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1. Introduction

Human gait gives insight into human health and motor control.
Gait analysis is commonly used to support medical diagnosis, mon-
itoring the rehabilitation process of patients and quantifying the
performance of athletes. In a gold-standard gait laboratory,
camera-based systems and force plates are installed to compute
gait kinematics and kinetics. These systems are expensive and
restricted to a limited field of view in time and space. It is often
desired to carry out a high quality analysis under non-laboratory
conditions, e.g. for the ambulant assessment of patients or for ana-
lyzing athletes’ performance on the field.

Body sensor networks with integrated inertial measurement
units (IMUs) such as Xsens MVN (Xsens Technologies BV,
Enschede, NL) promise a quantitative movement analysis in uncon-
strained environments. However, IMUs suffer from measurement
noise and drifting biases making an integration-based analysis

difficult (Sabatini et al., 2015). Moreover, inertial sensors provide
only kinematic data. Other sensor modalities, e.g. pressure insoles
or electromyography (EMG), can be used to estimate additional
parameters like joint loads or muscle activity patterns. However,
the usage of a large number of sensors increases cost and inhibits
natural movements. Overall, two problems need to be addressed:
(1) sensor noise and drift and (2) a comprehensive analysis based
on a limited number of sensors and sensor modalities.

Filtering- and global optimization-based approaches have been
proposed to cope with sensor noise and drift. For example,
Roetenberg et al. (2005) presented an extended Kalman filter using
sensor fusion. Using kinematic body models and external contacts,
errors in the predicted segment positions and orientations could be
corrected (Roetenberg et al., 2009). Besides filtering, optimization-
based techniques were proposed to estimate relative positions and
orientations of body segments. Koning et al. (2013) solved a global
optimization problem to simulate a biomechanical model. During
optimization, the difference between orientations of the model
segments and orientations computed by sensor fusion of IMU data
was minimized. Hence, errors in orientation estimation were
directly incorporated into the optimization. Kok et al. (2014)
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estimated the relative position and orientation of each body seg-
ment by solving an maximum-a posteriori optimization problem.
They modeled accelerometer noise and gyroscope bias using a
Gaussian distribution and included biomechanical constraints to
obtain a drift-free estimation of joint angles.

All the above described methods provide only gait kinematics.
Kinetic analysis is also of interest, which relates to the second
above-mentioned challenge. On the one hand, additional sensors
like instrumented force shoes (Liedtke et al., 2007; Liu et al,
2010; Schepers et al., 2009) could be used. On the other hand,
methods have been proposed to estimate gait kinetics based only
on IMU data (reviewed by Ancillao et al. (2018)). Machine learning
approaches show promising results for estimating specific gait
parameters (Hannink et al., 2016; Wouda et al., 2018). However,
the collection of representative training data is time-consuming
and sometimes infeasible. Unlike data-driven approaches, muscu-
loskeletal simulation yields interpretable results providing insights
into muscular control and mechanical characteristics of move-
ment. To date, Karatsidis et al. (2018) presented the most extensive
kinematic and kinetic gait analysis based on IMUs and muscu-
loskeletal modeling. They obtained segment positions and orienta-
tions from the Xsens system with 17 IMUs and computed
kinematics by constrained optimization. Afterwards, they solved
a static optimization problem to obtain the muscle reaction forces
for the given computed motion trajectory by minimizing muscle
activity subject to dynamic equilibrium constraints. Joint moments
and ground reaction forces (GRFs) were estimated using inverse
dynamics. Karatsidis et al. (2018) evaluated their method on walk-
ing at different speeds. It would be of interest to know how their
method performs on highly dynamic movements like running, as
they derived muscle forces based on static optimization. However,
static optimization cannot account for time-dependent interac-
tions like muscle activation-deactivation dynamics and elastic
energy storage in the tendons (Prilutsky and Zatsiorsky, 2002). Fur-
thermore, different tools were sequentially used including the
Xsens and Anybody system which limits the applicability of the
procedure to these commercial systems.

In contrast, we propose a dynamic optimization which yields a
dynamically consistent simulation. Moreover, we would like to
reduce the number of necessary tools, processing steps and IMUs
to make the analysis practical for clinical and use in sports.

Our goal is to estimate gait kinematics and kinetics directly
from raw inertial sensor data performing one global dynamic opti-
mization. Therefore, we formulated an optimal control problem to
find movement and muscular control trajectories of gait cycles. The
method is based on van den Bogert et al. (2011) and was already
applied for estimating knee joint loads from noisy video data
(Heinrich et al., 2014). Our contribution is the extension and eval-
uation of the optimal control simulation to estimate sagittal kine-
matics and kinetics of the lower limbs from IMU data. First, we
describe the planar musculoskeletal model in Section 2.1 and vir-
tual sensor model in Section 2.2. In Section 2.3, the optimal control
problem is formulated. We conducted an evaluation study using
seven IMUs placed on the lower limbs and an optical motion cap-
turing system including one force plate as the gold standard for
purposes of comparison. In total, we recorded ten healthy male
subjects walking and running overground at three different speeds
each (see Section 2.4).

2. Methods
2.1. Musculoskeletal model and dynamics

The planar musculoskeletal model consisted of seven rigid seg-
ments, one segment representing the head, arms and torso denoted

Fig. 1. Musculoskeletal model with seven rigid segments and 16 Hill-type muscles:
1 - iliopsoas, 2 - glutei, 3 - hamstrings, 4 - rectus femoris, 5 - vasti, 6 -
gastrocnemius, 7 - soleus, 8 - tibialis anterior. The model has nine kinematic
degrees of freedom: The jOil’lt aﬂgleS (Ulhigh,l/r\lrunkv eshank,]/r\lhigh,]/n Hfoor,l,/r\shank,l/r) and
the global 2D position and sagittal orientation of the trunk (pS,., Grunk)-

as trunk, and three segments for each lower extremity
(see Fig. 1). The segment masses, lengths, center of mass locations,
and moments of inertia were estimated based on subject
heights and body masses using the regression equations of
Winter (2009). In total, the model had nine kinematic degrees
of freedom summarized as generalized coordinates in vector
q = [pgunka Htrunk\G-, chigh_r\trunks Hshank_r\thigh_n Hfoot_r\shank_n chigh_l\trunkv
Oshank_ijthigh_I Hfoot_ushank_lf comprising the 2D position of the trunk in
global frame G, the sagittal orientation of the trunk relative to G,
and the right and left leg joint angles in sagittal plane (see
Fig. 1). We defined the time derivative of q as generalized
velocities v.

The model was actuated by 16 muscles, eight for each lower
extremity as shown in Fig. 1. Each muscle was modeled as three-
element Hill-type model. The muscle contraction and activation
dynamics are explained in van den Bogert et al. (2011). The state
of each muscle was described by the length of the contractile ele-
ment (CE) L and its activation «. In addition, we defined two con-
tact points at each foot (heel and toe) to model the foot-contact
interaction. Each contact point introduced four state variables:

T
the global position of the contact point {cf,cﬂ and the global

T
force exerted by the ground on the contact point [FfX,ny] .A
detailed formulation of contact dynamics can be found in

supplementary material. Todorov (2010) altogether, the model’s
state was represented by the state vector:

q nine generalized coordinates

v nine generalized velocities

Lce 16 contractile elements lengths
o 16 muscle activations

T
{Cx,hcy_],F% 7ny.1} unknowns 1st contact point

T
{ch,cyA,FCX_“FCyJ unknowns last contact point

] )

The model was driven by the control vector u comprising the 16
neural excitations of the muscles. The system dynamics were
implicitly formulated as function of x, X, and u:

f(x,x,u) = 0. (2)



The function f() consisted of nine identities v — q = 0, 16 muscle con-
traction and 16 activation dynamics equations (van den Bogert et al.,
2011), 16 contact equations, and nine multi-body equations of
motion (see supplementary material). The system dynamics f() were
twice differentiable with respect to x, X, and u. This made it possible
to use a gradient-based optimal control method in Section 2.3.

2.2. Virtual sensor model

We tracked accelerometer and gyroscope data with the planar
musculoskeletal model in the optimal control simulation in Sec-
tion 2.3. Therefore, we placed virtual sensors at the musculoskele-
tal model producing comparable accelerometer and gyroscope
signals as would be measured by real sensors (see Fig. 2). We
assumed that the IMUs were rigidly attached to the body segments
s € § = {trunk, thigh_r, shank_r, foot_r, thigh_l, shank I, foot_1} at a
known position p? in the body-segment coordinate system B.
Additionally, we ensured that the sensor axes were aligned with
B,. The gyroscope signal in the sagittal-plane ws was equal to the
angular velocity of the corresponding body segment with respect
to global frame G and was calculated from the generalized veloci-
ties v:

Wtrunk = étrunk\Gv (3)
Wthigh_r/l = gthigh_r/l\G = gthigh_r/l\trunk + étrunk\cy (4)
wshank_r/l = Hshank_r/l\G = eshank_l/l\thlgh_r/l + 0th1g11_1/1\67 (5)
Wfoot_r)l = éfoot_r/l\G = gfoot_r/l\shanl(_r/l + 9shanl(_1'/l\G- (6)

An equation for the accelerometer signal a; = [dys, ay ] T that would
be measured at a body segment is given in van den Bogert et al.
(1996). In 2D, the formula can be simplified to

@fdﬂw, @)

(o)
cBs — 8 @y -0

where R*® is the transformation matrix from global frame to
Bs7agws is the acceleration of the segment origin relative to G (in

G coordinates) and g = [0,-9.81 m/s2]". We used Autolev 4.1 to
generate a symbolic expression of Eq. (7) as a function of the kine-
matic states q,v,v and sensor position p%. The time derivative v
was estimated using finite difference approximation.

2.3. Optimal control problem
The goal was to find the model states x(t) and controls u(t) dur-

ing one gait cycle of duration T, such that the simulated accelera-
tion and angular velocity corresponded to the measured signals

Fig. 2. Virtual sensors are placed at position p? in body-segment coordinate system
B,. Angular velocity o and acceleration a, are measured in B with respect to global
frame G with the transformation matrix R%°.

without sensor noise. This was done by solving an optimal control

problem following van den Bogert et al. (2011):
minimize J(x(t),u(t))

X(t),u(t)
subject to X <Xy

X<
I LI L] 3

FIX(0), X(0), u(t) = 0
X(0) + VTey, —x(T) =0,

=
NN

with the cost function J(x(t), u(t)) and the constraints on lower and
upper bounds of x and u (see supplementary material), the dynamic
equilibrium (Eq. (2)) and periodicity with a forward translation in
direction e,, where T was known' and the model's speed

V= (pf‘tmnk(T) - pgtmnk(O)) /T was unknown. The optimization prob-

lem was solved using direct collocation. Therefore, the state and con-
trol vectors were discretized at N collocation nodes using backward
Euler discretization. The cost function comprised a tracking term
Jirack» an effort term Jog,, and a regularization term Jy,:

] :Jtracl( +]effort +.’1’eg' (9)

In the tracking term, the squared difference between simulated sig-
nals (gyroscope: Egs. (3)-(6), accelerometer: Eq. (7)) and corre-
sponding measured signals was minimized. For this, we computed
the mean p of measured sensor signals over multiple strides (see
Section 2.4.3). We normalized the differences to the measured stan-
dard deviation of multiple strides ¢ to ensure that non-reproducible
features such as noise and movement artifacts were not tracked:

2
Ay sk — Mg Ay sk — Ha " We — Uy, 2
] 2 :2 : X5k + ys! + ( sk> )
track = ‘S ‘ N Jﬂx sk Jﬂy sk stk

k=1 ses

In this work, we tracked sagittal inertial signals of seven inertial
sensors, one placed at each segment of the musculoskeletal model.
However, it is also possible to reduce the number of sensors and, for
example, track only signals of foot-mounted sensors. In the effort
term, we minimized the squared excitations of all 16 muscles to
resolve muscle redundancy and to prevent the model from tracking
noisy measurements, which would require high muscular effort:

]ﬂﬁzzm (an

where W is @ weighting factor. Eq. (11) is similar to one used in
previous work (van den Bogert et al., 2011), but we normalized the
term with the squared speed of the model V. This was necessary to
balance the tracking and effort terms when muscle activity increases
over a wide range of walking and running speeds. We chose a quad-
ratic normalization as previous work showed that muscle activity
scales linearly with speed for walking and running (Belli et al.,
1999; Neptune et al., 2008). The weighting was set empirically to
Wetort = 300 testing Wegore € {1,100,200,300,400,500,1000}. J,e,
helped the convergence of the optimization and reduced the number
of iterations by approximately 10%. It was proportional to the inte-
gral of the sum of squares of the time derivatives of all state and con-
trol variables. We kept J ., small (W, = 1e — 5) so that the result of
the optimization was not influenced. The large-scale nonlinear opti-
mization problem of Eq. (8) was solved using IPOPT (Wdchter and
Biegler, 2006). As initial guess, we used a simulation of walking
(1.4m s~ ") and running (3.6 ms~!) generated by tracking optical
motion capture data from independent data sets.

.] effort —

! We computed T from the average number of measurement points over multiple
strides divided by the sampling frequency of the IMUs.



2.4. Evaluation study

2.4.1. Study design

We conducted a study evaluating our inertial motion capturing
(IMC) analysis against a gold-standard optical motion capturing
(OMC) analysis. We used seven custom-built IMUs (Portabiles
GmbH, Erlangen, DE) (Blank et al, 2014) including tri-axial

accelerometers (+£16 g) and gyroscopes (2000 deg s ') sampled
at 1000 Hz. The OMC system consisted of 16 infrared cameras
(Vicon MX, Oxford, UK) and one force plate (Kistler Instruments
Corp, Winterhur, CH), which were sampled at 200 Hz and
1000 Hz, respectively. These systems were synchronized using a
wireless flash trigger, which was received by every IMU and fed
back to an analog channel of the OMC system (Kugler et al.,
2012). A trigger signal was either sent manually or when the sub-
jects crossed a light barrier which started the OMC recording.

In total, ten healthy male subjects volunteered for the study
(age: 27.1 £ 2.6 years; height: 1.82 + 0.05 m; weight: 76.9 + 8.6 kg).
Ethical approval for data collection was given and informed consent
was obtained from all subjects before the study. We fixed seven
IMUs on the subjects’ bodies: at the lower back, right and left lateral
thigh, lateral shank, and upper midfoot. The position of the IMUs was
measured with respect to the segments’ coordinate systems as
required to compute simulated accelerometer signals in Eq. (7). In
addition, we placed 32 infrared reflecting markers at anatomical
landmarks.

At the beginning of the data acquisition, we asked the subjects
to perform different movements in the sagittal-plane for estimat-
ing the orientation of the sensors with respect to the segments’
coordinate systems (see Section 2.4.3). The trigger was activated
before every movement, which were: standing, bending the torso
forwards and backwards, lifting the straight leg up and down and
flexing and extending the foot. In addition, a T-Pose, in which the
subject stood still with arms stretched out to the sides, was
recorded for a static calibration of the OMC system. The subjects
were told to walk and run at six speed ranges: 0.9 ms~! to
1.0m s ! (slow walking), 1.2 ms~' to 1.4 m s~! (normal walking),
1.8ms~! to 2ms~! (fast walking), 3.0ms! to 3.3 ms™! (slow
running), 3.9ms! to 41ms~! (normal running) and 4.7 ms™!
to 4.9 ms~! (fast running). The subjects had to perform ten valid
trials each, i.e., the speed range was controlled using the light bar-
rier and the force plate had to be hit with the right foot.

2.4.2. OMC data processing

We filtered the marker and force plate data using a second-
order forward-backward low-pass Butterworth filter with a cut-
off frequency of 10Hz as suggested by Kristianslund et al.
(2012). Afterwards, we downsampled the force plate data to
200 Hz and computed inverse kinematics and kinetics using the
GaitAnalysisToolkit> which implements the methods of Winter
(2009). Then, computed joint angles, moments and GRFs were seg-
mented into individual gait cycles and the step on the force plate
was identified as first step after the trigger signal. We extracted
the walking trials from right heel strike to right heel strike according
to the minimum of the right heel marker. The running trials were cut
from left toe-off to left toe-off using the method of Handsaker et al.
(2016). We had to differentiate between walking and running to
ensure that the gait cycle was completely captured by the infrared
cameras and the stance phase on the force plate was completely
included. However, this did not affect the analysis as the same time
section was used for OMC and IMC analysis. The joint angles, joint
moments and GRFs of the ten trials at each speed were linearly inter-
polated to the same length and averaged afterwards. Finally, we dec-

2 https://github.com/csu-hmc/GaitAnalysisToolKit.

imated the mean and variance to 100 sample points by linear
interpolation for comparison to the IMC analysis.

2.4.3. IMC data processing

First, the axes of the IMU sensors were aligned with the seg-
mental coordinate systems of the musculoskeletal model using
the functional calibration movements (Ferraris et al., 1995). After-
wards, we extracted the strides that were recorded by the OMC
system. The IMU data was cut using the detected start and end
of the gait cycle (see Section 2.4.2) relative to the trigger signal.
The ten trials of each speed were linearly interpolated to the same
length and averaged afterwards. Finally, we decimated the mean
and variance to N = 100 sample points by linear interpolation for
tracking the data with the musculoskeletal model (see Eq. (10)).

2.4.4. Data analysis

We computed the Pearson Correlation Coefficient (p) between
the estimated variables of the OMC and IMC analysis using all time
points (from all subjects and speeds). Thus, no assumption on the
distributions of the coefficients had to be made. In addition, we
correlated gait cycles individually and took the mean using
Fisher’s z-transform for comparing our results to Karatsidis et al.
(2018). Here, we analyzed joint angles over the whole gait
cycle and joint moments and GRFs over the stance phase. We
categorized the correlation coefficients following Taylor (1990)
into “weak” (p < 0.35), “moderate” (0.35 < p < 0.67), “strong”
(0.67 < p < 0.90), and “excellent” (p > 0.90). In addition, we eval-
uated the absolute root-mean-square deviation (RMSD) of the joint
angles, joint moments and GRFs in deg, in BWBH%> and BWY%,
respectively. The relative RMSD (rRMSD) was calculated as described
in Ren et al. (2008). On the one hand, we used all samples and com-
puted the RMSD applying ordinary least products (OLP) regression
(Ludbrook, 1997). This removed the systematic error between the
OMC and IMC method. On the other hand, we computed the RMSD
and rRMSD without OLP regression for every single gait cycle indi-
vidually and took the mean afterwards for comparison to
Karatsidis et al. (2018).

3. Results

In total, 60 optimizations (ten subjects at six speeds) were
solved with a mean CPU time of 50 & 26 min on Intel Xeon proces-
sors E3-1240. In the optimization, we tracked the data of seven
IMUs with a musculoskeletal model. The resulting simulated IMU
signals had the same overall curve shape as the measured signals,
whereas the oscillatory parts after heel strike were not tracked (see
Fig. 3). The optimizations yielded natural walking and running
simulations (see videos in the supplementary material). Kinemat-
ics and kinetics were compared to the OMC analysis. Fig. 4 shows
the results for one subject. All individual results including muscle
activations and forces can be found in the supplementary material.

Fig. 5 shows the correlation between OMC and IMC analysis
based on all subjects and speeds. Gait kinematics yielded excellent
correlations and gait kinetics (p > 0.93) yielded strong to excel-
lent correlation (p > 0.90). In addition, Table 1 provides a compar-
ison to Karatsidis et al. (2018) as described in Section 2.4.4.

4. Discussion
In this work, we presented a novel approach to estimate gait

kinematics, kinetics and muscle forces by tracking IMU data with
a trajectory optimization. This method addresses the two major

3 In body weight (BW) and body height (BH).
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respectively.

challenges of IMC mentioned in the introduction (see Section 1),
low-quality data and incomplete measurements.

We tracked raw sensor data without integrating the signals.
Integration drift was avoided by using periodic boundary condi-
tions and the physics of frictional contact to constrain translational
movements. Moreover, Fig. 3 shows that movement artefacts in the
IMU signals after heel strike were not tracked whereas features
with a low standard deviation were tracked well (see for example
the longitudinal shank acceleration). This is because we normal-
ized the tracking term by data variance (see Eq. (10)), a model
was used to eliminate solutions that are not dynamically consis-
tent, and muscular effort was minimized (see Eq. (11)).

We estimated gait kinematics, kinetics, and muscle forces solely
based on IMU data without ground reaction force data. Ground
reaction forces (GRF) were indirectly estimated via a combination

of a contact model, and the GRF-induced acceleration signals. The
method would even allow fewer IMU sensors to be used. In prelim-
inary work, we were able to reconstruct gait using only IMU data of
foot-mounted sensors. However, results were worse and we would
suggest to track additional variables such as normal joint angles
and GRFs from the literature, to avoid unrealistic solutions which
are still consistent with a subject’s foot IMU data.

Results of the trajectory optimization were robust with respect
to the weighting of the effort term in the cost function (Eq. (11)).
For lower Wego, joint angles improved slightly, whereas the
resulting joint moments and GRFs got slightly worse. For higher
Wettort, it was the other way round. Muscle activations were more
noisy for lower W, leading to noisy muscle forces. The normal-
ization to squared speed allowed the same W to be used for all
speeds, reducing the need for tuning of the cost function. In future
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data points, from 10 subjects, 6 movements, and 100 collocation points. A-P GRF stands for anterior-posterior ground reaction force.

Table 1

Comparison of lower limbs kinematics and kinetics in the sagittal-plane between inertial motion capturing (IMC) and optical motion capturing (OMC): Mean Pearson Correlation
Coefficient p, mean (standard deviation) of absolute and relative root-mean-squared differences, RMSD in deg, BWBH% and BW% and rRMSD in %, respectively. A-P GRF stands for

anterior-posterior ground reaction force.

Walking Running Walking (Karatsidis et al., 2018)
P RMSD rRMSD 14 RMSD rRMSD o RMSD rRMSD
Hip angle 1.00 8.2 (3.3) 219 (8.4) 0.98 8.7 (3.2) 16.5 (5.5) 0.99 5.7 (2.1) 12.7 (5.3)
Knee angle 1.00 5.5 (2.8) 8.8 (4.7) 0.99 53 (3.0) 6.1 (3.8) 0.99 4.4 (2.0) 7.2 (3.4)
Ankle angle 0.96 4.3 (1.5) 109 (3.4) 0.98 4.6 (1.7) 8.4 (3.8) 0.95 41 (1.3) 14.0 (4.8)
Hip moment 0.76 1.5 (0.4) 26.0 (9.8) 0.85 32 (1.0) 26.0 (6.8) 0.92 2.2 (0.6) 19.4 (4.2)
Knee moment 0.81 1.5 (0.4) 271 (9.2) 0.94 34 (1.2) 16.7 (7.1) 0.58 1.9 (0.5) 29.8 (7.6)
Ankle moment 0.95 1.6 (0.8) 144 (6.8) 0.96 3.2 (2.1) 171 (10.8) 0.93 1.6 (0.6) 15.1 (6.6)
A-P GRF 0.95 4.1 (1.2) 9.7 (2.1) 0.94 10.7 (3.9) 135 (4.2) 0.97 1.6 (0.6) 17.5 (6.8)
Vertical GRF 0.95 11.1 (3.4) 9.6 (2.5) 0.94 32.0 (7.9) 12.8 (3.6) 0.91 9.3 (3.0) 7.7 (2.1)




work, other effort measures could be used, such as metabolic cost
(Koelewijn et al., 2018). Another possibility would be to learn the
objective function from data (Clever et al., 2016).

The musculoskeletal model had several limitations that are rel-
evant to the results of the study. The two-dimensional model lim-
ited the analysis to sagittal plane variables and muscles, but also
may have affected the ability of the model to track IMU data. For
instance, the model does not account for the effect of frontal plane
rotation of the pelvis on the vertical accelerometer signal of the
lower back IMU sensor. Our method can be used in a full 3D model
to overcome these limitations, albeit at the expense of longer com-
putation time to solve the trajectory optimization problem. The
musculoskeletal model had a rigid foot, which seems to have
affected the running results. During running, the ankle plantarflex-
ion moment rose too quickly, compared to the OMC results. We
believe that the IMU on the upper midfoot picked up an anterior
pitch rotation, which the contact model then interpreted as an
anterior shift in the center of pressure. A model with a deformable
foot may have prevented this error. Similarly, the pelvis and upper
body were represented by one rigid segment. The lower back IMU
was placed on the sacrum and likely not representative of upper
body dynamics, resulting in poor estimates of hip angle and
moment. This error could be reduced by tracking additional upper
body IMU sensors, possibly even without additional kinematic
degrees of freedom. Another fundamental limitation is that the tra-
jectory optimization approach uses a minimal effort criterion to
distribute the effort among the muscles that actuate the joints.
Unequal load distribution, and ‘“unnecessary” antagonistic co-
contraction will likely be missed. Integrating EMG sensing with
IMU sensing will be necessary to resolve this issue.

Fig. 5 shows how the IMC results correlate to conventional OMC
results, across subjects, across walking/running conditions, and
across time points in the gait cycle. The overall correlation coeffi-
cients are all above 0.9, indicating that 80% of the true variance
is predicted by the IMC analysis. Some gait cycles from the running
tests seem to be outliers in the correlation diagram, and we suspect
that these are local minima of their respective trajectory optimiza-
tion problems. This could be alleviated by solving with multiple
initial guesses, rather than one. The RMS differences between
IMC and OMC are small enough for clinical applications where
changes of 5-10 degrees in joint angle are clinically relevant
(Khouri and Desailly, 2013). We suspect, however, that the correla-
tions and RMS errors will be better for typical clinical study
designs, where we are interested in differences between subjects
(e.g. patient vs. normal) and even more so to determine within-
subject changes such as treatment effects.

Compared to Karatsidis et al. (2018), we achieved similar per-
formance (see Table 1) while reducing the number of software
tools and processing steps. Our approach does not require a sepa-
rate kinematic and kinetic analysis, combining the two into a sin-
gle dynamic trajectory optimization. This has the advantage that
no error propagation occurs and a dynamically consistent simula-
tion is obtained. Thus, highly dynamic movements like running can
be analyzed.

Similar to classical inverse dynamics, the IMU tracking
approach has the limitation that individual muscle forces are
resolved through an optimality criterion. In the present study, this
is the effort term in the optimization objective. In pathological con-
ditions where muscle force distribution is non-optimal (such as
neurological disorders), muscle forces will be underestimated. In
addition, any approach without force plate data will not uniquely
resolve the load distribution between the two feet in a double sup-
port phase. This might affect clinical applications, such as stroke,
where limb loads are not distributed optimally. Our validation
study used able-bodied participants, so clinical validity is still an
open question. In future work, the trajectory optimization

approach can include EMG data in the tracking term of the opti-
mization objective, in order to obtain solutions that are consistent
with measured motion and EMG.

Trajectory optimization is fundamentally not a real-time analy-
sis, because the optimization cannot start until data from an entire
movement cycle has been collected. Higher computing power or
larger convergence tolerances of the IPOPT would reduce comput-
ing time, and results may be available in near real time. On the
other hand, three-dimensional models will eventually be needed
which would likely increase the computation time dramatically.

In conclusion, gait kinematics and kinetics could be estimated
for a wide range of speeds and subjects. We tracked inertial sensor
data with a musculoskeletal model by solving an optimal control
problem and obtained a dynamically consistent simulation. The
method suppresses sensor artifacts and is drift-free. It provides a
comprehensive gait analysis solely based on IMU data with a single
software tool.
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