much with the underlying semantics of how the 

machine operates anymore.  We can instead focus on the 

higher level design of a program to ensure that we get the 

most out of the language.  We do this by utilizing all of 

the features of the C# language that have been provided to 

us.  It’s a new frontier, and we should tread into it 

confidently, using these new tools to our utmost advantage. 
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