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MODELING AND FEEDBACK CONTROL OF A MEMS

ELECTROSTATIC ACTUATOR

JASON M. EDWARDS

ABSTRACT

This thesis describes the mathematical modelingckoskd-loop voltage control
of a MEMS electrostatic actuator. The control gealo extend the travel range of the
actuator beyond the open-loop pull-in limit of otterd of the initial gap. Three
controller designs are presented to reach the @ogtral. The first controller design
utilizes a regular fourth order Active DisturbanRejection Controller (ADRC) and is
able to achieve 97% of the maximum travel rangke 3econd design also uses a fourth
order ADRC, while additional modeling informatios included in an Extended State
Observer (ESO), which is part of the ADRC, to imgracontrol performance. This
controller achieved 99% of the travel range. Thiedtdesign is a multi-loop controller
with a second order ADRC in an inner loop and g®Brional-Integral (PI) controller in
an outer loop. This design achieved 100% of tlaelr range. Transfer function
representations of the three controller designs dmeeloped. The controllers are
successfully applied and simulated in a parallateklectrostatic actuator model. The
simulation results and frequency domain analysesfied the effectiveness of the

controllers in extending the travel range of theiator and in noise attenuation.
v
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CHAPTER |

INTRODUCTION

This introductory chapter will define a Micro-EleastMechanical System
(MEMS) electrostatic actuator. The applicationghaf actuator in micro-systems will be
introduced. The control problems associated with tevice will be discussed. With
this information in hand, it will be shown how rasehers have attempted to solve these
problems in the past. A few different existing tohstrategies will be briefly presented.

At the end of the chapter, the outline for the ofghe thesis will be given.



1.1 Electrostatic Actuators

MEMS electrostatic actuators, also termed as mactoators, are the key devices
allowing MEMS to perform physical movements [1]hély have the advantages of small
size, low cost, and low power consumptions. An iespive range of applications
demonstrates the electrostatic actuators’ utiliBome examples of the applications are:
micro-mirrors, optical gratings, variable capaatand micro-accelerometers [2]. Figure

1 shows a simplified illustration of a parallelq@laelectrostatic actuator used in a micro-

u Nanolaminate

#

BMC Actuator Array Electrostatic MEMS Actuators

mirror device [3].

Figure 1: lllustration of an Electrostatic Actuator Used indkb-mirror Device [3]

From this diagram one can develop a simplified rhoflehe electrostatic actuator

that captures the important system dynamics, asrsihoFigure 2.
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Figure 2: A Simplified Model of the Electrostatic Actuator

In Figure 2, a parallel-plate micro-actuator cotssaf a movable plate and a fixed
plate in an electric field. When the movable platéisplaced from its original position,
the capacitance formed between the two platesasggd. Therefore, one can change the
displacement of the movable plate through a voltagerol of the gap of the capacitor.
However, as the gap between the two plates is dsiog to two thirds of the original
gap, a pull-in (or snap-down) phenomenon will catise instability of the system and
drag the movable plate to the fixed plated, immietifareducing the gap to zero [4].
Thus the pull-in phenomenon can cause a failumgpefation of the electrostatic actuator.
Chapter 2 explains the physics behind the eleetiostactuation in more detail.
Extending the traveling range of the movable plaggond the pull-in limit has been

attractive to more and more researchers and isasthe control goal of this thesis.



1.2  Applications of MEMS Electrostatic Actuators

MEMS electrostatic actuators are key componentaany micro-systems. They
have been used in micro-grippers, micro-relaysp gansors, micro-motors, cantilevers,
optical shutters, variable optical attenuators amdro-mirrors. Electrostatic actuators
and other MEMS devices in general, make the biggasact when they are designed to
tackle real-world problems in a novel way. One eplanof this innovative spirit is the
use of micro-mirrors in Digital-Light-Processing I(P) televisions. Figure 3 shows an

array of pixels of a Deformable Mirror Device (DM[®), 6].

Figure 3: DMD Pixel Array [5, 6]

Figure 4 shows a close-up view of a single DMD hixe
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Actuationelectrod
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Figure 4: A single DMD Pixel [5, 6]

These mirrors reflect incident light into the imagjeection when the mirrors are
in one position, or deflect the light out of theaige direction when the mirror is tipped in
a different direction. The tipping motion of theMID device is based on the change of
capacitance between two parallel plates, constguéin electrostatic actuator [6]. The
electrostatically actuated micromirrors, as showrFigure 5, can also be used in all

optical switches [7].

Figure 5: Electro-statically Actuated Micro-Mirror Array [7]



The electrostatic-actuator-based micro-mirror isaaling candidate to replace the
optical-electrical-optical switching technology dswday. MEMS technology allows
high-precision micromechanical components such iasormirrors to be mass produced
at low cost. These components can be preciselyaltaud to provide reliable high speed

switching of optical beams in free space.

1.3 Control of Electrostatic Actuators

The majority of MEMS control techniques are resiyrtie academic labs and
research institutions. As these designs becomeurenadnd are introduced into
commercial applications the MEMS community will leéibfrom increased performance,
reliability, accuracy and robustness against manufang variations. It was noted in [8]
that “Most MEMS technologists do not have a baclgobin control technology....” As
a result the majority of MEMS devices were drivem an open-loop fashion.
Improvements in dynamical behavior were the resafltstructural design improvements
of the devices themselves. “MEMS actuators haeesfore traditionally been gradually
modified and improved in terms of mechanical desigd better area-efficiency” [9]. As
noted in [8], “as the sophistication level of MEMS$evices increased, the
electromechanical systems on a chip started to Wéragqually sophisticated integrated

controls, including on-chip actuators.”

However, closed-loop control of MEMS devices is nomnpletely in its infancy.

“The first MEMS devices incorporating feedback wetesed-loop capacitive sensors,



with the objective of enhancing measurement acgurf8]. The slow adaptation of
feedback control to MEMS design is not only dueattack of control experiences in
MEMS, but also due to the complexity of the implenagion of the closed-loop
controller. Unlike macro mechanical systems whbkesimplementation of the feedback
is relatively simple, it is quite problematic inettMEMS case. The incorporation of
sensors and analog control circuitry into a MEMYicke takes up valuable die real
estate. In addition, it is difficult to operateeie sensors and control circuitry at the same
power level as the MEMS devices themselves. ThHesman of these circuits changes the
dynamic behavior of the entire MEMS device. In tbkbowing sections we will look at

some of the current control strategies used ingtesi MEMS electrostatic actuators.

1.3.1 Open-loop Control of Electrostatic Actuator

In the mechanical domain, there have been numesoggested open-loop
solutions to the pull-in phenomena. The most ghtéorward approach is to design the
gap so large that the actuator is stable over ésgatl operating range. As an example if
we needed an actuation range q@ffgawe would design the actuator gap to hené The
drawback of this approach is that the maximum gagednerally determined by the

fabrication technology and cannot be easily charyetthe designer [2].

Another approach is called leverage bending [IDhe idea behind the leverage
bending method is to compensate for the pull-itaipisity by applying electrostatic force
to only a portion of the structure, then using bt of the structure as a lever to position

specific parts of the structure through a larggyeaof motion. The key is that the electro-



statically actuated portions of the structure defless than the pull-in limit, while the
other portions of the structure can move through ¢htire gap. A drawback of this
approach is that increased actuation voltages vegp@ired. Figure 6 shows the concept

of leverage bending applied to a cantilever beanepgrted in [10].

= l 77777777”777\““"**——~\,\\ \W‘ Large stable tip
F A

deflection

Figure 6: Leverage Bending [10]

Along with leverage bending, a technique calledhistrstiffening [10] was
suggested as a way to supplement the elastic irggtimrce of the supports in a fixed-
fixed beam (both ends anchored). The premise behis technique is that as the beam
deflects the tensile strength in the beam incredsesto increasing strain in the beam.
This increase in stiffness is a nonlinear restoforge that reduces the positive feedback
that leads to pull-in, and thus extends the rariggtable travel. It was shown in [10] that

this technique extended the stable travel distemedout 3/5 of the gap.

In addition to the structural modifications in tirechanical domain, alteration of
the control voltages in the electrical domain hagrbused. Introduction of more
complex actuating signals into the electrostatitua@or has resulted in so-called “pre-
shaped control” [11]. Here, the dynamical modethaf device is used to construct a pre-
shaped input signal that improves the performari¢beodevice. The pre-shaped driving
technique significantly improves the dynamic bebawf the actuator. Even the pre-

shaped actuation, however, is sometimes not seifficiThe lack of accurate models and



repeatability of the device parameters, compounigdspecial requirements on the

dynamical behavior, have opened the possibilitglo$ed-loop applications [11].

1.3.2 Linear Feedback Control

While MEMS devices are typically driven directly &am open loop fashion [11],
there have been some attempts at simple linearadosthemes. A charge control
approach in [2] demonstrated an increased tramgleraip to 83% of the gap compared to
mechanical compensation. One of the difficultiesitilizing a charge control scheme is
that the effects of parasitic capacitances regaireharge drive with extremely low
leakage current. The design of a current drivé wiifficiently low leakage currents can
be challenging. The use of a voltage control sehalieviates this problem and has been
the focus of the majority of researchers in thisaar This thesis will only focus on the

voltage control technique.

Utilizing a voltage source with a capacitor in esrivith the electrostatic actuator
[12-13] has proven successful. Figure 7 illusgatlke general idea of this control

technique.

+
2 C) —

Figure 7: Voltage Control with Series Feedback Capacitor [12]



In Figure 7,V is the source voltag®,, is the voltage across the electrostatic

act

actuator (variable capacitor), aM is the voltage across the feedback capaditor

From Figure 7V, is represented by (1.1).
V,, = —2% V. (1.1)

The relation between the voltage and charge opadaitor is given by
1
V==q. 1.2
cd 1.2)
Substituting (1.2) into (1.1) yields

V, =———V, (1.3)

whereC__ is the capacitance of the actuator.

act

The capacitance of a parallel-plate capacitor vernsely proportional to the gap
between the plates. If the source voltage is as®d, the distance between the moveable
plate of the electrostatic actuator and its fixétewill decrease. Thus, the capacitance

of the actuator will increase. Equation (1.3) shawat increasing, ., will cause the

act
voltage across the actuatdf, to decrease. This decrease in voltage will cabse
electrodes to separate from each other. The fekdt@pacitancé&, acts as a tuning

parameter. The technique showed stable operatiche actuator at 30%, 60% and 90%

of the nominal gap. The downside to this approachhat the uncertainty in the

capacitance of the electrostatic actuator requinesC, to be varied from device to
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device in order to ensure a stable operating rangeerefore, it is dependent on an
accurate model of the actuator. Another downsgdéhat large actuation voltages are

required.

The work of [14-16] utilized voltage control, pasit feedback and a phase
optimization approach to design a Linear Time-Viagy(LTV) proportional controller.
The proportional gains were chosen at each displaneto maximize the phase margin.
In addition to the LTV controller the authors iMf16] designed a Linear Time-Invariant
(LTI) proportional gain controller utilizing a Quaiative Feedback Theory (QFT) design
methodology. The QFT is a frequency domain dedighnique that focuses on
designing two-degree-of-freedom robust controllgtibzing design templates [17]. In
the current literature, only the LTI controlletrioduced in [14-16] was implemented on

actual hardware and was able to extend the trdvensge to 60% of the gap.

The author in [14-16] suggested three reasonshi@riristability of the actuator
above 60% of the gap. The first reason was th&daced damping coefficient due to

plate tilt resulted in reduced phase margins.

Since this thesis assumes a 1-DOF model of theatetuwith vertical
displacement, the problem proposed in [17] willdieregarded. A reason causing the
instability of the actuator was the magnificatidrsensor noise [14-16]. It was noted that
a large loop gain at frequencies for which the plain is small results in large noise
amplification at the controller output (plant inpuflhe situation of noise amplification is
worsened when the DC gain of the actuator redusdkeaplate displacement increases.
A pure proportional controller design in [14-16]ncat attenuate the effects of high
frequency noises enough to ensure the input tpléh@ did not saturate. This is one area

11



that we can improve upon the designs in [14-16]e WMI definitely see the effects of

sensor noise in the remaining parts of the thesis.

In addition, the proportional gain controller [18}1failed to stabilize the
electrostatic actuator over the entire gap undelerdamped and slightly overdamped
situations. The use of phase lead could rectify phoblem at the expense of increased

bandwidth and thus increased sensor noise.

It was also noted that the controller gain in [B}-dould be reduced through two
ways. One way is to increase the actuator gaiméngasing the area of the capacitor’s

plates. Another way is to decrease the distantkeofinstable pole from thge axis by

increasing the damping and/or reducing the mechhbhandwidth.

1.3.3 Nonlinear Feedback Control

More recently the application of nonlinear contagpproaches has emerged.
Three of these approaches are flatness based kcdddratrol Lyapunov Function (CLF)
synthesis, and back-stepping design [17]. The neali control approaches are further
extended to the actuator models with parasitic ciggnace [18]. In [18], two robust
controllers are constructed, both based on theryhebinput-to-state stabilization and
back-stepping state feedback design. The desigtieese controllers take two forms of
uncertainty into account. The first type of unagmy is the variation of the parasitic
capacitance due to layout, fringing field, or trefatmation of the movable plate. The
second type of uncertainty is due to the variatbmechanical and electrical parameters

such as the damping ratio and the resistance irlotye Simulation results in [18]

12



demonstrate 90% gap traversal with minimal overshoahe presence of parameter
variations. The rise time is approximately 5 ndingal time units with a control signal

approximately twice the pull-in voltage.

In [4], it is shown that an electrostatic actuasodifferentially flat. The authors in
[4] use this fact to incorporate trajectory plargninto nonlinear robust control to extend
the travel range up to 100% of the gap. The tatifierentially flat” implies that all the
other states as well as the input can be obtaioed the position state and its derivatives.
Thus any reference trajectory can then be computgthout integrating the
corresponding differential equation. This allowe tauthors in [4] to make a time
independent controller that runs in an “auto-schiagufashion. This design procedure
is simulated on underdamped, critically damped, enmerdamped actuator models and
compared against a charge control scheme. Thatactisplacement is controlled to be
20%, 40%, 60%, 80% and 100% of the full gap respelgt The normalized deflection
shows no overshoot and the control voltage is waghin +£3 normalized control units. A
5% of the full gap disturbance of position is régel; albeit with a large actuation

voltage. Nevertheless, sensor noise is not indudéhe simulations in [4].

In general, the approaches in [4, 12-18] are #ffecbut their utility is somewhat
offset by their mathematical complexity and thaitd of noise attenuation. Furthermore,
additional electrodes or sensors for measuringtiposare required [11] in order to use

feedback to stabilize the actuator in [4, 12-18].
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1.4  Proposed Control Methods

This thesis will present three linear, closed-lagmtrol designs. All three of
these designs are going to be formulated in thguéecy domain. The three designs
assume different levels of knowledge about theadotuyplant to be controlled. The three
controller designs will utilize the implementatiafi an Active Disturbance Rejection
Controller (ADRC). ADRC handles unknown system dwies effectively by treating
them as an unknown disturbance and canceling thgérmdhe control law. ADRC was
chosen because the electrostatic actuator hasaa dgal of model uncertainty over its
operating range. This controller design methodplagpears to be a perfect fit for the

control problems presented by the electrostatigadot.

In the first approach, it is assumed that thereisletailed mathematical model of
the electrostatic actuator available. The ordethefmodel and the gain of the actuator
are the only known parameters. It is also assutheck is only one measured output,
which is the displacement of the moveable plat¢hefactuator. An ADRC with a4
order Extended State Observer (ESO) is going tddsggned to control the electrostatic
actuator. The nominal model of the electrostatitiaor in this design is going to be a

third-order integrator.

The second design example assumes that partiall&dgev of the actuator plant
is available. In this case only the parameters Yhay significantly over the operating
range of the electrostatic actuator are considardghown. It is also assumed that the

displacement output of the actuator is measurables design will also utilize ADRC
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with a 4" order ESO. The known modeling information isiz¢itl and included into the

ESO vyielding a type 1, third order nominal plant.

The third design is a multi-loop control desiggquiing two measured outputs,
which are the displacement output and the chargaubof the actuator. This design will
employ ADRC with a # order ESO for the inner loop to control the chasgput, along

with a PI controller for the outer loop to conttbé displacement output.

1.5 Overview

The remaining parts of this thesis will be orgadias follows.

Chapter 2 develops the mathematical modeling oEM@® electrostatic actuator.
A nonlinear actuator model suitable for controligeswill be developed. This model
will then be normalized before being linearizedinaly the behavior of the linearized

actuator model is investigated.

Chapter 3 introduces some control basics and dofdves that will be used
throughout this thesis. An ADRC in the state spacmulation is described as a basis
for a frequency domain formulation of the ADRC .at8tobservers are investigated in the
frequency domain. Finally, the frequency domairplementation of the ADRC is

derived.

Chapter 4 talks about linear control designs. ffinee different control designs
described previously are developed in this chapterformance and stability analyses

will be conducted based on these three controbdssi
15



Chapter 5 provides simulation results of the cdrdesigns on both the linearized
and the nonlinear models of the actuator. Noisenaation is demonstrated and a
comparison of the performances of the three cdetralesigns is conducted in the

chapter.

Chapter 6 will offer conclusions and suggest futesearch directions.
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CHAPTER II

MATHEMATICAL MODELING

This chapter will discuss the derivation of a siifigdl mathematical model of an
electrostatic actuator that is suitable for consgétem design. The first section will
introduce the basic physical principles involvedthe operation of the electrostatic
actuator. Two different modeling approaches wdlgresented in the section. They are
based on first principles and the Lagrange equatespectively. The first-principle-
based modeling will use force balance equationdetermine the mathematical model.
The Lagrange method will utilize the concept ofrgyeto derive the same model. The
second section will introduce the normalization tbé nonlinear equations derived
through the two modeling approaches. The secoatiosewill be followed by model
linearization, transfer function representationd #me model behavior of the electrostatic

actuator.
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2.1 Mathematical Modeling

MEMS electrostatic actuators are generally diviogd two varieties, comb-drive
and parallel-plate. This thesis will focus on th#er. The key model component of a

parallel-plate electrostatic actuator is the patgilate capacitor as shown in Figure 8.

? Area A

\§ D |

Top side of bottom
Bottom side of top
Rlel has charge g plate has charge +g

Figure 8: Parallel-Plate Capacitor

A parallel-plate capacitor has two electrodes gdpbf equal aread] separated
by a gap §). When a voltage\) is applied across the upper and lower plateshef t
actuator an equal and opposite chaf@eluilds on the upper and lower plates. Because
of the opposite charges on the two plates, theadasce of attraction (electrostatic force)
between the two plates [1]. The chai@eand the voltagd/ are proportional to each
other and are related by the capacitance. Thatioakhip between the charge and

voltage is given by (2.1).
Q=CV (2.1)

The capacitance, denoted by (2.2), of a parallieptapacitor depends both on

the area of one plate and the distance between them
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c=2 2.2)

In (2.2), € is the permittivity of the air between the platgss the gap between the two
plates andA is the area of the capacitor's plate. As candmndgn (2.2) capacitance
depends only on the capacitor's geometry, not eraftplied voltage or the accumulated
charge. Increasing the plate area or decreasm@dp between the two plates are the

only ways to change the capacitance.

To determine the stored potential energy) petween the plates of the capacitor,

one can take the integral of the instantaneous paw/given in (2.3).
W(Q)= [V dt (2.3)

The equation for the potential energy in (2.3) dsn simplified by using the fact

thatl =dQ/dt. Then (2.3) can be rewritten as (2.4).

w(Q)= | [% QJ% dt (2.4)

Performing the integration in (2.4) results in {2.5
w(Q)=--Q’ (2.5)

In a fixed-plate capacitor, the input voltage canvaried so as to change the
amount of charge accumulated on the faces of #itesl The electrostatic force that acts
on the two plates is of no great concern for thediplate capacitor. In an electrostatic
actuator, one of the electrodes is free to movhis @llows the use of the accumulated

charge as an intermediate variable that can be tasedntrol the gap between the two
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plates. In the following discussion it will be ag®ed that it is the upper electrode that is
movable. Once the upper electrode moves, one anciunt for the dynamics this
moveable plate introduces. The time-varying depend of the capacitance on the

change in gap is represented by (2.6).

From (2.5) and (2.6), the energy stored in an \dstdtic actuator is a function of
an electrical variable (charge) and a mechanicabke (displacement). One can use the
principle of virtual work to model this actuatorssgm. Imagine that the spacing of the
plates is increased by the small amodgt the mechanical work done by moving the

plates would be
AW(g) = FAg. (2.7)

In (2.7), the variablé represents the electrostatic force acting betvieerplates. This
work must be equal to the change in the electiostaergy of the capacitor. The energy

of the capacitor was originally
w(Q)=--Q (2.8)
The change in energy (holding the charge consigant)

AW(Q) = %QZA(%) . 2.9)

Setting (2.7) equal to (2.9) yields

FAg :%QZA(éJ. (2.10)
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Equation (2.10) can be rewritten as

QZ
FAg = - AC. 2.11
9= o0z (2.11)

From (2.2) the inverse of the capacitance is

(ij -9 (2.12)
C) &A
The change in the capacitance can be related whiérgge in gap as in (2.13).
A(lj _Ag (2.13)
C EA

Utilizing (2.10) and (2.13) the electrostatic fox@n be written as
2
F=2 (2.14)

The electrostatic force is proportional to the squa the charge.

The fact that the stored energy is a function cdrgh and gap leads to the
realization of a two-port capacitor to describe #hliectrostatic actuator, in which one port
denotes the electrical domain and the other pamb@s the mechanical domain. The
actuator can convert electrical energy into mecatsnenergy, and vice versa [19].

Figure 9 gives a graphical representation of thisport actuator.

o—— ———o
C +

F

o W(Q’ g) _C

Figure 9: Two Port Capacitor [6]

21



In Figure 9,W(Q,g) represents the potential energy stored in thiscdevBoth

mechanical and electrical stored potential enesggaluded in the two port capacitor.

A simplified one-degree-of-freedom electrostatiduator model was selected

based on [6]. The electro-mechanical model ofittaator is shown in Figure 10.

\\ N Fixed
Support
Spring Damper J_
‘ S
Is
— p m
NVN— Z—
Resistor l
R
+ Gap X
Vs g
L M &
] Fixed
7 Plate

Figure 10:Electrostatic Actuator Model [6]

From Figure 10, we can see that an electrostatigator consists of a parallel-
plate capacitor with one fixed electrode and oneiug electrode. The input voltage
sourceVy is modeled with a series source resistafite, The variablel ¢ is the input
current. The gap with zero applied voltage is detdy g,. The gam is positive in the

direction of increasing gap, whil€ is the displacement of the moving plate atds

positive in the direction of decreasing gap. Télationship betweeg andX is given by
g=0,~X (2.15)

As the charge on the two plates builds, the fofcattoaction grows, bringing the
plates closer together. In order to keep the platam “snapping down,” there needs to
be an equal and opposite force resisting this motidhis force is modeled by the

restoring force of a mechanical spring with sproanstantk. A damping termpb,

22



represents the squeezed-film damping coefficiéinséhould now be clear that this device
is operating in two energy domains, electrical amethanical. For analytical purposes
this electromechanical system will be divided itlicee parts, a purely electrical part, a

purely mechanical part and a coupling part as shaviaigure 11.

. Electro .
Electrical . Mechanical
< » mechanical |« >
network . system
coupling

Figure 11:An Electromechanical System [20]

Figure 12 shows an equivalent circuit model of eodgpled electrostatic actuator.
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Figure 12:An Equivalent Circuit Model of the Electrostatic thator [6]

From Figure 12, the mechanical sub-system of theatar is modeled as an
equivalent series RLC circuit. This is due to thet that the damper, mass, and spring
share the same displacement. The equivalent tifouithe electrical sub-system is
modeled as a voltage source in series with a saesistance. The two-port capacitor
provides a description for the electro-mechanicalpting. The equations that describe
both energy domains and the coupling that occuradsn them will be derived in the

next section.
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2.1.1 First Principles Modeling

First principles modeling for the electrostaticuatbr involves using Newton'’s
laws of motion in the mechanical domain and Kirélsa€urrent and Voltage Laws in the
electrical domain. This method of modeling deaith\iorce vectors as opposed to the
energy method used in the Lagrangian method. Niugleh the mechanical domain

begins with the free-body diagram of the electiostctuator as shown in Figure 13.

Electrode

Mass
M)

Figure 13:A Free-body Diagram of the Electrostatic Actuator

According to Newton's %' law, we have,
mX =F, -F, - F, (2.16)

where F, =bX is the linear squeeze film damping forcE, =kX is the linear

mechanical spring force arfe, = Q” /2¢A is the nonlinear electrostatic force. Equation

(2.16) can be rewritten as

Q’ -
mX =— —-bX -kX. (2.17)
2EA
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Note that the scale of the model is measured imangc Thus the mass of the upper plate
of the capacitor is so small that the gravitatioftate acting on the actuator can be

neglected.

Now considering the electrical domain, the currdmbugh the series resister
can be obtained by the application of Kirchoff'siddge Law (KVL). Applying the KVL

to the actuator’s electrical model gives

1

IS R [ _Vact)’ (218)

whereV_ is the voltage across the capacitor plates. Ziii the relationQ = CV and

act

(2.2) the voltage across the actuator can be repred by

_Qg
V. =<2 2.19
act &A ( )

The current can be solved by substituting (2.18) {®.18). Using the fack, =Q, we

have

.1 Qg
Q—E(VS EAJ. (2.20)

One now needs to relate the gpo the displacemend. This relation is given in (2.15).

Substituting (2.15) into (2.20) leaves

- _l _Q(go _X)
Q= R[Vs A j (2.21)

Equations (2.17) and (2.21) constitute the mathieadaimodel of the electrostatic

actuator.
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2.1.2 Lagrange’'s Equations

The principle of Lagrange’s equations is based orguantity called the
Lagrangian, and is stated as follows: For a dynasyggtem in which the work of all
forces is accounted for in the Lagrangian, an asibis motion between specific
configurations of the system at timgandt, is a natural motion if, and only if, the
energy of the system remains constant.

The Lagrangian is a quantity that describes thareal between kinetic and

potential energies (excluding dissipative energiés)particular, it is written
L=K_ -V, (2.22)

where L denotes the Lagrangian quantiti, is the kinetic energy, andl, is the

potential energy.

The Lagrange equation is given by

i(i} Uy (2.23)
dildy ) & &

In (2.23), P denotes the power function (describing the diggpaof energy in the
system)F, generalized external inputs (forces) acting onsystem (for the electrostatic
actuator, the external input is the source voltdge and g, the generalized coordinates

of the system (for the electrostatic actuator, tiveyt be the chargeQ and the
displacemeniX). A lumped-parameter model of an electrostatiziaoctr is derived as

below.

26



The kinetic energy for the system is given by

K, :%mxa (2.24)

wherem is the mass of the upper movable plate. The piatesnergyV, represented by

(2.25) has electrical and mechanical componentdaltize capacitance and the restoring

spring respectively.

A :%QZ +%kX2 (2.25)
capacitor spring

As noted previously, in this system, the capacgaiscnot a constant, but a nonlinear

function ofX, as shown in (2.26).

C= (2.26)

Substituting (2.26) into (2.25) yields

1

1
V, =— - X )O?% + =kX?2. 2.27
. ZSA(go R ; (2.27)

The power dissipation functidd includes both electrical and mechanical partstdube

source resistance and squeeze-film damping asdjiven by (2.28).

1 .. 1. .
P==-RQ%*+=bX?. 2.28
> Q > (2.28)

; v
resistor damper

Combining (2.24) and (2.27) produces the Lagranggfollows.

1 . 1 1

L==mX?-— - X)Q* -=kX? 2.29
5 5ex (G0 = X)Q7 = (2.29)
W potential
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The Lagrange equation (2.23) shows that we must tia& partial derivatives of (2.28)
and (2.29) with respect to the generalized cootds¥ andQ and their first derivatives.

The results of these partial derivatives are shiow@.30) and (2.31).

Aomx, 29 i P (2.30)
oX X 2 oX
A, A_(0-XR P _py (2.31)
B R A R

The time derivatives of the partial derivativestlod Lagrangian with respect to the time

derivatives of the generalized coordinates arergbye(2.32)

d(aL
a(ﬁ] (2.32)

Performing the operation of (2.32) on the applieakrms in (2.30) and (2.31) results in

Q(G_Lj_i(mx)_mx
dt\ox ) dt'

(2.33)
E i = i (O) =0
dt{oQ ) dt
Substituting (2.30), (2.31) and (2.33) into (2.9&)ds
. : 1
mX +bX +kX -—Q“ =0
2eA (2.34)

.1 _
RQ+;A(90 - X)Q—Vs

Equation (2.34) gives the differential equationonfinear model) describing the

dynamics of the electrostatic actuator.
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2.2 Equation Normalization

This section will present the results of the norraion of the nonlinear model of
the actuator. The normalized equations can sisnghi¢ later performance analysis and
controller design for the electrostatic actuattirwill also allow for a direct comparison
between the controller performance in this thesi the one in the references [4, 17-18].

More details about the normalization procedurelmfound in Appendix A.

2.2.1 Normalization Results of the Nonlinear Modebf the Electrostatic Actuator

The position of the upper plate relative to thedo plate X), time ¢), the charge

built up on the plate<)), the voltage across the platés (), and the source voltag¥{)

are normalized as shown in (2.35)

X:L T =t q=g % = Via v:£ (2.35)
9o qpi Vpi Vpi

In (2.35) the displacement is normalized by the gaith zero applied voltage
(g,), time is normalized by the natural frequeni@y,) of the actuator, charge is
normalized by the accumulation of charge at puI(q'g]), the voltage across the actuator
and the source voltage are both normalized by thkirp voltage(vpi). From [4] the

equations that govern the pull-in voltage, the amoof charge at pull-in and the

capacitance at zero gap are given in (2.36).

2
0y = 3 CVy  Vy = 8Kgo. c, =2 (2.36)
2 27C, %
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From Appendix A, the results of the normalizatioh(®.34) are given in (2.37) and

(2.38).
s . 1 2
x+2<x+x:§q (2.37)
1 2
q+—(1-x)a=_-v, (238)

In (2.37) and (2.38), the variables «, andr are defined as follows.

¢= b a)oz\/% r = w,RG, (2.39)

2ma),

2.3 Model Linearization

In order to simplify the controller design, the tinear model of the electrostatic
actuator needs to be linearized. The linearizedehwill be used to determine local

stability of an equilibrium point of the actuatgsgem.

2.3.1 Standard Model

We choose the state variables of the normalizedehwfdhe actuator ag(t), q(t),
ands(t), wheres(t) is the velocity of the movable plate of the aadwat.e. s(t) = x(t).
For small-signal linearization, the equilibrium wat of the state variables, which are

represented bX,,, Q,,, andS

.q» Nave to be determined so that all the state mmsat
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associated with the state variables are equalrtm Z€hen the nonlinear equation will be

expanded in terms of perturbations from these #jwim values.

Each state variable can be decomposed into thdikrqun value of the state
variable and a deviation variable from the equilibr value as shown in (2.40), where

X(t) is the deviation variable fot(t), q(t)is the deviation variable fay(t), and ov(t) is
the deviation variable for(t).

x(t) = Xy + X(t)
q(t) = Q. + a(t) (2.40)

V() =Veq + ()

If the state variables are represented in ternthefdeviation variables, one can
define the following three states for the electtstactuator:

- Xeq

X(t) = st)-S,, .

-Q

€q

(2.41)

where x (t) denotesd(t) , x,(t) denotesds(t), and x,(t) denotesd(t). The explicit

time dependence will be eliminated in future equeifor brevity. Incorporating the
new state variables defined by (2.41) into the imealr equations (2.37) and (2.38) yields

the state equations (2.42) of the normalized actuabdel.

X, = =X, —2¢X, +éx§ =f, . (2.42)

The equilibrium points are determined by solvingt8.
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X, = =X, = 2¢%, +%x§ =0 (2.43)
1 2

X =——1-Xx )X, +—Vv, =0

R )

Setting f, equal to zero, one can see it will be zero. This simplifiesf,, as in

(2.44), which can be used to solve for the equilibrgap.

1
Xeq = 3Qu (2.44)

Recalling the normalization of these equations, care do a quick check by setting the

chargeQ,, =1, the pull-in gap will become 1/3, as expectedbssituting (2.44) into the

equation for f, yields

Q%, = 3Q +2v, =0. (2.45)

There are three possible solutions to the equilibrcharge. One of the solutions
is negative for a positive input voltage and canstibe disregarded. The other two
solutions hint at the fact that there are two elguim positions for each input voltage.
One of these operating points will be stable areddtiher will be unstable. When the
pull-in voltage is reached, the two solutions Wil repeated, suggesting there is only one
unstable equilibrium point. In order to solve thiese equilibrium points (2.44) and
(2.45) must be used to relate the displacemertteaniput voltage. This is performed in

the equation development as follows.
Equation (2.45) can be rewritten as (2.46).
Qu(Q%-3)+2v, =0 (2.46)
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Substituting (2.44) into (2.46) gives (2.47).
Qu(3Xeq=3)+2v, =0 (2.47)

Equation (2.47) can be rewritten as (2.48).

2
= \Y; 2.48
Qe g(l_—xeq) s (2.48)

From (2.48), we have

4
Q% = V2, (2.49)
ofL-X.,)

Substituting (2.44) into (2.49), we have

_ 4 2
Xeq —mvs : (2.50)
The left side of (2.50) gives the spring force {@s= 1), the right side gives the
electrostatic force. Figure 14 illustrates thatiehship between the spring force (solid
line) and the electrostatic force (dashed linedrb0) as the input voltage varies.
Particularly the figure shows both stable and ustaquilibrium points which are the
intersections between the straight line of the rgprforce and the curves of the

electrostatic forces as the input voltagesCa6e0.8, and1.
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Figure 14:Stable and Unstable Equilibrium Points

From Figure 14, we can see that for normalizedtinpitages ¢ = 0.Gind 0.8)
below the normalized pull-in voltagicwpi :1) there are two equilibrium positions, one

stable and one unstable. For normalized displastariess tharl/3 of the full gap,
perturbing the equilibrium displacement will resutt the actuator returning to its
equilibrium point. The restoring force of the larespring is greater than the electrostatic
force in the direction of increased displacemerd.tAe normalized displacements are
greater than or equal '3 of the full gap, a perturbation in position widsult in the
electrostatic force dominating the linear springcé Thus pull-in instability will occur.

As the normalized pull-in voltage is reachgd = v,; =1) there will be only one unstable

equilibrium point as shown in Figure 14. Any vokaapplied above the pull-in voltage

will result in zero equilibrium points.

34



As long as the equilibrium points are found, thelmear model (2.43) of the

electrostatic actuator will be linearized arouneé #quilibrium values. The linearized

model is given in (2.51), whekérepresents the control voltage input.

| S S| S0 S| &0

=<

S| S | 0 |

N

|

S| S0 | S |

w

- xeq-SquQeq

& | o] S|

N (2.51)

- XEq-Seq-Qeq

Performing each of the partial derivatives in (3.ploduces Table I, in whicK;=Xeg,

andX3=Qeq.

a4
¥

=

=0

o S

%1
X r

et N |

a

N

w

21 -0
Ky

TABLE |: PARTIAL DERIVATIVES

2
=X
3 3

d_y

N

i:o

fo]

g _2
3r

The output of this electrostatic actuatordys. Then from (2.51) and Table I, a complete

linearized model of the electrostatic actuator glavith the output equation can be

written as (2.52).
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&] | 0 1 0 [a]|o
& |=| -1 -2 2x, |a |+ ol
K 1 13 2% &
3 | OX31 —
PRI F(Xl‘l)_ S (2.52)
A
29
y=[L 0 0] &
|
¢ d(Sl

In (2.52), the Jacobian matrices (A and B) and wipatrix are defined as (2.53).

0 1 0 0
A=| -1 -2¢ §x3 B= 8 c=[1 o 0. (2.53)
les 0 Fl(xl—) 3r

2.4 Transfer Function Derivation

For the convenience of future frequency-domain yamgla transfer function
representation of the linearized electrostatic atotu model will be derived in the

following subsection.

2.4.1 Linearized Actuator Model

The state space representation of the electrosdaticator derived in (2.52) is

repeated below in (2.54)
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& 0o 1 2o x] |0
X, [=| -1 -2¢ X, |, |+| 0|V (2.54)
& 3 x| |2

e VO N1 (VO | St

Taking the Laplace transform of the linearized efi#ntial equation (assuming

zero initial conditions) for the displacement gives
SIX(9 = ~X(9) = 265K(9 + 2 QuQ(S). (2.55)

where Q(s) is the charge on the plateX(s) is the displacement of the movable plate.
Equation (2.55) can be reduced further to

2Q,,

X(s) =
(s 3(52 +2<s+1i

Q(s). (2.56)
The Laplace transform of the charge equation yields

rsQ(S) = Qoo X (8) — [L- X, JA(9) + %V(s) , (2.57)
whereV (s) is the source voltage. Equation (2.57) can beaedito

_ Qq 2
Q(S) —MX(S) +§(rs—+(m»V(S) . (258)

Equations (2.56) and (2.58) can be visually repriegseby a block diagram as shown in

Figure 15.
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Figure 15:Transfer Function Equivalent Model of the Electatist Actuator
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A

The block diagram in Figure 15 can be simplifiedtss one in Figure 16, whekéact(s)

provides positive feedback and acts as a destalgjlszgnal.

3(5'2 +2¢y +1)

Figure 16:Simplified Transfer Function Equivalent Model

Substituting (2.58) into (2.56) gives

O g k) O k) O 2
Factoring out the common denominator of (2.59)dgel

X(9)= 3(52 +2¢ +213i:; + (1— Xeq)) {QeqX(s) v %V(s)} ' (2.60)
In order to simplify (2.60), we defir@(s) as

G(s) = L . (2.61)

3s? +2gs+1rs +{1- X))
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Substituting (2.61) into (2.60) leaves

X(9)= 20.6(5] Qux(6) + 2(3)|-

Collecting the displacement terms in (2.62) produ@e63).

- 2026(6)x (9= 20.(6] 2 (o)

(2.62)

(2.63)

From (2.63), we can get the transfer function betwk (s) andV(s) as given in (2.64).

X(s) _ 4Q,,G(s)
V(s) 3l1-2Q2G(s))

Equation (2.64) can be rewritten as

X(s) 4Q.
V(s) 36™(s)-2Q2)

The inverse of (2.61) is
G(s)=3[s* + 2+ 1)rs + (L~ X, ).
Substituting (2.66) into (2.65) yields

4Q,,
V(s) 33[s? +2s+1rs+(1- X, ))-2Q2)

Expanding the denominator of (2.67) yields

X(s) 4Q,,

(2.64)

(2.65)

(2.66)

(2.67)

.(2.68)
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Equation (2.68) can be simplified further by utilig the relationship betweeX,, and

Q. givenin (2.44). The simplified (2.68) is gives fallows.

X(s) _ Q..
V(S) o + - X+ 2 )5 + (26f- X )+ 1)5+ - 3X.) (2.69)

WhenX,, =1/3, the transfer function of (2.69) will have a palethe origin. So any

operating point with a displacement greater thawiill produce a pole in the right half
plane. This shows explicitly how the transfer fumetbecomes unstable at the pull-in

displacement of 1/3.

2.5 Electrostatic Actuator Model Behavior

This section will study some special propertiestted linearized model of the
electrostatic actuator that can make feedback acliertrdesign very challenging. In
addition, a transfer function representation oflthearized model will be chosen for use

in controller design.

2.5.1 Pull-in Phenomenon and Noise Amplification of the Atuator

From (2.69), we can see that the magnitud\)/( Z“))) at « =0 yields a steady
J

state gain as shown in (2.70).
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= 4Qeq
ofL-3X,,)

‘X(j“’) (2.70)

V(jw)

w=0

Utilizing (2.44), we can rewrite the steady stadéng2.70) as a function of displacement

in (2.71).
X(jw) _ 43Xe
‘V(jw) o 9d-3%,) 2.71)

Equation (2.71) has a singularityXgf, =1/3. This singularity is referred to as pull-in.

Figure 17 shows the steady state gain acrossdb&esiperating range of the electrostatic

actuator.

Electrostatic Actuator DC Gain

Actuatar Gain (dB)

a n.05 0.1 015 nz 025 03
Mormalized Displacement ()

Figure 17:The Steady State Gain of the Electrostatic Actuator

From Figure 17, we can see that the steady stateofshe electrostatic actuator

is a function of normalized displacement. The qmllphenomenon occurs as the
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actuator’s displacement approaches 1/3 of the naedadisplacement. One can also
see from Figure 17 that at small displacementss (tean 0.21 of the full gap) the
electrostatic actuator attenuates the input comsara Chapter 4 it will be shown that
this low system gain also contributes to the angalifon of sensor noise. In addition,
unstable poles can also contribute to noise arpgtibn. A bandwidth constraint must be

satisfied in the presence of unstable poles, wivilibe described below.

The electrostatic actuator in the unstable regiarelie described by the general

transfer function of (2.72), whelm, ay, a;, anda, are positive numbers.

_ by
PO (srasra)oa)

(2.72)

Equation (2.72) can be factored into a stable pad an unstable all-pass function as

shown in (2.73).

o= by (s+a,)
PO e alerals-a) @79

In (2.73), P4(s) is the stable part, and(s) is the unstable part. The magnitude of A(s) is

one for all frequencies (all pass function). Thenpcan now be written as
P(s) = P,(s)A(s). (2.74)

The phase contribution of A(s) is computed as

OA(jw) = -+ tan‘l(ﬁJ - tan‘l(— ﬁj : (2.75)

a2
Equation, (2.75) can be reduced to
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OA(jow) = -1+ 2tan‘1(a£j . (2.76)

The phase contribution from the all-pass trangiectionA(s) starts with 180 of
phase lag which decreases td @0 lag atw=a,. Table Il shows how the phase lag,

attributable to the unstable pole, is reduced byreiasing the crossover frequency

(bandwidth) of the system.

TABLE II: UNSTABLE POLE PHASE LAG

w,, a, 2a, 3a, 4a,
-90.00 -563.13 -36.87 -28.07

Phase Lag

Table Il suggests that in order to stabilize a plancontrol system needs to be
able to react sufficiently fast. This requires ttieg closed-loop bandwidth is larger than

(approximately) 2, for a real RHP-pole, [21].

In order to attenuate measurement noise the higduéncy response needs to
decrease as fast as possible while meeting theephaggin constraint. Phase-lag filters
are utilized to accomplish this. This requiresegain amount of phase above the phase
margin. An unstable pole, with its phase lag abatron limits the rate that the high

frequency response can roll off.

In addition to the noise amplification problemsrthés also a concern for the
magnitude of the control signal entering the plafihy system with an unstable transfer
function represented hly(s) is conditionally stable because the gain fa&taf L(s) =

Kn(s)/d(s),wheren(s) andd(s) are numerator and denominator of the transfertimmc
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respectively, must be large enough to move the RBIEs ofL(s) into the LHP [16].
This leads to the conclusion that for an unstaletpa minimum input usage is
required. In the case of the electrostatic actuttis will put a lower bound on the

voltage that must be applied across the actuator.

2.5.2 Linear Models

According to [18], we use the following parametatues for the linearized model

of the electrostatic actuator of (2.69).

¢=2

2.77
r =095 ( )

In order to determine the operating points, firdeaired equilibrium displacemeit,, is

chosen. With the choseX_,, (2.44) is used to compute the corresponding iaiuim

eq’
chargeQ,,. Next, (2.45) can be utilized to solve for thesiégrium voltageV,,. An
alternative to directly using (2.45) is to subg#st(2.44) into (2.45) which results in the

equation for the equilibrium voltage given in (2.78

Veq :ngq(l_xeq) (2.78)

The equilibrium values of the displacement and ga&X,, andQ,,) corresponding to

different percentages of the displacements witlpeessto full gap are calculated and

given in Table Il and Table IV.
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TABLE lll:  EQUILIBRIUM POINTS PART |
X 0.05 0.10 0.20 0.30 0.33 0.40

Q, |0.3873 | 0.5477 | 0.774q 0.94872.0000| 1.0954

Y/ 0.5519 | 0.7394 | 0.9295 0.9961.0000| 0.9859

TABLE IV: EQUILIBRIUM POINTS PART Il
X 0.50 0.60 0.70 0.80 0.90 0.95

Q, |12247 | 1.3416 | 1.4491 1.5492.6432| 1.6882

Y/ 0.9185 | 0.8050 | 0.6521 0.4648.2465| 0.1266

As stated before, the electrostatic actuator caddseribed by the generic plant

given by (2.79).

—_ bO
P(s) = (s+a,)s+a)(s+a,)

(2.79)
In (2.79), the subscript % d?,(s) represents the percentage of the displacement
with respect to full gap. Utilizing (2.69), (2.7&8nd the equilibrium values of , and

Q. listed in Table Il and Table IV, we can obtaire tharameter values,, a,, a,, and

a, for (2.79) as listed in Table V.
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TABLE V:PLANT VARIATION

Plant b, a, a a, DC Gain
P 0.18119 3.721 1.050 0.2290 0.2025
P, 0.25624 3.710 1.048 0.1895 0.3478
Py 0.36238 3.689 1.044 0.1093 0.8609
Py 0.44383 3.669 1.041 0.0276 4.2164
P 0.46784 3.662 1.104 0.0000 NA
P, 0.51249 3.650 1.038 -0.0556 NA
= 0.57298 3.631 1.035 -0.1400 NA
Py 0.62767 3.614 1.033 -0.2256 NA
P 0.67796 3.597 1.031 -0.3122 NA
Py 0.72477 3.581 1.029 -0.3999 NA
Py 0.76873 3.566 1.028 -0.4883 NA
Py 0.7898 3.559 1.027 -0.5329 NA

It is clear from Table V that the plant has a vagyplant gain (DC gain) along

with a pole @,) that moves from the left-half plane into the titialf plane as the gap
traversal moves beyond 1/3 of the initial gap. Bhiger two poles &, anda,) do not

introduce much variation.
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2.6 Closed Loop Transfer Functions

Several closed-loop transfer functions will be useml demonstrate the

effectiveness of the controller designs presemidtis thesis. Figure 18 shows a general

two-degree-of-freedom (2DOF) feedback control syste

—0 o Hs) 1 1 ¢(s) L P(s)

Electrostatic

Prefilter Controller
Actuator

Figure 18:A General 2DOF Control System

In Figure 18, the electrostatic actuator is represk by pIanP(s), the controller
is represented bg(s) and the prefilter is represented bis). There are three input
signals: R(s) is the reference signall(s) is an input disturbance signal, ahts) is a
sensor noise signal. There are also three ouignls of interest: the measured output

signalX (s), the control signal (s), and the error sign&l(s). The outputs of the system

are given by
X(s) = % R(s) +% D(s) —% N(s) (2.80)
u(s) = % R(s) +% D(s) —ﬁ N(s) (2.81)
E(s)= 1+HPC R(s) —% D(s) —ﬁ N(s) (2.82)
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The loop transmission functioh(s) is a key component of these closed loop

transfer functions and is defined in (2.83).
L(s) =P(s)C(s) (2.83)

The sensitivity functiorS(s) and the complementary sensitivity functid(s) are shown

in (2.84) and (2.85).

1

S(s) = LS (2.84)
__L(s

T(s) = 1+ L(9 (2.85)

Equation (2.86) shows the transfer function frdre toise inpuiN(s) to the control

signalU (s) (C(s)S(s))This transfer function will be used to investigte amplification

of sensor noise.

C(s)S(s) = HC—(LS()S) (2.86)

Equation (2.87) is the transfer function from thestutbance inputD(s) to the
displacement X (s) (P(s)S(s)) This transfer function will be used to gauge the

disturbance rejection capabilities of the system.

Pl = 1AL 2.87)

Equation (2.88) shows the transfer function frone tleference signaR(s) to the

displacementX (s) (H(s)T(s)). This transfer function will be used to determine siep
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response of the closed loop actuator system. h&le transfer functions will be utilized

extensively in Chapter 4.

H(SIT(s) =—':£S)LES) (2.88)
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CHAPTER IlI

CONTROL TECHNIQUES

The first section in this chapter briefly discussdsy feedback control can be
beneficial for MEMS. The second section introduttes basic operating principles of a
state space implementation of the ADRC. Then feagy-domain observers including
classical Luenberger observers and extended-staercers will be developed. The
chapter concludes with the derivation of the freqpyedomain ADRC that will be used

in the remaining part of this thesis.
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3.1 Feedback Control for MEMS

Since the 1980’s open-loop control schemes haverdgted MEMS. This has
led to much advancement in the design, fabricatiod modeling of MEMS actuators.
Open-loop control’'s main advantages are that is wsmpler driving electronics and it
doesn’t need sensing electronics. The importaricthese two facts should not be
underestimated. Real estate area on a silicon vigfat a premium. In addition, the
driving electronics and sensing electronics arthatsame scale as the MEMS devices
themselves. Incorporating them into the desigh efliange the behavior of the MEMS

device itself.

One of the key drawbacks of open-loop control & ih needs a fairly accurate
model of the system in order to shape the inpiitis makes it susceptible to parameter
variations. Another disadvantage is that it is mobust against un-measurable
disturbances. Feedback control can provide sewehadntages over open-loop control.

These advantages include the ability to:
1) Stabilize systems that are open-loop unstable.
2) Reduce the effects of un-measurable disturbancéseosystem response.

3) Reduce the effects of plant modeling errors andhtians on the system

response.

It should be noted that the use of feedback camdgsract from these properties.
Systems can be destabilized, and the effects afrdences and plant uncertainty can be
amplified. The use of feedback control also respiithe use of sensors. The effect of

plant disturbance cannot be attenuated without asarement of its effect upon the
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system output. There also exists a well-known etoéid between the response of a
feedback system to plant disturbances and to semsse. Even with these drawbacks,
with the sophistication level of MEMS reaching dhtame high, the use of feedback

control will be inevitable if stringent performaneguirements have to be met.

3.2  State Space Representation of ADRC

This section will briefly introduce ADRC design it$ state space representation
as a basis for the frequency domain derivatiorhefdontroller to be performed later in
this chapter. ADRC was originally formulated as@nlinear controller, thus using
nonlinear gains. The nonlinear tuning parametexdencontrol design difficult for all but
the most experienced designers. ADRC was laterplgied using linear and
parameterized gains in [22]. It is often refertedas Linear ADRC (LADRC). The
LADRC provided a more transparent tuning methodt tadbowed the design and
implementation of ADRC outside purely academiclesc ADRC was also formulated
into a discrete-time version exhibited in [23]. €0 the nature of the design problems of

the electrostatic actuator, a continuous-time ADRMe focus of this thesis.

From (2.37) and (2.38), the nonlinear model of ¢hextrostatic actuator can be

represented by a third order model given in (3.1).
y=f(y,y,9.d,t)+bu (3.1)

In (3.1),y is the displacement output of the actuator, thetion f(y, 2 y,d,t), which

will be taken ag in the following discussion, represents the iraépiant dynamics and
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an external unknown disturbande The functionf is assumed to be unknown and is
referred to as the generalized disturbance. Tpetito the plant is given by the control

signal (1) and the plant gairby.

ADRC estimates this generalized disturbahaed actively rejects the disturbance
in real time. Eventually it reduces the electrbstactuator model to a triple integrator
plant with an input gaim. This reduced model is then controlled with ap@rtonal
Derivative (PD) controller. An Extended State Qkiee (ESO) is utilized in the ADRC
to estimate not only the disturbance but also #mnevdtives of the measured varialyle

Figure 19 shows a general framework of the ADRCrodler.
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Figure 19:The Framework of ADRC

In Figure 19, the reference signglalong with the estimated states is fed into the

yet undefined control law. The output of this cohtaw u, is fed back to the ESO

along with the measured plant outglt The output of the control law is also scaled by

1/b before being sent to the plant, whérés an estimate df. The output of the ESO is
the estimated state vectowhich contains the estimated general disturbatamegavith

the estimate of and its derivatives.
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In order to implement the ADRC in Figure 19, thenlveear model of the

electrostatic actuator in (3.1) is first converteda state space representation with
included as an augmented state. The state vesiaoke assigned as:=y, X, =Y,
x, =¥ andx, = f . Assumingh=f andh is bounded, the state space representation of

(3.1) can be written as

X =X,

X =X

Xs =X, +bu. (3.2)
X, = h(t)

y=x

Equation (3.2) can be rewritten as a matrix form:

X = Ax+ Bu+ Eh

, 3.3
y =Cx (3-3)
where
0100 0 0
0010 0 0
A= ’B: ’E: , (34)
0 001 b 0
0O 00O 0 1
c=[1 0o 0 0.

From [24], the augmented statex,) and the other statesx(, x,, andx,) can be

estimated using the ESO given as follows.

2= Az+Bu+L(y-Y)

3.5
y=Cz (3.5)
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In (3.5),zis the estimated state vector and [z1 z, z, z4]T, wherez, z,, z,, and
z, are the estimated,, x,, X,,and x, respectively. The observer gain vedtas
chosen so that all the observer poles are locatededlocation. As the observer gains

are given by (3.6), the characteristic equatiothefESO will be(s+ w, )*.
L= [40)0 6af 4w wj]T (3.6)

With a well tuned observer, the estimated staies,, z,, and z, will closely tracky,
y, y and f [22].
The control law of the ADRC is chosen as (3.7).

u:%(u0 -z,) (3.7)
Equation (3.7) reduces the original plant (3.1 desired triple integral plant as shown
in (3.8).

y=u, (3.8)
Equation (3.8) can be controlled by the control iaW8.9)

U =kp(r —zl)—kdlz2 -ky,2, -2, (3.9)

In (3.9), the controller gaink , k,,, k;, are chosen to place all the closed loop poles of

the controller at- w.. Thus the values of the controller gains aremive (3.10).

k, = af
Ky = 36 (3.10)
Ky, = 3w,
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Additional information about the ADRC can be found22-27]. The ADRC has
been broadly used in macro systems [28-30]. It &la® been applied to MEMS
gyroscopes recently [31-32]. However, the ADRC haser been employed onto the
MEMS electrostatic actuator before. The thesi®assh modified the controller and
initially applied it onto the electrostatic actuato The details about the application of the

controller onto the actuator are given as follows.

3.3 Frequency Domain Observers

This section will look at the classic Luenbergesatver and the ESO from a
frequency domain perspective. The ESO, used is tinesis, utilizes a Luenberger
observer with an augmented state for tracking hstoces. Comparing the differences
between a classic Luenberger observer and the Eb€haw the advantages of the ESO

over the classic Luenberger observer.

3.3.1 Frequency Domain Observer Principles

The principle idea behind an observer is that bylmaing a measured feedback
signal with a knowledge of the components of thetmd system, the behavior of the
plant can be observed/estimated with greater poecithan using the feedback signal
alone [33]. This section will introduce severasdic Luenberger observers represented

by transfer function blocks. Figure 20 depictsoaen-loop observer with an output error
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(e) as the output. In this figureP is the actual physical system (plant) under

consideration P, is the nominal model (mathematical model) of thenpP, y is the

output of the planty is the approximated output, ands the control signal.

L~ Py 2

Figure 20:0pen-loop Observer

From Figure 20, the actual outpytand the approximated outpyt can be

represented by the following equation.

Pu

3.11
R ( )

y
y

The difference betweeyand y can be used to construct an error sigepl If

the nominal model is fairly close to the actual elatie error signal given by (3.12) will

be very small. Then we can say thais an observed/estimatgd

e=(P-P,)u (3.12)

The disadvantage of the open-loop observer showkigare 20 is that it is not
robust against the initial conditions of the plamd system parameter variations. A
compensatoC can be added to drive this erm@ito zero by feeding back a correction

signal u, to the input of the nominal plant. This compeasdl is internal to the
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observer structure and is used to correct the vofthe nominal plant instead of the real

plant. This modified closed-loop observer is shawkigure 21.

u P Y

/"\ y
+

A/

Figure 21:Closed-loop Observer
Figure 21 shows the following relations:
y=Pu, §=P(u+u,) u,=Cly-9). (3.13)
Solving the equations of (3.13) fgrgives (3.14).
(1+PR,C)y=Pu+R,Cy (3.14)

Equation (3.14) can be rewritten as

9:1+P|2Ncu+1+PNPCN:cy' (3.15)
The control signali is defined in (3.16).

u=Ply (3.16)
Substituting (3.16) into (3.15), we have (3.17).

y= 1+P|2Nc Py)+ 1+Ph|13fc Y (3.17)
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When P, = P, the estimated outpu} is approximately equal pas shown in (3.18).

RN ISRV (3.18)

ET-Y AR TY-Yol o

From (3.18), we can see that the estimattracks the real output perfectly. Another
interesting case is whe}ﬁ(ja))| >>1, the following derivation will be obtained.

PC _PRC
1+pC”’ PC

y= y=y (3.19)

Equation (3.19) suggests that when the compengatoris large, the estimate can track
the actual value whether the nominal model is ateuor not. Conversely, when the
magnitude ofC is small, the estimated output is reduced to (3.20

I:)N
1+P,C

y= u=Pu (3.20)

From (3.20), we can see that unless the nominakiriedan accurate description of the

plant, this estimate will be erroneous.

The observer analysis above is for an ideal systdrare sensor noise and
disturbances were disregarded. Figure 22 showsc#éise where there is an input

disturbance acting on the system.
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Figure 22:Closed-loop Observer with Disturbance

From Figure 22 the output signal is

y=Plu+d). (3.21)
The estimated output is

§=Pyu+u,). (3.22)
The correction signal is

u, =C(y-PRy(u+u,)). (3.23)
Equation (3.23) can be rewritten as

(1+P,C)u, =Cy-P,Cu. (3.24)
From (3.24), we have

C P,C
u, = y-— u.
1+P,C° 1+PC

(3.25)

Note from (3.25) that when the magnitude of the pem;atodc(ja))| >>1, (3.25) is

reduced to (3.26).
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=—y-u (3.26)

Utilizing (3.21) and (3.26) gives
u, = P*(P(u+d))-u. (3.27)

e

Equation (3.27) can be simplified to the form shaw(3.28).

u, = Py*Pd + (PP -1 (3.28)
The difference between the actual system and thdemis defined al\AP=P- P,
substituting this relation into (3.28) gives

u, = P;*(Pd +APu). (3.29)

e

From (3.29) we can see that as the accuracy afidhenal model approaches that of the

actual plant,P;*P — 1andAP - 0. Then (3.29) reduces to, =d. If the nominal

plant provides an accurate estimate of the physigstem,u, will act as an estimate df

Figure 23 shows the frequency-domain observer séifisor noise added at the

plant output.

Figure 23:Closed-loop Observer with Sensor Noise
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The equation that governs the frequency-domainrgbsevhen sensor noise is included

is given in (3.30), wherg,, is the noise corrupted output signal.

C P,C
ue = ym -
1+P,C°™ 1+P,C

y (3.30)

Equation (3.30) can now be rewritten as

U, =S (y+n) -

u. (3.31)
1+P,C 1+P,C

In the frequency range wheb@(jw)| >>1, (3.31) can be simplified as (3.32).
1
u,=—(y+n)-u (3.32)
I:)N

Utilizing (3.32) and the same process that was tsel®rive (3.29), the final relation for

the disturbance estimate can be obtained as

u, = P;*(Pd +APu+n). (3.33)

e

From (3.33), it can be seen that|a,§(ja))| <1, the compensatan. will magnify the

sensor noise by the inverse of the nominal model.

The research findings of this section are summdraefollows. Equation (3.19)
showed that when the compensator gain is largegtimated state tracks the actual state.
From (3.20) we can see that when the compensaitoiggamall the estimated output will
follow the nominal model. Equation (3.33) showatttvhen the model is accurate it will
be possible to acquire an estimate of the distwdedn We can also infer from (3.33)

that the compensator can be considered as a cotmobirtd an external disturbance and
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an internal disturbance (plant uncertainty). Thiege kinds of disturbances constituted
the generalized disturbance that is the basise@ADRC. The results of this section are
dependent on the behavior of the observer’s inteorapensato. In the sections that

follow, the compensators for a Luenberger obseawner an ESO will be derived in order

to compare the compensators for the two designs.

3.3.2 Classic Luenberger Observer

In order to better understand the distinction betwea classic Luenberger
observer and an extended state observer, the wseudf both observers will be
compared. In this section a frequency domain dgasmn of a third order Luenberger
observer will be derived. This observer structwik then be compared to the ESO in

Section 3.3.3.
Suppose the plant under study is a third ordegmater of the form in (3.34).
y=u (3.34)

If y is the measured output, the following state vdemlvill be defined.

X =Y
X, =Y (3.35)
X3 =Y

The state space model of this plant (3.34) isrging3.36).
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X, 01 0fx| |O
X, =10 0 1|x,|+|0u
Xy 0 0 Ofx| |1
o (3.36)
X
y=[1 0 O] X5
Xs |

The form of the Luenberger observer is given irB{3. wherez is the observed state

vector andz = [z1 zZ, 23]T , andL is the observer gain vector.

2= Az+Bu+L(y-79)

3.37
y=Cz (3:37)
Equation (3.37) can be rewritten as in (3.38).
z=(A-LC)z+Bu+L
2=( Jz+Bu+Ly (3.38)
y=Cz
In (3.38), the state matrices are representedllasvi
010 0 L,
A=|0 0 1| B=|0| C=[1 0 0] L=|L, (3.39)
00O 1 L,
The Laplace transform of the observer (3.38) igin (3.40).
sZ(s)=(A-LC)z(s)+BU(s)+ LY(s) (3.40)
Equation (3.40) can be rewritten as
Z(s)=(sl - A+LC)™[BU(s) + LY(s)]. (3.41)

In order to obtainZ(s), the following matrixN must be computed.
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s+L, -1 O
N=(sl-A+LC)=| L, s -1

(3.42)
L, 0 s
The determinant of matriX is
defN)=s*+L,s* +L,s+L,. (3.43)
The inverse of (3.42) is
. s° S 1
(st-A+LC)" = defN)| (Lis+Lls) s(s+L) s+l | (3.44)
e
-L,s -L, s*+L;s+L,
Substituting (3.44) and (3.39) into (3.41), we waidlve (3.45).
Z,(s) . s s 1 0
Zz(S) =d I(N) _(L23+L3) S(S+L1) s+l OU(S)+
e
Z,(s) -L,s -L, s*+Ls+L, |1
(3.45)
. s? s 1 L,
del(N) _(L25+L3) S(S+Ll) s+l L, Y(S)
-L,s -L, s*+Ls+L, | L,
From (3.45), we will have the following three estited states.
L,s®+L,s+L
zZ(g)=— 1 U(g)+ > TheS* s y(g)
SS+Ls"+L,s+L, sS+Ls"+L,s+L,
+ +
20— Sth  y(ge—SSth) g gag
sS+L;s"+L,s+L, sS+L;s"+L,s+L,
Z+Ls+L L,s®
23(8): 3 > 2 18 2 U(S + 3 23S (S)
s"+Ls"+L,s+1L, s*+Ls"+L,s+L,

We assume that we use the closed-loop observdroagsin Figure 21. The estimated

output given by (3.15) is repeated in (3.47).
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P s+ PG

3.47
1+RC  1+pC’ (3.47)

y=

Since the original system is a triple integrataB43, we can define the nominal plant as

follows.
1
PN = _Q3 (348)

Substituting (3.48)Rn(s)) into (3.47), and comparing (3.47) and the equation (3.46),

we will have the compensators for each state asrsim (3.49).

C,(s)=L,s? +L,s+L,

_s(l,s+ L)
C,(s)= L, (3.49)
L,s?
C - =3
(9 s’ +Ls+L,

In (3.49), C,(s) is an ideal second-order PD compensator for thienate of Z,(s),
C,(s) is a phase lead compensator for the estimat, (s), andC,(s) is a phase lead

compensator for the estimate Bf(s).

Because the compensat6y(s) in (3.49) does not have an integral action, the
estimation error for theZ, (s) will not be driven to zero at steady state. Iot®a 3.3.3

we will see how the addition of the augmented stditthe ESO helps to alleviate this

shortcoming.
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3.3.3 Transfer Function Representation of a Fourth-orderESO

The ESO contains an augmented state to estimaigetieralized disturbances to
the system. For a third order integrating plastgaven in (3.34) one needs to design a
fourth order ESO in order to reject disturbancdse Taplace transform of the equations

that govern the fourth order ESO are given in (8.50

The state space model for the extended state adyssras follows.

7=(A-LC)z+Bu, +Ly

z
3.50
y=Cz ( )
The state matrices of (3.50) are given in (3.51).
0100 0 L,
0010 0 L,
A= B=| |, L= (3.51)
0 001 1 L,
0 00O 0 L,
c=[1 0 0 0O
Assuming zero initial conditions the Laplace tramsf of (3.50) is
Z(s)=(sl - A+LC)™[BU(s)+ LY(s)], (3.52)

where Z(s) = [Zi(s), 2Z(s), 2(s), Z(s)]", andZ(s) (iOfL 4]) is an estimated state.

DefineN as

(3.53)



The determinant of N is
detN) =s* + L;s® + L,s* + L,s+L,
In order to simplify (3.52), we define the mathkas
M =(sl- A+LC)™

The matrix of (3.55) is

Ml
_ 1 M,
st LS LS+ Ls+L, | M,
M4

In (3.56), the row vectoid,, M,, M,, andM, are defined as follows.

s 1

(Ls +L s+L) $2(s+L,) s(s+L,) s+L,]

1

2

= < L
I

. &2 -Ls -L, S+Ls+L,s+Ly

Each estimated state can be computed by the faltpeguation.

M, L
Z Y
(8)= s*+Ls’+L,s"+Ls+L, (s)+
e o

s*+Ls?+L,s"+Ls+L,
Using (3.51), (3.57), and (3.58) the estimated wu)(s) is computed as
3 2
Zl(s)= (Lls +L25 +L3S+ L4) Y(S)+

s*+Ls’+L,s" +Ls+L,

S u(s)

s*+Ls?+ L, +Ls+L,
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. [ (Lis+L,) —(Ls+L,) s(sz+Lls+L2) 32+Lls+L2]
L,

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)



Recalling (3.47), the transfer function for thetstabserver is given by (3.60).

P.C P,
Z,(s)=—2"-v X .
&)= rpc YO e Ve (3.60)

Solving (3.60) for the compensat6x (s) results in (3.61).

q@ﬁ¢§%¢§+g+gl (3.61)
C

<

This compensator in (3.61) clearly has an integcéibn. The nominal plant is

1
a@:g. (3.62)
Next, one can use (3.58) to solve y(s), as given in (3.63).
245+
ZZ(S) _ . S(L23$ L:,’ZS L4) Y(S)+
s'+L,s"+L,s"+L;s+L,
(3.63)
S(S+ Ll) U (S)
s*+Ls’+L,s" +Ls+ L,
Solving for the compensatd, (s) gives (3.64).
Z+L.s+
C2 (S) — LZS L3S L4 (364)

s+L,

The nominal plant is the same as the one giveR.B2]. Solving (3.58) foZ3(s), we

will obtain (3.65).

z(=— Slstb) g,

st + LS+ L8 + L5+ L,
oLl (3.65)
S|S .S 2 U (S)

4 3 2
s'+LsT+L,s"+L,;s+L,
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Solving for the compensatd, (s) yields (3.66).

— S(LSS+ L4)
=_\37 4/ 3.66
C3(S) 32 + Lls+ L2 ( )

Then the estimate of the augmented state is

L,s’
Z = 4 Y(s)-
O s e '® o
L, '
U
s*+LsP+ L, +Ls+L, S
Equation (3.67) can be rewritten as
2.(9) L, [s°v(s)-u(9)). (3.68)

s*+Ls?+ L, +Ls+L,

It is shown in [34] that (3.68) can be viewed akwa-pass-filtered (LPF) disturbance

estimate. Then (3.68) can be also expressed as

z,(s)= LPF|Rs*y(s)-u(s)]. (3.69)

Comparing (3.61) to (3.49), we can see that theofiske augmented state in the

ESO allows the estimated outpzi(s) to track the plant output with zero steady state

error. This gives the ESO a significant advantageejecting constant disturbances

(internal and external) to the system.
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3.4  Transfer Function Description of ADRC

In this section, a frequency-domain implementabbthe ADRC will be derived
for a third order plant. The derivation of a trfemdunction description of the ADRC for
a second order plant was reported in [24]. Theltbrder electrostatic model requires a
4™ order ESO and a second order controller. Figdretdws the essential components

in an ADRC.

|
ro | Control Uy J 1 l u__
Law " b ; o
| >
| A |
I |
I |
I |
| l
| ~1
| : ESO | ¥
I |
. ADRC |

-

Figure 24:ADRC Topology

The state equations for the fourth-order extendte ®bserver are given in (3.70).

z=(A-LC)z+Bu+Ly
R (3.70)
y=Cz
The state matrices of (3.70) are represented ByL)3.
0100 0 L
0010 0 L,
A= B=|.|, L= (3.71)
0 001 b L,
0 00O 0 L,
c=[1 0 0 0O

71



Assuming zero initial conditions foz(t), we will have the Laplace transform of (3.70):
Z(s)=(sl - A+LC)™[BU(s) + LY(s)]. (3.72)

From Figure 24, the control inputto the plant is given by (3.73).

1
u==u (3.73)
b

In (3.73), the control lawy(,) is
u :kp(r -2)-kyz, —Ky,2, — 2,. (3.74)

a

Substituting (3.74) into (3.73), we have

u==(k,r [k, ke ke 12). (3.75)

Ol

The controller gain vectd( is defined in (3.76).
ki ke 4 (3.76)

Substituting (3.76) into (3.75), we will have thaglace transform of (3.75) as given in

(3.77).

U(s)==(k,R(s) - KZ(s)) (3.77)

ol -

Substituting (3.72) into (3.77), we have
u(s) :%[kpR(s)— K(sl - A+LC)*(BU(s)+ LY(s)). (3.78)

In order to simplify (3.78), we define the mathkas
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M =(sl- A+LC)™. (3.79)
Substituting (3.79) into (3.78) and simplifying tresults, we have

6+ KMBu (s) = k R(s) - KMLY(s). (3.80)
Equation (3.80) can be rewritten as

k
» R(e)-KML

U(s)=| ——2—R(s)-———Y(s)|. (3.81)
b+ KMB b+ KMB

The transfer function (3.81) of the ADRC can beiwkst in the form of a two

Degree-Of-Freedom (2-DOF) closed loop system awshio Figure 25.

Figure 25:Block Diagram of the Closed-loop ADRC-controlledsg&m with the

Controller in a Feedback Path

In Figure 25,H (s) is a prefilter,C(s) is the controller in a feedback (return)
path andP(s) is the plant to be controlled. The prefilter ammhtroller are presented in
(3.82).

k
KmL_ -y 9 ,

Cls)=—— =
() b+ KMB b+ KMB

(3.82)

The vectoK in (3.76) can be defined as
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K=lk, ka koo 3=[K, K, K, 1. (3.83)

p

Using, (3.83), the polynomi&MB in (3.82) was derived as (3.84).

6(KaS3 + (Kz + K3L1)32 + (Kl + K2L1 + Kst)S_ L4)

KMB: 4 3 2
s"+Ls"+L,s"+L,s+L,

(3.84)

The transfer functiot + KMB is

65(33 +N,s° + N,s+ N3)

b+KMB= o 1> — ,
s"+Ls+L,s"+L,s+L,

(3.85)

where the coefficients of the numerator of (3.8%) a

N, =K, +L,
N, =K, +L, +K,L, : (3.86)
N, =K, +K,L, + KL, +L,

TheKML polynomial in (3.82) is

3 2
Fs’+F,s"+Fs+F,

KML = )
s*+Ls +L,s* +L,s+L,

(3.87)

where the numerator coefficients for (3.87) are

F=Kb + KL + Kol + L,
F, =Kl + Kol + KoL,

F =KL + KoL,

F, =K,

(3.88)

Recalling the format of the feedback controlle(3rB82) gives (3.89).

KML

Cls)=———
() b+ KMB

(3.89)

Substituting (3.85) and (3.87) into (3.89), we waidive the controller shown as follows.
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C(S) — E ENClss + chs2 + Nc35+ Nc4
b s(s® + De,S? + Dg,S+ Dy ) (3.90)

The numerator coefficients of (3.90) are found3r9g).

Ney = Kol + KoL + Kol +L,
Neo = Kil, + KoL +KsL,
Nes = KLy + KoL,

Nes =Kyl

(3.91)

The denominator coefficients of (3.90) are givei(3r92)

Dg, =K+
D., =K, +L, +K,L, (3.92)
D =Ky +K, L + KL, + L

The next step is to compute the prefilter. Thdilbeeis described by (3.93).

k
H, ()= b=
b+KMB b+KMB

(3.93)

Substituting (3.85) into (3.93), we have

1(54 +1,8° +L,8° +L,s+ L4)
s(s3 +D,S* + D,S+ DC3) '

Hr(S)=%EK (3.94)

The denominator coefficients of (3.94) are give(3192). Both the controller (3.90) and

the prefilter (3.94) have the same poles.

Next, the controller and prefilter will be derivédr the controller in a feed-

forward path as seen in Figure 26.
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Figure 26:Block Diagram of the Closed-loop ADRC-controlleds&m with the

Controller in a Feed-forward Path

In Figure 26,H (s) is the prefilter,C(s) is the controller in a forward path am{s) is

the plant to be controlled. The control signaFigure 26 is given in (3.95).

U(s)=C(s)E(s) (3.95)

E(s)=H, (s)R(s)-Y(s) (3.96)
Replacing theE(s) in (3.95) with (3.96) we have
U(s)=C(s)|H, (s)R(s)-Y(s)|- (3.97)

Equation (3.81) shows the control signal for theRXDas follows.

k KML
U(s)=—L"—R(s)-= Y(s 3.98
() b+ KMB () b+ KMB () ( )
C(s)H ¢ (s) cls)

Comparing (3.98) with (3.97), we have

C(S) KML

= (3.99)
b+ KMB
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We can see that the controller (3.99) in the fodyaaith is the same as the one (3.89) in
the feedback path. The prefilter is the only tfandunction that has changed.

Comparing (3.97) to (3.98), we have

K
Cls)H,(s)=+—2—. 3.100
(S)H (8) =~ (3.100)
From (3.99) and (3.100), one can solveHs) as given in (3.101).
— Kl -1
H,(s)=——2—C™(s) (3.101)

_6+KMB

Substituting the inverse of the controller of (3.880 (3.101) gives the transfer function

for the prefilter.

H, (s)=| o | DXKMB_ K, (3.102)
b+KMB) KML | KML

Therefore as the controll@(s) is placed into the feed-forward path as shownigure

26, we will have the transfer functions for the wolker and the prefilter as given by

(3.103) and (3.104) respectively.

KML
c(s)=— 3.103
( ) b+ KMB ( )
K
H(s)= o (3.104)

Replacing th&KML in (3.104) with (3.87), we have the prefilter givenfaldows.

f+LsP+L s +L.s+
H, (s)= K[;(S rLs rLs vLs L) (3.105)
1S+ Dy,pS” + DysS+ Dy
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The denominator coefficients of (3.105) are givei(3.106).

Dy, =KL + KoL, + KL + L,
Dy, =KL, + KL +KsL,
Dys = KLy + KoL,

Dy =KL,

(3.106)

From the equation developments above, we can sedhé transfer function of
the controller in the forward path is identicalttee feedback controller. However, the
prefilters are different for the two cases. Nex will substitute the values of the
controller and observer gains into the equatiomsele based on Figure 25 and Figure 26

to obtain the final representations of the congradind the corresponding prefilters.

The observer gain vector in (3.6) is repeated ibh(3).
L=[L, L, L L]=|4w, 6«7 40} o (3.107)
The controller gain vector in (3.10) is repeated3iri08).
K=K, K, K, 1=]|ef 3 3w, 1 (3.108)

Substituting (3.107) and (3.108) into (3.103), vewdnthe controller:

®+N.,8* + N.,s+N
cls)= S ¥ NeoS™ * NeoS+ Ny | (3.109)
b s(s + D, S” + Dg,S+ DCS)
where the numerator coefficients for the contralhe3.109) are:
Ng, = 4w, +18w.af +120,.0) + W,
Ng, = 6w’ e +12a @) + 3w,
, (3.110)

Ng, = 4w + 30,0
—_ 3, 4
NC4 - wcwo

78



and the denominator coefficients of (3.109) are:

De; = 3@, +4a,
D, =3a +12w.w), + 6 : (3.111)
Des = & +120f w, +18w,af; + 4ar

Substituting (3.107) and (3.108) into (3.94), weéthe prefilter in Figure 25:

3( 4 3 2 3 2
(s):—%EWC(S +4w,s° +6as +4a)os+a)o)

H
b ss® + Dg,s? + Dg,S+ Dy

r

. (3.112)

The denominator coefficients of (3.112) are giver(3.111).

Substituting (3.107) and (3.108) into (3.104), veednthe prefilter in Figure 26:

H (s)= wf(s“ +4w,s° +60.s® +4w’s+ a);‘) (3.113)
f - . .
DH1S3 + DHZS2 +D,35+ Dy,

The denominator coefficients of the prefilter in1(B3) are given in (3.114)

D,, = 4w w, +18 «f +120.0) + @}
D,,, =3w.w; +12a}/ )} + 6w e

D, =3 +4w’ ) (3.114)
Dy, = e

Looking at the two control structures in Figured&%l Figure 26, we can see that
the ADRC used in this design is a 2-DOF controll&he problem of 1-DOF controllers
is that there is always a tradeoff between comniatolwing and disturbance rejection.
The use of a 2-DOF controller solved this problgmalbowing the reference signaland
the output measurementto be treated independently by the controlleheathan by

operating on their differenger as in a 1-DOF controller.
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The choice between the topologies shown in Figbrar®l Figure 26 comes down
to the prefilter. The prefilter in Figure 26 cant e implemented in Simulink while the
prefilter in Figure 25 is appropriate for the siatidns in Simulink®. Therefore, we will
choose the control system shown in Figure 25 insauaulations. In addition, the control
system represented by Figure 25 allows for thevdeons of traditionally defined
sensitivity function §, complementary sensitivity functioim)( and other various closed

loop transfer functions that were used for congrodlesign in Chapter 1V.
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CHAPTER IV

CONTROLLER DESIGNS AND PERFORMANCE ANALYSES

This chapter introduces the design strategies i&#ethinear controllers for the
linearized electrostatic actuator. Our control gato extend the travel range of the
movable plate of the actuator to a desired valuthénpresence of the pull-in limit. The
first design strategy assumes all the states andeheralized disturbance of the actuator
are unknown, and utilizes a fourth-order ESO toeolxs both the system states and the
generalized disturbance of the actuator. Basedamurate estimations of the ESO, a
classic LADRC will reduce the original system moadélthe actuator to a third-order
integrator and control the reduced model in remktiThe second design strategy utilizes
partially known modeling information of the actuato design the ADRC where the
ESO is only used to observe unknown states andeheralized disturbance. The third
design strategy divides the original system modethe actuator into electrical and
mechanical parts. A multi-loop control, consistofga standard ADRC for an inner loop
and a PI controller as an outer loop, is employeddntrol the charge output for the
electrical part in the inner loop and the displaeatroutput for the mechanical part in the
outer loop respectively. All of the three desigratdgies take into consideration the

effects of noise, and attenuate the noise effesitgyuhe controllers.
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4.1 Classic LADRC Design

41.1 Controller Framework

In the frequency domain, the loop transmission tioncis a key tool in accessing
the performance of a control system. The loopsiraasion function is derived from

Figure 25 and is defined in (4.1), in whiél{s) is the plant to be controlled ar@(s) is

the feedback controller.
L(s) = P(s)c(s) (4.1)

From (2.69) the electrostatic actuator can be desttiby a third-order plant in the form

of (4.2), in whichb, is a constant numerator coefficient, agda,, anda, are positive

constants.

" e aferalera) 42

As the ADRC is placed in the feedback path of tlusexd-loop control system for the
actuator as shown in Figure 25, (4.3) gives thasfex function representation of the

ADRC. Comparing (4.3) to (3.73), we hawg= N, ¢, =Ng,, ¢, =Ng;, C; = N¢,,

d, =D, d, =D,, andd, = D;.

1 cs*+cs’+c,s+cC
C(S)_ 0 C 2 3

(4.3)

~

b, sls® +d,s? +d,s+d,)
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Substituting the plant of (4.2) and the controtdé(4.3) into (4.1) yields the general loop

transmission functiori(s) of (4.4).

3 2
L(S)=P(S)C(S): b C,S” +C;S” +C,S+C;

Sora)sta)sta)s ds rdsrd,) O

cr>| o

Equation (4.4) will be used to investigate stapiind robustness of the closed-

loop system.

The control goal is to make the displacement ougfuhe movable plate of the
actuator track a desired reference position. Aalyaed at the end of Chapter 3, the
controller is placed in the feedback path, as shioviigure 25, as the final framework of

the ADRC control system. Thus from (3.94), thefifiez will be

4 3 2
Hr(s)=id<1(s +L,s°+ 1,82+ L,s+ L4)_ @5

X s(s® +d,s? +d,s+d,)

The poles of the controller (4.3) and the prefiiez the same in this configuration.

4.1.2 Classic ADRC Design

One of the main advantages of the ADRC is thatag few tuning parameters.
The controller can be tuned utilizing three pararset These parameters are the

controller bandwidtlw,, the observer bandwidtty, and the approximate input gain of

the pIantBO.

In this section, the ADRC with three different sefstuning parameters will be

discussed. The values of the three sets of tupamgmeters for the ADRC are given in
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Table VI, in which the ADRC with the first set afrting parameters is taken as design
one, the ADRC with the second set of tuning pararmsés taken as design two, and the

ADRC with the third set of tuning parameters isstalas design three.

TABLE VI: THREE SETS OF TUNING PARAMETERS

Design | f, | @ (rad/s) | w, (rad/s)
1 1.1 2 50
2 0.78 2 30
3 0.65 2 20

There was a preliminary tuning process performechtwse the parameter values

listed in Table VI. The choice of the controllanawidth w, was chosen based on the
desired transient response of the system. Thenadyskandwidthe), is constrained by
the amplification of sensor noise. The genera nflthumb is to seleaw, to be three to
five times the bandwidth afu. [22]. The observer bandwidth should be chosearge
as the sensor noise will allow. The approximatdrthe input gairﬁ was used to fine
tune the frequency response of the loop transmmiskiaction (4.1) to maximize the

stability margins of the system. From Table VI, gan see that the controller bandwidth

is chosen fixed . =2rad/s) since this value gave the best compromise between

performance and noise attenuation for the actualtwe details about the tuning process

of the ADRC can be found in [22].
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If we assume the ESO has accurately estimatedetherglized disturbance, with
the controller bandwidth set atrad / s the desired closed-loop transfer functigp, of

the system shown in Figure 25 will be given by 4.6

3

_ W, _ 8 _ 8
7 S +30 s +3afs+ ) S +657 +125+8 (s+2)

(4.6)

The step response of this desired plant is shoviigare 27, where the magnitude of the

reference signal is 1.

Desired Closed Loop Step Response

— Gi(e+2”

Dizplacement

t t t t t t |
u] 1 2 3 4 a 5] 7
Time (zec)

Figure 27:Desired Closed Loop Response to a Step ReferegoalSi

From Figure 27 we can see that the desired respg@ssa rise time of about 2.66 seconds

and has a settling time of 3.76 seconds. The pedoce of this desired response is

comparable to the nonlinear controllers designdd8n20].
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4.1.2.1 Design 1

From Table VI, the controller parameter values teg first design arew, = 2

w, =50, b=11, in which the observer bandwidth is a rather hipgltameter. The
controller for this design is based on (3.90) (asged with (3.91), (3.92), (3.107), and

(3.108)) and is given in (4.7).

cls)= 8574182(s+1.329)(s” +3.303 + 4.009)
s(s+1056)(s* +1004s +5610)

4.7)
The prefilter that is used in this design for comahdollowing is based on (3.94)
(associated with (3.92), (3.107) and (3.108)) angiven in (4.8)

~ 73(s+50)*
H r (S) - 2
s(s+1056)(s? +1004s+5610)

(4.8)

The controller is tested on the electrostatic @otuenodel represented by (4.2). The
values of the system parameters corresponding ffereht desired travel ranges (or
displacements) of the moveable plate of the acti@o be found in Table V in Chapter
2. In the following analysis for the first desigme choose the desired displacements as
5%, 20% 33%, 50%, 75% and 95% of the full gap. Fi@&eshows Bode diagrams of

the loop transmission functioh(ja)) given by (4.4) for these different travel rangés.

Figure 28 L05 represents the loop transmission function (4.4}He desired travel range
being 5% of the full gap. The plant for this travehge is denoted 05 Similarly,
L20, L33, L50, L75, andL95 represent the loop transmission function for tlesirgd
travel ranges being 20% (fér20), 33% (forP33), 50% (forP50), 75% (forP75 and

95% (forP95) of the full gap.
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Design 1: Loop Transmizsion Function Lijs
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Figure 28:Bode Diagram of the Loop Transmission Function)(fod Design 1

We can see from the phase plot in Figure 28 thatetlof the plants have poles in the

RHP P50 P75 P95, one has a pole at the origiR33), and the other two are stable

(P05, P20). The plant denoted H¥33is the linearized plant at the pull-in displacemen

Table VII shows the gain (GM) and phase (PM) magihthe loop transmission transfer

function (4.4) with different desired travel randesthe first design.

TABLE VII:  STABILITY MARGINS FORDESIGN1 (@, = 50)

Plant Lower GM | Upper GM PM BW
Model (dB) (dB) (degrees) | (rad/sec)
P05 NA 27.9 61.7 2.96
P20 NA 21.9 77.8 6.80
P33 NA 19.6 77.6 9.08
P50 -29.4 17.8 75.3 11.3
P75 -23.8 16.0 71.7 14.0
P95 -21.7 15.0 69.1 15.9
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From Table VII, we can see that this design pravidefficient gain and phase

margins.

Figure 29 shows the step responses (normalizedadementx) of the classic

LADRC control system to the unit reference inpujsat 5%, 20%, 33%, 50%, 75%, and

95% of the full gap respectively for the first dgsi The transfer function from the

reference inputrj to the normalized displacemenj (s given by (2.88).

Design 1: Command Step Response

; — P05

; — P20

: : : : — P33
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@ ! ! ! ' ' !
5y : : : ' : :
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Figure 29:Step Responses of the First Design

In Figure 29, the largest overshoot percentage %f dicurred for the plant

transfer function oP05 ThePO05 plant’s overshoot is attributable to a dominarit pa

underdamped low frequency poles in the closed toamsfer function. The overshoot at

the small displacement (5% of full gap) is not muwtha concern. However, at large

displacements, big overshoot would lead to the ugpel lower electrodes touching.

Then the two electrodes could adhere togetherjruatise effect known as static friction.
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In Figure 29, the step responses at the otheratispients (except fd?05 appear to

follow the reference signal very well. Thus we cay that the first design of the classic
LADRC shows excellent tracking performance. A congman study of the percent Over-
Shoot (%0S) and the Integral of the Squared EMSE) of the three designs will be

shown at the end of Section 4.1.2.

4.1.2.2 Design 2

In design two, a more conservative observer bantiwgl selected. The tuning
parameters for this design from Table VI asg:= , a = 30, b= 078. The controller

for this design is shown in (4.9).

cls)= 1953539s+1.232)(s” + 2.8365+ 3.451)

4.9
s(s+654)(s? +606s +2169 4.9)
The prefilter used in this design for command feilng is given in (4.10).
4
H.(s)= 103(s+30) (4.10)

s(s+654)(s? +606s +2169

The Bode diagrams of the loop transmission func{d) corresponding to different

displacements of the actuator are shown in FigQrieBthe second design.
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Comparing the Bode phase plot of Figure 30 withuFég28 we can see that the
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gain and phase margins of (4.4) for the secondydesi

Figure 30:Bode Diagram of the Loop Transmission Function)(#od Design 2

width of the frequency range of phase lead is lafge the higher bandwidth ESO (in
design one). This reduction in the amount of pHesad in Figure 30 could have the

effect of reduced phase margins for the set ofalized plants. Table VIII shows the

TABLE VIII: STABILITY MARGINS FORDESIGN2 (w, = 30)

Plant Lower GM | Upper GM PM BW

Model (dB) (dB) (degrees) | (rad/sec)
PO5 NA 24.3 60.1 2.48
P20 NA 18.2 79.5 6.20
P33 NA 16.0 77.8 8.40
P50 -27.8 14.2 73.4 10.6
P75 -22.2 124 67.4 13.1
P95 -20.1 11.3 63.3 14.7
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From Table VIII, we can see that the second desagireduced phase and gain
margins as compared to design 1. The reductigzhase margin is most notable at the
larger displacements (which are 50%, 75%, and 95%llogap). TheP95 plant loses
5.8 of phase lead and 4.7 dB on its upper gain margine bandwidth in design 2 is
also reduced but not significantly compared to giesl. Figure 31 shows the step

responses for the classic LADRC control systemifterént reference inputs in design 2.

Design 2: Command Step Response

: — P05
; P20
: — P33
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Figure 31:Step Responses of the Second Design

From Figure 29 and Figure 31, we can see that tle¥sboot percentage is
increasing with the decreased observer bandwidttesign 2. In Figure 3B05 shows
9% overshoot at = 3.6 seconds. The two transfer functid?®0 and P33 exhibit
overshoot of 2% and 1% respectively. The threectfans P50, P75 and P95 with

higher displacements still do not exhibit noticeatwershoot.
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4.1.2.3Design 3

The third design is the most practical design efttiree since we choose smallest

observer bandwidth in this design. The designrpaters for design 3 from Table V are:

w, =20, w, =2, andb = 065.
The controller and prefilter are given by (4.11§44.12) respectively.

c(o)= 5868308(s+1.151)(s* + 2423+ 2.917)

4.11
s(s+452)(s? +40.8s+1048 (11

12.3(s+20)*

4.12
s+452)(s? + 408s5+1048 (4-12)

Hr(S): S(

The Bode diagrams of the loop transmission func{®d) corresponding to different

displacements of the actuator are shown in Fig@riaBthe third design.

Design 3: Loop Transmission Function (mo =20

lagnitude (dB)
[}
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Figure 32:Bode Diagram of the Loop Transmission Function)(#od Design 3
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The gain and phase margins of the loop transmigsioction for the third design
are shown in Table IX. In Table IX, the gain magof theP75 and P95 have been
reduced to 10.21B and 9.13dB respectively compared to design 1 and desigiTRe
phase margins for the05 andP95 plants have fallen below 60 The bandwidth is also
reduced in this design. Figure 33 demonstratestiye responses for the six operating

points in design 3.

TABLE IX:  STABILITY MARGINS FORDESIGN3 (c, = 20)

Plant Lower GM | Upper GM PM BW

Model (dB) (dB) (degrees) | (rad/sec)
P05 NA 22.2 56.6 1.92
P20 NA 16.1 80.7 5.22
P33 NA 13.9 79.6 7.30
P50 -25.8 12.1 73.5 9.32
P75 -20.1 10.2 65.1 11.6
P95 -18.0 9.13 59.6 13.1

Design 3: Command Step Response

Mormalized Displacement x

0.9 4
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08
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Figure 33:Step Responses of the Third Design
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Figure 33 shows significant overshoot at small ldispments. The actuator exhibits
overshoot at all displacementB05 has an overshoot of 13% in this desig?95 has an
overshoot of 1% in this design. The overshoot ghéi displacements is going to limit

the effective travel range of the electrostaticiatir.

4.1.2.4 Design Comparison

Figure 34 shows the step responses of all thregraefor the linearized model of

the actuator with the displacement of 99% of tHedap.

1.02 5

Cornmand Step Response (P99

0.558 H

0.56

0.84

Mormalized Displacement x

0.92 1

08

Mormalized Time ©

Figure 34:Step Responses of the Three Classic ADRC DesigrikdoActuator with the

Displacement of 99% of Full Gap

From Figure 34, one can see that the step resgonsesign 3(«w, =20rad/s )

shows a maximum overshoot percentage of 1%. Twesshoot will limit the effective
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travel range of the actuator to 99% of the full .gdp order to provide a quantitative
measure of the tracking performances of the desigtigs section the Integral-Squared-
Error (ISE) is used. Equation (4.13) gives theggahdefinition for the ISE, in whichis

the setpoint, andis the measured output.
ISE(e) = [e*(t)dt e=r-x (4.13)

Tables X and Xl show the Over-Shoot (%0S) percasgamnd ISE for the three
designs. Table X clearly demonstrates that theltmp gain/bandwidth of the models
linearized around small displacements leads teelatrgcking error. Table X also shows
that increasing the observer bandwidth reducedréoking error. Table XI shows that
the increasing the observer bandwidth also ha®ffieet of increasing system damping

over the operating range of the electrostatic @aotua

TABLE X: INTEGRAL OF THESQUARED ERRORS FOR THET HREEDESIGNS

ISE
Plant Design 1 Design 2 Design 3
PO5 1.2743 1.3369 1.4368
P20 1.1396 1.1692 1.2186
P33 1.1059 1.1267 1.1619
P50 1.0828 1.0974 1.1226
P75 1.0619 1.0707 1.0866
P95 1.0502 1.0560 1.0666
P99 1.0482 1.0534 1.0631
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TABLE XI: OVERSHOOTPERCENTAGES OF THETHREEDESIGNS

%0S
Plant Design 1 Design 2 Design 3
P05 6 9 13
P20 NA 2 6
P33 NA 1 4
P50 NA NA 3
P75 NA NA 2
P95 NA NA 1
P99 NA NA 1

Figure 35 demonstrates the Bode diagrams for tiee ttlassic ADRC designs.

ADRC Controller Comparizaon (C0=))
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Figure 35:Bode Diagrams of the Control Systems for the TiDesigns
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Figure 35 shows that the frequency range of phaad Is reduced with the

decrease of the bandwidtlw() of the ESO. It also shows the high frequency gail

result in noise amplification of the 3 ADRC designi these designs, phase lead is
sacrificed for reduced high frequency gain as theeover bandwidth is reduced. This is
a classic tradeoff between system stability andgeaaittenuation. The effects of sensor

noise will be further investigated in Section 4.3.

The performance data presented in this sectioniston$ the percentage of
overshoot and the ISE of the tracking error. Jitgbwvas also investigated with the use
of phase and gain margins, with special emphasmatimizing the phase margin across
the entire set of operating points. Based on takilgy and performance data, design 1
appears to be the most promising design, followeddsign 2 and then design 3. Design
1 shows the benefits of a high gain/bandwidth ailer. The cost associated with the
use of the high gain controller is its increaseasgevity to noise. The effects of sensor
noise and the noise attenuation capabilities ofttitee designs will be discussed in

Section 4.3.

4.2 LADRC 4™ Order Alternative Design

For the classic ADRC, both the internal dynamicd arternal disturbances are
taken as an unknown generalized disturbance. A@ BES used to estimate the
generalized disturbance. Based on the accuraimatsin of the ESO, the ADRC

reduces the original system model to a series stamed integrators and effectively
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controls the reduced model using a PD controll€his classic ADRC minimizes the
amount of modeling information required to desiba tontroller. However, if there is
additional modeling information available, it cae mcorporated into the ESO. This
thesis creatively used the partially available niodeinformation to design the ADRC.

The details about this new control strategy wilifiteoduced in the section.

4.2.1 Controller Framework

We consider the general linearized model for amctedstatic actuator given in

(4.13).

P(s) = (5) b (4.13)

U(s) (s+a)ls+as+a,)

From Table V in Chapter 2, we can see that thetgjaim b (or bg) and one of the

system polesa, are the two parameters that vary significantly rottee electrostatic
actuator's operating range. However, the other prapametersa, and a, , are not
changing much. Therefore, we can asswap@nda, are known parameters whike

and a, the unknown parameters. Then the model (4.13)oeadivided into known and

unknown parts as shown in (4.14).

Q)= X(s): 1 b
P00 rakeralera) (41

known unnkown

We suppose the best estimate for the plant lggngiven byB. After the control of the

ADRC, the original electrostatic model (4.14) canrbduced to a nominal model which
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is given by (4.15), where the known parts of thstey remain while the uncertain part

b/(s+a,) is reduced to an integrator.

_ b
P e era) (419

Equation (4.14) can be also rewritten as (4.16).
% =—(a, +a, +a, )%~ (a2, +ay2, + a3 )x~ (ayaa, Jx+bu  (4.16)
Let f([)] include all the unknown terms on the right handesiof (4.16), that
is f (JJ= —a,%— a,(a, +a, )x—a,a,a,x+ (b - 6)1 . Equation (4.16) can be rewritten as
X =—(a, +a,)%x—(a,a,)x+ f(x X, X, (b—ﬁMHSu. (4.17)

The generalized disturbanddJlis estimated by an ESO. This estimate is fed tick

the control law to decouple the disturbance dynamiVith the accurate estimation of

the ESO, (4.17) can be reduced to (4.18).
X = —(a, +a,)%x~(a,a,)x+bu (4.18)

The plant of (4.17) can be controlled with the 2#Ebntrol law given in (4.19), where

f([)] is the estimate of ([J.
u:%[Kl(r—x)—KZX—KSX— f([)i (4.19)

Incorporating (4.19) into (4.17) results in theteys described by (4.20).

X =—(a, +a, +K,)x—(a,a, + K, )x— K, x+ K r (4.20)
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In addition to estimating the generalized distudeaf([)}, the ESO will estimate the

unmeasured system statiésandx, and provide a filtered estimate of the measured

displacemenx. The differential equation describing the stdisesver is given in (4.21).
2=(A— LC)z+ Bu+ Ly (4.21)
Taking the Laplace transform of (4.21) results4r2R).
Z(s)=(s1 - A+LC)™[BU(s) + LY(s)] (4.22)

In (4.22), the matri¥A, and the vectorg, B, andC are defined in (3.71). The matrix

(sl - A+LC) is given in (4.23).

s+L, -1 0 0
L S -1 0
(si-A+LC)=| 7 (4.23)
L, aa, s+a +ta, -1
L, 0 0 S

The inverse of the determinant of (4.23) gives is

1 1

= . (4.24)
detsl —A+LC) s*+AS®+AS*+AS+A,

The coefficients of the denominator of (4.24) aikeeg in (4.25).

A=at+a,+L,

A =aa +L1(a1+a2)+ L,

A = Ll(aiaz)+L2(a1+az)+L3
A =1L,

(4.25)

The inverse of (4.23) is given in (4.26).

(sl-A+LC)™ = 1

= 4.2
det(sl “ A+ LC)[Gl G, G G4] (4.26)
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In (4.26), the column vectors {rEl G, G, G4] are provided in (4.27-4.30)

s(s+a,)(s+a,)
_(L252 +(L2(a1 +a2)+ L3)S+ I—4)
-s(L,s-L,a,a, +L,)
- L4(S+a1)(5+a2)

G, = (4.27)

s(s+a, +a,)
s(s+L,)(s+a +a,)
- (aiazs2 + (Lla:l.a'Z + L3)S+ L4)
- L4(S+ a + az)

(4.28)

S
_|  sls+L)
G, = 8(82 +Ls+ Lz) (4.29)

_L4

1
S+L
G, = , ! (4.30)
s“+L;s+lL,

S+ AST+HASTHA,

As stated in (3.55), the matM is defined in (4.31).
M =(sl- A+LC)™ (4.31)

Again, we suppose the controll@(s) is in the feedback path of the ADRC controlled

closed loop system as shown in Figure 25. Thercolbet and prefilter are given by

(3.82) and repeated in (4.32).

KML K,

C(s):m, H(s)=

= ™ (4.32)
b+ KMB

The termKMB in (4.32) is computed as in (4.33).
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B(K,s° + (K, + K,L,)s? + (K, + K,L, +K,L,)s—L,)

KMB: 4 3 2
S"+AS +AS"+As+A,

(4.33)

The result of(6+ KMB) is given in (4.34).

Bs(s“ +B,s’ +B,s* + Bz)

b+KMB=——© 0>
S"+AS +AS +AS+HA

(4.34)

The numerator coefficients of (4.34) are givendir8b).

B, = (K; + A)
B, =(K, +K;L, + A) (4.35)
BZ (K1+K2L1+K3L2+A2)

The equation that describes the prefilter is gieii4.36).

PRSI
b s* +B,s’ +B,s” + B,s (4.36)

The termKML in (4.32) is derived as in (4.37).

3 2
N,s” + N,s” + N;s+ N,

KML: 4 3 2
S"+AS +ASs +AStHA

(4.37)

The numerator coefficients of (4.37) are preseirtdd.38).

N, = KL, +K,L, +K,L, +L,

N, = KyL, + KoLy + KoL, + (KL + KoL, + L )@ +a,) a3, LK
Ny = KLy + K, L, +aa, (KL + L) +(a, +a, )KL,

N, =KL,

°(4.38)

Substituting (4.34) and (4.37) into (4.32), we \aidive
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3 2
Cls)= % LS+ N,s” + Nys+ N, (4.39)

4 3 2 '
s"+B,s”+B;s” +B,s

As stated in Chapter 3, the controller géias K,, and K, in (4.19) are chosen to
produce real repeated poles for the desired transfer function of the closedplo

system. The controller gains are given in (4.40).

K, =«

(o

K, =3’ -aa, (4.40)

c

K; =3w, _(a1+a2)

C

If we make a comparison between (3.108) and (4M@)will be able to see that the
choice of the reduced nominal model represente@iiy) results in reduced controller

gains.

4.2.2 Comparison Study of Classic and Alternative BRC Designs

In the linear simulations that follow, the clas&d®RC design introduced in
Section 4.1 and the alternative ADRC design dismti$s Section 4.2.1 are going to be
compared. The observer bandwidth, controller badtthvand plant gain estimate are

chosen to be the same values for both designs.cdifteoller parameters are

o

. (4.41)

The actual plant that will be used in these simoiat is a linearized model of the

electrostatic actuator at 95% of the displacemémtm Table V in Chapter 2,=3.559,
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a,=1.027, andh,=-0.5329. Substituting the parameter valuesyph; anda, into (4.13),

we will have the actuator model given by (4.42).

0.7898

P.=
% (s+1.027)(s+3.559(s- 0.5329

(4.42)

4.2.2.1 Classic ADRC Design

The reduced nominal model that will be used indlassic ADRC design is given

in (4.43).

(4.43)

The transfer function of the classic ADRC controlf€_ ) that was designed in (4.11) is

repeated in (4.44).

_ 5868315+ 1.151)s + 24325+ 2.917)
s(s+452)(s? + 40.8s+1048

Ge (4.44)

The transfer function of the prefiltéH) for the classic ADRC design given by (4.12) is

repeated in (4.45).

_ 12.3(s+ 20)*
H, =
s(s+45.2)(s? +40.8s+1048

(4.45)

4.2.2.2 Alternative ADRC Design

From (4.15), the reduced nominal model of (4.42g@esented by (4.46).
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065
Pv = 4.46
N 5(s+1.027)(s+ 3559 (4.46)

The transfer function of the alternative ADRC coliér is given by (4.47).

_ 3471495+ 3.455)s + 24325+ 1.642)
s(s+452)(s? +40.8s+1048

Ge (4.47)

The controller gains in (4.40) were chosen so budh the classic ADRC design (4.44)
and the alternative ADRC design (4.47) would hdwe game poles. However the zeros

of the two controller designs are different.

The transfer function of the prefilter for the aftate ADRC design given by

(4.36) is presented in (4.48).

_123(s+3974)(s+5129)(s? +39.72s+7849)
' s(s+452)(s? +40.8s+1048

H (4.48)

4.2.2.3 Classic and Alternative Controller Comparien

The Bode plots of the two controllers (4.44) andi(4 are shown in Figure 36, in which,
the alternative ADRC design sacrifices some phesé in order to obtain a reduction in

magnitude within the mid and high frequency range.
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Figure 36:Bode Plots of Classic and Alternative ADRCs

Figure 37 shows the Bode plots of the actuator in¢ielg) along with the Bode

plots of the loop transmission functioi®4(s)C(s) for the two designs.

Plart v=. Loop Transmiszion
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Figure 37:Bode Plots of Actuator Model and the Loop Transiois$unctions for Both

Classic and Alternative ADRC Designs
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Table XII provides the upper and lower gain margaisng with the phase

margins for both designs.

TABLE XlI:  ALTERNATE ADRC COMPARISON
Design Lower GM | Upper GM PM BW
(dB) (dB) (degrees) | (rad/sec)
ADRC -18.0 9.13 59.6 13.0
ADRC Alt | -18.8 12.8 51.3 8.18

From the table, we can see that the alternative @RIRsign has improved gain
margins but suffers from a reduction of 8 phase margin. The alternative ADRC
design also has a much lower bandwidth than thesicl@ADRC design. This will be

beneficial when noise sources are considered.

Figure 38 shows the Bode plots of the transfer tions represented by (2.82),
which describes the sensitivity of the controlletput to sensor noise, for both classic

and alternative ADRC designs.
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Controller Moize Sensitivity (C5)
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Figure 38:Bode Diagrams of Noise Sensitivity Transfer Fumsi for the Classic and

Alternative ADRC Designs

From Figure 38, we can see that the alternative BRsign sacrifices a little

phase lead in order to decrease the high frequgaicyof the controller noise sensitivity

transfer function (C(s)S(s)) (2.86). The alterratADRC design provides an extra 5 dB
of noise attenuation at high frequencies.

The Bode plots of the closed-loop input disturbatreasfer function R(s)S(s)

(2.87) from an input disturbance to the measurggudx for both designs are shown in

Figure 39.
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Figure 39:Bode Diagrams of the Closed-loop Transfer Functlmetsveen Input

Disturbance and Output Displacement for the ClaascAlternative ADRC Designs

From Figure 39, we can see that both designs shkxaellent input disturbance
rejections. The peak magnitude response for tiesid ADRC design is -33.3 dB at 1.53
rad/s. The peak magnitude response for the atteenADRC design is -34.8 dB at 1.53

rad/s.

The step responses of both designs are shown ure=#p for the electrostatic

actuator model linearized around 95% gap traversal.
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Command Step Response (P95)
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Figure 40:Step Responses of the Classic and Alternative ADR€Igns

From Figure 40, we can see that the step respdribe alternative ADRC design
reaches the set-point, which is 1, with no overshddowever, the step response of the
classic ADRC design has a slight overshoot of 1%thaf commanded value. The
responses of both the classic and the alternate Q\DBsigns reach the set-point at
around 5 seconds. The ISE for the classic ADRGgdds 1.0666, which is larger than
the ISE for the alternative ADRC design that is78® Therefore, the tracking
performance of the alternative ADRC design is betian the one of the classic ADRC
design from the figure. In the next section thésawensitivity of both designs will be

investigated.
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4.3 Controller Noise Analyses

In Figure 25 and Figure 26 of Chapter 3, we cantheenoise present at the
controller output is the key design constraint. ghification of sensor noise is one of the
costs of feedback control. In this section thesa@ensitivity of the control system for
the electrostatic actuator will be investigatedi@&tail. In Section 4.3.1 some key transfer
functions that will help with noise analyses aréirdsl. Section 4.3.2 will demonstrate
the sensitivities of the electrostatic actuatcelftand the ADRC controlled actuators to a

white noise source.

4.3.1 Electrostatic Actuator Noise Analysis

As analyzed in Chapter 2, the original Electroti§tActuator (ESA) system is
not stable over its entire operating range. Thalmer of RHP poles increases from zero
to one as the gap traversal moves beyond 1/3 ohitied gap. This RHP pole enforces a
lower bound on the closed-loop bandwidth that onestnachieve for a stable control
system. The ESA is also subject to very smallesysgain. It will be seen in this section
that this small system gain will contribute to @maplification of sensor noise. Both the
RHP pole problem and the small system gain issaesbe handled with a high-gain
(high-bandwidth) controller. However, a high-bandiv controller will magnify sensor
noise. Thus sensor noise is going to be the higitactor in how well the control system
performs. In order to investigate how susceptthk controller is to noise we have to
look at one of the operating points of the ESA. ths gap traversal of the actuator is

80% of the full gap, the actuator model can beeggnted by (4.49).
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P8O = 0.725 (4.49)

~ (s+ 358)(s+ 1.03)(s - 040)

From (4.49) we can see that at this operating ptiatre is one RHP pole that is fairly
close to the origin, which is good from a contrgberspective because the farther this
RHP pole is from the origin, the larger the pricattmust be paid to bring it into the LHP
for stability. The DC gain of the actuator systezpresented by (4.49) is given in (4.50).
It will be seen that the gain in (4.50) has a puofb effect on low frequency noise

amplification.

0.725

(358)(103(040) ~ T (4.50)

4.3.1.1 Classic ADRC Comparison

The classic ADRC with two different sets of tunipgrameters will be compared
in this section. Both ADRC designs can track stdprences and step disturbances with
zero steady-state errors. Since the electrodatigator is a third-order plant, the ESO is
fourth-order. The two designs that will be complaege selected from Section 4.1.2.
They are design 1 and design 3 respectively. Thang parameters for design 1 and

design 3 are given in Table XIII.

TABLE Xlll: TUNING PARAMETERS OF CLASSIC LADRCONTROLLERS

Design w, w, b
1 2 50 11
3 2 20 0.65
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Both designs are implemented in transfer functimmmfand are controlled by 2-
DOF controllers consisting of a prefilter and adie&ck controller. Since this thesis only
deals with the sensor noise in the feedback lossi@wn in Figure 25) the prefilter can

safely be ignored for this analysis. The feedbamhtrollers of design 1,) and design
3 (C,) are given by (4.51) and (4.52) respectively. Bmde diagrams of the two

controllers ((4.51) and (4.52)) are shown in Figdite

_ 6.287,734s+1.329)(s” + 3303+ 4.009)

451
s(s+1056)(s? +1004s + 5610 (4.51)

Cl

_ 762880(s+L15])(s” + 2423+ 2917)

4.52
s(s+452)(s? + 40.8s+1048 (4.52)

C3

We can see from Figure 41 that design 1 is theemighin/bandwidth controller.
In the low frequency rangex(< 1 rad/s) design 1 has approximately 6 dB mone tean
design 3. This will allow design 1 to benefit framproved command following and
disturbance rejection. However, in the high frageyerange ¢ > 100 rad/s) design 1 has
approximately 20 dB more gain than design 3. THaiditional gain will help contribute
to sensor noise amplification. Sensor noise amptibn is the limiting factor in the

achievable performance of the ADRC designs inghigion.
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Classic ADRC Cortroller Bode Disgram
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Figure 41:Bode Plots of the Controller€( and C,) for Design 1 and Design 3

The equations of (4.51) and (4.52) can be rewriie(d.53) and (4.54).

2
01:56251{1056j(5610j(s+1323 (s* + 33035+ 4.009) (453)
1.322)\ 4.009) ss+1056) (s? +1004s+5610)
2
¢, <5407 1{ 452 j( 1048) (s+1.151) (s? + 2423 +2.917) (4.54)
1151 2.917) s(s+452) (s* +4085+1048

From (4.53) and (4.54), we can see that both desigilude integral action. The
integral action provides zero steady-state erroistep disturbances. The pole/zero
locations for the real valued lead compensatogzrésented b¥i.g: andCigz) are given

in (4.55) and (4.56).

_ §+1.322

lagl —

C (4.55)

<

<

_s+1151

lag3 —

C (4.56)

<

<
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The pole/zero locations for the complex valued leachpensators (represented Gyag1

andCieaqg are given in (4.57) and (4.58).

2
Coy = [5610 (s : +3.303%+ 4.009 (4.57)
4.009 { s +1004s+5610
[1048 (s? + 2423+ 2917
CIead3 = 2 (458)
2917 | s° +408s+1048

In (4.57),C,,. is the complex lead component of the controll@s) (of design 1 and
Caas IS the complex lead component of controll€g)(of design 3. The complex lead
controller yields the same peak amount of phase bed with less amplitude gain when

compared to a second order real lead controller.

Single-pole low pass filters (LPF) representedchy andCipr, are given by

(4.59) and (4.60).

1056

1T 11056 (4.59)
452

__452 4.60

P 54452 (4.60)

From the two equations above, we can see thataimeicfrequency for design 1
is 105.6 rad/s, the corner frequency for desigs 85.2 rad/s. Since the bandwidth of
design 1 is larger than that of design 3, the latié be less susceptible to sensor noise

than the former.

The constant gains of the two controll€sandC; are given in (4.61) and (4.62)
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_ 562516 _ 5610
L1322 \4.009

~159172 (4.61)

_ 540715 1048
P 1151 V2917

=~ 89044 (4.62)

Figure 42 shows the Bode plots for the phase lhgse lead, LPF and constant
gain components of design 1. Figure 43 shows théeHoiagrams for the phase lag,

phase lead, LPF and constant gain components gind@s

Design 1: Controller Bode Disgram
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B0 f--4-

40 -

044

tagnitude (dB)

20 4--4

-40 :
180 g--4-amrinn

a0 + --4-

Phase (deq)

107 107 lis 10" 10° 107 10
Frequency (radisec)

Figure 42:Bode Diagrams of Lead, Lag, LPF, and Constant Gaimponents of the

Classic LADRC for Design 1

116



Design 3: Controller Bode Ciagram
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Figure 43:Bode Diagrams of Lead, Lag, LPF, and Constant Gaimponents of the

Classic LADRC for Design 3

Figure 44 clearly shows the magnitude frequencpareses of the electrostatic
actuator and the loop transmission function forigied (L) and design 31(;). From
Figure 44, we can see that the high frequency gadesign 3 is reduced at the expense

of phase lead.
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Loop Transmission Bode Diagram

M agnitude [dB)

Phaze (deg)

Frequency (radizec)

Figure 44:Bode Plots of the Actuator System and Loop TransimmsFunctions for

Design 1 and Design 3

In Figure 44, the magnitude @&f, intersects the magnitude of the plaP8() at a
frequency of approximately0® rad/s. The controller will amplify sensor noisethe
frequency range where the magnitude of the loom Qa(ija))| is greater than the

magnitude of the plarR80 This noise amplification effect can be more dieaeen in
Figure 45, which shows the magnitude frequencyaesgs of the actuator plant, the loop
transmission function, and the controller noisesganty function (C(s)S(s) in (2.87) for

design 3.

118



Cortroller Moise Bode Diagram
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Figure 45:Magnitude Frequency Responses of the Actuator Bydteop Transmission

Function, and Controller Noise Sensitivity FunctfonDesign 3

Figure 45 shows the relationship between the cthetmooise sensitivity function
C(s)S(s)(2.87) and the loop transmission functibbjw) (2.84) for design 3. We can
see that as long as the loop transmission fundl(q'mu) has a greater magnitude than the
plant, sensor noise is amplified. Figure 46 shtvesBode diagram of the inverse of the
actuator transfer function, the controller transfanction, and the controller noise

sensitivity function C(s)S(s) for design 3. It shows how the plant and thetibier

contribute to the closed loop noise amplification.
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Design 3: Controller Moize Sensitivity (C5) Bode Diagram
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Figure 46:Magnitude Frequency Response of Controller NoisesiBieity Function for

Design 3

Figure 46 demonstrates the dependency of the dlemtrmise sensitivity function
C(s)S(s)on the plant®P80 and the controller®). We can see that the noise amplification
in the frequency range where the magnitude of theroller C is large, relative to the
magnitude of the plant, the controller noise sensit (C(s)S(s) function tracks the
inverse of the plant. The controller has no effent attenuating the noise in this
frequency range since it is solely dependent orpthet. With the low plant gain of the
electrostatic actuator this will result in incredslew frequency noise amplification.
During the frequency range in which the magnitudef @he loop
gainL(ja)) = P(ja))C(ja)) is small (at high frequencies}(s)S(s)tracks the controlleC.
Thus the high frequency roll off of the compensdty is the key to reducing sensor

noise affecting the controller output signal.
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Figure 47 shows the noise amplification at the wwler output for both design 1

and design 3 when there is a white noise source.

Sensor Moise Comparison

— Design 1, @, =50
Design 3, wy =20

e

Mormalized Control Signal u

0 a0 100 150
Mormalized Time ©

Figure 47:Control Signals of Design 1 and Design 3

Figure 47 shows the effects of white noise, adddatdeameasured output, on the
control signals. From the figure, we can see tihaite will be a good chance that design
1 would saturate the input of the plant. Howedesign 3 is less susceptible to the white

noise source than design 1.

Figure 48 shows the Bode diagrams of the transfactions from the sensor
noise input to the control signal for six sets loé bperating points of the electrostatic
actuator. The classic ADRC controller from desigis used to create these plots. We
can see from Figure 48 that all the plants, witl éxception o33 suffer from low

frequency noise amplification. THR83 plant, which represents the electrostatic actuator
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at pull-in, has a pole at the origin (type-1 systemnd thus has high plant gain at low

frequencies.

Design 1: Cortraller Moize Sensitivity Bocde Disgratm Clja) S (o)
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Figure 48:Bode Diagrams of the Controller Noise SensitivitpAsfer Functions

(C(s)S(s)¥or Multiple Equilibrium Points (Design 1)

While the low input gain of the electrostatic a¢twais detrimental to noise
attenuation, it does have its benefits when distock rejection is considered. Figure 49
shows the Bode diagrams of the input disturbanmaation transfer functioR(s)S(s)
along with the actuator model, the inverse of tbatller and the loop transmission
functionL(s). The classic ADRC controller from design 1 is usedreate these plots. In

Figure 49, we can see at low frequencies wherent@gnitude ofL(s) is large,P(s)S(s)
(2.88) behaves lik€™, while at high frequencies, where the magnitudi(ef is small,

it behaves likdP. Thus ifC has high gain at low frequencies (due to integcéibn), C™

will attenuate low frequency disturbances. It Isoainteresting to note that when the
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magnitude oL(s) is small, our controller has no control over higlgquency disturbance

rejection; disturbance rejection will follow theghi frequency behavior of the plant.

Deszign 1 Input Disturbance Transfer Function Bode Diagram Po)S )
100"'1". T [ ST EEEEE——

01 44

=0

Magnitude (dB)

00 --4-4
150 -4

-200

.
107 107 10" 10" 10° 107 1ot
Frequency (radizec)

Figure 49:Bode Diagrams of Input Disturbance Transfer FumcfiR(s)S(s), Actuator

Model, the Inverse of the Controller, and Loop Brmssion Function

From the analysis above, we can see that desigrclgarly superior to design 1
when sensor noise is considered. Next, we will gam the classic LADRC (design 3)

with the alternative ADRC design.

4.3.1.2 Comparison between Alternative and ClassBDRCs

In this subsection, design 3 of Section 4.1 willdoenpared with the alternative
ADRC design of Section 4.2. The controller andesbsr parameters for both designs
are identical. The controller bandwidth is se t@d/s and the observer bandwidth is set
at 20 rad/s.
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The controller for the alternate ADRC design isegivn (4.63).

cl9)- 347149s + 3.455)(s” + 2.4325+1.642)

4.63
s(s+ 45.2)(32 +408s+ 1048) (4.63)

Figures 39, 40 and 41 in Section 4.2 have shownesoomparison results
between classic ADRC (design 3) and alternative ADResigns (including Bode
diagrams of the transfer functions between inpstudbance and position outputs, step
responses, and Bode diagrams of the controllesfearfunctions for these two designs).
Figure 50 shows the noise amplification of the tlesigns at the controller outputs (seen

at the plant input).

ADRC vs. ADRC Alternative Design (mc =2, o, = 20, I:nD =0.EB5)

— ADRC
— ADRC Alt

Mormalized Control Signal u

0 a0 100 150
Mormalized Time ©

Figure 50:Noise Amplification at the Controller Outputs ofaSsic ADRC and

Alternative ADRC Designs

We can see from Figure 50 that the alternative ADRSign provides a better

compromise between performance and noise redutiiam the classic ADRC design.
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The amplitude of the alternative ADRC control sigsamuch smaller than the one of the

Classic ADRC design in the presence of noise.

In the next section, multi-loop control will be iatluced to provide another

design strategy to control the electrostatic actuat

4.4  Multi-loop Control

This section will introduce a special single-inpottiple-output (SIMO) control
strategy for the electrostatic actuator. It widindonstrate that when one has access to
extra measurements of the variables of the actu#ter effects of sensor noise and

disturbances can be greatly reduced in the actegsbem.

4.4.1 Transfer Function Derivation

As stated in Chapter 2, in the electrostatic aotydhere is an internal positive
feedback mechanism that causes the system to baawsteble at displacements greater
than 1/3 of the full gap. In this section we suggdhe electrostatic actuator can be
divided into two sub-plants, which af@ and P,, along with a positive feedback
coupling constanK. The two sub-plants along with the feedback amstwhich were

shown in Chapter 2 (Figure 16), are explicitly defi in (4.64), (4.65) and (4.66).

2Q,,

17 3(s? +4s+1) (4.64)
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In (4.64), the variabl®,, is the equilibrium charge of the electrostatiaiatbr

2/(3r,)

+(@/r, - X.,)

P, = (4.65)

In (4.65), the normalized resistange= 095 and the variableX,, is the equilibrium

displacement of the electrostatic actuator.
K= 3 4.66
- EQeq (4.66)

The output of the first sub-plant’() is the displacement The output of the
second sub-plantF,) is the charge.. The two sub-plants of the electrostatic actuator

and the two controllers@, (s) and C,(s)) which are used to control the two sub-plants
are shown in Figure 51, where the positive dg@i{#.66) constitutes the positive feedback
path. The prefilterF(s) and controllerCy(s) constitute a 2-DOF control law of the

ADRC.

e 66 e F ﬁ'\ WT%

U

+\
ADRC
Inner Loop

Figure 51:Electrostatic Actuator Multi-loop Control Architece

In Figure 51, the displacemexts the primary process variable to be controlled

by a Proportional Integral (PI) controlleE{(s ).) The reference signalis the set-point
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for this displacement. The secondary process Marga(charge) is the output of the sub-
plant P, and is used as a control signal for the sub-plantt is assumed botf andx
are measurable. These measurable signals alohghitsensor noises)(andn,) are
fed back to their respective controllei, (s) andC,(s)). The control strategy shown in
Figure 51 is denoted as multi-loop control, whidmgists of an inner loop controlled by

an ADRC and an outer loop controlled by the Pl culer.

Please also note that there is an input disturbahaeting on the system. This
disturbance term represents internal and extermgturdances, which include any
couplings between the two sub-plants. Figure S®vshan equivalent description of the

model shown in Figure 51, whes) = P,(s)P, (s).

ld ESA
P U N Py(s) q
> Cl(s) F (5) @—> l—P(s)K
u dn )
ADRC : Cols) = /a

Inner Loop

Figure 52:Simplified Block Diagram of Multi-loop Control Syesin
In Figure 52, the transfer function representatiénthe displacementx is given by
(4.67).

1
X =
1+P,C, + PFC, - PK

(PFC,r + Pd- PFC,n, - PC,n,) (4.67)

The transfer function representation of the changputq is given by (4.68).

_ 1
~1+P,C, + PFC, - PK

q (P,FC,r +P,d - P,FC,n, - P,C,n,) (4.68)
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The effects of sensor noise at the control inpy) ¢o the plant are represented by (4.69).

FC,(1- PK 1- PK
u, =- Gyl ) n, - G, ) n, (4.69)
1+P,C,+PFC,-PK ' 1+P,C, +PFC, - PK

The loop transmission functior), for the primary (outer) loop, is given in (4.70)

PC,F

= 4.70
b1+ Pz(Cz _Kpl) ( )
The complementary sensitivity functidn for the outer loop is given in (4.71).
T, = L (4.71)
1+
The complementary sensitivity functidin can also be written as (4.72).
T, = -PGF (4.72)
1+L, 1+L,

In (4.72),L, is defined as the loop transmission function afeinloop. It is given as

below.
L, =R,C, +PFC, -PK (4.73)

Equation (4.72) can be written as (4.74).

T = PGF (4.74)
1+P,C, + PCF -PK
The sensitivity function for the outer loop is givian (4.75).
1
= 4.75
S oL (4.75)
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Substituting (4.70) into (4.74), we will have thensitivity function rewritten as (4.76).

_ 1+PC,-PK
1+P,C, + PC,F - PK

S (4.76)

4.4.2 Linear Controller Design

This section will derive the controllers for theirpary (outer) loop and the

secondary (inner) loop. The secondary loop usliza ADRC C,), while the primary

loop utilizes a PI controller,).

4.4.2.1 Secondary Loop Design

The secondary (inner) loop for the electrostatitu@or model is a first order
system. In this design, the filtered estimatehef position is used in the control law of
the ADRC instead of the actual measured signale ADRC controller with a™ order

ESO will be applied in the inner loop.

The transfer function representation of the eswohadisplacement is given in

4.77).

_2ws+a;
(s+a,)

L)Zu (s) (4.77)

Z,(s) e

Y(s)+

The disturbance estimate is given in (4.78).

_ @S gy @ S _
20 vy~ ol (a75)
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The control law used to control and decouple tlaatok given in (4.79).
1
u (s)=E[kp(R(s)—zl(s))—zz(s)] (4.79)

Equations (4.77) and (4.78) can be substituted (#{69) to yield the transfer functions

for the controller and the prefilter as shown ir8().

k ? 20K, +af Js+ K, af
p=t felsral o lak ralrial o] g,
b s‘s+2wo+kpj s(s+2a)o+kp)
From (4.80), the controller in the feedback patpiven in (4.81).
2k +af Js+k o
Cz(s):ic( ok, g st ieaf (4.81)
b s(s+ 20, + kp)

The controller in (4.81) is a strictly proper caiker with integral action. From (4.80),

the prefilter is given in (4.82).

k. (s+w,)
F(g)= Lo el @) (4.82)
b sls+2w, +k,
The ADRC controller parameters for the secondaop lare given in (4.83).
w, =2 w =20 b=0.7018 (4.83)

The secondary loop plant transfer functid® X is given in (4.65).
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4.4.2.2 Primary Loop

The primary (outer) loop utilizes a strictly proger controller that includes a first order

noise filter. This controller is defined in (4.84)hereK,, is the proportional gaink,

is the integral gain and), is the cut-off frequency of the noise filter.

_Kps+K i

C, S (4.84)
S S+ w;,
Pl NoiseFilter
The PI controller values that were chosen for deisign are given in (4.85).
Ke, = 275
K, = 075 (4.85)
w, =100

The primary (outer) loop plant transfer functiorgisen in (4.64). The positive feedback

constanK in Figure 51 is given in (4.66).

4.4.3 Controller Analysis

In the following plots, unless otherwise noted, #wtuator model used in the
simulations is linearized around the displacemé086 of the full gap. Then the plant

transfer function for the primary (outer) loop isen in (4.86).

1.095

= 4.86
s?+4s+1 ( )

1

The plant transfer function for the secondary (iih@op is given in (4.87).
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P, = 0.7018 (4.87)
s+0.105:

The positive feedback coupling constant is give(#ig8).
K =24648 (4.88)

The Bode diagram of the primary loop transmissiamcfion (given by (4.70)) is shown

in Figure 53.

Bode Diagrs System: L1
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f f
107 107 10" 10’ 107 10
Frequency (radizec)

Figure 53:Bode Plot of Primary Loop.() Transfer Function

From Figure 53, we can see that the gain marg23.i$ dB and the phase margin
is 72.3. So the system is stable with sufficient stapititargins. The bandwidth of the
primary (outer) loop is 1.1 rad/s. This outer lopainly deals with gain variations of the
plant. The secondary (inner) loop handles the paoleertainty. The Bode plot of the
loop transmission function for the secondary (inheop represented by (4.73) is shown

in Figure 54.
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Figure 54:Bode Plot of Secondary Loop Transmission Functid) (

From Figure 54, the gain margin is -25.9 dB andpthase margin is 565 The
bandwidth of this inner loop is 20 rad/s. The haidlth is sufficiently fast to function

like a lowpass filter to the primary (outer) loop.

Next, the step responses for the multi-loop conggatem will be investigated.
Figure 55 shows the step responses for the lirsghrezctuator models around the
displacements of 109410, 33% P33, 50% P50, 70% P70 and 90% P90 of the
full gap. From Figure 55 one can see that the maplgain of thé>10 model causes it to
suffer from a long rise time. Thus the step respdonrP10is the slowest one compared

with the other step responses.

133



Step Responzse (Multiloop Design]

-------------------------------------------------------------------

————————————————————————————————————————————————————————————————————

Mormalized Dizplacement x
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Cl— P33 |
V| — P50 |
Pl — pro |
L — P30 |

T t t t t t 1
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Mormalized Time ©(sec)

Figure 55:Step Responses of the Multi-loop Controlled Actu&ygstem

The transfer functions from the noise souragsand n,) to the controller outputs

are given by (4.69). The Bode plots of these maadfer functions along with the Bode
plot of the transfer function (2.86) for an earl’DRC design (design 1) are shown for
comparison in Figure 56. From Figure 56, we cantsaethe multi-loop control design

offers significant advantages in noise attenuatiegr the classic ADRC design.

The Bode magnitude plot in Figure 57 shows the safeemation as in Figure 56 only
except that the multi-loop control does not includgse filter (4.82) in Figure 57.
Excluding the noise filter from the multi-loop cooit results in excessive sensor noise

amplification. Thus the use of the noise filtethe preferred design.
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Figure 56:Magnitude Frequency Responses of Controller Nois@sfer Functions for

Both Multi-loop (with noise filter) and Classic ADRDesigns
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Figure 57:Magnitude Frequency Responses of Controller Nors@sfer Functions for

Both Multi-loop (without noise filter) and ClasskDRC Designs
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Equation (4.89) describes the effect of the inpstudbances on the measured

outputx.
X = P (4.89)
1+PC, +PCF -PK
Substituting (4.73) into (4.89), we can rewriteB@).as in (4.90).
-_P 4 (4.90)
1+1L,

From (4.90)P/(1+L,) is the input disturbance transfer functidgWg)S(s). The Bode

plot of the transfer function is shown in Figure 58
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Figure 58:Bode Diagram of Input Disturbance Transfer Function

Figure 58 shows exceptional input disturbance tejeover the entire frequency
range. Figure 59 shows how the input disturbarasgster functionR(s)S(s) is affected

by the plant and controller.
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Figure 59:Bode Diagrams of Input Disturbance Transfer Fumgti&ctuator Model, and

Inverse ofF(s)Ci(s)

In Figure 59, we can see that the inversé& @)C, (s) (FC1) plays a dominant role
in input disturbance rejection when the magnitudeFw)Ci(jw) is large at low
frequency. When the magnitude &{jw)Ci(jw) small (at high frequencies) the
disturbance rejection is solely dependent on tlamtpl The electrostatic actuator has

excellent built in disturbance rejection capal@btdue to its low system gain.

The classic ADRC design eases the burden on theot@ystem designer by
requiring less modeling information than the alégive ADRC design. While the classic
ADRC only requires one sensor to measure the pasdutput information, the multi-
loop design needs two sensors to measure botheclaaud) position outputs. However,

the benefit of demanding less modeling informafanthe classic ADRC requires that a
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high DC gain be used which results in increasedensensitivity when compared with

the other two designs (alternative ADRC and mualtig control design).

The alternative ADRC design requires the partiatietimg information and uses
this information to reduce the need for high coigrogains. This makes the alternative
ADRC controller slightly less susceptible to sensoise compared to the classic ADRC

design while still maintaining the ease of impleta¢ion of a single loop design.

The multi-loop controller does not require any &éddial modeling information
compared to the classic ADRC design, but it doeslra: additional sensor to provide a
charge feedback loop. The combination of an ADRChe charge loop and a PI
controller in the position loop allows the use dba gain/bandwidth control scheme that

offers good performance with reduced sensitivitggasor noise.
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CHAPTER V

SIMULATION RESULTS

In this chapter, the classic ADRC, alternate ADR@d the multi-loop control
system designs are applied to the normalized nealielectrostatic actuator model. The
tracking performance of these controllers is comgatrtilizing the ISE (Integrals of the

Squared Errors).
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51 Classic ADRCSimulation Results

The normalized nonlinear model of the electrostatittiator given below will be

used for the simulations that follow.
X+ 20K+ X = 1q2

3 (5.1)

4+ 2(-x)a==v

r 3 °

It is important to note that since (5.1) is a ndirgal model the units of time are scaled

along with the displacement, charge and contratadig The equations that govern the

normalization are given in (2.35) and (2.36). ™emsor noise source used in these

simulations is given in Figure 60.

The first simulation compares the tracking perfamges of the three classic
LADRC designs with different sets of tuning paraenstintroduced in Section 4.1. In
this simulation, the electrostatic actuator is canded to track several desired travel
ranges which are set to 10%, 30%, 50%, 70% and ®0fte full gap. The simulation
results for the three LADRC designs are shown gufé 61. In Figure 61, all of the three
designs have shown acceptable tracking performancegure 62 investigates the
displacement responses of the three LADRC desigi9% of the full gap in greater

detail.
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Mormalized Sensor Noise
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Figure 60:Sensor Noise
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Figure 61:Displacement Outputs of Three Classic ADRC Designs
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Figure 62:Displacement Responses of Three LADRC Designs %t dithe Full Gap

From Figure 62, we can see that the first desidnchvhas the highest observer
bandwidth, performs the best with almost no oversh®esigns 2 and design 3 perform
well with a noticeable amount of overshoot, whezsigh 2 has an overshoot of 4.8% and
design 3 has an overshoot of 8.3%. For an eldatrogctuator, reasonable overshoot at
small displacements is acceptable. However, therstwot at large displacements is
much more troubling since it may cause the twoeglaif the electrostatic actuator to
crash into each other. The integrals of the sgluareors (ISE) for the three LADRC

designs as the desired travel range is set to Xafredull gap are given in Table XIV.
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TABLE XIV: ISESFOR THREELADRC DESIGNS AT10%OF FULL GAP

ISE

Design 1 Design 2 Design 3
0.0127 0.0133 0.0144

From Table X1V, design 1 has the best trackinggrentince. The responses of
the actuator to a desired traveling range of 90%heffull gap for the three designs

(classic LADRC with three different sets of tuniparameters) are shown in Figure 63.
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Figure 63:Displacement Responses of Three LADRC Designs%t &the Full Gap

In Figure 63, design 3 exhibits the largest oveoshmercentage (2.2%). So it
shows the worst tracking performance among theettesigns. This is because design 3

has the smallest observer bandwidth. The effdcsgmmsor noise on the outputs of these
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three designs are too small to tell in the figufiéhe ISE for the three LADRC designs

when the desired traveling range is chosen as 9a#edull gap are shown in Table XV.

TABLE XV: ISESFOR THREELADRC DESIGNS AT90%FULL GAP

ISE

Design 1 Design 2 Design 3

0.8914 0.9074 0.9347

From Table XV, we can see that design 1 has trst teacking error among the

three designs. Figure 64 shows the sensitivitighecontrol signals of the three classic

ADRC designs (shown in Figure 60) to the sensasenalong with the equivalent control

signals without sensor noise.
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Figure 64:Controller Noise Sensitivities for Three Classic RO Designs
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From Figure 64, we can see that these three designsighly susceptible to
sensor noise. Design 1 is completely unacceptéinéeto a very noisy control signal.
Design 2 performs better but is still problemati€ompared to the first two designs,
design 3 is the least susceptible to the sensgenand can be considered for application
in the real world. A close look at the controlreadywith sensor noise (noisy signal) of

design 3, along with its noiseless equivalent di¢riaan signal) is shown in Figure 65.

Marmalized Control Signal (Moise Carrupted vs. Clean)

— Moisy
—— Clean

s |||.|I|l Tk 10

Morrmalized Contral Signal u
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Mormalized Time ©

Figure 65:Clean and Noisy Control Signals of Design 3

From Figure 65 we can see that the control sighaighly affected by the noise
source. The majority of the noise shown in Figébeis outside the bandwidth of the
plant. In practice, the actuator itself is a vgopd low pass filter. In Chapter 2, Figure
16 shows how the actuator can be separated inéteatrical sub-plant and a mechanical
sub-plant. It also shows that the charge outpuhefelectrical sub-plant can be viewed

as a control signal for the mechanical sub-plafihe sensor noise at the input to the

145



electrical portion of the plant is only a concerit approaches the saturation level of the
drive electronics. However, excessive noise atntleehanical portion of the plant can
lead to excessive wear on the electrostatic actuatbe electrical charge acting as the
control signal to the mechanical portion of thenpls shown in Figure 66. We can see
for Figure 66 that the electrical sub-plant filigreut the majority of the high frequency
noise. This control signal shows the steps in ahargeded to track the displacement

commands at 10%, 30%, 50%, 70%, and 90% of fullrgapectively.

Electrastatic Actuator Mormalized Charge g

Mormalized Charge g

0 a0 100 150
Mormalized Time ©

Figure 66:Actuator Charge Control Signal

In the following simulation results, the respons#sthe three classic ADRC
designs to a reference input of 97% of the full galb be investigated. We add a step
input disturbance with a magnitude 06 to the input of the actuator &t 15 seconds.

The displacement output in the presence of thetidgturbance is shown in Figure 67.
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Setpoint Command Response (87 %) and Input Disturbance Rejection
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Figure 67:Displacement Outputs of the Actuator for Three 8i@ADRC Designs in the

Presence of Step Input Disturbance

From Figure 67 we can see all of three designsacaammodate a travel range of
97% of the full gap with small overshoots at thetaiibance. Therefore it can be said that
the classic ADRC design can achieve a maximum gaetsal of approximately 97% of

the full gap in the presence of input disturbances.

Given the previous simulation results, design ges only viable option for the

classic ADRC strategy due to its excellent noisenaiation effects.
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5.2 Alternative ADRC Simulation Results

In this section the alternate ADRC representeddbd7) and (4.48) are applied to
the nonlinear actuator model given by (5.1). Teepwints were chosen as 10%, 30%,
50%, 70% and 90% of the full gap. The displacenoatputs for both the classic ADRC

design (design 3) and the alternate ADRC desigistaoe/n in Figure 68.
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Figure 68:Set-points Tracking for Classic ADRC and Alternat&’kDRC Designs

It is seen from Figure 68 that the alternative AD&&3ign matches well with the

classic ADRC design. Both designs utilize an obsebandwidth ofw, = 20ad/s a

plant gain estimaté = 065, and a desired closed loop plant8d(s+ 2)3, which results

in controller gains of
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K,=8
K, =8335 (5.2)
K, =14063

The nominal plant for the alternative ADRC desigmsvehosen as

_ b _ 065
P(s)= S(s+a,)(s+a,) s(s+1.0276(s+3566]) 3)

The nominal plant for the classic ADRC design fkied order integrator.

The step responses for these two designs at sispladements are demonstrated

in Figure 69, where the step responses are at 1@k ¢ull gap.
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Figure 69:Displacement Outputs for Both Classic and AlteneaADRC Designs at

10% of Full Gap

From Figure 69 we can see that the classic ADROgdesxhibits 8.3%
overshoot, while the alternate ADRC design has 7dd#shoot. As stated before, the
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overshoot at small displacements is deemed acdeptatwever, it would be much more
serious at large displacements where the platéseo&ctuator could come into contact

with each other.

In the next simulation, a step response at largplatement will be discussed.
The set-point is chosen as 90% of the full gap.e Tisplacement outputs (or step
responses) of the classic ADRC (design 3) andredtere ADRC are displayed in Figure
70. From the figure, we can see that the clas®dR@& design has a larger overshoot

percentage (2.23%) than the alternate ADRC (alrerst).
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Figure 70:Step Responses for the Alternate and Classic ADRG8% of Full Gap

The ISEs of the classic ADRC and the alternativeR&Ddesigns at 90% of full
gap are shown in Table XVI. From the table, we sa@that the tracking performance of

the classic ADRC design is better at small disptee@ but worse at the larger
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displacement compared to the alternative ADRC. sTiki attributable to the higher

observer bandwidth of the classic ADRC than thera#tive one.

TABLE XVI: |ISE OF CLASSIC ADRC AND ALTERNATE ADRC DESIGNS

ISE
Displacement ADRC ADRC Alf
0.10 of full gap 0.0144 0.0154
0.90 of full gap 0.9347 0.9113

The responses of the alternative ADRC and the icla&dSRC to a reference of
99% of the full gap in the presence of a step distace with a magnitude of 0.5tat 15

time units are shown in Figure 71.

Setpoint Reference 99% and Input Disturbance Rejection

L R e e e e T SS 1
i H ' ' ' ! ! —— Reference |

— ADRC Alt
—— ADRC

1.02 ~

—
Il

0.98

006 e mmm b

Marmalized Displacernent x

. A
- [ ' [ [ [ [ [ ' ' [

' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' '

R R e s T R R bt
. ' ' " ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' '

0.9 i i i i i i i i i i
0 2 4 G a 10 12 14 16 18 20
Mormalized Time ©

Figure 71:Displacement Outputs for Alternate and Classic ABRE99% of Full Gap

with Input Disturbance
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From Figure 71, we can see that the alternative @Ddesign shows much
smaller overshoot percentage (0.25% at maximum) tha classic ADRC (2.25% at
maximum). The large overshoot percentage of 2.2&4%he classic ADRC controller
could cause the upper and lower plates of the reletic actuator to crash into each
other and therefore result in failure of operatinrthis design scenario. However, the
disturbance rejection ability of the classic ADRE a bit better than the alternative
ADRC. Nevertheless the alternative ADRC designnaitites the disturbance just enough

not to hit 100% gap traversal.

One significant advantage of the alternative ADRGign over the classic ADRC
design is the attenuation of sensor noise. Fig@reshows the control signals of both

controller designs in the presence of sensor noise.
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Figure 72:Control Signals of Classic and Alternate ADRCshia Presence of Noise
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From Figure 72, we can see that although the cbsigoals for both cases are
noisy, the alternative design is clearly less ttestme than the classic design. However
the actuator plant in the classic design is a \gergd low pass filter so that the sensor
noise at the electrical portion is not as much obacern while reducing the sensor noise
that reaches the mechanical portion is more imptartdhe effective bandwidth of the
controller must also be taken into consideratidie controller itself may be unable to
pass the high frequency sensor noise. This isngiementation issue that was not

covered in this thesis but is relevant to any senecse discussion.

The electrical charges acting as the control sgyt@lthe mechanical portion of
the actuator plant for both alternative and clagdirRC designs are shown in Figure 73.

The set-points were chosen as 10%, 30%, 50%, 7@P8@¥ of the full gap.
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Figure 73:Charge Control Signals of Alternate and Classic AIBR the Presence of

Sensor Noise
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Figure 73 clearly shows how the control signalscteto the commanded
responses. After the filtering effect of the eleetl portion of the actuator it is seen that
the charge control input to the mechanical port®acceptable in the alternate ADRC
design while the classic ADRC design is still fainloisy. It is important to note that this
noise does not have a dramatic effect on the displant outputx) for the classic

ADRC.

5.3  Multi-loop Controller Simulation Results

The topology for the multi-loop controller desigvhich was previously shown in

Figure 51, is repeated in Figure 74.

f’ﬁ%

etele e e x

<—+<—

ﬁ

ADRC
Inner Loop

Figure 74:Configuration of Multi-loop Controller Design

The signals of interest in Figure 74 are the dmi@entx, the chargey, the

control inputu, from ADRC, and the control signal from the PI controller. The PI
controller is represented by the transfer funci@s). The ADRC controller consists of

the pre-filter F(s) and the feedback controll€, (s).
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In order to assess the performance of the mulp-loantrol structure, a series of
step inputs of 10%, 30%, 50%, 70%, and 90% of thlegp were commanded. The
displacement and the control signals of the Plrotlet and the composite control signal

u, are shown in Figure 75 without sensor noise. hin ftgure, the command response

appears a little sluggish at 10% of the gap. Tdmaessimulation with sensor noise is
shown in Figure 76. From Figure 76, we can see ttiateffect of sensor noise on the
measured displacement output is almost unnoticealite composite control signal and

the PI controller with the noise filter have acedy¢ levels of noise amplification.

Monlinear Multiloop Simulatian

Maorrmalized
Displacernent

Marmalized
Cantral Signal

Mormalized
Contral Signal

0 a0 100 150
Mormalized Time ©

Figure 75:Control Signals and Displacement Output for Mutidth Design without

Sensor Noise
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Manlinear Multiloop Simulation (Maoise)

Maorrmalized
Displacernent

Marmalized
Cantral Signal
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Contral Signal

0 a0 100 150
Mormalized Time ©

Figure 76:Control Signals and Displacement Output for Mubipg Design in the

Presence of Sensor Noise

A close-up view of the composite control signgl, for the two different
implementations of the Pl controller (ideal Pl ahd combination of Pl with a®lorder
low pass filter) is shown in Figure 77. Figure 1&atly shows the benefits of the extra
pole in the low pass filtered PI controller. Thad#ion of the noise filter reduces the
peaks of the control signal by more than one namedlvoltage unit\(). There is also

some noticeable attenuation at the steady statie \wdlthe control signal, .
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Comparison Proper vs. Strictly Proper Pl
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Figure 77:Control Signalu, for Ideal Pl and Noise Filtered Pl Controllers

The response of this multi-loop control system ttoenmand of 99% of the full

gap is shown in Figure 78.

Step Response 99% Gap
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Figure 78:Displacement Output of the Actuator with 99% GapvErsal
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From Figure 78, we can see that it takes approxiy&t8 time units for the
displacement output to reach the desired set-painich is 99% of full gap. Figure 78
shows an achieved displacement of 99% of the g#ip zero overshoot. This suggests
that full gap traversal is attainable for the midbp control strategy. However, the low
loop gain at small displacements slows this respatmvn compared to the previous

ADRC (classic ADRC and alternate ADRC) controllers.

The ISEs of the multi-loop controlled actuator foe 3 displacements, which are
10%, 90% and 99% of the full gap are shown in Tadlé. A comparison of the ISEs
between the multi-loop controller and the other thesigns (classic ADRC and alternate

ADRC) is made in Section 5.4.

TABLE XVII: ISEERROR

Displacement ISE
0.10 0.0454
0.90 0.9755
0.99 1.1113

5.4  Controller Comparison

In this section, the three different designs otsia ADRC, alternate ADRC and

multi-loop control will be compared from a perfomea perspective. The sensitivity of
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each design to sensor noise will also be notedTalole XVIII the ISEs for the three

designs at various displacements are given.

TABLE XVIII: CONTROLLER COMPARISONISE
ISE
Displacement ADRC ADRC Alt Multi-loop
0.10 0.0144 0.0154 0.0454
0.33 0.1389 0.1406 0.2489
0.50 0.3016 0.3004 0.4359
0.70 0.5757 0.5663 0.6917
0.90 0.9347 0.9113 0.9755
0.99 1.1238 1.0919 1.1113

In Table XVIII the underlined data indicate thaetisplacement exceeded the
maximum travel range of the actuator, which is raiped to one. This would result in

the two plates crashing into each other, whicasirable.

Figure 79 illustrates the data values given in &aX¥VIll in a bar graph for

gualitative analysis.
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ISE Bar Graph
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Figure 79:Bar Graph of the ISE for the Three Designs

Figure 79 allows for a quick assessment of thekingcperformance of the three
designs. It is clear that at low to medium disptaents Q.1 to 0.7 of the full gap) the
ADRC and alternate ADRC greatly outperform the iFlolbp controller. This advantage
begins to wane at the higher displacements. H®ukitrg performances of the classic and
alternate ADRC designs begin to deviate from edtteroat the larger displacements

(over 0.7 of full gap).

Figure 80 and Figure 81 show the step responsésedahree control designs to

the references of 10% and 99% of the full gap retspey.
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Figure 80:Step Responses of three Controller Designs at ¥(BalbGap

Command Step Response (0.99)
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From Figure 80, we can see that the rise timeetthssic and alternate ADRC is
much smaller than the one of the multi-loop comgroht small displacement. However,
the step response of the multi-loop control has psershoot while the responses of the
other two designs exhibit overshoot. Figure 81 alestrates that only the alternate
ADRC design and the multi-loop design can attai#S3$ap traversal. Again, the multi-

loop design has a very smooth step response cothfzatiee other two designs.

Figure 82 shows the substantial difference of tbetrol signals for the three

designs in the presence of sensor noise.

Contraller Moise Comparison

— ADRC
— ADRC Alt
Multiloap

Marmalized Control Yaoltage

0 a0 100 150
Mormalized Time ©

Figure 82:Controller Signals of the Three Designs with Sedoise

It is clear from Figure 82 that the multi-loop canlfer is the best in minimizing
the effects of sensor noise among the three céertrdésigns. However, compared to the
two single-loop designs (classic and alternate ABR@e multi-loop design has to use

an additional sensor in the inner loop. The alteriDRC design has the second best

162



level of noise amplification. From the trackingrioemance data provided by Table
XVII and the noise minimizing performance demoristtlain Figure 82, it appears that
the best design for the electrostatic actuatohés dlternate ADRC design, which has
excellent tracking performance and noise minimazatcapability. In addition, the

single-loop structure of the alternate ADRC desitgo makes it an economical choice in
the real world. Nevertheless, the multi-loop desstpows great promise for the future

practical applications of it to the electrostatituator in the presence of substantial noise.
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CHAPTER VI

CONCLUSIONS

The research aims to provide a feedback contrtiiegrcould greatly increase the
operating range of an electrostatic actuator anstdbilize the actuator over the entire
operating range. This controller would have torowee the pull-in phenomenon
inherent in the actuator as the control voltageeases to a specific value. It also has to
cope with plant gain variations along with a systeote that moved from the left half
complex plane through to the right half complexngla In addition to the unstable pole,
and the bandwidth restrictions this imposed, thetrotler has to deal with a plant with
very little low frequency gain, making the conteslidesign highly susceptible to sensor
noise. Finally, the controller needs to be singrleugh to implement on a MEMS device

where silicon area is at a premium.

The contribution of this thesis is that it develdpsee forms of linear Active
Disturbance Rejection Controllers that provide eittull gap traversal for the actuator in
the multi-loop design or nearly full gap traversal the single loop designs in the

presences of sensor noise and disturbances. Triee forms of controllers have
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successfully addressed all the control problemgse s&bove. In addition to the

effectiveness of these controllers they are sirepteugh for practical implementation.

The first ADRC design demonstrated that the traegige of the electrostatic
actuator could be extended to 97% of the actuatorge. It is limited only by some
slight overshoot. This design is the most serssitivsensor noise among the three design

strategies.

The second ADRC design showed that the inclusioradditional modeling
information could be beneficial in extending thavil range of the actuator up to 99% of
the gap. This design was also less susceptibteise than the first ADRC design. Itis

simple enough to implement in current MEMS contezhnology.

The third design is a multi-loop controller based tbe ADRC strategy. This
controller shows great promise in controlling tHecwostatic actuator to 100% travel
range, while keeping the effects of sensor noisa minimum. This design should be
considered as a design of the future since cutemhinology makes it difficult to obtain
two sensed outputs, but it does serve as a benkHorawhat is possible with feedback
control. As the complexity of MEMS devices increashe demand for high performance

control will also rise, making this design highlsaptical in the near future.

In current literature, the nonlinear control desigmave shown the ability to travel
100% of the gap for the electrostatic actuator. weler they have much more
complicated control structure than the controllevposed in this thesis. The effects of
sensor noise are often neglected in the existingrabdesigns reported in literature while
this thesis research considers the noise and eHéctejects the effects of noise. The

linear designs in literature have achieved dispreggs of up to 90% of the gap but they
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often are not robust against parameter variatidie simulation results and performance
analysis of the ADRC on an electrostatic actuatmwsstrong robustness of the ADRC
against structural uncertainties. In general,glagposed control strategies in this thesis
offer impressive performance while filling the volietween the simple controllers

utilized in the past and the nonlinear approachesgmted in academia.

6.1 Future Research

There are a few improvements to this research ghatld be conducted in the
future. The first improvement would be to develpigher frequency model of the
electrostatic actuator. The model currently baisgd is adequate for control design but
is merely a first step in the modeling process.e Tlew model should include a more
accurate description of the squeeze-film dampingnpmena close to full gap traversal.
Since feedback control was utilized in this thegtisyould be desirable to introduce a
model of a realistic position sensor. With the &figation of noise sources being such
an issue in the electrostatic actuator design lldv@lso be prudent to conduct a more
thorough analysis of noise sources in the micrdeseavironment, to include a bound on
their magnitude. Once this model has been compl#tednext step would be to look at
2-DOF models that allow one to study the tip-in pdr@enon, which occurs when the
moveable electrode rotates, and creates differemplatements at the two ends of its

plates. The tip-in phenomenon could affect systeéabilgy. Finally, it would be
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beneficial to create an accurate simulation modiézing MEMS™R° CAD software to

fully test the performance of the control schemesgnted in this thesis.
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Appendix A

This appendix provides a step by step normalizadiotihe nonlinear differential

equations that model the electrostatic actuator.

Equation Normalization

The displacement of the upper plate relative to fiked lower plate X) is

normalized by the gap with zero applied voltageximam gap)g,. The units of time
(t) are scaled by the natural frequency of the aotuaystemaw,. The charge
accumulation on the plateQ), the voltage across the actuator plateg, ], and the

applied source voltage/( ) are normalized by their pull-in values as show@A.1).

X:L T =t q:g \Y; :h V. = (A1)

gO qpi Vpi Vpi

The pull-in voltagev ., the amount of charge accumulated on the actuptatss at pull-

pi !

in g,; and the capacitance at full g&j (zero applied voltage) are given in (A.2).
3 |8kg? EA
i ==CyVv, Vv, = - Co=— A.2
qp| 2 0" pi pi 27C0 0 go ( )
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The nonlinear differential equations that model glectrostatic actuator are given in
(A.3).
. . 1
mX +bX +kX -———Q° =0
26A
o (A.3)
RQ+;A(90 - X)Q =Vs
The first equation in (A.3) describing the motiohtlee upper plate of the electrostatic

actuator will be the first equation to be normalizelhe normalization will start with the

scaling of the time bageutilizing the relation given in (A.1), and is shiouwn (A.4).

d’X dX Q?

m > +b +kX = (A.4)
q T d(TJ 2Cy9,
w, Wy
Multiplying (A.4) by «f / «f simpflies (A.4) to
2 2
mwgd—>2<+ba)0d—x+kX: Q. (A.5)
T dr 2C,9,

The displacement of the upper plate is normalizeteplacing each occurrenceXfvith

g,X, as shown in (A.6).

d?(g,x d(g,x Q?
map d(rg e (d; )+k(g°x)zzcogo "o

Since g, is a constant (A.6) can be rewritten as

d?x dx Q?
mat g, —— +bw,g, — + kg, X = . A7
b Y0 dr? b9o dr o 2Cogo (A.7)

Dividing (A.7) by mafg, results in
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2 2
d )2(+ b %+ K X = 1 Q 5 - (A.8)
dr’ mw,dr m«f  maf 2C,92

Next, the charge is normalized by replacd@ith qq; .

2 '2
dx, b dc, k _ 1 [ag,) (A9)
dr’ mw,dr maf  maf 2C,072

Substituting the relation fog,; given in (A.2) into (A.9) gives

3 2
2l ZCyvy,
d> b dx K _1q(2°p'j
>+ —+ X= - (A.10)
dr’ mw,dr ma«f m«f  2C,07
Equation (A.10) can be simplified further; the deszishown in (A.11).
2 2
d’x, b ox, Kk - 1 XV (A11)

X =
dr’ mw,dr maf  ma«f 892

The pull-in voltagev ; defined in (A.2) is substituted into (A.11) as sinan (A.12).

2
9c{ 8k9§}
0
d’x, b dx  k _ 1 27C,

= A.12
dr? mew, dr maf  maf 8d¢ (A.12)
Equation (A.12) can be simplified into the equatgiven by (A.13).
2
dx+ b %+ k k o (A13)

X =
dr’ mw, dr maf  3m&f

The natural frequency of the system is defineddii4).
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_ |k
o = \/; (A.14)

Equation (A.14) can be used to simplify (A.13). eTresulting equation is given in

(A.15).
2 2
d_>2<+ b dx, . _9 (A.15)
dr® mw, dr 3
Finally, the damping ratio zeta | is defined in (A.16).
¢= b . (A.16)
2ma),

Substituting (A.16) into (A.15) gives the normalizequation for the motion of the upper

plate of the electrostatic actuator.
— +2(— +X=— (A.17)

The normalization of the differential equation thelates the source voltage to the charge

accumulated on the plates, given in (A.3) is repeat (A.18).

.1
RQ+—(g,-X)Q=V A.18
Q+—(go - X)Q =V, (A.18)
Equation (A.18) is rewritten in (A.19) to show teplicit dependence on time.
RIQ, L (g, -x)a=V, (A.19)

dt A

The time baseis scaled by the natural frequenay, as in (A.20).
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Q 1 -xo=
Rd (Tj-'-fA(go X)Q =V, (A.20)
wO

Equation (A.20) can be simplified to

dQ 1
Raw, —+—Ig, - X)Q =V,. A.21
ap =+ (g, = X)Q =V, (A21)

Next, the charg® is normalized by replacing each occurrenc®ueiith qq; .

dlag,) 1, _
R%T'*E—A(go X)(qqpi)_vs (A.22)

The pull-in value of the charge, is a constant, thus it can be moved outside of the

derivative.

dg, 1

Rwoqpi a + A (gO - X)(qqp| ) :Vs (A23)

Dividing (A.23) by g, results in

dg 1
Rw, — +— - X)jg=—=. A.24
by gA(go )a 0 (A.24)

The displacemerX is normalized by replacing each occurrenc¥ ofith g,x.

1 v,
Ra, — +£—A(gO - goX)q = (A.25)

dg 1 V
Rw,—+—(1—-x)Jg=—. A.26
b7 C0( )a 0 (A.26)
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Equation (A.26) can be reduced further by dividingy Re,,.

Wy L g-xg=—s
dr w,RG, w,Ra,;

The voltage source is normalized by substitutimg, for V.

v,V
da, 1= ek
dr w,RG, w,Rq,;

The pull-in charge is defined in (A.29).

3

qpi ==

> CyVv

pi

Substituting (A.29) into (A.28) results in

V..V
R ¥ oo
4 a)o C:0 a)O R{Z COVpij

Canceling out the pull-in voltage terms reduce8QAto (A.31).

dq + 1 (1_ ) 2VS

X)q=—7—
dr w,RG, 3w,RC,

The normalized resistance is defined in (A.32).

r=w,RG,

Substituting (A.32) into (A.31) gives the normatizequation for the charge

dq 10 =2
dr+r(1 x)a 3er-
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Appendix B

Frequency Domain Representation of a” Order ESO

The state space model of a Luenberger observeaiosrda model of the plant under study

along with a feedback correction term, as show(BoY).

2= Az+Bu+L(y-79)

: B.1
y=Cz 1)

The observer of (B.1) can be rewritten as (B.2).
z2=(A-LC)z+Bu+Ly (B.2)

The observer design calls for ¥ Brder ESO with real repeated observer poles Idcatte

w,. The observer of (B.2) is changed to reflect itisrmation in (B.3).

oL %L o

The Laplace transform of (B.3) is taken next, #suit is shown in (B.4).

sZ,(s) = ~20,2,(8)+ Z,(s) +U (s) + 20,¥(s)

sZ,(s) = ~a?Z,(s)+ «2Y(s) (B.4)
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Solving for the state estimaf(s) will be performed next. The equation for the

estimated stat&, (s) is given in (B.5).

sZ,(s) = —2a,Z,(s)+ Z,(s)+ U (s) + 2e,Y(s) (B.5)
Equation (B.5) can be simplified by bringing aleth, (s) terms to the left side of the
equal sign.

(s+2w,)Z,(s) = Z,(s) +U (s) + 2c0,Y(s) (B.6)
The equation for the extended stitg(s) is easily solved and is substituted into (B.6).

s(s+2w,)Z,(s) = (- 2z, (s) + «?Y(s)) + sU(s) + 2,5 Y(s) (B.7)
Equation (B.7) is simplified by bringing all thél(s) terms to the left side of the equal
sign.

(s(s+ 2w, )+ a?)z,(s) = aw?Y(s) + sU(s) + 2a,sY(s) (B.8)
Next, (B.8) is reduced further by collecting lilkegms and factoring the left side.

(s+,)'2,(9) = ws+ £ (9) + sU). 8.9)
Finally, the transfer function for the estimatedition is given in (B.10).

_ 20,8+

o) Y(s)+ —=U(s) (B10)

Zl(S) (S+ w )2

When the nominal model of the plant is perfect ¢batrol signalU (s) can be obtained

by filtering the measured outpm(s) by the inverse of the nominal model, as shown in

(B.11).
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U(s)= P} (s)¥(s) (B.11)

P (s)=s. (B.12)

Equation (B.10) can be rewritten as

2 2
2,() =225 M y(g)+ S y(s). (B.13)
(s+a,) (s+a,)
Equation (B.13) reduces to
2
7,(s)= 2D D () (). (B.14)

(s+a,)
The Laplace transform of the extended state isategen (B.15).
SZ,(s) = -afZ,(s) + ZY(s) (B.15)

The transfer function for the estimated outf(s) is then substituted into (B.15)

resulting in

sz,(s) = —a? 2w°s+“§v )+—>U(s)|+aY(s). (B.16)
(s+w,) (s+w,)

Simplifying (B.16) results in the transfer functiéor the extended state that is given in

(B.23).

u(s) (B.17)

The frequency domain representation ofaa2der ESO is given in (B.24) and (B.25).
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_2ws+af Q4 S S |
Zl(s)_ (S+C¢) )2 Y( ) (S+C¢) )ZU( ) (B 18)

_—wgs S _—wﬁ S .
ZZ(S)_(S+CL)0)2Y( ) (S+CL)0)2U( ) (B 19)

The frequency domain representation of a statereéisean also be written as

sic(s) Y(s). (B.20)

9= 1 g O s

1+R,(s)c(s)

The transfer functiorP,(s) is the nominal model of the plant and the tranéfiection
C(s) is a controller (internal to the observer) thaemipts to drive the error between the

actual and estimated output to zero.

The estimated outpu, (s) can be represented as in (B.20), the transfetiaimeelating

the output estimate to the control signal is

R _ S
1+PC (s+a)0)2'

(B.21)

The transfer function relating the estimated outpuhe actual measured output of the

plant would be

PC _2ws+a;
1+PC (s+ a)o)2

(B.22)

Solving (B.21) and (B.22) for the error controli@results in

C:( PC ](1+PCJ {2ws+af}(($+wo)2}:w§+2wo. (B.23)
1+PnC P (S+CU0) S S

n
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The result of (B.23) is clearly a Pl controllerhi implies that the observer will have

zero steady state error to constant disturbances.
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