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CHARACTERZATIO� A�D EVOLUTIO� OF THE SERH IMMOBILIZATIO� 

A�TIGE� GE�ES I� TETRAHYME	A THERMOPHILA 

CHRISTOPHER THOMAS MCGI��ESS 

ABSTRACT 

Tetrahymena thermophila express a major cell surface protein known as the 

immobilization (i-) antigen which coats the entire cell surface including the cilia. T. 

thermophila has several different i-antigens which are expressed in a mutually exclusive 

manner under varying environmental conditions. When the genes for these i-antigens 

were sequenced it was found that they encode proteins consisting of imperfect repeats 

with cysteine periodicity. The best characterized of these i-antigens are those specified by 

alleles at the SerH i-antigen locus. The H proteins all contain a section of 8-cysteine 

containing imperfect repeats. The presence of repeats allows for the possibility that SerH 

genes evolve, at least in part, by concerted evolution, a process in which the repeats of 

the gene evolve together so that the repeats within one sequence would be more similar to 

each other than they would be to the repeats of any other sequence. A previous study 

(Mol. Biol. Evol. 23: 608-614) found evidence that SerH genes evolve via a mix of 

vertical transmission and concerted evolution. This study characterized 20 SerH alleles 

from wild samples and further explored the mode of evolution of SerH i-antigen. Using 

bioinformatic tools, SerH alleles were characterized with respect to nucleotide diversity, 

repeat structure, codon usage, and sequence evolution. The encoded proteins were 

examined for amino acid composition, cysteine periodicity, and potential secondary 

structure. A model of the i-antigen structure was presented. Standard bioinformatic tests 

for evolution provided no evidence that SerH genes are positively selected. Neighbor-
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joining trees of the 8 cysteine-containing confirm that SerH genes evolve through a mix 

of primarily vertical transmission and concerted evolution. 
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CHAPTER I 

INTRODUCTION 

Free living ciliates such as Paramecium and Tetrahymena express a major cell 

surface protein known as the immobilization (i-) antigen which coats the entire cell 

surface including the cilia (Beale and Kacser 1957). These i-antigens were first 

discovered in Paramecium, then in Tetrahymena and other ciliates (Beale and Kacser 

1957; Nanney 1960). These proteins are known as immobilization antigens because they 

were historically studied using a simple assay in which antibody mixed with living cells 

caused them to cease swimming.  By assaying various wild isolates and inbred strains 

grown under different environmental conditions, it was found that cells possess an array 

of i-antigens, each detectable by a specific antibody (Nanney 1960). The i-antigen present 

was said to be the serotype. Using antibodies to biochemically purified antigen, Smith et 

al (1992) showed that the various i-antigens are usually present as a single molecular 

species, consistent with original observations that i-antigens are expressed in a mutually 

exclusive manner. Because 1) they are in direct contact with the environment, 2) they are 

so variable and 3) cells are never without i-antigen, they are likely important molecules. 

The function of i-antigens is unknown. 
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With the advent of recombinant DNA technology, i-antigen genes of Paramecium 

and then Tetrahymena were cloned and sequenced. The most striking similarity between 

the different i-antigens of different ciliate species is that they are composed of imperfect 

repeats containing periodic cysteines. This includes i-antigens of Paramecium (Prat et al. 

1986; Nielsen et al. 1991), Tetrahymena (Deak and Doerder 1995; Tondravi et al. 1990), 

the fish parasite Ichthyophtherius (Clark et al. 1995) and the predatory ciliate Lembadion 

bullinum (Peters-Regehr, Kusch, and Heckmann 1997), as well as the diplomonad 

parasite Giardia lamblia (Gillin et al. 1990) and the parasitic fungus Pneumocystis carinii 

(Kovacz et al. 1993). This structure of imperfect repeats containing periodic cysteines 

seems to be conserved among surface antigens (Simon and Schmidt 2006) and will be 

discussed in greater detail below as it suggests a common tertiary structure.   

The i-antigens of Paramecium and Tetrahymena are similarly rich in alanine, 

cysteine, serine and threonine (Gerber et al. 2002) and are attached to the outer 

membrane by GPI linkage (Azzouz et al. 1990, Ron et al 1992).  Eleven serotypes (i-

antigens) have been described for Paramecium tetraurelia stock 51. The genes encoding 

these i-antigens have been sequenced (Preer et al. 1985; Nielson et al., 1991; Scott et al., 

1993; Breuer et al., 1996) and encode large molecules of 2100-2700 amino acids with 

molecular weights on reducing SDS gels of 250–300 kDa (Forney et al. 1983; Hansma 

and Kung 1975).  When the first i-antigen gene of Paramecium (the gene encoding 

serotype 51A) was sequenced (Preer et al. 1985), it was found to encode a protein having 

37 imperfect repeats each containing eight cysteines. The sequence also showed that 

Paramecium do not use the standard genetic code. In both Paramecium and Tetrahymena 
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(Horowitz and Gorovsky, 1985) traditional stop codons UUG and UUA specify 

glutamine.  

T. thermophila i-antigen genes encode much smaller antigens ranging from 25 to 

59 kDa (Gerber et al. 2002; Smith et al. 1992). Whereas the larger i-antigens from 

Paramecium contain 30-37 imperfect repeats marked by eight periodic cysteines (Nielson 

et al., 1991; Scott et al., 1993; Breuer et al., 1996) the smaller T. thermophila H i-

antigens contain 3.5  imperfect repeats (three full repeats and one half repeat)with eight 

periodic cysteines. As with the surface proteins of many parasitic protists mentioned 

above (Kusch and Schmidt, 2001), the T. thermophila genes encode modular proteins, 

composed of tandem imperfect repeats containing even numbers of periodic cysteines, 

specifically 6, 8, 10 or 12 (Table I). 

As in Paramecium, T. thermophila is capable of expressing multiple i-antigens.  

These include the L, H, T, J, K, I, S, M, and P i-antigens which are expressed under 

varying environmental conditions (Table I) (Smith et al., 1992; Saad and Doerder 1995; 

Doerder personal communication). Each of these variant surface proteins is specified by 

genes at unlinked loci (Doerder and Berkowitz, 1986).  
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Table I: Properties of the Various Antigens of T. thermophila 

Antigen Condition of 

Expression 

�o. of 

Isoforms 

Molecular 

Weight 

Cysteines 

Per Repeat 

H1 20 – 36°C 1 52,000 8 

H2 20 – 36°C 1 44,000 8 

H3 20 – 36°C 1 52,000 8 

H4 20 – 36°C 1 49,000 8 

H5 20 – 36°C 1  8 

H6 20 – 36°C 1  8 

J 20 – 36°C 1  10 

K 20 – 36°C 1  unknown 

T1 > 36°C 1 25,000 unknown 

T2 > 36°C 1 25,000 unknown 

T3 > 36°C 5-8 36,000 – 52,000 unknown 

S 0.2M NaCl in medium 1 50,000 unknown 

I antibody in medium 2 (4) 30,000 – 32,000 

56,000 – 59,000 

12 

L < 20°C 3-5 41,000 – 52,000 6 

M 20 - 36°C mutant 1 51,000 unknown 

P 20 - 36°C mutant 1 53,000 unknown 

Sources: (Doerder and Berkowitz 1986; Smith et al. 1992; Saad and Doerder 1995; 

Doerder 2000 Gerber et al. 2002; Doerder and Gerber 2000; Doerder 2000; Doerder 

unpublished) 

 

Various temperature conditions induce the expression L, T, and H (J and K). The 

SerL genes are expressed at temperatures 20°C (Juergensmeyer, 1969). The SerT genes 

are expressed at temperatures above 36°C (Smith et al. 1992) and have 3 allelic variants 

(Phillips, 1967). The SerH, SerJ and SerK genes are expressed when the Tetrahymena are 

grown in the intervening normal temperature range (Loefer and Owen 1961; Saad and 

Doerder 1995). The expression of genes at these three loci is mutually exclusive and 

involves dominant epistasis (Doerder 2000). The stability of mRNA plays a major role in 

regulating expression of the SerH genes (Love et al. 1988; McMillan et al. 1995; Tondavi 

et al. 1990). For example, the half life of the H3 encoding mRNA is 1 hour at 30°C, but 

only 3 minutes at 40°C (Love et al. 1988).  The SerS gene is expressed in media 
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containing 0.2 M NaCl (Grass 1972), and the SerI genes are expressed when H-

expressing cells are grown in allele-specific anti-H (Juergensmeyer 1969). The P and M 

antigens are expressed on the surface of mutant Tetrahymena strains (Doerder and 

Berkowitz 1987). SerH, SerL and SerJ genes have been sequenced (Doerder 2000; 

Doerder and Gerber 2000; Gerber et al. 2002). Gerber used five alleles and Katz used 11 

SerH alleles, of which six were atypical. Though the genome of T. thermophila has been 

sequenced, there is only tentative identification of the genes encoding other i-antigens 

except for SerI. That is to say that there are sequenced areas in the genome whose 

putative amino acid sequences seem to indicate that they code a surface antigen (Doerder, 

personal communication). Of the surface antigens, the SerH locus is the most studied and 

best characterized.   

 

1.1 The SerH Gene 

The SerH locus is highly polymorphic. Inbred strains constructed by 1960 

(Nanney 1960) had four alleles, more than any other genetic locus.  Subsequently, the 

Doerder lab found additional alleles in wild isolates which were studied both by Gerber et 

al. (2002) and Katz et al. (2006). The study by Katz (2006) formed the basis of this 

project. That study utilized 11 SerH alleles, five of which were considered typical. The 

SerH alleles encode single polypeptides of about 400-450 amino acids with 

electrophoretic mobilities of 44,000 - 52,000 and isolectric points of 4.1 to 4.5 (Doerder 

and Berkowitz 1986). There is relatively little cross-reactivity among the antisera for the 

SerH alleles (Loefer and Owen 1961), except anti-H1 and H3 and anti-H3 and H1 

occasionally cross react (Doerder and Berkowitz 1986). Also, cells expressing SerH6 are 
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recognized by both anti-H1 and anti-H3 sera (Gerber et al. 2002). The H proteins 

typically consist of 3.5 imperfect repeats each containing 8 periodic cysteines (Fig. 1, 

Fig. 2). They also contain a leader sequence, which contains 10 cysteines and an ER 

translocation signal, as well as a carboxyl terminus of about 27 amino acids containing 

the GPI addition site.   

SerH alleles from T. thermophila populations showed considerable sequence 

variation (Gerber et al. 2002); however, the overall protein structure, the hydrophobicity, 

and the cysteine periodicity were highly conserved. The SerH alleles also showed ratios 

of nonsynonymous to synonymous amino acid substitution rates that were < 1 in pairwise 

maximum likelihood tests suggesting that these alleles are not under any positive 

selection (Gerber et al. 2002). The same study also performed both Tajima (1989) and Fu 

and Li (1993) tests for selection. Both tests showed no evidence of positive selection. 

These results were interpreted to mean that SerH alleles are selectively neutral, with 

deleterious alleles removed by purifying selection (Gerber et al. 2002).   

 

Fig. 1 Overall Structure of the SerH Gene  

 

 

 

 

 

Cysteine 

�H3
+ 

GSignal 

peptide 
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Fig 2a Amino Acid Sequence for a SerH3 Allele Showing 3.5 Repeats and Periodic 

Cysteines 

SerH3 (Genbank AF190647.1 Deduced Amino Acid Sequence) 
 

MQNKTIII CLIISQLLVSVFSSAGGQAN CTGVAAGTD CASV CGVPTVAGTGTTA CSWVSSSTLTT CTVTD CT CLTTGTVTGITNLNDQF CTS 

CKGSTSNTYANGAGTA 

 

CVAASAS  CNSTIRGTTA---WTVGD CTV  CTPTTPALVGST          CKA  CNTISSAWTDAN CAA   CASTSTPKGNTNFANSAGTA  

 

CVNASAT  CASGSRGTTAANAWTVAD CLA  CTPATPVFVPAASPAVTTS   CVA  CSAATSGLNDAL CNA   CASSASPAAKTTFANTAGSA 

 

CVASSAT  CTAGSRGTTAANAWTAAD CLA  CTPATPAVQFGASPATTSS   CVA  CNTINSGWTDAN CNS   CAMAASPQTKNIVAKADGSA 

 

CVAAVFS  CTQSARGSNK---WTNAD                                              CAA   CNGTAANANQ--YASADGST 

 

CQATQASSTFSGQIFVSILLVLSALLI* 

 

Aligned by the cysteines (highlighted) in the repeats. This particular SerH3 allele has 3.5 

imperfect repeats.  

 

Pink – Putative ER Translocation Signal    Black – Leader Sequence   Red – First Repeat 

Blue – Second Repeat  Green – Third Repeat   Orange – Fourth Repeat (Half Repeat) 

Indigo – Ending Sequence (including GPI linkage site) 

 

 

Fig 2b Cartoon Representation of Repeats in SerH 

 

 
 

Blue represents the cysteine location. Note that the first part of the final half repeat is 

most similar to the front quarter of the full repeats and the second part most similar to the 

last quarter of the full repeats.  

 

1.2 Ciliate �uclear Dimorphism 

In ciliates, including T. thermophila, the cell contains two separate nuclei. The 

germline micronucleus (MIC) is diploid, transcriptionally inactive and gives rise to 

meiotic products which are exchanged during conjugation. The much larger 

macronucleus (MAC) is the site of gene expression (reviewed in Jahn and Klobutcher 

2002; Yao, Duharcourt and Chalker, 2002; McGrath and Katz, 2004). 
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The macronucleus is a rearranged copy of the micronucleus (reviewed in Jahn and 

Klobutcher 2002). This rearrangement occurs during macronuclear development at 

conjugation (Fig. 3) and involves many editing processes such as DNA sequence 

elimination, chromosome fragmentation, addition of telomeres and differential gene 

amplification (Fig 4). The fragmentation of the five micronuclear chromosomes in T. 

thermophila is controlled by cis-acting elements known as the chromosome breaking 

sequences, which are flanked by telomere addition zones (reviewed in Jahn and 

Klobutcher 2002).    

 

Fig. 3 The Process of Conjugation in T. thermophila 

 

The process of conjugation in T. thermophila. Germ line micronuclei are exchanged 

at conjugation, the macronucleus is degraded and the fertilization nuclei give rise to a 

new macronucleus. (Jahn and Klobutcher 2002).  
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Fig. 4 Relationship between the Macronucleus and the Micronucleus 

 

The five micronuclear chromosomes are split into the approximately 225 maconuclear 

chromosomes in T. thermophila which are maintained at a copy number of ~45. (Eisen et 

al. 2006). Blue indicates internally deleted sequences, red indicates chromosome 

breakage sites and green indicates telomeres.  

 

 

 The mature T. thermophila macronucleus contains about 45 copies each of ~225 

macronuclear chromosomes (Eisen et al. 2006) and ~ 10,000 copies of the ribosomal 

DNA (rDNA) chromosome Yao et al. 2002). The sequenced MAC genome is estimated 

to contain 27,000 protein encoding genes (Eisen et al. 2006). Because the total genome is 

about 22%GC, genes typically are recognized, in part, by their higher %GC reflecting the 

need to use G and C containing codons. 

 

1.3 Macronuclear Sorting and Recombination 

 Though the micronucleus is diploid, the much larger macronucleus with ~45 

copies of most genes is functionally haploid.  This is because during vegetative 

propagation the macronucleus undergoes what is called phenotypic assortment (Fig 5). It 

was discovered early that if a T. thermophila cell at the end of conjugation begins with 

copies of two alleles (e.g., SerH1/SerH4), its descendants (via binary fission) will assort 

into lines in which the macronucleus is wholly one allele or the other at that locus. This 
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discovery was first made in the mating-type system (Allen and Nanney 1958) and then 

found to apply to all macronuclear genes (Doerder et al. 1991). Molecular analysis shows 

that assortment is due to actual loss of the allele. This means that the macronucleus is 

functionally homozygous and haploid, even though it has >10X the gene copy number of 

the micronucleus. This also means that PCR typically amplifies only one allele. Because 

the MAC is made up of around 225 chromosomes (Eisen et al. 2006) it can be assumed 

that, barring recombination, the loci on each chromosome assort together. These loci 

form a co-assortment group (Wickert et al. 2000). It is also of note that genetic markers 

destined for a particular MAC co-assortment group are found together in the MIC, 

uninterrupted by any markers destined for a different co-assortment group (Wickert et al. 

2000).  

 

Fig. 5 Phenotypic Assortment 

Wickert et al 2000 

A: Phenotypic (macronuclear) assortment: The circles represent the MAC, the oblong 

shapes an amitotically dividing MAC. The lines represent a single MAC chromosome (3 

of 45 copies shown).  

B: Crossing over of the MAC chromosomes can create recombinants, but are rare 

(Wickert et al. 2000).   
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Recombination during macronuclear division in T. thermophila is a fairly rare 

event, estimated at less than 1% among two sets of co-assorting markers (Longcor et al. 

1996). The distance between the markers in one instance of recombination that was found 

was estimated to be greater than 100kb (Longcor et al. 1996). There was, however, 

significant recombination between two independently obtained nonsense mutations in the 

SerH1 allele (Deak and Doerder 1998). The homozygotes for mutations SerH1-1 and 

SerH1-2 did not express the H1 i-antigen, but the heterozygote (SerH1-1/ SerH1-2) 

always expressed the H1 allele under the appropriate conditions. Molecular study of these 

mutations, separated by 726 nucleotides, showed a 30% recombination rate generating a 

stable, functional SerH1 allele in heterozygotes (Deak and Doerder 1998).  Because this 

recombinant allele is found in the macronucleus, it was not transmitted to progeny at the 

next conjugation. 

 

1.4 The Evolution of SerH 

The SerH genes of T. thermophila and their presumed homologs in other ciliates 

are little studied with respect to their mode of evolution. There are two principle studies, 

Gerber et al. (2002), which was discussed above, and Katz et al. (2006). The Katz study 

of SerH alleles, looking only at the imperfect cysteine repeats, suggested that these alleles 

evolve by a mix of concerted evolution as well as vertical transmission. This particular 

study was undertaken after Lynch (Lynch and Connery 2003) noted that the SerH 

polymorphism observed by Gerber et al. (2002) gave an unusually high estimate of 

effective population size (Ne). In fact, it placed the effective population size of T. 
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thermophila on the same order as some prokaryotes. This was much higher than any 

previous estimate and because of this Katz attempted to determine if there was anything 

unusual at the SerH locus as compared to other T. thermophila genes, both nuclear and 

mitochondrial. Katz found that the SerH locus of T. thermophila has a significantly 

higher amount of variation than do five other nuclear loci including actin, Ef1α, SSU – 

rDNA, αtub and one mitochondrial mt-SSU (Katz et al. 2006). 

In an attempt to explain the high variation at the SerH locus Katz et al. (2006) 

investigated the evolution of SerH by using sequences of the first three full individual 

imperfect repeats of 11 SerH alleles to construct phylogenetic trees. The phylogenetic 

relationship among the repeats showed a mode of evolution that was a mix between 

concerted and vertical transmission. 

 Vertical transmission (Fig. 6) refers to the passing of genetic information from 

one generation to the next via standard hereditary mechanisms. If a gene composed of 

repeats, such as the SerH gene, is undergoing vertical transmission it would be expected 

that each repeat is more similar to that same repeat in another allele than to the other 

repeats in the same allele. That is, repeat 1 from allele A would be more similar to repeat 

1 from alleles C, D, and E, than it would be to the repeats 2 and 3 from allele A.  

  Concerted evolution describes the situation where members of a repetitive gene 

family evolve in concert as a unit. A mutation in one repeat spreads through the family. 

There are several mechanisms that can lead to this homogenization of repeats including 

whole gene duplication, transposition and gene conversion (reviewed Nei and Rooney 

2006). If concerted evolution is at work, repeats within one allele will show more with 

one another than with the repeats of other alleles. Examples of concerted evolution are 



13 

well documented in the operons encoding rRNAs 16S, 23S, and 5S in Escherichia coli 

(Blattner et al. 1997), For example, the sequence divergence of all seven 16S rRNA 

genes is only 0.195% in E. coli strain K-12, whereas, in a closely related bacterial 

species, Haemophilus influenzae, the coding regions of six ribosomal operons are entirely 

identical (Fleischmann et al. 1995). In most eukaryotic organisms, the genes encoding 

ribosomal RNA are tandemly arrayed and undergo concerted evolution (Arnheim et al. 

1980, Coen et al. 1982, Schlotterer and Tautz 1994). The R	U2 locus of primates which 

encodes U2 snRNA is another well documented case of concerted evolution. The R	U2 

locus has been evolving concertedly >35 Myr since the divergence of baboons and 

humans. Thus the repeat units of the tandem array are essentially identical within each 

species, but differ between species (Pavelitz et al. 1995).  

 

Fig. 6 Vertical Transmission and Concerted Evolution 

 

 A: The repeats from each allele show more similarity to the same repeat of other alleles 

than to the repeats from within that same allele. B. The repeats from within each allele 

are more similar to one another than to the repeats from other alleles (From Katz et al. 

2006). 
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In this study SerH nucleotide sequences were examined from 20 wild lines of 

Tetrahymena thermophila collected in the Allegheny National Forest. These sequences 

along with the published sequences of the SerH1, SerH3, SerH4, SerH5, and SerH6 

alleles, obtained from Genbank, and their putative amino acid sequences were analyzed 

in toto to determine the phylogenetic relationships among samples. The sequences of the 

repeats making up the SerH genes were analyzed to determine whether the mixed 

evolutionary mechanism proposed in Katz holds true. In addition, the ER-transmembrane 

signal containing leader sequences (amino end) as well as the carboxyl terminus 

containing the GPI-linkage site were analyzed to provide as much information as possible 

about the SerH alleles.  
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CHAPTER II 

MATERIALS AND METHODS 

Twenty-one wild SerH sequences were provided by the Doerder lab, one was 

discarded as it was not unique. Also, the five sequenced SerH alleles were retrieved from 

Genbank. This study focuses on sequence variation and not population parameters thus 

justifying elimination of the duplicate sequences. Alleles and their properties are shown 

in Table II.  

 

2.1 Collection, Culture, D�A extraction and Sequencing 

Tetrahymena thermophila were collected in water samples from two ponds in the 

Allegheny National Forest in PA. The samples were isolated and grown at 28° in PPY 

medium consisting of 1% w/v proteose peptone, 0.15% w/v yeast extract and 0.005M 

FeCl3. Whole cell DNA was isolated using a modified microwave extraction method 

(Goodwin, 1993).Typically, cells of 8-14 ml of a 2-3 day old culture (stationary phase) 

were pelleted by low speed centrifugation, washed once with 0.01M pH 7.4 Tris-HCl 

buffer (PPY only), and resuspended in ~0.25 ml of residual medium or buffer to which 

was added 100 µl of DNA extraction buffer (50 mM Tris-HCl pH 7.4, 50 mM EDTA, 3% 

w/v SDS). Following three 10 second pulses of a 750 watt microwave on high setting, 
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another 200 µl extraction buffer and 10 µl of RNaseA (10 mg/ml) were added, and the 

mixture was incubated at room temperature for 10 min. The DNA mixture was then 

transferred to a 1.5 ml microcentrifuge tube, extracted with 400 µl phenol/chloroform, 

and after centrifugation for 5 min at 12g, the aqueous layer (~400 µl) was transferred to a 

fresh tube. After addition of 15 µl 3M sodium acetate, DNA was precipitated with 300 µl 

isopropanol (20 min. on ice or overnight at -20°) and the pellet was washed with 70% 

ethanol. The DNA was dried under a vacuum, resuspended in 20-30 µl dH2O and used 

directly or diluted in standard PCR amplification using Z-Taq (TaKaRa) and AT/CT 

primers (AT: GTAAAACAAAACTATAATAATTTG; CT: 

TCAAAAAGTGCAATTTTAAATTC). These products were cloned into SURE cells 

using the pGEM Teasy kit. The plasmids were purified with a Qaigen kit and were 

sequenced at the CSU sequencing facility.  

 

2.2 Sequence Analysis 

Sequence files were first assembled into complete alleles (~1.3 kb) with the 

Geneious software package (Drummond et al. 2009). These files were then translated by 

Geneious using the ciliate nuclear genetic code to obtain the putative amino acid 

sequences.  

Both the nucleotide and putative amino acid sequences were exported as FASTA 

files. Seqverter (http://www.genestudio.com/seqverter.htm) was used to combine 

individual FASTA files into multiple FASTA files which were imported into the MEGA 

4 software package (Tamura et al. 2007). Alignments of both the nucleotide and putative 

amino acid sequences were performed by ClustalW in MEGA 4 with a gap opening 



17 

penalty of 15 and a gap extension penalty of 6.66 for nucleotide alignments and a gap 

opening penalty of 10 and extension penalty of 0.1 for amino acid alignments.  

Alignments were then adjusted by eye if necessary. Sequence analysis for G + C content, 

codon usage and relative synonymous codon usage were performed with MEGA 4. 

Comparisons of codon usage were made to the P. tetraurelia 51A gene, obtained from 

Genbank (Nielson et al. 2000) and from a collection of 283 T. thermophila protein coding 

genes at the Codon Usage Database < http://www.kazusa.or.jp/codon/> (Nakamura et al. 

2000). The graph of G + C content was made using the G/C content/skew program at the 

Nano+Bio-Center website < http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/GC/>. Each sample was run with a window of 100 and 

stepping of 10. The average G + C content was then graphed against nucleotide position 

from 0 – 1241. The DNAsp software package (Rozas et al. 2003) was used to calculate 

codon usage bias (NC). DNAsp was also used to calculate and graph nucleotide diversity 

along the sequence. 

The deduced amino acid sequences were then all run through the big-PI predictor 

(Eisenhaber et al. 1999) at the ExPASy (Expert Protein Analysis System) proteomics 

server from the Swiss institute of bioinformatics (Gasteiger et al. 2003) to determine the 

GPI anchor site. SOSUI (Hirokawa et al. 1998) and the NetSurfP server (Peterson et al. 

2009) were used to predict any alpha-helices in the SerH proteins.  

 

2.3 Analysis for Selection 

To determine the ratio nonsynonymous to synonymous nucleotide substitutions 

(dN/dS  or ω) the full SerH nucleotide sequences were aligned by translation in Geneious 
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and exported as a fasta file. Then dN/dS analysis was done with the HyPhy software 

package (Pond et al. 2005) on the Datamonkey.org web server (Pond and Frost 2005) 

using the SLAC algorithm with the REV nucleotide substitution model (Pond and Frost 

2005, 2).   

Two other tests for neutrality were then performed on the aligned sequences. 

Tajima’s D test (Tajima 1989) and Fu and Li’s D test (Fu and Li 1993) were performed 

with the DNAsp software package (Rozas et al. 2003).  

 

2.4 Phylogenetic Analysis 

From the alignments, MEGA 4 was used to calculate pairwise distance between 

the sequences and to build phylogenetic trees via neighbor joining with bootstrap tests of 

500 replicates.  

The full sequences, both nucleotide and amino acid, were then broken into the 

leader (amino terminus), each full (8-cysteine containing) imperfect repeat, the  4-

cysteine half imperfect repeat and the carboxyl terminus (Fig. 2). The putative amino 

acids sequences were separated and converted into an individual FASTA file. The 

nucleotide sequences were then separated in the same manner using the putative amino 

acid sequences as guides. 

The 77 sequences (77 nucleotide and 77 putative amino acid) of complete repeats 

were then aligned with ClustalW MEGA 4 as above, pairwise distance was computed and 

phylogenetic trees were built from the alignments by neighbor-joining as they were from 

the complete sequences. The nucleotide repeat sequences were then split into 4 cysteine 

containing half repeats (each half labeled “a” or “b”) using the putative amino acid 
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sequences as guides. These 179 half-repeat sequences were then aligned in MEGA 4 and 

from them, neighbor joining trees were built as in Katz (2006).  

The neighbor joining trees were all analyzed to determine whether the SerH showed a 

pattern of evolution consistent with vertical transmission, concerted evolution, or a mixed 

evolution. 



 

Table II: Information about the SerH Sequences Used in This Study 

Sequence Obtained 
Genbank 

Accession # 
Number of 
Repeats 

Length 
(BP) 

Length 
(AA) Water Name Date State 

18217-2 Cloned  3.5 1265 422 CRWP 8/16/2001 PA 

18217-4 Cloned  3.5 1262 422 CRWP 8/16/2001 PA 

18218-4 Cloned  3.5 1274 424 CRWP 8/16/2001 PA 

18219-4 Cloned  3.5 1251 416 CRWP 8/16/2001 PA 

18221-4 Cloned  3.5 1275 424 CRWP 8/16/2001 PA 

18222-4 Cloned  3.5 1250 416 CRWP 8/16/2001 PA 

18226-2 Cloned  3.5 1249 416 CRWP 8/16/2001 PA 

18230-1 Cloned  3.5 1241 415 CRWP 8/16/2001 PA 

18234-1-1 Cloned  3.5 1265 421 CRWP 8/16/2001 PA 

18235-2 Cloned  3.5 1274 423 CRWP 8/16/2001 PA 

18247-2 Cloned  3.5 1274 424 SG29 8/17/2001 PA 

18249-1 Cloned  3.5 1250 416 SG29 8/17/2001 PA 

18252-4 Cloned  3.5 1275 424 SG29 8/17/2001 PA 

18253-3 Cloned  3.5 1273 424 SG29 8/17/2001 PA 

18253-4 Cloned  4.5 1429 473 SG29 8/17/2001 PA 

18262-1 Cloned  3.5 1275 424 SG29 8/17/2001 PA 

18266-2 Cloned  4.5 1429 475 SG29 8/17/2001 PA 

18267-1 Cloned  3.5 1249 415 SG29 8/17/2001 PA 

18278-3-1 Cloned  3.5 1267 421 CRWP 8/21/2002 PA 

18280-1 Cloned  2.5 959 319 CRWP 8/21/2002 PA 

Genbank H1 Genbank U15793.2 3.5 1311 436   MA 

Genbank H3 Genbank AF190647.1 3.5 1272 423   MA 

Genbank H4 Genbank AF425241.1 3.5 1191 397   PA 

Genbank H5 Genbank AF425242.1 3.5 1185 429   PA 

Genbank H6 Genbank AF425243.1 3.5 1263 421   PA 
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CHAPTER III 

RESULTS 

 This project analyzed the sequences of 20 unique SerH sequences from cells 

collected in two ponds (12 and eight sequences respectively) of the Allegheny National 

Forest in western Pennsylvania. These 20 were supplemented with 5 of the alleles used 

by Katz et al. 2006, the same alleles labeled H1-H6 in Gerber et al., (2002) obtained from 

Genbank (Table II). For the 20 unpublished alleles, chromatogram files were edited and 

assembled as described in Materials and Methods.  

 

3.1 Characterization of SerH Genes  

The nucleotide sequences of the 20 non-identical wild lines plus the 5 SerH allele 

exemplars from Genbank had an average G + C content of 40.6%. This is consistent with 

a study of 75 protein coding nuclear gene sequences in which the average G + C content 

was 38% with a range of 25-49% (Wuitschick and Karrer 1999). It is, however, 

considerably higher than the 27.6% G + C content of predicted exons from the complete 

macronuclear sequence (Eisen et al. 2006).  The deduced amino acid sequences showed 

SerH to be rich in alanine (18.7%), threonine (15.8%), serine (12.6%) and cysteine 

(9.37%) (Fig. 7). These sequences did not contain any histidine and only three sequences 
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had glutamic acid (1 residue each out of ~ 400). Aside from the lack of glutamic acid and 

histidine the deduced amino acid composition of SerH was very similar to that of the 

Paramecium tetraurelia 51A surface antigen (Preer et al. 1985) (Fig. 8). Notably, these 

proteins are rich in small amino acids and relatively deficient in large amino acids (e.g., 

phenylalanine and tryptophan).   

A codon usage analysis of these 25 nucleotide sequences showed that 11 codons 

were not used and five more were used five or fewer times out of 10,520 codons (Fig. 9). 

The codon usage pattern indicates a slight bias for AT rich codons as compared to their 

GC rich counterparts. Four codons had a relative synonymous codon usage (RSCU) 

index of above 2.5: AGA (5.89), CCU (3.03), GCU (2.97) and GGU (2.78) (Fig 10). 

RSCU values are the number of times a particular codon is observed, relative to the 

number of times that the codon would be observed for uniform synonymous codon usage 

(i.e. all the codons for a given amino-acid have the same probability). In the absence of 

any codon usage bias, the RSCU values would be 1.00 (Sharp et al. 1986). A RCSU 

value above 1.00 indicates a bias towards the use of a codon. Each of these codons has 

been found to be the most highly used for their respective amino acids (arginine (for 

which only one of six codons is used), proline, alanine and glycine respectively) in T. 

thermophila (Wuitschick and Karrer 1999). A comparison of the codon usage of these 25 

SerH sequences with a database of 283 T. thermophila protein coding genes showed a 

similar pattern of codon usage with the exception of the codons for the amino acids not 

used in SerH (glutamate and histidine) and one codon encoding the five most abundant 

amino acids in SerH (GCU-Ala, ACU-Thr, UCU-Ser, UGU-Cys and GGU-Gly) which 

were used at a much higher rate in SerH than over the 283 T. thermophila genes (Fig. 11). 



 

 

Fig. 7 Average Amino Acid Use of 25 SerH Deduced Amino Acid Sequences 
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Fig. 8 Comparison of the Amino Acid Composition of the 25 T. thermophila SerH Sequences to the P. tetraurelia 51A Surface 

           Antigen 
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 Fig. 9 Codon Usage of the 25 SerH Sequences 
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Fig. 10 Relative Synonymous Codon Usage of 25 SerH Sequences 
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Fig. 11 Comparison of the Average Codon Usage of 25 SerH Sequences to the Average of 283 T. thermophila Genes 
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A codon bias analysis found the average codon bias (Nc) of 25 SerH sequences to 

be 34.37. Nc, or number of effective codons is a codon bias analysis in which the 

homozygosity for each amino acid is estimated from the squared codon frequencies. This 

returns a value between 20 (when only one codon is effectively used for each amino acid) 

and 61 (when codons are used randomly). If the calculated Nc is greater than 61 (because 

codon usage is more evenly distributed than expected), it is adjusted to 61 (Wright 1990). 

This Nc value is indicates that SerH is a highly expressed gene in T. thermophila (Salim 

et al. 2007), which is consistent with other studied that show i-antigens are highly 

expressed (Leak and Forney, 1996; Gerber et al. 2002).  

Using the big-PI predictor (Eisenhaber et al. 1999) on each of the 25 deduced 

amino acid sequences, a consensus GPI anchor area was found in the carboxyl terminus. 

Each SerH sequences has a consensus CQAT at the beginning of the carboxyl terminus 

and in nearly every case the predicted GPI anchor site was in the 6 amino acid residues 

following the threonine, most commonly immediately after the threonine. However, the 

sequences with 4.5 repeats were predicted to have a weak GPI linkage site on a threonine 

nine amino acids after CQAT and the sequence with 2.5 repeats was also predicted to 

have a weak GPI linkage site at a serine three after CQAT. This is consistent with the 

idea that SerH alleles with 4.5 or 2.5 repeats are not expressed (see below). 

 Secondary structure predictions using SOSUI and NetSurfP (see Materials and 

Methods) suggested no alpha helical areas in the cysteine repeat section of the SerH 

deduced amino acid sequences except within the first few residues of the first repeat.  
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3.2 Cysteine Periodicity 

As described in Materials and Methods, nucleotide sequences of repeats were 

aligned using MEGA 4 as based on alignment of translated amino acid sequences.  As 

shown in Fig. 2, repeats contain indels (dashes) when compared to each other. Nucleotide 

alignment based on amino acid alignment accounts for indels and also provides for 

detection of synonymous vs. non-synonymous substitutions. 

All translated SerH sequences showed the expected imperfect repeats each 

containing 8 cysteines. They also showed the expected half repeat. Though most (22) had 

the typical 3.5 repeats, one had 2.5 and two had 4.5. The half repeat, containing four 

cysteines, was usually last. However, two sequences (18253-4 and 18266-2) had two full 

repeats followed by a half repeat followed by two more full repeats (Fig. 12b).  The final 

repeat of these two sequences was equal to the third (half) repeat repeated twice.  

 

Fig. 12a.  Different Cysteine Repeat Patterns: Standard 3.5 Repeats 

 
The normal pattern of SerH cysteine repeats three full repeats followed by a half repeat 

that resembles the front quarter and back quarter of the full repeats. Twenty-two of the 

sequences showed this pattern. 

 

Fig. 12b  New 4.5 Repeat Pattern 

 
Novel pattern of repeats seen in two sequences. 4.5 consisting of two full repeats 

followed by the half repeat followed by two more full repeats. Also, as indicated by the 

red line, the final repeat is the same sequence as the half repeat 2x.  
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Fig. 12c 2.5 Repeat Pattern 

 
This pattern of 2.5 repeats was seen in one sequence. It consists of two full repeats 

followed by a half repeat.  

 

The complete sequences themselves were highly variable. The average pairwise 

percent divergence between the nucleotide sequences was 21.2% (Table III)  and 26.9% 

for the deduced amino acid sequences These values were very similar to  those previously 

reported by Katz, 21.4% nucleotide divergence and 31.7% amino acid divergence (Katz 

et al. 2006). The percent sequence divergence varied across the molecule (Table III).  

When the sequences of all the full repeats (i.e. each imperfect 8-cysteine repeat 

taken as an individual sequence, excluding 4-cysteine half repeats) were analyzed, the 

nucleotide divergence was found to be 39.9% and that of the putative amino acid 

sequences was 46% (Table III).  

The G + C content was higher within the repeats (44.1%) than it was in either the 

leader sequence (37.8%) or the carboxyl terminus (31.2%) (Fig.13).   
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Table III: Comparative Sequence Analysis of SerH Sections.   

 G + C Content Mean Pairwise 

Distance 

Nucleotide 

Mean Pairwise 

Distance 

Amino Acid 

Leader 

Sequence 

37.8% 0.216 0.294 

First Full 

Repeat 

44% 0.212 

 

0.349 

Second Full 

Repeat 

45% 0.185 0.231 

Third Full 

Repeat 

43.8% 

 

0.170 0.219 

Carboxyl 

Terminus 

31.2% 0.018 0.047 

All Full 

Repeats 

44.1% 0.399 0.460 

Whole 

Sequence 

41.6% 0.212 0.269 

 

Fig. 13 Average G + C Content along 25 SerH Nucleotide Sequences 
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 From the alignment of the 25 nucleotide sequences the nucleotide diversity ( ) 

was calculated using the function in DNAsp. The nucleotide diversity ( ) in a sample of n 

haploid individuals
 
can be estimated by averaging the estimated numbers of nucleotide

 

changes (d) over all the pairs in the sample. The greatest variability is in the first 200 

nucleotides (Fig. 14). This also corresponds to an area of relatively high G + C content 

along the sequence (Fig. 13). This region has the highest amino acid diversity and is 

likely the region of the protein most exposed to the environment. 

 

 

Fig. 14 Mean Nucleotide Diversity Rate along 25 SerH Sequences  

 

 
 

 

3.3 Tests for Selection 

To determine whether there was any selection acting upon the SerH locus several 

analyses were performed. Using sequences aligned to their deduced amino acid sequence 

alignments the 25 SerH nucleotide sequences were found to have a mean rate of 
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nonsynonymous (dN) to synonymous (dS) of 0.825. A ratio ω (dN/dS) significantly > 1.0 

indicates positive selection, while ω < 1.0 indicates negative, or purifying, selection 

(Yang and Bielawski 2000). Tajima’s D test (Tajima 1989) and Fu and Li’s D test (Fu 

and Li 1993) were also performed and showed no evidence of positive selection at the 

SerH locus, again, indicating that the SerH alleles are selectively neutral and the locus is 

under purifying selection. 

 

3.4 Phylogenetic Analysis for Mode of Evolution 

As a first step in analyzing evolutionary relationships among the SerH alleles, 

phylogenetic trees were built using both the complete nucleotide sequences and the 

complete amino acid sequences. A neighbor joining analysis using the complete 

nucleotide sequences (Fig. 15) showed that 16 of the 20 wild alleles were most similar to 

the published SerH6 or SerH3 sequences and four (18253-4, 18266-2, 18267-1 and 

18280-1) more closely resembled SerH4 and SerH5. The tree built with nucleotide 

sequences showed only one difference from the tree built with the deduced amino acid 

sequences. In the amino acid sequence derived tree the sequence of wild line 18267-1 

was more closely related to the SerH3/H6 group then to SerH4/SerH5 (Fig 16).  

To assess the rates of vertical transmission and concerted evolution of SerH 

repeats, as in Katz et al. (2006), neighbor joining trees were constructed using each full 

repeat of the 25 SerH sequences as a separate sequence. That is, each sequence was 

separated into its imperfect repeats as in Fig. 2 and these imperfect repeats were used as 

individual sequences. The half repeats were not used. The resulting trees of 77 sequences, 

one based upon nucleotide sequences and one base on amino acid sequences, showed a 
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mixed mode of evolution for the SerH gene. In both the tree built on nucleotide 

sequences and the tree built on amino acid sequences the SerH6, SerH3 and the SerH6-

like and SerH3-like wild strains showed a standard vertical transmission pattern of 

evolution (Fig. 17 pink, green and orange sections). The only exception was the wild line 

18267-1 which aligned more closely to SerH4 and SerH5 in the whole nucleotide 

sequence neighbor-joining tree but more closely to SerH3/H6 in the putative amino acid 

sequence tree. This line showed standard vertical transmission with the SerH3/H6 – like 

sequences.  

The SerH1, SerH4 and SerH5 and the two wild sequences with 4.5 repeats  

(18253-4 and 18266-2) showed a pattern consistent with a mix of concerted evolution 

and vertical transmission (Fig. 17, blue section). The SerH1 repeats showed a different 

mixed transmission pattern than the SerH4, SerH5 and related sequences as did the wild 

line 18280-1, which only had 2.5 repeats. SerH1’s 1
st 

repeat was not closely related to 

anything else, its 1
st
  and 2

nd
 repeats appear on their own branch, most closely related to 

each other, and its 3
rd

 repeat is closely related to the 3
rd

 repeats of the H3/H6 group (Fig. 

17 yellow section).  18280-1’s 1
st
 and 2

nd
 repeats were most closely related to each other 

and its final (half) repeat was most closely related to the half repeats from the other 

sequences. 

A neighbor joining tree was drawn using each half-repeat unit as an individual 

nucleotide sequence (Fig. 18). The 8-cysteine repeats were split so that the second half of 

the repeat began with the 5
th

 cysteine (Fig. 2). This allowed for the half repeats of each 

SerH gene (e.g. the last half on a 3.5 repeat sequence) to be included. This tree (Fig. 18) 

again showed a pattern suggesting vertical transmission for H3, H6 and the 17 H3/H6 
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like wild lines and a mixed pattern of vertical transmission and concerted evolution for 

H4, H5 and the 3 wild sequences closely related to them. H1, once again, showed a 

mixed pattern of evolution, but did not fall on the same branches as the H4/H5 group.  

The half repeats, regardless of the number of full repeats in the sequence all sorted to the 

same branch of the tree. These half repeats appear to be most similar to the first two 

cysteines of the first full repeat and the final two cysteines of the final repeat (Fig. 2). 

That is to say that they look as if they are the remnants of a full repeat whose middle 

section had been removed. 

  

Fig. 15 Neighbor Joining Tree - Complete SerH Nucleotide Sequences  

-Major relationships are color coded.  
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Fig. 16 Neighbor Joining Tree: Complete Deduced Amino Acid Sequences 

-Major relationships are color coded.  
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Fig. 17 Neighbor Joining Tree of 77 Full (8-cysteine) Repeats.

This neighbor-joining tree is made from the 

nucleotide sequences of the full repeats (i.e. no 

half repeats, so for the 3.5 repeat sequences only 

the 3 whole repeats were included). 

The branch of the tree shaded in blue represents 

an area of mixed or non-vertical transmission. 

That branch is also shown in more detail. 

The other branches show vertical transmission 

with the exception of the yellow-shaded areas, 

which show the Genbank SerH1 sequence as 

well as the red outlined area that shows the 1st 

and 2nd repeats of sample 18280-1. SerH1’s 1st 

and 2nd repeats are on an independent branch 

(showing a concerted evolution pattern) and the 

3rd repeat is most closely related to the 3rd 

repeats of the SerH3/H6-like sequences. The 1st

and 2nd repeats of 18280-1 also are most closely 

related to one another. The shaded groups 

contain, from top to bottom: 2nd repeats (pink), 

SerH1 (Yellow), 3rd repeats (green), Mixed 

Section (blue), 1st repeats (orange).
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Fig. 18 Neighbor Joining Tree: All Half Repeat 

Nucleotide Sequences

Each full repeat was divided into halves “a” and 

“b”
From top to bottom the branches 

contain: 

Repeat 2a (pink), 

Repeat 3a (orange), 

Mixed Section,

Repeat 1a (green), 

Final (half) repeats and repeats 

5a and 5b (grey), 

1b (light blue), 

3b (brown), 

1b (blue), 

Mixed Section, 

2b (purple), 

Mixed Section (Blue and Red). 

The red shaded areas indicate 

SerH1 which showed a mixed 

pattern of evolution but did not 

follow the same pattern as any 

other sequence.

The green outlined areas (within 

the grey) denote the half repeat 

and the final full of the two 4.5 

repeats with the half repeat in the 

middle. The light green is the 

middle (half repeat) and the dark 

green are the two halves of the 

final (full)  repeat. 
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CHAPTER IV 

DISCUSSION 

Vertical transmission of genes is the standard method of genetic inheritance. 

Under this model a mutation in a gene would be transferred from parent to offspring in a 

linear fashion. The mutation would not be associated with other sections of the gene. For 

repeated genes or genes that contain repeated segments, such as the SerH i-antigen genes 

of T. thermophila, there is the possibility of concerted evolution. In the case of concerted 

evolution a mutation in one repeat of a gene would appear in the other repeats of the 

same gene. Therefore that single mutation would appear in locations across the gene, or 

in multiple genes.  

A previous study by Katz et al. (2006) found evidence of a mixed mode of 

concerted evolution and standard vertical transmission among the alleles of the SerH 

gene (Katz et al. 2006). The present study examined the question of concerted evolution 

at this locus in more detail. Here, the sequences of 20 separate variants collected in the 

wild were added to the 5 SerH alleles available on Genbank. Most sequences used here 

had 3.5 repeats while the majority used in the Katz study had 4.5 In addition, these 

sequences were more fully characterized with respect to the structure of the SerH genes. 

These sequences showed the overall structure expected of the SerH gene. Specifically, 
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they had a leader sequence with an ER transmembrane signal, mostly 3.5 (range 2.5 to 

4.5) imperfect, 8-cysteine containing repeats, and a carboxyl terminus area containing a 

GPI anchor site.  

Seventeen of the wild variants showed the expected pattern of repeats, 

specifically, three 8-cysteine containing repeats followed by a half (4-cysteine) repeat. In 

all cases the half repeat appears to consist of the ends of a full repeat, as if the 4-cysteine 

central region were removed.  The half repeats do not appear to be the building block of 

full repeats. Two (18253-4 and 18266-2), however, had two full repeats followed by the 

half repeat followed by two more full repeats while one (18208-1) only had 2.5 repeats 

total. 

 

4.1 Patterns of Repeat Inheritance  

Based on the unique arrangement of the repeats from 18253-4 and 18266-2 as 

well as the fact that these two sequences were two of the three sequences that contained 

glutamic acid residue and had weak GPI sites it is possible that these two sequences 

represent pseudogenes. In these two lines the half repeat is clearly related to the final full 

repeat (Fig. 12). Wild lines containing SerH alleles with 4.5 repeats need to be more 

closely studied for expression and possession of SerH paralogs.  

In the sequence that had only 2.5 repeats (18280-1) both the first and second 

repeats, the full repeats, are very similar to one another and are most similar to the first 

repeats of the other sequences. The half repeat is very similar to the final half repeat of 

the regular 3.5 repeat containing sequences. If this sequence did lose a repeat it is 

impossible to tell whether that repeat was more similar to the 1
st
, 2

nd
, or 3

rd
 repeats from 
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the other sequences. The fact that this sequence only has 2.5 repeats could be evidence 

that it is non-functional. If it is a pseudogene it is possible that SerH homolog is being 

expressed. Predictions about gene functionality and expression are unconfirmed as the 

original isolates have not been tested for expression of the surface antigen by RT-PCR or 

an antibody test.  

 

4.2 Composition and Evolutionary Mode of SerH  

The SerH sequences had a G+C content of 42%, which is consistent with protein 

coding areas across the T. thermophila genome. Interestingly, the G + C content within 

the repeat area of the genome was higher than that in both the leader section and carboxyl 

terminus (Table III). This could indicate codon usage bias within the repeats, or the 

necessity of higher G + C to code for necessary amino acids within the repeats. The 

deduced amino acid composition was rich in alanine, cysteine, serine and threonine and 

contained no histidine or glutamate (except as mentioned above). This amino acid 

composition is similar to previously described SerH examples, SerL (Doerder and Gerber 

2000) and SerJ (Doerder 2000). It is also is similar to that 51A surface antigen of P. 

tetraurelia except that 51A does contain glutamate and histidine. Also, aside from the 

conserved cysteines within the repeat sections there are conserved sites that have charged 

amino acids (usually aspartate immediately preceding a cysteine) and conserved sites 

containing large amino acids (phenylalanine, tyrosine and tryptophan) (See appendix). 

These conserved sites could be necessary the SerH allele to have a functional structure.  

The carboxyl end of the SerH sequences was the most conserved area of the 

sequence. This was also the area that had the lowest G + C content. It is possible that this 
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section of the gene may play some role in RNA stability and the regulation of SerH 

expression (Gerber et al. 2002).  

The SerH sequences collected for this study showed no sign of positive selection. 

Neither the Fu and Li nor Tajima’s test found evidence of positive selection and the mean 

dN/dS ratio of these sequences was under 1.00, again indicating no positive selection. 

This is in keeping with Gerber et al. (2002) who used a smaller sample size. These results 

suggest that SerH alleles are effectively neutral and purifying selection is removing non-

functional alleles from the SerH locus. 

 In order to test for concerted evolution, phylogenetic trees of the full repeats were 

analyzed. Using a smaller sample, Katz et al. (2006) observed primarily vertical 

transmission, with some instances of concerted evolution. Using the repeats as individual 

sequences, on neighbor joining trees for the this larger sample, the 1
st
, 2

nd
 and 3

rd
 repeats 

generally grouped together as would be seen in vertical transmission. However, some 

repeats (namely those of the SerH1, SerH4, SerH5 sequences, and the three wild 

sequences most similar to SerH4 and SerH5.) grouped most closely with other repeats 

from the same sequence. This pattern of branching on a neighbor-joining tree is 

indicative of concerted evolution. In other words a mixed mode of evolution is occurring 

as observed by Katz et al (2006). These results confirmed the findings that SerH evolved 

by a mixed mode of vertical transmission and concerted evolution.  

 

4.3 Structure of the SerH Surface Protein 

Lastly, this study allows more informed speculation regarding the structure of the 

i-antigen in relationship to the cell surface.  First, for all genes examined here, the 
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greatest nucleotide and hence amino acid diversity was in the long amino terminal leader 

sequence containing 10 cysteines (which is the same number of cysteines in SerJ which 

has no such long leader). This region, opposite the carboxyl GPI linkage site, is likely the 

region of the molecule most exposed to the aqueous environment. The epitopes 

recognized by antibodies used to serotype T. thermophila cells could be located in that 

region.  

Second, because all i-antigens contain periodic cysteines and because each passes 

through the ER for GPI attachment, it is reasonable to conclude that the cysteines form 

disulfide linkages while in the ER. The general pattern of the cysteines within the repeat 

section is (CXshort CXlong) where Xshort is 2-7 amino acids and Xlong  is 12-18 amino acids. 

A speculative model is that disulfide bonds occur between CXshort and the CXlong segment 

then between the next CXshort and CXlong. Due to the fact that there are up to 38 cysteines 

in the mature SerH encoded proteins there is the possibility for 703 different cysteine 

bonding combinations. No current disulfide bonding modeling software can 

accommodate anywhere near that number of possibilities. However, this pattern of 

periodic cysteines could produce a molecule in which the amino acids in the short group 

form a backbone with the disulfide bridges and the amino acids in the long group arrange 

as loops extending out from that backbone as shown in Fig. 19. 
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Fig. 19 Hypothesized model of Disulfide Bonding in the SerH Protein 

 

The white lines indicate disulfide bridges and the blue lines indicate the polypeptide 

chain. Note the alternating pattern of short chains and longer chains which loop. 

 

This hypothesis regarding disulfide bonding along with the well established GPI 

linkage allows for speculation regarding the model of the i-antigen. A previous 

biochemical analysis of a similar surface protein from Paramecium aurelia found that 

particular surface protein to be fibrous in nature as opposed to globular (Preer 1959). 

Based that, as well as the other characterizations of the SerH sequence and the proposed 

model of disulfide bond formation a possible model of the structure of the SerH protein is 

as follows. 

 The carboxyl terminus is anchored into the outer membrane via the GPI anchor, 

out from which the section of cysteine repeats form a fibrous extension. Finally, the 

amino terminus (absent the ER signal that is cleaved in the ER) extends into direct 

Short 

Long 
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contact with the medium (Fig 20). Because this region has more nucleotide diversity than 

any other section of the SerH gene it is likely that these ~ 67 amino acids form the 

antigenic region of the protein recognized by immobilizing antibodies.   

Previous speculation about the antigenic region of SerH centered around the 1
st
 

repeat based on conservation of cysteine periodicity and crossreactivity of antisera 

against H3 with H1 (Doerder, personal communication).  However, antibodies to peptide 

fragments of H1 and H3 first repeats both failed to immobilize and to immunoprecipitate 

though it is uncertain whether either peptide was indeed antigenic (Doerder, personal 

communication). Immobilizing antibodies to the “leader” region as well as 

crystallographic data on disulfide linkages would provide better tests of the proposed 

model. 

 

Fig. 20 Proposed Model of SerH Surface Antigen 

 

The pink area indicates the proposed epitopic region.  
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This study has found evidence to confirm that the SerH gene of T. thermophila 

evolves by a mix of primarily vertical transmission and occasional concerted evolution. 

Given the general similarity of the SerH proteins to the other T. thermophila i-antigens (L 

and J are the only ones for which sequence information is published) as well as to the i-

antigens of other genera (Paramecium, Ichthyophtherius, Lembadion bullinum, Giardia 

lamblia and Pneumocystis carinii), particularly in regards to the cysteine periodicity, it 

would be interesting to apply the methods used here and to determine whether these other 

genes show any sign of mixed evolution. Such results might inform on the evolution of 

genes in a system with nuclear dimorphism. It would also be helpful if future studies 

performed serotyping, PCR and RT-PCR on samples soon after they were brought into 

the lab in order to be certain of which surface antigen is being expressed and to be able to 

correlate that data with the macronuclear SerH sequences obtained.  Also, crosses should 

be done when samples are brought into lab to determine whether any i-antigen genes are 

due to recombination in macronuclear development and to verify allelic segregation. 
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Appendix A: Alignment of Deduced Amino Acid Sequences 
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