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Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling
the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal
distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating
the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model
(DPMM) with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of
components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling
process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC) sampling technique was
employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-
minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility
in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The
DPMMmodeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the
inclusion of onset and offset of congestion periods.

1. Introduction

Modeling travel time distribution is essential for measuring
the consistency of the traffic performance of a highway
system. Moreover, the distribution of the travel time is useful
in simulation and theoretical derivations regarding different
traffic performance measures such as travel time reliability
and variability. The accurate estimation and prediction of
travel time are essential for traffic operators, planners, and
traveler information systems [1].

This study develops a nonparametric Bayesian model to
estimate the travel time distribution for freeways. The model
is based onDirichlet process distributionwith an extension of
a hierarchical structure to account for the mixture/multistate
characteristics of a given dataset. During the modeling pro-
cess, the proposedmodel is truncatedwith an upper bound of
sixmixture components to reduce computational cost. Unlike
a parametric model, this model does not require specifying
the true number of components; instead, the number of

components grows with the dataset, which is automatically
inferred using the Bayesian posterior inference framework.
The posterior distributions of the model parameter are
derived using the Metropolis-Hastings Markov Chain Monte
Carlo (MCMC) sampler. For this study, an Interstate 295
freeway corridor located in Jacksonville, Florida, was studied
using 2015 traffic data.

In the next section, review of relevant studies is under-
taken, followed by the methodology framework used in
this research. Then, the discussion of the dataset and a
method used to estimate the travel time is presented. Next,
the results and model evaluation using simulated data with
known parameters is displayed, after which conclusions and
recommendations for possible future research are made.

2. Literature Review

Literature review indicates that models of estimating the
travel time distribution can be divided into two groups,
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that is, single probability (unimodal) and multistate/mixture
models. Unimodal distributions commonly used to estimate
the travel time distribution are Gaussian, lognormal, gamma,
Weibull, and Burr [2]. Findings from several comparative
studies of unimodal distribution functions suggest that travel
time distribution is skewed, whichmakes lognormal, gamma,
Burr, and Weibull more accurate than the Gaussian distri-
bution in modeling travel time distribution. For example,
using hourly-based data, Kieu et al. [2] compared Gaussian,
lognormal, gamma, Burr, andWeibull models and concluded
that the lognormal function fits the travel time distribution
better than the rest of the models. Similar findings are
reported by Arroyo and Kornhauser [3], Rakha et al. [4], and
Emam and Al-Deek [5]. On the other hand, Pu [6] reported
that, during congested and free flow conditions, travel time
distribution is close to symmetrical, suggesting the Gaussian
distribution of travel time. However, at the onset and offset
of the congestion, the distribution is skewed.The study by Pu
[6] suggested that lognormal distribution fits these conditions
well.

The multistate/mixture models refer to models compris-
ing two or more distributions. In mixture modeling, the
individual distribution forming the mixture is linearly added
using a weighted sum of the individual distribution con-
tributing to the model. The weights refer to the mixing prob-
abilities of the model. Studies comparing the performance
of mixture models to single models revealed that mixture
models provide a superior fit of travel time distribution
over single models [1, 7–9]. Using field data collected on
the Interstate I-35 freeway in San Antonio, Texas, Guo et
al. [7] compared different multistate models. The outcomes
were that the lognormal multistate distribution outperforms
the rest of the models in modeling travel time distribution.
This finding is consistent with results by Yang and Wu [10].
As a result, our study also adopts lognormal distribution in
the analysis. It should be understood that, with the same
road geometric characteristics (e.g., lane width, pavement
condition, posted speed limit, and the number of lanes),
the multistate characteristic of travel time is attributed to
different vehicle type, traffic conditions, incidents, and driv-
ing characteristics on freeways. In addition to the previously
mentioned factors, arterial roads are influenced by signal
light, conflicts with pedestrians, and other factors [9, 11, 12].

In multistate modeling, there are two commonly used
methods for findingmodel parameters, that is, the maximum
likelihood estimation-expectation maximization (MLE-EM)
and the Bayesian approach (BA) [13]. The MLE-EM method
treats components of the mixture as missing variables and
iteratively alternates between the E-step and the M-step to
find the parameters of themodel [14]. In addition, themethod
uses random initial guess and, after sufficient iterations,
parameters converge. Compared to the BA, the MLE-EM
method is computationally less expensive. However, it is
susceptible to local maxima trap problem, which could result
in overfitting of the resulting model [14]. Unlike the MLE-
EM estimation method, the BA treats the model parameters
as distributions that can be updated after new data become
available. The BA method also incorporates prior knowledge
regarding travel time distribution [15], which can be obtained

from previously observed characteristics of the data distri-
bution. Moreover, studies indicate that, by using informative
priors, the BA can estimate the posterior distributions with
smaller number of sample sizes than the MLE-EM approach
[15, 16].

Taken together, the probability distributions discussed
above are parametric with either the single model or multi-
state characteristics, whereby the multistate model consists
of a fixed number of mixture components. The number of
mixture components is specified as input in the model. The
information criterion, cross-validation, and Bayesian factor
are procedures commonly used to select the best model
among a set of candidates [13]. However, these procedures for
selecting the bestmodel sometimes result in the outputmodel
suffering from over- or underfitting problem, depending
on the amount of data available and on the model bound
complexity [17, 18].

However, there are two methods that can be used in
modeling without causing overfitting or underfitting prob-
lems.The use of the infinite Dirichlet Process Mixture Model
(DPMM) with a truncated number of mixture components
overcomes the underfitting problem [17–20]. The overfitting
problem can be overcome by the use of a BA to estimate
the posterior distribution of the parameters [18]. In this
study, both DPMM and BA were used in modeling the travel
time distribution. As indicated above, the infinite DPMM
was selected. The infinite number of mixture components
is achieved through the application of the stick-breaking
process in building mixing weight of the mixture. This
property of the infinite set of mixture components makes a
model to be considered as a typical nonparametric model
[21, 22]. Although the model is taken as infinite, only a
few nonempty components are drawn depending on the
actual characteristics of the dataset given [23]. Generally, the
nonempty components are less than the realized number of
the sample sizes considered in the analysis.

The Bayesian nonparametric mixture models have been
implemented in a wide range of applications, including topic
modeling, image analysis, and lifetime distribution [21, 24–
26]. The attractiveness of Bayesian nonparametric mixture
models includes the ability to handle randomness of the
mixing distribution of a noisy dataset. The randomness of
the mixing component is estimated using infinite dimension
priors, whereby during sampling, true mixture components
are built automatically and the rest die out. This study
constructed priors using the stick-breaking process [21]. This
process represents an infinite discrete distribution with the
probability of being repeated from the previous draws. This
characteristic makes the stick-breaking process appropriate
for clustering data with multistate characteristics. However,
controlling infinite dimensional posterior distribution can
be computationally expensive [27]. To reduce this problem,
literature suggests the use of truncated dimension priors to
reduce computational complexity [27].

3. Model Framework

The Dirichlet distribution is the generalization of a Beta
distribution to account for higher order outcomes. The
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Figure 1: Graphical Dirichlet Mixture Model.

distribution is parameterized by a concentration parameter
𝛼 and 𝑘mixture components. Its probability density function
is given by

𝑓 (𝑥; 𝛼) = 1
𝐵 (𝛼)

𝑘

∏
𝑖=1

𝑤𝛼𝑖−1𝑖 ,

with 𝐵 (𝛼) =
∏𝑘𝑖=1Γ (𝛼𝑖)
Γ (∑𝑘𝑖=1 𝛼𝑖)

, 𝑤1 + 𝑤2 + ⋅ ⋅ ⋅ + 𝑤𝑘 = 1.

(1)

The definitions of the terms of (1) through (4) are given in the
Abbreviations.

The Dirichlet process is described as a set of distributions
over the infinite sample space or distributions [21]. Amixture
model with a hierarchical structure can be constructed using
the Dirichlet process, which is also referred to as the DPMM
[21, 28]. Figure 1 shows a graphical representation of the
hierarchal mixture model.

The model in Figure 1 can also be mathematically repre-
sented as follows:

𝑡𝑖 | 𝜃𝑖∼LN (𝑡 | 𝜃𝑖) for 1 = 1, 2, 3, . . . , 𝑛,

𝜃𝑖 | 𝐺∼𝐺,

𝐺 | 𝛼,𝐻∼DP (𝛼,𝐻) ,

(2)

𝐺 =
∞

∑
𝑘=1

(𝑤∗𝑘𝛿𝜃∗
𝑘

) ∼DP (𝛼,𝐻) , with
∞

∑
𝑘=1

(𝑤∗𝑘 ) = 1. (3)

In this study, the above model is implemented using the
SBP, which involves breaking a unit length stick into infinite
disjoint pieces repeatedly [20]. The initial break, 𝑘 = 1,
is determined randomly with a probability V1, which is
considered as the probability of the first mixture component.
After the first break, the next break, 𝑘 = 2, has the probability
(1 − V1) ∗ V2. The process of breaking continues until the
infinite number of groups is created [22]. To reduce the
computational complexity of the model, the breaking process
can be truncated to 𝑘 = 𝑛 groups. In this study, 𝑘 = 6 was
selected, which was checked later in the analysis to verify
whether the truncation process did not bias the results of

Figure 2: The study corridor.

mixture component of our dataset. In particular, the highest
mixture components used by the data were identified in
the probability of the mixture component matrix. Recalling
(3), the following conditions apply for the stick-breaking
construction process:

𝑤∗𝑘 = V𝑘
𝑘−1

∏
𝑖=1

1 − V𝑖,

𝜃∗𝑘∼𝐻,

V𝑘∼Beta (1, 𝛼) .

(4)

Estimating the posterior distribution of the hierarchical
Bayesian model is analytically difficult as it involves high
dimensional integral in the marginal likelihood [1]. The
common method used for approximating the posterior dis-
tribution of the model parameters is the MCMC simulation.
In this study, we apply also theMCMC simulation to estimate
the posterior distribution of the unknown parameters. In
particular, we adopted Metropolis-Hastings sampling step
through PyMC3, an open source package for approximat-
ing the posterior distribution of model parameters [29].
The Metropolis-Hastings sampling step uses the acceptance
probability to draw a sample from the proposed posterior
distribution [29]. The priors for distributions are taken as
noninformative with Gamma(1, 1) for concentration param-
eter 𝛼, Normal(𝜇1, 𝜎1) and HalfCauchy(0, 1) for mean 𝜇, and
sigma, 𝜎, respectively. On the other hand, the hyperpriors
for hyperparameters 𝜇1 and 𝜎1 are Normal(0, 0.001) and
HalfCauchy(0, 1), respectively.

4. Study Data and Travel Time Estimation

For this study, data from the 20.4-mile corridor of the
Interstate 295 freeway (Figure 2) in Jacksonville, Florida, were
acquired. The corridor was divided into nine links running
between interchanges. Each link had 65miles per hour (mph)
posted speed limit. The archived traffic data for analysis
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Table 1: Summary of links.

Link ID Location Distance
(miles)

Number of
detectors

1 From I-95 to Old St. Augustine Rd 2.8 4
2 San Jose Blvd 1.6 4
3 Park Ave. 4.8 5
4 Blanding Blvd 2.0 3
5 Collins Rd 1.1 2
6 103rd St. 3.2 4
7 Wilson Blvd. 1.5 4
8 Normandy Blvd. 2 4
9 I-10 1.2 1

were provided by the Regional Integrated Transportation
Information System (RITIS), which is comprised of speed
data from microwave vehicle detectors (MVDs) aggregated
at a 5-minute interval. The five-minute interval was selected
to avoid fluctuation on short-duration travel time [10]. The
data gathered were collected for the period of January 1, 2015,
through December 31, 2015. Weekend and days in which
incidents (crashes, work zones, etc.) happened were omitted
from the dataset to reduce variability. If a link had more than
one MVD in a lane, the average speed from the MVD was
calculated and used to represent the link travel speed. Except
for Link 9, other links have at least two MVDs in each lane
(Table 1).

The travel time of each link was estimated using the
average speed from the traffic speed reported by all MVDs
in a segment. In addition, time of a day was an important
parameter in the analysis. The travel time of a segment 𝑖 at
a time 𝑡 is computed by the following equation:

Travel time (𝑡𝑖,𝑡) =
𝑛𝑖𝑙𝑖

∑𝑛𝑗=1 𝑢𝑖,𝑗,𝑡
, (5)

where 𝑛𝑖 represents the number of the detectors on link 𝑖, 𝑙𝑖 is
the length of segment 𝑖, and 𝑢𝑖,𝑗,𝑡 is the speed reported by the
MVD 𝑗 on a segment 𝑖 at time 𝑡.

We considered the same departure time in estimating
the corridor travel time from individual link’s travel time.
By aggregating the travel time, the results showed that the
morning peak hour for both directions (northbound and
southbound) occurred between 7 a.m. and 8 a.m. while
the evening peaking hour occurred between 5 p.m. and 6
p.m. Figure 3 shows the travel times plotted against time
for the day for both the northbound and the southbound
traffic. The data in Figure 3 reveal that southbound traffic
frequently experiences longer travel times than northbound
traffic, particularly during the morning peak hours.

5. Results and Discussion

Two chains were drawn and the first 10,000 iterations were
discarded as burn-in while the next 10,000 iterations were
used for inference. To reduce correlations between drawn
samples, the sequence of inference iterations were thinned

by 10 iterations. Figure 4 presents predicted and actual data
densities of some of the hours considered in the analysis. As
shown in the figure, the proposed model provided a good fit
such that actual and predicted probability densities are close.
Furthermore, the quantitative test using the Kolmogorov-
Smirnov (KS) goodness-of-fit was conducted testing the
hypothesis whether the predicted and actual distributions are
the same. The null hypothesis for the test is that the actual
cumulative density of the travel time is equal to the predicted
density. Results of analysis confirmed that the predicted
cumulative travel time follows the empirical cumulative den-
sity (𝑝 value ≥ 0.05). Figure 5 compares cumulative predicted
and empirical cumulative density. Table 2 depicts the number
of mixture components, model parameters, and KS test of the
predicted travel time distribution for some of the hours. The
results from this table reveal that the truncation process of the
mixture components using the maximum of six (6) did not
bias the results of the dataset.Thehighestmixture component
of the dataset was revealed at 3 mixture components.

As can be seen in Table 2, the travel time distributions in
the northbound are predominantly two mixture components
with two hours containing one component, while in the
southbound, the distribution shows one, two, and three
mixture components. However, the third component of the
three components’ distribution has a very low likelihood, less
than 0.1.

5.1. Model Evaluation. To understand the performance of
the DPMM in estimating the distribution of the travel
time, four finite mixture models (i.e., single, two, and three
mixture models) were simulated. The simulation was aimed
at evaluating the accuracy of the models given the known
parameters. The simulation was conducted with the known
mean and variance, which were chosen randomly from link’s
average and variance of the travel time data. Subsequently,
the true parameters were used to simulate various sample
sizes including 100, 1,000, and 10,000 following the lognormal
distribution with the predefined finite mixture. The reason
for simulating different sample sizes was to evaluate the
influence of sample size on the proposed model. The trun-
cated DPMM with 6 numbers of components was applied
to each sample data. Discarding first 10,000 iterations, the
next 10,000 iterations were considered for inference of the
model parameters. Table 3 illustrates the true and predicted
parameters. According to this table, the number of mixture
components, the mean, and the variance converged closer
to the true parameters. Comparing the true to the predicted
values, the results are promising as the number of compo-
nents is predicted accurately while some of the data mean,
the standard deviation, andmixing probability are somewhat
deviating from the true parameters.

Regardless of the number of observations, the number
of mixture components was predicted correctly. The true
and the predicted distributions are plotted in Figure 6. The
distributions predicted by the DPMMmodel are close to the
true distributions, suggesting that this model can sufficiently
approximate any unknown mixture component.

In addition, similar to travel time distribution goodness-
of-fit test, the KS test was conducted to compare the actual
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Figure 3: Time of the day corridor travel times.

D
at

a d
en

sit
y

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Travel time (min)
17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0

Posterior expected density
First mixture component

Second mixture component
True data

7 A.M

Posterior expected density
First mixture component

Second mixture component
True data

True data

D
at

a d
en

sit
y

2.5

2.0

1.5

1.0

0.5

0.0

Travel time (min)
17.0 17.5 18.0 18.5 19.0

Posterior expected density
Posterior expected mixture component

8 A.M

D
at

a d
en

sit
y

0.5

0.4

0.3

0.2

0.1

0.0

Travel time (min)
18 20 22 24 26 28

5 P.M

(a) Northbound traffic

D
at

a d
en

sit
y

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
at

a d
en

sit
y

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Posterior expected density
First mixture component

Second mixture component
True data

True dataPosterior expected density
Posterior expected mixture (components)

D
at

a d
en

sit
y

0.5

0.4

0.3

0.2

0.1

0.0

Travel time (min)
17 18 19 20 21 22 23

True dataPosterior expected density
Posterior expected mixture (components)

Travel time (min)
18 19 20 21 22 23

24

Travel time (min)
18 20 22 24 26 28

8 A.M

5 P.M

6 P.M

(b) Southbound traffic

Figure 4: Predicted distribution and actual data density.



6 Journal of Advanced Transportation

Table 2: Corridor parameters and KS goodness-of-fit.

Time of day
Parameters KS goodness-of-fit test

Number of components
(mixture probability%) Mean Standard deviation KS test

stats
KS

𝑝 value
Northbound (from I-95 to I-10)

6:00 a.m. 2 (53, 47) (2.89, 3.09) (0.02, 0.14) 0.093 0.32
7:00 a.m. 2 (75, 25) (2.87, 2.95) (0.01, 0.05) 0.051 0.73
8:00 a.m. 2 (88, 12) (2.87, 2.94) (0.01, 3.19) 0.074 0.43
9:00 a.m. 1 (1) (2.87) (0.01) 0.079 0.99
10:00 a.m. 1 (1) (2.88) (0.01) 0.090 0.68
15:00 p.m. 2 (78, 22) (2.88, 2.92) (0.01, 0.04) 0.078 0.40
16:00 p.m. 2 (87, 13) (2.93, 3.01) (0.03, 0.07) 0.067 0.99
17:00 p.m. 2 (75, 25) (2.96, 3.09) (0.10, 0.13) 0.027 0.96
18:00 p.m. 2 (60, 40) (2.89, 3) (0.03, 0.08) 0.049 0.52
19:00 p.m. 2 (94, 6) (2.87, 3) (0.02, 0.08) 0.125 0.45
20:00 p.m. 2 (96, 4) (2.87, 2.9) (0.01, 0.06) 0.046 0.98

Southbound (from I-10 to I-95)
6:00 a.m. 2 (70, 30) (2.94, 3.09) (0.02, 0.12) 0.070 0.07
7:00 a.m. 1 (1) (3.25) (0.17) 0.037 0.35
8:00 a.m. 2 (52, 48) (2.96, 3.14) (0.03, 0.12) 0.064 0.06
9:00 a.m. 2 (77, 23) (2.94, 3.13) (0.01, 0.83) 0.078 0.29
10:00 a.m. 1 (1) (2.94) (0.02) 0.108 0.17
15:00 p.m. 2 (68, 32) (2.92, 2.96) (0.01, 0.03) 0.083 0.31
16:00 p.m. 3 (49, 43, 8) (2.95, 2.94, 1.38) (0.04, 0.02, 0.09) 0.938 0.86
17:00 p.m. 2 (50, 50) 2.91, 3 (0.01, 0.07) 0.061 0.28
18:00 p.m. 2 (63, 37) (2.9, 2.98) (0.01, 0.05) 0.062 0.43
19:00 p.m. 3 (88, 2, 10) (2.91, 2.72, 2.2) (0.02, 0.86, 0.23) 0.081 0.27
20:00 p.m. 1 (1) (2.93) (0.2) 0.082 0.41

Table 3: Parameters of the study.

ID True parameters Predicted parameters

a 0.51 ∗ LN(2.5, 0.09) + 0.49 ∗ LN(3.2, 0.2),
𝑁 = 1,000 0.52 ∗ LN(2.5, 0.09) + 0.48 ∗ LN(3.2, 0.19)

b LN(1.13, 0.19),𝑁 = 200 LN(1.14, 0.18)
c LN(1.13, 0.19),𝑁 = 1,000 LN(1.14, 0.19)

d 0.66 ∗ LN(1.13, 0.19) + 0.34 ∗ LN(0.89, 0.03),𝑁 = 200 0.68 ∗ LN(1.13, 0.18) + 0.32 ∗
LN(0.89, 0.02)

e 0.66 ∗ LN(1.13, 0.19) + 0.34 ∗ LN(0.89, 0.03),
𝑁 = 1000

0.69 ∗ LN(1.13, 0.19) + 0.31 ∗
LN(0.89, 0.03)

f 0.42 ∗ LN(0.6, 0.04) + 0.45 ∗ LN(1, 0.01) + 0.13 ∗
LN(0.01, 0.07),𝑁 = 100

0.44 ∗ LN(0.6, 0.04) + 0.40 ∗
LN(1, 0.01) + 0.16 ∗ LN(0.11, 0.05)

cumulative distributions against those predicted by the
DPMM. The results from analysis suggest that there is no
evidence to reject the null hypothesis indicating that the
predicted probability density follows the observed data.

As indicated in Table 4, the 𝑝 value for each considered
sample is greater than 0.05, suggesting that there is no signif-
icant difference between the distribution of the predicted and
actual data.

6. Conclusions and Recommendations for
Future Research

This study evaluated the application of a nonparametric
Bayesian mixture model with the truncated DPMM through
lognormal kernel density to estimate travel time distribution.
The model developed here extends the commonly used
mixturemodels to incorporate uncertainty about the number
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Figure 5: Cumulative predicted distribution and data cumulative density.

of mixture components of the model. In the DPMM, the
number of components and the parameters of the travel
time distribution were considered as random numbers. One-
year spot speed data collected from a 20.4-mile corridor
of the Interstate 295 freeway in Jacksonville, Florida, was
used in the study. The peak and nonpeak hour travel times
were aggregated at 5-minute intervals using data from MVD
installed in various links in the corridor.

The findings have demonstrated that the developed
model is capable of modeling the travel time distribution.
Moreover, the results of the model support previous studies
that travel time distribution is characterized by both multi-
state and single-state model depending on the time window
of the analysis. Furthermore, the results demonstrated that
the proposed model can offer significant flexibility in model-
ing to account for complex mixture distributions of the travel
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Figure 6: Estimated travel time distributions of the simulated data.

Table 4: The Kolmogorov-Smirnov goodness-of-fit test of the
cumulative density.

ID Test stats 𝑝 value
a 0.015 0.999
b 0.083 0.624
c 0.026 0.999
d 0.035 0.999
e 0.028 0.999
f 0.046 0.999

time without specifying the number of components. In the
analysis, the uncertainties related to the number of mixture
components were incorporated as well. The performance of
the model based on the KS test on the actual and predicted
cumulative probability density revealed promising results.
Moreover, while testing the proposed model using simulated
data, the number of true mixture components, mean, and the
standard deviation value were correctly predicted.

It is important to note that in this study the travel time for
the corridor was aggregated using the same departure time.
This process may not represent the actual travel time of the

corridor. Future studies may consider a vehicle trajectory-
basedmethod, dynamic time slicemethods, or othermethods
to aggregate travel time across links. In addition, future
studies could aim at analyzing and comparing the finite
mixture and nonparametric mixture models using different
sample sizes and other kernel functions such as gamma and
normal distributions.

Abbreviations

DP(𝛼,𝐻): The random probability density function
coming from the Dirichlet distribution
with parameters 𝛼 and𝐻

𝐻: The base measure
𝛼: Concentration parameter
𝐺: The random distribution drawn from the

Dirichlet process DP(𝛼,𝐻)
𝜃𝑛: The parameter of 𝐺 distribution which

follows a stick-breaking process (SBP)
𝑤𝑖: The nonnegative vector representing a

probability mass function of length 𝑘
𝑤∗𝑛 : The mixing proportion
𝛿𝜃∗
𝑘

: A Dirac delta function concentrated at 𝜃𝑘
LN: The lognormal kernel distribution

function with a parameter 𝜃𝑖
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𝑘: The number of mixture components,
usually equal to or less than a total
number of realizations

𝑡: Travel time
Γ(𝑥): The gamma function.
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