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Original Research Paper

Incorporating travel time reliability in predicting the
likelihood of severe crashes on arterial highways using
non-parametric random-effect regression

Emmanuel Kidando a,*, Ren Moses b, Eren Erman Ozguven a, Thobias Sando c

a Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University,

Tallahassee, FL 32310, USA
b Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida A & M University,

Tallahassee, FL 32310, USA
c School of Engineering, University of North Florida, Jacksonville, FL 32256, USA

h i g h l i g h t s

� Analysis of the impact of the travel time reliability on the severe injury crash occurrence was conducted.

� The analysis was done using a non-parametric random-effect regression.

� The non-parametric random-effect regression was compared to traditional random-effect regression in the analysis.

� Tighter credible intervals were estimated in the non-parametric random-effect than in traditional random-effect regression.

� The TTR was found to significantly influence the severity of a crash at 95 percent credible intervals.

a r t i c l e i n f o

Article history:

Received 2 November 2017

Received in revised form

4 April 2018

Accepted 9 April 2018

Available online 4 February 2019

Keywords:

Travel time reliability

Crash severity

Non-parametric distributed

random-effect

Gaussian distributed random-effect

Dirichlet process prior

a b s t r a c t

Travel time reliability (TTR) modeling has gain attention among researchers' due to its

ability to represent road user satisfaction as well as providing a predictability of a trip

travel time. Despite this significant effort, its impact on the severity of a crash is not well

explored. This study analyzes the effect of TTR and other variables on the probability of

the crash severity occurring on arterial roads. To address the unobserved heterogeneity

problem, two random-effect regressions were applied; the Dirichlet random-effect (DRE)

and the traditional random-effect (TRE) logistic regression. The difference between the

two models is that the random-effect in the DRE is non-parametrically specified while in

the TRE model is parametrically specified. The Markov Chain Monte Carlo simulations

were adopted to infer the parameters' posterior distributions of the two developed

models. Using four-year police-reported crash data and travel speeds from Northeast

Florida, the analysis of goodness-of-fit found the DRE model to best fit the data. Hence, it

was used in studying the influence of TTR and other variables on crash severity. The DRE

model findings suggest that TTR is statistically significant, at 95 percent credible in-

tervals, influencing the severity level of a crash. A unit increases in TTR reduces the

likelihood of a severe crash occurrence by 25 percent. Moreover, among the significant

* Corresponding author. Tel.: þ1 850 410 6230.
E-mail address: ek15f@my.fsu.edu (E. Kidando).

Peer review under responsibility of Periodical Offices of Chang'an University.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.keaipubl ishing.com/j t te

j o u r n a l o f t r a ffi c and t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 9 ; 6 ( 5 ) : 4 7 0e4 8 1

https://doi.org/10.1016/j.jtte.2018.04.003
2095-7564/© 2019 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on behalf of Owner. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ek15f@my.fsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtte.2018.04.003&domain=pdf
www.sciencedirect.com/science/journal/20957564
https://doi.org/10.1016/j.jtte.2018.04.003
https://doi.org/10.1016/j.jtte.2018.04.003
https://doi.org/10.1016/j.jtte.2018.04.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


variables, alcohol/drug impairment was found to have the highest impact in influencing

the occurrence of severe crashes. Other significant factors included traffic volume,

weekends, speed, work-zone, land use, visibility, seatbelt usage, segment length, undi-

vided/divided highway, and age.

© 2019 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Due to recent technological advances in traffic data collection

method, the estimation of travel time reliability (TTR) has

beenmade possible and it has become a popular approach for

assessing traffic operation in the highway system (Kidando

et al., 2018). TTR measures travel time variability (i.e.,

predictability) of a journey (Yang and Wu, 2016). This is one

of the advantages of TTR approach over other conventional

performance measures, such as level of service, delay, queue

length, and volume to capacity ratio. Furthermore, TTR is

reported to be more appropriate than conventional

performance measures in managing traffic of the existing

system while most of the conventional measures are

relevant in design to meet desired capacity (Lyman, 2007).

Improved TTR offers efficient transportation services

through providing information regarding hourly, daily, and

weekly traffic variations. By so doing, it enables travelers to

predict travel times between origins and destinations hence

making travel decisions effectively.

Although several studies have been conducted to develop

metrics that quantify TTR as well as modeling the distribution

characteristic of TTR, there is limited research regarding TTR

impact on the crash severity (Kidando et al., 2017). As such,

this paper seeks to conduct a safety analysis to provide

insight on how TTR may be influencing crash severity. Two

random-effect models were applied to accommodate for

unobserved heterogeneity associated with each crash

observation. The first model assumed the random-effect to

be non-parametrically distributed. This assumption is

achieved by using the Dirichlet process (DP) prior on the

weight of mixture component, implemented through the

stick-breaking process. This model has been reported to

have improved data fit in social science research (Kyung

et al., 2011; Ohlssen et al., 2007; Traunmüller et al., 2015)

while it is not commonly used in highway safety studies

(Kitali et al., 2018a, b; Yu et al., 2016). The second model

used in this study assumes the random-effect distribution is

normally distributed (Gaussian distribution), a common

assumption applied in highway safety studies (Mannering

et al., 2016; Xie et al., 2017). The two models mentioned

above were used in the analysis of all crashes that occurred

on Northeast Florida arterial roads from 2009 to 2011. Travel

speeds from five counties from June 2010 to June 2011 in

Northeast Florida were used in the analysis to estimate TTR.

The missing TTR in the years that travel speeds were not

available to researchers were approximated using the

2010e2011 data.

2. Literature review

Travel time variability perhaps is one of the earliest mea-

sures that quantify the reliability of a journey travel time.

The standard deviation, variance, the coefficient of variation,

and skew statistic of the travel time are examples of the

established indicators in a variability category. Although

these metrics are simple to compute, recent empirical

studies have criticized their appropriateness to quantify

TTR. The travel time distribution is asymmetrical, skewed to

the upper tail (Taylor, 2013). Due to these characteristics,

using the variation method could under-represent the

actual traffic condition. Also, the variability of the travel

time during rush and free-flow hours might both be small,

which might reveal contradicting interpretations. In fact,

other than transportation analysts, the variability metrics

do not provide a straightforward description of the traffic

condition to road users.

Recent empirical studies proposed new indicators of TTR,

which can be categorized as either probabilistic or statistical

indices (Chien and Liu, 2012; Kaparias et al., 2008). The prob-

abilistic TTR indicators include metrics such as congestion

frequency and the percentage of on-time arrivals. On the

other hand, the statistical index metrics comprise of a buffer

time, planning time, misery index, and a travel time index.

The unique characteristic of the statistical index metrics is

that they use percentile values to derive measures (Taylor,

2013). The Federal Highway Administration (FHWA)

proposed some of the statistical index metrics as indicators

of TTR and they are even used by some state highway

agencies to assess traffic mobility (Taylor, 2015). Therefore,

the present study used a measure from the statistical index

group of TTR metrics to evaluate the possible influence of

TTR on crash severity.

Statistical approach is widely used in transportation safety

as one of the decision-making tools for developing crash risk

reduction strategies and reducing crash severity. The basic

logistic regression model (i.e., without random-effect param-

eter) perhaps is the most popular model applied in safety

studies, in particular, for analysis of crash severity. However,

this model neglects observation dependencies and random

variation across crash observations. The variations might be

due to factors that are not captured during crash data re-

cordings, such as some of the human-related, traffic-related,

road features, vehicles, and environmental factors (Islam and

Hernandez, 2013; Mannering et al., 2016). Mannering et al.

(2016) point out that when variation across observations is

overlooked in the analysis, the resulting model estimates
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may be biased, which could lead to invalid statistical

conclusions being made.

In efforts to address the problem, several approaches have

been proposed including the use of mixture and random-ef-

fect models. The mixture model has been applied in traffic

safety analyses and revealed promising results (Behnood

et al., 2014; Behnood and Mannering, 2016; Mohamed et al.,

2013). However, this model requires specifying the number of

mixture components that must be pre-specified before the

analysis (Heydari et al., 2016; Mannering et al., 2016). The in-

formation criteria are the most widely used statistics to select

the mixture model with an optimal number of mixture

component. Nevertheless, this procedure could lead to model

over- or under-fitting problem depending on the amount of

data used to build the model (Heydari et al., 2016; Mannering

et al., 2016).

Another approach to accommodate crash observation de-

pendencies is to use the extension of the basic regression

models by including the random-effect. This is accomplished

by adding the unobserved heterogeneity term(s) in the basic

regression model (Mannering et al., 2016). At present, the

unobserved heterogeneity term in the analysis of crash

severity is assumed to follow a parametric distribution

specified by the analyst (Park and Lee, 2017; Ukkusuri et al.,

2011). The Gaussian distribution is the most commonly

applied distribution in random-effect injury severity models

(Traunmüller et al., 2015). However, studies point out that

the Gaussian distribution does not fit well multimodal and

skewed data, including outliers such that it might not detect

the true unobserved heterogeneity (Gelman et al., 2014; Lee

and Thompson, 2008). To account for this problem, some

studies propose the use of robust distributions, such as the

gamma, Student-T, and Cauchy distribution, to mention a

few (Gelman et al., 2014; Lee and Thompson, 2008; Müller

and Quintana, 2004; Traunmüller et al., 2015).

Although the TRE model improves the fitness of the

model, it restricts the distribution of the random-effect fac-

tor. As a result, the model fails to recognize the existence of a

cluster of observations with a similar structure of parame-

ters. Further, constraining to a particular parametric form

may limit the scope and type of inference that can be drawn

from such a model (Lee and Thompson, 2008; Müller and

Quintana, 2004). Another robust approach introduced

recently assumes the random-effect term follows a non-

parametric distribution. This method uses the DP mixture to

account for the existence of groups of observations with the

same random-effects structure (Heinzl and Tutz, 2013; Kitali

et al., 2018a, b; Ohlssen et al., 2007; Traunmüller et al., 2015).

The DP mixture provides great flexibility than does the

parametric analysis. In this study, the non-parametric

random-effect regressionmodel will also be referred to as the

Dirichlet random-effect (DRE) logistic regression model. The

DRE model can offer improved fits compared to the basic lo-

gistic and the TREmodel (Kitali et al., 2018a, b). Therefore, the

study also adopts the DREmodel to examine and quantify the

effect of TTR on the severity of crashes occurring on arterial

roads. This study adds to the body of the existing literature of

injury severity analysis by integrating TTR and applying a

more robust regression model in estimating significantly

associated variables.

3. Data preparation

In this study, five counties located in Northeast Florida were

selected for analysis; Clay, St. Johns, Putnam, Duval, and

Nassau Counties (Fig. 1). From the Florida Department of

Transportation (FDOT) crash database, vehicle crashes that

occurred on arterials between 2009 and 2012 were extracted

and used in the analysis. In addition to traffic volume, road

geometry, and crash-specific attributes, this data consists of

geographical coordinates, which were used to match the

crash locations with those of TTR data.

The FDOT crash database reports injury severity in seven

levels, 0) “not coded”, 1) no injury, 2) possible injury, 3) non-

incapacitating injury, 4) incapacitating injury, 5) fatality, and

6) non-traffic fatalities. The distribution of crashes observed

during the analysis period is as follows: 13,630 were no injury

crashes (51.39 percent), 6835 possible injuries (25.77 percent),

4627were non-incapacitating injury (17.45 percent), 1219were

incapacitating injury (4.6 percent), 195 were fatal crashes (0.73

percent), and 16 were non-traffic fatalities and “not coded”

Fig. 1 e Case study area.
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(0.06 percent). Since the “not coded” and non-traffic fatal

crashes did not have clear information about their level of

severity caused by a vehicle accident, theywere omitted in the

analysis. While fatal and incapacitating crashes were com-

bined forming a “severe crash” category, no injury, possible

injury, and non-incapacitating injuries created a “non-severe

crash” category.

In addition to the crash data, data for TTR estimationswere

obtained from the INRIX Company (INRIX Inc., 2008). These

data are the historical traffic speed collected daily for one

year from June 2010 to June 2011 recorded at a 15 min

interval for vehicles traveling on segments. TTR of each

segment was estimated by using the segment length and the

traffic speed. In particular, a buffer time index (BTI) was

selected to represent TTR of a segment. The BTI is one of the

measures that provide appealing results and consistent

analytical conclusion (Lomax et al., 2003; Mahmassani et al.,

2014). The BTI measures the additional time that drivers will

have to spend on their journey to reach a destination on

time (Lomax et al., 2003). It is usually computed as a ratio of

the 95th percentile travel time and the average travel time

difference to the average travel time. Due to the

asymmetrical characteristics of the travel time distribution,

an approach proposed by Pu (2011) was chosen. This

approach suggests that the 95th percentile and the median

travel time difference (Eq. (1)) is more appropriate than

mean-based for the BTI. Applying the mean-based buffer

index could obscure some of the information for skewed

distributions due to congestion onset and offset (Pu, 2011).

After obtaining the BTI, the crash and TTR data were merged

using geographical coordinates to obtain attributes for

analysis. The descriptive statistics of the segments, the BTI,

and traffic data including description of categorical variables

are presented in Tables 1 and 2. The correlation analysis

between these variables was checked before fitting the

regression models. The highest estimated correlation

coefficient was 44% (buffer index and segment length

variables). Due to a reason that the coefficients were less

than 50%, all the variables in Tables 1 and 2 were used to

develop the regression models.

4. Methodology

As it was aforementioned, this study applied two binary lo-

gistic regressions to evaluate the influence of TTR and other

variables on the occurrence of severe crashes (Tables 1 and 2).

The first model was the traditional random-effect (TRE) lo-

gistic regression model with the Gaussian distributed

random-effect. This approach is commonly applied in the

crash analysis to define the error term to account for varia-

tions within the observed crash data (Ukkusuri et al., 2011;

Xie et al., 2017). The Gaussian distribution was applied in

Eq. (2) to define the random-effect distribution, F � Nð0; s1iÞ.
Table 3 shows the definition of variable and parameter

symbols used in the study.

8>>>><
>>>>:

yi � BernoulliðPiÞ

logitðPiÞ ¼ ln

�
Pi

1� Pi

�
¼ b0 þ bjXi þ ei

ei � F

(2)

The Dirichlet random-effect logistic regression was the

second model employed in this study. This approach relaxes

the parametric assumption by assuming that the random-

effect comprises of infinite distributions (i.e., non-parametric

distribution). The non-parametric distribution of the

random-effect was built on the basis of the multi-state dis-

tribution property. As such, the developed model can recog-

nize clusters of observations with similar random-effect

structures (Heinzl and Tutz, 2013). Furthermore, unnecessary

variations in the parameter estimates can be removed, which

can yield a better fit of data compared to the TRE regression

model. To account for the clusters in the random-effect

distribution, the DP prior was used to build the random-

effect term in the model. In order to reduce the

computational burden, the infinite distributions for the

random-effect were approximated using the truncated DP

(TDP) prior in the model. The truncation process follows the

following definitions (Ohlssen et al., 2007):

8>>>>>><
>>>>>>:

FjG � G
Gja;H � DPða;HÞ
G ¼

X∞
k¼1

pkdqk z
XN
k¼1

pkdqk � TDPða;H;NÞ
XN
k¼1

pk ¼ 1

(3)

Constructing the truncation process presented in the Eq. (3)

above, a stick-breaking process was used to assign the mixing

proportion/weights pk. This process splits a unit length stick

repetitively until N pieces are obtained. The initial piece w1

corresponding to the first weight p1 is split randomly from

Table 1 e Basic information for continuous predictors.

Variable Mean Standard
deviation

Minimum Maximum

AADT

(vehicles per day)

29,064 17,413 2600 172,000

Truck volume (%) 0.040 0.036 0.007 0.320

Segment

length (miles)

1.198 1.075 0.004 10.190

Buffer time

index (BTI)

0.336 0.365 0.005 4.000

Note: AADT is the annual average daily traffic.

Buffer time index ¼ 95th percentile travel time�Median travel time

Median travel time
(1)
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the unit stick (Fig. 2). The second piece to be brokenw2 ðw1 � 1Þ
represents the second weight p2. This piece is obtained by

breaking the left-out stick from the first break. Continuously

breaking the remaining stick to N pieces (N total mixture

components) in Fig. 2 yields Eq. (4) (Fan and Bouguila, 2013).

8>><
>>:

pk ¼ wk

Yk�1

i¼1
1�wi

wk � Betað1;aÞ
qkjH � H

(4)

The prior distributions were taken as non-informative for

both the DRE and TRE model. In these models, normal

(mean ¼ 0, std. ¼ 100) for intercept b0 and predictor parame-

ters bj prior was used. The hyperprior for the standard devi-

ation in the TRE's random-effect term was assigned to follow

the half-Cauchy distribution, that is, s1i � half-Cauchy ð0; 5Þ.
The base distribution H in the DRE regression was assigned to

be normally distributed, H~normal (mean ¼ 0, std. ¼ s2i). The

hyperprior for s2i was the half-Cauchy distribution,

Table 2 e Road characteristics, crash attributes and temporal predictors.

Variable Description Code for modeling Count %

Road characteristics and location of the highway

Segment Undivided segments 1 15,459 58.29

Divided segments 0 11,062 41.71

Posted speed limit (mph) Less than 45 0 23,441 88.39

Greater than or equal to 45 1 3080 11.61

Intersection No 0 10,526 39.69

Yes 1 15,995 60.31

Work-zone No 0 25,620 96.60

Yes 1 901 3.40

Land use characteristics Urban 0 25,190 94.98

Rural 1 1331 5.02

Crash characteristics

Safety belt usage Yes 0 23,280 87.78

No 1 3241 12.22

Age <65 years old 0 24,840 93.66

�65 years old 1 1681 6.34

Alcohol/drug involvement No 0 25,074 94.54

Yes 1 1447 5.46

Visibility Obscured (smoke, fog, inclement weather

conditions, load on vehicles, parked vehicles)

1 1521 5.74

Vision not obscured 0 25,000 94.26

Temporal characteristics

Time Day hours 0 13,797 63.00

Night hours 1 12,724 37.00

Day of a week Weekday 0 20,647 77.85

Weekend 1 5874 22.15

Table 3 e Variable/parameter definitions.

Variable/parameter Description Equation number

yi Crash severity level e either 1 or 0 Eq. (2)

Pi Probability of severe injury occurrence Eq. (2)

b0 Intercept parameter of the model Eq. (2)

bj Vector of predictor parameters for j variables Eq. (2)

Xi Vector of the explanatory variables for an accident i Eq. (2)

ei Vector of random-effects associated with each crash observation i Eq. (2)

F Random-effect distribution Eqs. (2) and (3)

G Random distribution drawn from the DP(a, H) Eq. (3)

a Positive precision parameter Eq. (3)

DP(a, H) DP with parameters a and H Eq. (3)

TDP (a, H, N) Truncated DP with parameters a, H, and N Eq. (3)

dqk Represents a Dirac delta function concentrated at q Eq. (3)

N Total mixture components in the TDP Eq. (3)

H Represents the base distribution, which is normally distributed Eqs. (3) and (4)

pk Mixing proportion/weight of the mixture component Eqs. (3) and (4)

wk Proportion of weight being broken off Eq. (4)

k Represents the number of mixture components Eqs. (3) and (4)

s2i Variance in the base distribution H

s1i Variance parameter in the random-effect term for the TRE model

J. Traffic Transp. Eng. (Engl. Ed.) 2019; 6 (5): 470e481474

https://doi.org/10.1016/j.jtte.2018.04.003
https://doi.org/10.1016/j.jtte.2018.04.003


s2i � half-Cauchyð0; 5Þ: The prior distribution for the con-

centration parameter a was assigned to follow the uniform

distribution, a � uniformð0:3; 10Þ. The number of mixture

components set in the TDP depends on the a prior used in the

analysis. Researchers indicate that using 10 upper boundaries

in the uniform distribution prior for a, the infinite DP can be

approximated by 52 mixture components (N) in the stick-

breaking process (Heydari et al., 2016; Kitali et al., 2018a, b;

Ohlssen et al., 2007). Thus, this study used N ¼ 52 in the DRE

model. A detailed explanation and derivation of this trunca-

tion is reported by Ohlssen et al. (2007).

The parameters' posterior distributions for the TRE and

DRE regressions were both inferred using the Markov Chain

Monte Carlo simulations. The models were implemented in

PyMC3, an open source Python package (Salvatier et al., 2016).

The No-U-turn sampler (NUTS) was used to estimate the

regression parameters b0, bj; and variances (s21i and s22i). For

the precision parameter a, the proportion of weight wk being

broken off, and mixture components pk, the Metropolis-

Hasting Sampler was used instead of NUTS to accommodate

for the discrete variables.

5. Model comparison

The deviance information criterion (DIC) is the mostly used

goodness-of-fit statistic in the Bayesian crash analysis to

select the best model out of many fitted models (Spiegelhalter

et al., 2002). However, some literature criticizes the reliability

of the DICwhen used to compare hierarchical andmultimodal

posterior models (Geedipally et al., 2014; Heydari et al., 2016;

Millar, 2009). Due to this criticism, this study uses an

approximate Bayesian cross-validation method to compare

the two developed models. More specifically, the Bayesian

leave-one-out cross-validation (LOO-CV) estimated using the

Pareto smoothed importance sampling (PSIS) is employed.

This approach is proposed by Vehtari et al. (2016) and has

successfully been applied in Bayesian model selection

including the hierarchical and multimodal posterior models.

The study by Vehtari et al. (2016) discusses the LOO-CV

method in detailed.

Another goodness-of-fit statistic employed in this study

was the widely available information criterion (WAIC)

proposed by Watanabe (2010). The WAIC is somewhat similar

to the DIC as both criteria not only measure the prediction

accuracy but also penalizes models with excessive

complexity (i.e., the excessive effective number of

parameters) to account for the overfitting problem. On the

other hand, the WAIC is a fully Bayesian approach, can

evaluate the hierarchical models, and it is estimated using

the log pointwise posterior predictive density, instead of

point estimate used by the DIC (Vehtari et al., 2016). The

pointwise approach tends to incorporate uncertainty in the

estimated values. The WAIC expression is defined as

WAIC ¼ �2*lppdþ 2*pwaic (5)

where pwaic is the effective number parameters, lppd is the log

pointwise posterior predictive density.

6. Model results and discussion

The convergence of the iterations of the two developed

models was analyzed based on the trace plots, and it was

found that 10,000 iterations out of the 20,000 were sufficient

to draw the inference of the parameters' posterior distribu-

tion. In selecting the best-fitted model, a model with the

lowest WAIC and LOO-CV is usually selected over other fitted

models. Table 4 summarizes model results including, the

posterior mean, posterior standard deviation, and credible

intervals. The LOO-CV estimate for the DRE regression

model was 10,467 compared to 10,846 for the TRE regression

model. This suggests that the DRE regression outperforms

the TRE regression in fitting the data at hand. The results

for the WIC goodness-of-fit statistic were consistent with

those of the LOO-CV statistic. Findings suggest that the DRE

model performs better (WAIC ¼ 10,461) compared to the

TRE regression model (WAIC ¼ 10,882).

Looking at the magnitude of the model coefficients, sign

(negative or positive coefficients), and the credible intervals,

all variables indicated a similar sign and a slight difference in

magnitude between the DRE and TRE parameter's posterior

mean. For instance, the TRE and DRE had respective values of

�0.351 and �0.300 for AADT parameter and �1.955 and

�1.605 for the percentage of truck volume. The overall

pattern can be inferred that the DRE regression model has

Fig. 2 e Illustration of the stick-breaking construction.
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slightly tighter credible intervals than those of the TRE

regression model. Fig. 3 shows the summary of the variables'
95 percent credible intervals difference for both the TRE and

the DRE regression models. The tighter 95 percent credible

intervals signify that the standard deviation of the

posterior distribution is small, for which the lower the

value, the better the reduction of parameters' uncertainty.
It further suggests that the DRE regression fits the data

appropriately than the TRE regression model. These

findings are similar to those found by the previous studies

suggesting that shorter credible intervals in the DRE model

are attributed to the fact that the model can remove

unnecessary variability, the issue that the TRE model does

not address (Kyung et al., 2009, 2011; Traunmüller et al.,

2015). The DRE model eliminates unnecessary variability by

identifying clusters of random unobserved heterogeneity.

Based on these outcomes, the DRE regression was selected

to explain the pertinent factors that impact the injury

severity of the crashes.

Out of 15 variables evaluated, 13 variables were found to be

significant at 95 percent credible intervals. The odds ratio

(odds ratio ¼ expðbÞ� 100%) was applied in assessing and

comparing the effect of the variables on the crash injury

severity occurrence. In general, the variable with the positive

sign coefficient has the odds ratio greater than 100 percent

and that with the negative sign estimate has the odds ratio

less than 100 percent. The effectiveness of variables that

reduce the risk of severe crashes was determined by taking

the difference between 100 percent and the odds ratio value

(i.e., 100 percent � odds ratio).

6.1. Travel time reliability

This study found that the BTI is significantly influencing

the likelihood of having the severe crash at 95 percent

credible intervals. The impact suggests that a one BTI in-

crease the probability of the severe crash reduces by 26

percent. This finding agrees with intuition because the BTI

Table 4 e Model results of the crash injury severity analysis.

Variable TRE model DRE model

Posterior
mean

Posterior Std. 95% credible intervals Posterior
mean

Posterior Std. 95% credible
intervals

2.5% 97.5% 2.5% 97.5%

Intercept �0.731 0.596 �1.722 0.615 �0.722 0.631 �1.942 0.374

Traffic data

Log (AADT) �0.351* 0.061 �0.484 �0.237 �0.300* 0.047 �0.396 �0.223

Truck volume (%) �1.955* 0.802 �3.744 �0.556 �1.605* 0.775 �3.100 �0.057

Road characteristics and location of the highway

Segment length

(miles)

0.112* 0.026 0.060 0.159 0.088* 0.023 0.042 0.132

Road characteristics

(Undivided road)

0.340* 0.067 0.209 0.470 0.304* 0.060 0.187 0.421

Posted speed limit

(mph)

(�45 mph)

0.669* 0.086 0.507 0.843 0.608* 0.076 0.468 0.766

Intersection (Yes) 0.095 0.060 �0.015 0.218 0.099 0.060 �0.018 0.221

Work-zone (Yes) 0.797* 0.132 0.549 1.060 0.657* 0.115 0.410 0.861

Land use

characteristics

(rural areas)

0.572* 0.130 0.307 0.810 0.516* 0.111 0.300 0.729

Crash characteristics

Safety belt use (No) 0.731* 0.083 0.563 0.886 0.616* 0.070 0.485 0.758

Age (greater and equal

to 65 years old)

0.699* 0.120 0.461 0.934 0.590* 0.100 0.384 0.764

Alcohol/drug

involvement (Yes)

1.172* 0.130 0.922 1.421 0.950* 0.088 0.773 1.112

Visibility (obscured) 0.286* 0.115 0.051 0.500 0.233* 0.111 0.023 0.452

Temporal factors

Time (night hours) 0.053 0.063 �0.062 0.179 0.042 0.057 �0.072 0.150

Day of a week

(weekend)

0.471* 0.065 0.350 0.597 0.438* 0.065 0.318 0.554

Travel time reliability

Buffer time index (BTI) �0.349* 0.102 �0.545 �0.151 �0.297* 0.095 �0.477 �0.101

LOO-CV 10,846 10,467

WAIC 10,882 10,461

Number of crash

observations

26,521 26,521

Note: * represents a variable that is significant at 95% credible intervals. Std. is standard deviation.
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measures the extra time beyond a median travel time a

road user is expected to use to reach a destination on time.

A longer duration beyond the median travel time required

to complete a journey is associated with congestion on the

roadway (that is, lower travel speed). Crashes occurring

under low-speed condition have a low likelihood of being

severe due to low associated kinetic energy (Kidando et al.,

2017).

6.2. Crash characteristics

Impaired occupants with either alcohol or drug have the

highest impact on the likelihood of the severe crash occur-

rences (Fig. 4). The direction of the effect shows that impaired

occupants are associated with higher risks of severe crashes

than unimpaired occupants. The odds ratio is 1.59 greater

than unimpaired drivers. A similar finding is reported by the

existing studies (Dissanayake and Roy, 2014; Quddus et al.,

2010). Work-zone area was also found to be significant at 95

percent credible intervals associated with severe crash

occurrences. It was found that the odds ratio of a severe

crash occurrences in these areas rises by 93 percent

compared to non-work-zone areas. Seat belt restrained

usage was another significant factor deemed in this study.

The odds ratio of a severe crash to occur is higher by 85

percent when unbuckled vehicle occupants are involved

than when all occupants involved in a crash are buckled.

These results mirror those reported by the previous studies

(Dissanayake and Roy, 2014; Ratnayake, 2006).

Compared to drivers who are younger than 65 years old,

aging drivers (aged 65 years and above) were found at a higher

risk of being involved in severe crashes than drivers who are

less than 65 years old. Analysis depicted that the odds ratio of

severe crash occurrences for aging drivers is 80 percent higher

than drivers who are less than 65 years old. This result can be

related to the age-frailty and reduced physical capabilities

(bone strength and fracture tolerance) of aging drivers (Zeeger

et al., 1994). This finding agrees with those obtained by

(Augenstein, 2001), who suggests that just a minimal impact

could cause severe injuries to aging drivers.

Visibility was divided into two categories, i.e., adequate

and inadequate visibility. Inadequate visibility reflects vision

obstruction during driving. Causes of poor visibility on the

road include but not limited to smoke, fog, inclement weather

conditions, parked vehicles and others. Model results suggest

that the likelihood of severe crash to occur was higher for

impaired visibility than adequate visibility. Poor visibility in-

creases the odds ratio of a severe crash to occur by 26 percent

compared to adequate visibility.

Furthermore, the day of the week was also found signifi-

cant at 95 percent credible intervals affecting severity level of

the crashes. Surprisingly, the results indicate that there is a

higher risk to be involved in a severe crash on weekends than

weekdays. The odds ratio of a severe crash to occur is 58

percent greater during weekends than on weekdays. One can

speculate that the weekends perhaps are associated to lower

traffic volume (less congestion) such that traffic speeds are

higher than weekdays.

Fig. 3 e Comparison of the credible intervals between the TRE and DRE regression models (difference ¼ j2.5%e97.5%j).
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6.3. Traffic volume

Traffic volume (AADT) was found significant at the 95 percent

credible intervals. The finding suggests that as one log of

AADT increases, the odds ratio of a severe crash occurrence

reduces by 26 percent. Usually, when the number of traffic is

high on a particular roadway, gaps are smaller with reduced

travel speeds; as a result, the likelihood of the severe crash to

occur is reduced. This finding alignswith those reported in the

literature (Chang, 2003; Duncan et al., 1998). Furthermore, the

percentage of truck volume revealed a similar pattern. The

analysis indicates that 1 percent rise in the truck volume

percentage reduces the odds ratio of a severe crash occur-

rence by nearly 80 percent.

6.4. Road characteristics and location of the highway

In evaluating the influence of land use setting, the study

assigned two categories e rural and urban areas. The land use

is statistically significant at 95 percent credible intervals and

indicates that rural areas are associated with more severe

crashes than urban areas. The odds ratio analysis illustrations

that the likelihood of a crash occurred being severe is higher

by nearly 67 percent in rural areas than in urban areas. It is

reasonable to think that perhaps rural areas are associated

with high speeds and lower traffic volumes than urban areas.

Due to vehicle interaction with pedestrians and numerous

access points along the highways, urban areas have lower

posted speed limit than rural areas.

Another significant variable found influencing crash

severity is the posted speed limit. The analysis indicates that

the odds ratio of severe crash occurrence increases by 84

percent for highwayswith the posted speed limit higher than

45 mph compared to lower speeds. This finding is consistent

with intuition, usually posted speed limit influence the

traffic operating speed in a way that higher posted speed

limit is associated with higher vehicle operating speed.

Crashes occurring on high-speed highways are usually se-

vere due to the impact of high kinetic energy. Similar ob-

servations were found by other researchers (Dong et al.,

2015; Duncan et al., 1998).

Moreover, the posterior mean of the segment length is

positive and statistically significant, indicating that longer

segments have a higher risk than shorter ones. A unit increase

in the segment length increases the odds ratio of severe crash

occurrence by 9 percent. Generally, segment length in the

highway safety analysis is referred to as exposure variable.

That is to say, a driver is exposed for a longer time and dis-

tance when driving on the segment that is longer as compared

to when it is shorter.

In addition, the study found that undivided highways have

a higher odds ratio than divided highways. The estimate of

odds ratio was found to be higher by 36 percent for undivided

than divided highways. One of the contributing reasons for

this finding is due to the passing maneuver that can possibly

lead to head-on collisions. Based on the geometric charac-

teristics, this type of the collision is more likely to occur on

undivided highways compared to divided highways. The

head-on collision is severe due to momentum impact. Thus,

the chances of a severe crash occurrence are higher on the

undivided highway than on the divided highway.

7. Conclusions and recommendations

Travel time reliability (TTR) is one of the best approaches that

are used to define traffic mobility for both transportation

agencies and road users. At present, extensive studies have

attempted to develop TTR metrics and modeling TTR distri-

bution. However, the impact of TTR in highway safety is not

fully explored. This study aimed at investigating the influence

of TTR, using the buffer time index (BTI), on the severity of

crashes that occurred on arterial roads. Four years

(2009e2012) of crash data were obtained from five counties in

Northeast Florida and used in the analysis. These data were

acquired from Florida Department of Transportation (FDOT)

crash database. The historical traffic speed aggregate on a 15-

min basis obtained from the INRIX database was used to es-

timate TTR. To accomplish the study objective, two random-

effect models were applied to accommodate for the unob-

served heterogeneity problem, which might be caused by

correlation of the crashes and some of the important variables

not being taken into consideration. Specifically, the study

applied the logistic regression with the Dirichlet random-ef-

fect (DRE) and the traditional random-effect (TRE), a model

with the Gaussian random-effect distribution. The Bayesian

leave-one-out cross-validation (LOO-CV) and the widely

available information criterion (WAIC) were applied to eval-

uate the goodness-of-fit of the two developed models.

Comparing the two competing models, the results of the

analysis indicated that the DRE model outperformed the TRE

model by having the lowest LOO-CV and WAIC estimates.

Fig. 4 e Comparison of the variables' odds ratio e DRE model.
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Furthermore, this study found that majority of the analyzed

factors in theDREmodel had slightly shorter 95percent credible

intervals than those of theTRE regressionmodel. Thesefindings

demonstrate that the DRE regression model can remove un-

necessary variability that in turn can improve the model fit.

Consequently, this model was further used in modeling the in-

fluence of TTR and other variables on the crash injury severity.

The impact of TTR on the probability of the severe crash

occurrences was found statistically significant at 95 percent

credible intervals. A unit increase of the BTI reduces the

likelihood of a severe crash by 26 percent. Moreover, of the

significant variables analyzed, the influence of alcohol/drug

impairment showed the highest impact (based on odds ratio)

in influencing the severity of a crash. It was found that the

odds ratio of encountering severe crash by impaired occu-

pants is 1.59 higher than sober drivers. The presence of a

work-zone was the second pertinent factor that highly asso-

ciates with a severe crash. The odds ratio of the severe acci-

dent occurring in work-zone areas is 93 percent greater than

crashes occurring on non-work-zone areas. Seat belt use was

found to be the third most influential factor in the analysis.

The odds ratio that a crash will be severe is higher by 85

percent when occupants involved in a crash were not

restrained than when they were restrained. Other significant

factors analyzed in this study are traffic data, weekends,

speed, land use, visibility, segment length, undivided high-

way, and age factor.

As indicated in the results section, TTR significantly in-

fluence the severity of crashes. Thus, incorporating this vari-

able in crash prediction model will improve the reliability of

the developed models. Adding the TTR into crash prediction

models will also allow the models to have a mobility element

and hence assist transportation agencies make a better deci-

sion while developing countermeasures for improving safety

of particular locations.

Despite the demonstrated promising findings from the

research using the DRE regression model, there are some

limitations. The crash data usedwere from 2009 to 2012, while

the speed data used to estimate TTR were from June 2010 to

June 2011. Although there is an overlapping time of the crash

and speed data, using recent data that cover the crash data

years will make the prediction more reliable with the current

situation. Unfortunately, such data were not available to the

authors. Future studiesmay strive to correct this shortcoming.

Moreover, the study will be extended by using the DRE model

in assessing the disaggregated injury outcomes as well as

evaluating the ordinal scale of the injury severity levels (i.e.,

the use of multinomial logit/probit regression). Additionally,

local streets and freeways were not included in the analysis.

The reason for local roads not being analyzed is TTR data was

not available to researcher while freeways pose different

operating characteristics compared to arterial highways.

Future studies can extend the analysis to include these type of

the facilities in crash injury severity analysis.
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Glossary of Terms

TTR Travel time reliability

DRE Dirichlet random-effect

TRE Traditional random-effect

FHWA Federal Highway Administration

DP Dirichlet process

FDOT Florida Department of Transportation

BTI Buffer time index

AADT Annual average daily traffic

Mph Miles per hour

TDP Truncated Dirichlet process

DIC Deviance information criterion

LOO-CV Leave-one-out cross-validation

PSIS Pareto smoothed importance sampling

NUTS No-U-turn sampler

WAIC Widely available information criterion
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