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A rapid LC-MS/MS method for quantification 
of CSUOH0901, a novel antitumor agent, in rat 
plasma 
Ramakrishna R. Voggu, Ravali Alagandula, Xiang Zhou, Bin Su, 
Bo Zhong and Baochuan Guo 

Introduction 
CSUOH0901 {benzo [1,3] dioxole-S-carboxylicacid [3-(2,5-dime-
thylbenzyloxy)-4-(methanesulfonylmethylamino)-phenyl] amide} 
(NSC751382; Fig. 1 C; Zhong et al., 2013) is a novel, second-
generation anticancer agent derived from nimesulide, which 
can inhibit cyclooxygenase-2 (COX-2; Fig. 1 A). In cancer therapy, 
nimesulide showed hepatotoxicity on long-term usage and re-
quired higher concentrations to inhibit COX-2 activity (Zhong 
et al., 2012). This led to the development of CSUOH0901, a 
nimesulide derivative, which exhibited very promising anticancer 
activities by interacting with tubulin and Hsp27 proteins, which 
are important to cancer cell proliferation. CSUOH0901 inhibited 
the proliferation of cancer cells of lung, breast, colon, CNS, ovary, 
renal and prostate cancer with an IC50 of 0.1-0.5 µM, which is 10-
fold more active than JCC76 {N-[3-(2,5-dimethylbenzyloxy)-4-
(methylmethylsulfonamido) phenyl] cyclohexanecaboxamide; 
(Fig. 1 B; Suleyman et al., 2008) and 1000-fold more potent than 
nimesulide (Zhong et al., 2013). 

Recent docking studies in SKBR-3 breast cancer cell lines 
(Suleyman et al., 2008; Yi et al., 2012) revealed that CSUOH0901 
interacted with both a- and /J-tubulin in the colchicine pocket 
and disorganized microtubules. Additionally, interaction of heat 
shock protein 27 (Hsp27) (Sun and MacRae, 2005) with 
CSUOH0901 inhibited the phosphorylation of Hsp27, leading to 
cell apoptosis. Hsp27 is a stress protein that is expressed when 
cells are stimulated by heat (Kampinga et al., 1995; Stege et al., 
1995a, 1995b), radiation (Rau et al., 1999), chemotherapeutic 
drugs (Ciocca et al., 1992) or other agents (Wu and Welsh, 
1996). A recent study showed that cancer cells with HSP27 over-
expression were resistant to chemotherapeutic drugs (Huot 

et al., 1991; Fuqua et al., 1994; Hettinga et al., 1996; Richards 
et al., 1996). Antisense to inhibition of the HSP27 gene de-
creased cellular resistance to chemotherapy as well as to heat 
shock (Horman et al., 1999). Other studies have suggested that 
HSP27 prevents cancer cells from apoptosis and dramatically en-
hances their tumorigenicity (Garrido et al., 1998, 1999; Guenal 
et al., 1997; Samali and Cotter, 1996). Mass spectrometric studies 
revealed that tubulin and Hsp27 proteins are the most prevalent 
targets of CSUOH0901. Recent in vivo studies demonstrated that 
CSUOH0901 significantly decreased the size of HT29 tumors in a 
xenograft model compared with the control group, suggesting 
the low toxicity and high potency in vivo (Zhong et al., 2012). 

Clearly, CSUOH0901 is a very promising anticancer drug can-
didate and will be further studied. However, to date, no LC-
MS/MS method has been developed for the quantification of 
CSUOH0901. Therefore, a simple and accurate method to quan-
tify CSUOH0901 is needed that will be essential to the future 
pharmacological and toxicological studies of CSUOH0901. In this 
work, a rapid and sensitive LC-MS/MS method was developed 
and validated for quantitative determination of CSUOH0901 in 
rat plasma. We demonstrated that the method developed was 
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Figure 1. The chemical structures of  nimesulide (A), internal standard 
.JCC76 (B) and CSUOH0901 (Q. 

fast, sensitive and specific for quantifying CSU0H0901 in plasma, 
and can be used in pharmacological studies. 

Experimental 

Chemical and reagents 

CSUOH0901 and .JCC76 (internal standard, IS) were synthesized and pu 
rified according to the previously published procedures (Zhong et al., 
2013; Suleyman et al., 2008). HPLC grade methanol and acetonitrile were 
purchased from Pharmco Apper (Philadelphia, PA, USA). Formic acid, 
ammonium formate and ammonium acetate were purchased from 
Sigma Aldrich Chemical Company (Allentown, PA, USA). Dimethyl sulfox 
ide was obtained from Fisher Scientific (Pittsburgh, PA, USA). Deionized 
water was generated from a Barnstead Nano Pure Water Purification Sys 
tern from Thermo Scientific (Waltham, MA, USA). Sprague Dawley rat 
plasma K2 with specific lot numbers (10577 01 06) was purchased from 
Innovative research (Novi, Ml, USA). 

Calibration standard and quality control samples 

Preparation o f  stock and working solutions. The stock solutions of  
CSUOH0901 and .JCC76 (IS) were prepared in dimethyl sulfoxide (DMSO) 
at 1 mg/ml  and stored at 20°C. A set of  CSOH0901 working solutions of  
10, 20, 50, 150, 400, 1000 and 2000 ng/ml  were prepared by serial dilu 
tion from the stock solution with DMSO. The working solution of  JCC76 
(IS) was obtained by diluting the stock solution with DMSO to give a con 
centration of  150 ng/ml. 

Preparation o f  calibration and quality control plasma sam pies. The 
calibration plasma solutions were prepared by spiking 10 µL of  
CSUOH0901 working solutions in 200 µL of  blank plasma (mixture of 6 
lots) to give drug concentrations of 0.5, 1.0, 2.5, 7.5, 20, 50 and 100 
ng/mL The lower limit of quantification (LLOQ) and quality control (QC) 
standards were prepared in a similar way at 0.5, 1.25, 10, 80 ng/ml, 
representing LLOQ, low QC (LQC), middle QC (MQC) and high QC (HQ() 
respectively. The QC and calibration samples were frozen at 20°C over 
night. and then treated by the following sample preparation procedure 
and subjected t o  LC MS/MS analysis. 

Sample extraction 

Plasma samples were removed from the 20 °C freezer and thawed to 
room temperature. Single and double blanks were prepared by spiking 
10 µL of  acetonitrile in 200 µL of  rat plasma. Then 10 µL of IS working
solution was spiked in all calibration, QC solutions and single blank. ex 
cept in double blank and vortexed immediately for 30 s. The samples 
were deproteinized by adding 800 µL of  acetonitrile and sonicated for 
15 min followed by centrifugation at 13,000g for 15 min. The superna 
tants were transferred into autosampler vials for LC MS/MS analysis. 

LC-MS/MS analysis 

LC MS/MS analysis was conducted using 5500 QTRAP triple quadrupole, 
tandem mass spectrometer (AB Sciex, Toronto, Canada) with an 
electrospray ionization (ESO source (Framingham, MA, USA) interfaced with 
high performance liquid chromatography (HPLC, Shimadzu, Columbia, MD, 
USA) with two LC 30 AD pumps, DUG 20A3R inline degasser, a SIL 30 AC 
autosampler, a CBM 20A controller and a CTO 10AVP column oven 
(Shimdazu, Tokyo, Japan). Analyst software, version 1.52 (AB Sdex) was 
used to control all the parameters of  tandem mass spectrometer and HPLC. 

A Luna C18 (2) HPLC column (50 x2.0 m m  5 µm) with a C18 security 
guard cartridge from Phenomenex (Torrance, CA, USA) was used for 
the chromatographic separation of  the supernatants from the 
deproteinized samples. An optimized gradient flow of  mobile phase A, 
5 mM ammonium formate in 2% methanol, and mobile phase B, 5mM 
ammonium formate in 90% methanol at a flow rate of 0 2  mUmin, was 
developed. The column was equilibrated with the mobile phase for 10 
min and the run time was 8 min for each run with 10 µL injection vol 
ume. The positive ESI mode was selected and the MRM (multiple reac 
tion monitoring) function was used for quantification, with the 
transitions set at m/z 483.2 -+404.3, rn/z 4832 -+119.0 for CSUOH0901 
and m/z 445.3 -+366 .3 for JCC76 (IS) (Fig. 2). The dwell time for each 
MRM transition was set at 120 ms. Source dependent parameters were 
optimized by flow infusion analysis: nebulization gas (30), heating gas 
(30), curtain gas (40), ion spray voltage (5000 eV) and temperature 
(450°C). Compound dependent parameters were manually optimized 
as following: declustering potential, 180; entrance potential, 1 O; collision 
energy, 20; and cell exit potential, 12. 

Analytical method validation 

A full method validation was performed using rat plasma according to 
the currently accepted FDA bioanalytical method guidelines (US Food 
and Drug Administration, 2001) and also other references (Liu et al. 
2013; Ito et al., 2013). The entire method was validated for precision, ac 
curacy, linearity, selectivity, extraction recovery, LLOQ, matrix effect and 
stability studies. 

Calibration curve, linearity and sensitivity. Seven CSUOH0901 
plasma calibrators at the concentrations of 0.5, 1.0, 2.5, 7.5, 20, 50 and
100 ng/ml, double blank and single blank (only JCC76 internal standard) 
were selected to establish a calibration curve. The weighed linear reg res 
sion, 1/x, as weighing factor was used to calculate the slope and correla 
tion coefficient of  the calibration curve. The LLOQ was defined as the 
concentration with precision (coefficient of  variation, CV) <20%. 

Accuracy and precision. Intra and inter assay precision and accuracy 
studies were performed using three QC standards, LQC, MQC and HQC, 
at 1.25, 10 and 80 n g / m l  with five replicates (n =5). Intra and inter assay 
precisions were determined as CV, and accuracies were cakulated by 
comparing experimentally determined concentrations with the spiked 
values. Therefore, accuracy (%) = [(experimental concentration spiked 
concentration)/ spiked concentration) x 100. 

Recovery and matrix effect. The absolute extraction recovery was 
determined by comparing the peak areas of  CSUOH0901 in QC samples 
at 1.25, 10 and 80 ng/ml  (CSUOH0901 added prior to deproteinization) 
with those of postextraction samples (CSUOH0901 added after 
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Figure 2. Precursor/product ion spectra and proposed fragmentation pathways for internal standard JCC76 (A) and analyte CSUOH0901 (B). 

deproteinization) of corresponding concentrations. The relative recovery 
was determined by comparing peak area ratio of CSUOH0901 and IS 
(JCC76) spiked in plasma before extraction with that in postextraction 
spiked samples. 

The absolute matrix effect was calculated by comparing the peak 
areas of postextraction blank plasma samples spiked with CSUOH0901 
(1.25, 10 and 80 ng/ml) with those of corresponding standard solutions 
at equivalent concentrations. The relative matrix effect was calculated by 
comparing the peak area ratio of CSUOH0901 and IS (JCC76) spiked in 
the blank plasma postextraction solution with that in standard solution. 

Stability studies 

Effect of freeze thaw on CSUOH0901 in plasma. Two QC samples 
of 1.25 and 80 ng/ml concentrations were selected to verify their stabil 
ity. The stability test for CSUOH0901 in plasma was studied after three 
freeze thaw cycles over a 3 day period. 

Short- and long-term stability studies of analyte in plasma. The 
stability studies of CSUOH0901 in rat plasma were performed using 
two QC standards (1.25 and 80 ng/ml), which were kept under different 
storage conditions: 10 h at room temperature and 6 months at 20°C, 
before and after sample extraction. 

Stability of analyte in stock solutions. The stability studies of stock 
solutions and working solutions of CSUOH0901 and internal standard 
(JCC76) were also evaluated. The stock solutions of analyte were stored 
at 20°C for 7 months. Two QC standards of concentrations 1.25 and 
80 ng/ml were prepared from both the stored and fresh stock solutions 
and the experimentally determined concentrations of CSUOH0901 were 
compared (n =3 for each sample). 

Results and discussion 
Optimization of mass spectrometric conditions for MRM 
quantitation 

Positive ionization mode was selected to detect and optimize the 
MS parameters for the detection of both CSUOH0901 and JCC76 
(internal standard). It was found that the standard CSUOH0901 
and JCC76 solutions prepared in methanol-water (9:1, v/v) 
yielded higher intensity when compared with the solutions pre-
pared in acetonitrile-water (9:1, v/v). Fragmentation led to the 
formation of daughter ions in the product ion scan mode (Fig. 2). 
Based on the fragmentation study, the MRM transitions of m/z 
483.2 --->404.3 for CSUOH0901 and 445.3 --->366.3 for JCC76 were 
selected for quantification, as these product ions yielded strong 
signals. The highest MS signal was obtained by fine-tuning colli-
sion energy, spray voltage and ion source temperature. 

Optimization of HPLC conditions 

To overcome the irreproducibility and matrix effect problems as-
sociated with the isocratic flow, a gradient flow of mobile phase 
A, SmM ammonium formate in 2% methanol, and mobile phase 
B, 5 mM ammonium formate in 90% methanol with 0.2 ml/min 
flow rate, was employed. This gradient flow improved the sensi-
tivity and signal-to-noise ratio with a total run time of 18 min. 
High concentration of methanol was used to elute CSUOH0901 
from ( 18 column, owing to its low solubility in water with 
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Figure 3. (A) Multiple reaction monitoring chromatograms of blank rat plasma in both IS and analyte windows. (B) IS JCC76 (10 ng/ml, S.58 min) and 
CSUOH0901 at LLOQ level (0.5 ng/ml, 5.10 min). 

predicted logo value of 4.86. The intensity of CSUOH0901 was 
increased 2-fold when 5 mM ammonium formate buffer was 
used in the mobile phases and the retention times were around 
5.09 min for CSUOH0901 and 5.58 min for JCC76 (IS) (Fig. 38). 

Linearity, sensitivity, selectivity and LLOQ 

the Calibration curve for CSUOH0901 in plasma was linear in the 
range of 0.5-100 ng/ml. Linearity results showed the quadratic 
fit for CSUOH0901 with a seven-point calibration curve of con-
centrations 0.5, 1.0, 2.5, 7.5, 20, 50 and 100 ng/ml including 
double-blank and single-blank (only JCC76 internal standard) 
plasma samples. An excellent linearity was obtained with the 
correlation coefficient of 0.9996 and the linear regression equa-
tion was y =0.073x 0.0085. This method exhibited high selec-
tivity with no interfering peak in six different blank plasma 
samples from different sources. The LLOQ was found to be 0.5 
ng/ml, where the signal intensity was 20-fold higher than the 

blank signal (Fig. 3). The lowest concentration in a calibration 
curve (LLOQ) was quantified with the accuracy and precision 
within 15% (Table 1 ). 

Table 1. Accuracy and precision of CSUOH0901 calibration 
standards (n =5) over 0.5-100 ng/ml 

Nominal Determined Accuracy Precision 
concentration concentration 

(ng/ml) (ng/ml) (RE) (CV) 

0.5 0.49±0.01 2.0% 4.5% 
1 0.90±0.09 10.0% 6.0% 
2.5 2.58±0.08 3.2% 6.7% 
7.5 7.23 ±0.27 3.6% 11.0% 
20 20.42±0.42 2.1% 1.7% 
50 49.14±0.86 1.7% 1.6% 
100 97.30 ± 2.70 2.7% 2.2% 
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Table 2. Inter- and intra-assay accuracy and precision of CSUOH0901 in rat plasma 

Intra- assay Inter- assay 

Spiked Determined Accuracy SD Precision Determined Accuracy SD Precision 
(ng/ml) (ng/ml) (%RE) (CV) 

1.25 1.39 11.2% 0.04 2.9% 
10 10.26 2.6% 0.18 1.8% 
80 78.52 1.9% 1.44 1.8% 

Accuracy and precision 

Intra- and inter -assay accuracies of the validated method ranged 
from 1.9 to 11.2% and from 0.5 to 11.2%, respectively. The intra-
and inter-assay precision values ranged from 1.8 to 2.9% and 
from 4.5 to 5.5%, respectively. The inter- and intra-assay accuracy 
and precision of the QC samples are depicted in Table 2. 

Extraction recovery and matrix effect 

The absolute recoveries of the extraction method were 104.0, 
105.0 and 104.0% for the QC standards at 1.25, 10, and 80 
ng/ml, and the relative recoveries of the extracted method were 
99.9, 96.1 and 97.7% for the QC standards at 1.25, 10, and 80 
ng/ml, respectively, as indicated in Table 3. Absolute matrix ef-
fects for each of three plasma samples at 1.25, 10, and 80 
ng/ml were 5.5, 8.1 and 9.9%, and relative matrix effects were 
2.6, 5.1 and 12.4% indicating the minimal matrix effect. Hence, 
the protein precipitation technique for sample preparation was 
found to be effective, as it not only extracted the analyte and in-
ternal standard well but also removed impurities causing inter-
ferences from the sample matrix. 

Performing MRM confirmed the absence of significant matrix 
effect by comparing the peak areas ratio of CSUOH0901 MRM 
transitions (MRM 1, m/z 483.2 ---->404.3; and MRM2 , m/z 483.2 
----> 119.0) for the spiked rat plasma samples with the average 
peak area ratio for seven calibrators: 

MRM ratio = peak area MRM 1 /peak area MRM2 (1) 

The average MRM ratio of the seven calibrators was 1.5 ±1.9 
(±SD). This confirmed the absence of matrix effect in the plasma 
samples and that they are in the acceptable range. 

Stability 

CSUOH0901 was stable for at least 8 h at room temperature 
(bench top) and for 10 h when postextracted at room tempera-
ture and the results were summarized in Table 4. The recovery of 

Table 3. Absolute and relative matrix effect and recovery of 
CSUOH0901 in rat plasma 

Concentration Matrix effect Recovery 
of QC samples 

Absolute Relative Absolute Relative (ng/ml) 

1.25 5.5% 2.6% 104.0% 99.9% 
10 8.1% 5.1% 105.0% 96.1% 
80 9.9% 12.4% 104.0% 97.7% 

(ng/ml) (RE) (CV) 

1.39 11.2% 0.07 5.0% 
10.35 3.5% 0.46 4.5% 
79.58 0.5% 4.36 5.5% 

Table 4. Stabilities of CSUOH0901 under various conditions 

Stability Concentration Recovery 
(ng/ml) (%) 

Bench-top (8 h) 1.25 112.0% 
At room temperature 80.00 99.1% 

Freeze-thaw (three cycles) 1.25 112.0% 
80.00 104.5% 

Post-extraction (10 h) at room 1.25 106.4% 
temperature 80.00 97.8% 

Table 5. Stabilities of CSUOH0901 and JCC76 Stock solutions 
after storage at 20° ( for 6 months 

Type of solutions Concentration Recovery (%) 

CSUOH0901 stock solution 1 mg/ml 111.8% 
JCC76 stock solution 1 mg/ml 106.0% 
CSUOH0901 working solution 25 ng/ml 99.6% 

1600 ng/ml 105.0% 
JCC76 working solution 150 ng/ml 124.6% 

CSUOH0901 was 112.0% at LQC and 104.5% at HQC levels after 
three freeze-thaw cycles. Stability studies of stock solutions and 
working solutions of CSUOH0901 and internal standard (JCC76) 
were performed by storing them at 20° ( for at least 6 months. 
The analyte and the internal standard were found to be stable in 
stock solutions and the results are summarized in Table 5. 

Conclusion 
In conclusion, a highly sensitive LC-MS/MS method for the quan-
titation of CSUOH0901 in rat plasma was developed and vali-
dated for the first time. The method developed has a short run 
time of 18 min employing a simple one-step sample preparation. 
The accuracy and precision were <10% and the LLOQ was as 
low as 0.5 ng/ml. The results from the validation studies illus-
trated that this method can be used to determine the pharma-
cological and toxicological profiles of CSUOH0901 in rats. 
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