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ABSTRACT 

 
A new control methodology, adaptive backstepping control (ABC), is applied to a 

linearized model of an active magnetic bearing (AMB). Our control objective is to 

regulate the deviation of the magnetic bearing from its equilibrium position in the 

presence of an external disturbance. The control approach is based on adaptive 

backstepping control, which is a combination of a recursive Lyapunov controller and 

adaptive laws. In this thesis, two types of adaptive backstepping methods are used. The 

first method is based on full-state feedback, for which all three states in the linearized 

AMB model (velocity, position, and current) are used to construct the control law. The 

second method is adaptive observer-based backstepping control (AOBC) where only one 

feedback signal (position) is employed. An exponentially convergent estimator is 

developed for the second adaptive controller to observe other states. It is proved that the 

adaptive backstepping controlled AMB system is asymptotically stable around the 

system’s equilibrium point. Simulation results demonstrate fast and stable system 

response. They also verify the effectiveness and robustness of the adaptive backstepping 

control methods against external disturbances and system parameter variations. 
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CHAPTER I  

INTRODUCTION 

1. 1 Background  

 

Flywheel energy storage system (FESS) is an excellent alternative to chemical battery for 

its reliability and cost-effectiveness. It stores kinetic energy by accelerating a high speed 

rotor. When FESS slows down, the energy is extracted and converted back to the 

electricity. The amount of energy is proportional to the rotor’s mass and the square of 

spinning speed. An important component in FESS is the magnetic bearing, which 

suspends the high-strength carbon-composite filaments. The magnetic bearing has two 

categories: passive and active ones. A passive magnetic bearing is composed of 

permanent magnets and the output flux can not be controlled while an active magnetic 

bearing (AMB) is made of electromagnets and the output flux can be adjusted by 

changing the current on the coil. Therefore, AMB is more popular in FESS than passive 

magnetic bearings. 
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AMB supports the machinery using magnetic levitation produced by two opposite 

electromagnets [1]. Besides flywheels, it is widely used in versatile equipment such as 

turbo compressors, vacuum pumps and vehicle gyroscopes. AMB has several advantages 

compared to conventional ball or journal bearings. The most substantial advantage is that 

since the AMB suspends a rotor in a magnetic field, the rotor can spin at a high speed (up 

to 60,000 RPM) without contacting any mechanical part. The only friction in AMB is 

windage, which can be removed when AMB is operated in vacuum enclosure. This 

frictionless feature also leads to low-energy loss and the elimination of lubricating system 

[2]. In addition, AMB has a long life span due to the low equipment wear and its 

insensitive property to the pressure and temperature. 

 

Because of its high-speed rotation and small air gap between the rotor and stator, a large 

deviation of rotor from its equilibrium position may trigger serious consequence which 

means the rotor will touch the stator, causing the failure of the operation. Therefore the 

control of the rotor position becomes a crucial problem. Many researchers investigated 

the control approaches for the AMB system. Proportional-integral-derivative (PID) 

control in [3]–[5] was a typical and efficient method to stabilize the rotor. Reference [3] 

introduced two cascade PI/PD controllers with position and current measurement values 

as their inputs. In [5], an estimator controller is provided to improve the quality of the 

damping control effort while the utilization of a single PD controller might be affected by 

the measurement noise. Other than PID, Linear Quadratic Regulator (LQR) control was 

designed and realized in a prototype small–sized AMB in [6]. References [7] and [8] 
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compared several controllers such as LQR, PID, PI/PD and genetic algorithm (GA). It 

was discovered in [7] and [8] that the centralized controllers which took care of the entire 

system have better performance than the decentralized ones. However, the disadvantage 

of the centralized controller is being time-consuming and having computational burden. 

Self-sensing control of AMB was introduced in [9]–[12]. Self-sensing refers to the 

controller design without an extra position sensor. The position displacement thus needs 

to be controlled by measuring the bearing coil current. Several techniques were 

introduced as the compensation of the lack of the position sensor. A novel approach 

called Active Disturbance Rejection Control (ADRC) developed in recent years is 

simulated in [2] and [12], via generating a new state called “extended state” as 

generalized disturbance and  the system response is tuned by only one parameter. Also, 

ADRC strategy has a high external-force-disturbance-rejection capability with the 

absence of position sensors just by tuning the bandwidths of controller and observer in 

coordination. However, as the ADRC deals with self-sensing problem, it would cause a 

steady-state error. But it would not be a problem as long as the error is within the bearing 

tolerance. 

 

This thesis applied an adaptive backstepping method to a linearized model of the AMB 

and verified the effectiveness of the controller through Lyapunov method and simulation 

results. Adaptive backstepping control (ABC) method, developed by [13] in recent 

decades, is an advanced control approach associated with feedback control, Lyapunov 

stability theory and adaptive control. References [13]–[16] illustrated various applications 

of adaptive backstepping such as inverted pendulum, robot manipulator, jet engineering 



 

4 

and aircraft wing rock. Several new applications were published in recent years among 

which [17] was about the adaptive control of helicopter attitude following desired 

trajectory. In [18], the time-varying speed and time-varying position commands in an 

induction motor drive were tracked by ABC, and the controller was implemented using 

digital signal processor (DSP). The author of [18] also compared the performance of the 

adaptive backstepping controller with the one of PI controller and showed the superiority 

of the adaptive backstepping controller to PI controller. In [19] and [20], the ABC was 

coordinated with neural and fuzzy integral action. In [20] Gaussian Radial Basis Function 

Neural Network (GRBFNN) is designed to provide a full state feedback and solved the 

problem of both parameter uncertainty and nonlinear functions uncertainty.  

 

In the following sections, the term ABC is defined as adaptive backstepping control with 

full-state feedback instead of the general adaptive backstepping. The AOBC is defined as 

adaptive observer-based backstepping control (AOBC) where only one feedback signal 

(position) is employed to construct the controller. 

 

1. 2 Adaptive backstepping 

 

Adaptive backstepping method combines backstepping control and adaptive laws. The 

backstepping design starts from the first state equation where the first state variable has 

the highest integration order from the control input. We choose the second state variable 

as virtual control, and replace it with a stabilizing function [13] . This stabilizing function 

can stabilize the first state variable, and we set the error between virtual control and 
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stabilizing function as z .Then for the second state equation, we will design a new 

stabilizing law to replace the third state variable for the new second order system [21], 

then “step back” to the control signal. From the steps above, we can see that the term 

“backstepping” means that we use the latter state as a virtual control to stabilize the 

previous one. This idea overcomes the shortcoming that system order can not exceed one 

in passive designs. Lyapunov direct method is utilized as the stabilization method for the 

errors between each virtual control and its stabilizing function. The control Lyapunov 

function (CLF) to be used will be positive definite and includes the quadratic forms of 

the errors. 

 

Adaptive idea is motivated by the research of autopilot for high-performance aircrafts in 

1950s [25]. In Webster, to adapt means “to change (oneself) so that one’s behavior will 

conform to new or changed circumstances.” In the control region, it could learn and 

tolerate the changes in system’s dynamics which constant-gain feedback can not handle. 

The keystone of adaptive control is that a feedback controller should be able to 

accommodate the parameter changes by processing the output since the output signal 

carries the information of the system’s states. Backstepping itself can not solve the 

uncertainty problem. However, in many systems, unknown parameters exist due to the 

restriction of measurement equipment or cost consideration. The control difficulties 

caused by these uncertainties can be removed using adaptive method along with the 

backstepping procedure. In this thesis, the adaptive law deals with a constant disturbance 

θ  in terms of mechanical system load uncertainty. Adaptive law is represented as a 

differential equation of θ  and is designed using Lyapunov stability method to minimize 
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the difference between real and estimated outputs. The estimated disturbance θ̂  will be 

updated each sample time step and approaches the real value eventually.  

 

In ABC, the whole CLF, which expands step by step, consists of the elements including 

quadratic terms of the errors between virtual controls, stabilizing function and the 

unknown parameter errors. The stabilizing functions acting as control laws make the 

derivatives of CLF negative definite, hence the asymptotic stability of the error system is 

validated. AOBC which deals with output feedback is more complicated than ABC. For 

AOBC, an observer is designed to estimate non-measurable states, and the control law 

consists of those estimated states and the measured output of the system. For the AOBC, 

besides the elements mentioned above, quadratic observer errors are also included in 

CLF.  

 

1. 3 Contributions of the thesis 

 

This thesis applies advanced control methods ABC and AOBC to an AMB system to 

regulate the position of the AMB’s fast-spinning rotor. Detailed and complete procedures 

of deriving the two strategies are offered. ABC is based on the three states of the 

linearized model of the AMB: displacement, velocity and current. The adaptive 

backstepping method will be introduced during the derivation of the ABC. AOBC is 

constructed on the assumption that only one position output of the system is measurable. 

One of the major contributions of this thesis is that the system’s global stability has been 

directly verified by Lyapunov’s direct method through the process of control law design. 
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In addition, in this thesis, the external disturbance can be estimated by the adaptive laws 

while other adaptive controllers reported on the AMB system in current literature only 

estimate uncertain parameters. Due to the adaptive law’s on-line estimation of the 

disturbance, the system shows high disturbance rejection ability. The tuning of the 

coefficients of controller is discussed in this thesis and the simulations verified the 

effectiveness of the tuning. But in published papers, the tuning of controller parameters is 

almost absent. The robustness of the adaptive backstepping controller against parameter 

uncertainties is verified as well. It should be mentioned that a nonlinear ABC has been 

applied in [22]. The nonlinear ABC treated the coil current as input and all the parameters 

that are associated with the position of the mass are taken as unknown dynamics. The 

problem stated in [22] is different from the one in this thesis since our input is the voltage 

and we only assume an external disturbance as an unknown parameter. In addition, 

backstepping method has been implemented in [2], where it is combined with ADRC to 

regulate the rotor displacement through current feedback control. A steady-state error 

occurred in the simulation result of displacement in [2]. In this thesis, the ABC is 

constructed based on position feedback, and there is no steady-state error in the 

displacement. 

 

1. 4 Thesis outline 

 

This thesis is organized as follows. In Chapter II, the nonlinear model of the AMB is 

linearized. State equations are used to construct the linearized model. It is shown in this 

chapter that the AMB system is inherently unstable. 
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In Chapter III, we apply ABC to the unstable AMB system. Both backstepping controller 

and adaptive laws are developed in this chapter. In order to verify the effectiveness of the 

controller, we simulate the closed-loop control system on the linearized AMB system. 

The simulation results demonstrate the effectiveness of controller. At the end of Chapter 

III, the closed-loop system’s robustness is analyzed and a comparison between PID and 

ABC for the same AMB model is conducted.  

 

In Chapter IV, AOBC is applied to the AMB. The equation development for such a 

control strategy is developed. An exponentially convergent estimator is used to observe 

the unknown system states. The AOBC is simulated on the linearized model of the AMB. 

By changing the disturbance value and plant’s parameters, the robustness of the close-

loop system is tested. At the end of the chapter, we compared the response of AOBC 

controlled AMB with the one of PID. 

 

Chapter V makes the conclusions and suggests future research directions.   
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CHAPTER II  

MODELING OF ACTIVE MAGNETIC BEARING 

  

2. 1 Principles 

 

In a typical stable AMB model, the rotor is levitated at its equilibrium point which is 

positioned right in the middle of two magnets. The two opposite electro magnets are 

trying to pull the rotor on each side in the absence of any external force. When an 

external force causes a vibration of the rotor, it will be sensed by the position sensors. 

Position sensor sends the position information to the electronic control system, which 

increases the current in one direction and decreases the current in another direction 

through the respective electro magnets. This produces a force to push the rotor to its 

original position. The signal from the electronic controller continuously updates the 

differential force to stabilize the rotor till no position error is sensed. In the following, we 



 

13 

will discuss the deducing process through physical analyses, and then to model the 

dynamics of the AMB system.  

 

First, we take a simple magnetic actuator as an example to calculate the forces generated 

by the current (electromagnetic force). 

 

Figure 1：Magnetic actuator [1] 

 

In Figure 1, I  is the coil current, g is air gap, N  is the number of coil rounds on the core, 

g
A represents the cross-section area and g is the air gap, l  is length of the path enclosing 

a surface through which the current flows. The magnetic field generated by the current 

will create an upward force. According to Ampere’s loop law, we have the following 

equation, where H  is the magnetomotance (magnetic field), which involves the flux 

density B , 
s

n  is the number of the segments through the path l  in which H  is constant, 

and 
c

n  is the number of different coils that may exist. 

1 1

s cn n

i i i i

i i

H l N I
= =

=∑ ∑      (1) 

Assuming that the permeability of the mediums µ  is constant in each segment, we will 

have the flux density as:  
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i i i
B Hµ=       (2) 

Combining (1) and (2) yields 

 
1 1

s cn n

i i
i i

i ii

B l
N I

µ= =

=∑ ∑      (3) 

For the system in Figure 1, because there are two air gaps and the permeability of air (µg) 

is much less than that of iron (µ0), the terms 0

0

Bl

µ
 can be ignored, where 0l  means the 

length of the magnetic flux path in the core. Given (2), we will have 

g

NI
BNI

gB
g

g

g

g

2
2

µ

µ
=⇒=      (4) 

The energy E  stored in the air gaps is represented by 

1
2

2 g g g
E B H A g=       (5) 

The electromagnetic force is the derivative of the energy E with respect to air gap. It can 

be expressed as 

 

21
g g g g g

g

dE
f B H A B A

dg µ
= = =     (6) 

With the equation of flux density in (4), we can rewrite (6) as  

 

2 2
2

2

1
( )

2 4
g g g

g

g

NI N I A
f A

g g

µ µ

µ
= =                                               (7) 

 



 

15 

2. 2 Nonlinear model of AMB and its linearization 

 

In this thesis, we use a one degree of freedom (DOF) AMB model [9] as Figure 2 

 

 
Figure 2: AMB model 

 

There are two opposite forces 1F  and 2F . The values of these forces are calculated by (7). 

The rotor in the middle of two cores is levitated and rotates in a plane perpendicularly to 

the figure. We can adjust the input voltage 1u  and 2u  to control the two currents 1i  and 2i  

so as to determine the resultant force. In Figure 2, the displacement of rotor from nominal 

position 0x  is x , and m  is the rotor’s mass. In the following part, we will derive the 

dynamics of the AMB system. 

 

According to Newton’s law, we have 
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1 2d
mx F F F= + −��        (8) 

In Figure 2, x1 and x2 are the air gaps between the rotor and left and right stators 

respectively. Replacing g in (7) with x1 and x2 separately, we can derive the two 

electromagnetic forces F1 and F2 as follows 

22 2
1 1

1 2
1 14 4

g g
N i A iK

F
x x

µ  
= =  

 
    

22 2
2 2

2 2
2 24 4

g g
N i A iK

F
x x

µ  
= =  

 
  (9) 

where 2
g g

K N Aµ= . According to Kirchoff’s Voltage Law (KVL), we have 

1 1
1 1

12s

di iK d
u Ri L

dt dt x

 
= + +  

 
   2 2

2 2
22s

di iK d
u Ri L

dt dt x

 
= + +  

 
 (10) 

In (10), the first term on the right represents the voltage that is produced by coil 

resistance R . The second term is because of the coil self inductance 
s

L . The third term 

models the back electromotive force (back EMF) generated by the air gap flux change. 

 

We suppose 0 0 0( , , )x i u represents nominal states. 1 1,x i  and 1u  are defined as position, 

current and voltage of the AMB in one side.  Then we will have 

                1 0x x x= −  2 0x x x= +       (11) 

  1 0i i i= +   2 0i i i= −       (12) 

  1 0u u u= +  2 0u u u= −       (13) 

 
Substituting (11)-(13) into (10) and substituting (9) into (8), we will have a nonlinear 

system model given by 
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2 2

1 2

0 0

0
1 1 0 12

0 0

0
2 2 1 22

0 0

4 4

2( )

2 ( ) 2( )

2( )

2 ( ) 2( )

d

s

s

x v

Fi iK K
v

m x x m x x m

x x K
i Ri vi u

L x x K x x

x x K
i Ri vi u

L x x K x x

=

   
= − +   

− +   

 −
= − − + 

− + − 

 +
= − − + 

+ + + 

�

�

�

�

  (14) 

We use Jacobian transformation to linearize the nonlinear model (14) around the 

equilibrium state.  The details of the linearization can be found in [2]. The linearized state 

equations of system configuration used to generate controller is given as follows. We 

represent the state matrix as A . Electromagnets are biased with a current i0. According to 

[9], as the current i0 is a constant, the bias voltage due to the coil resistance R is u0 = R i0. 

As the current i0 is varying, the relationship between the i0 and u0 is represented by (16) 

[9]. 

 

0
0 0

0 1 0 0
0

2 2 1
0 0

1
0

0

s i
d

i

s
s s

A

x x
k k

v v u F
m m m

i i
k R

L L
L L L L

 
                  = + +                  − −   

+   + + 

�

�

�

�����������

   (15) 

0 0 0
0 0

1

s s

d R
i i u

dt L L L L

−
= +

+ +

     (16) 

 

where 
2
0 0
3 2
0 0

,
2 2s i

i iK K
k k

x x
= =  and 0

02

K
L

x
= . Equation (16) depicts a bias current dynamic 

model. From the linear system (15), we can calculate the eigenvalues of A :  
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[ ]207.5781 179.4896 70.1937− − . Since there is a positive eigenvalue for matrix A, we 

can claim that the system is inherently unstable. An effective controller is crucial to 

stabilize the AMB. We consider that the initial conditions are zero. 

 

After the linearization and the decoupling steps which separate nominal states 0 0 0, ,x i u  

from , ,x i u , we can design controller based on (16). The block diagram representation of 

the AMB system expressed by (15) and (16) is given in Figure 3. 

 

Figure 3: Block diagram of open-loop AMB plant 

    

In Figure 3, system’s dynamic is described by (15). The voltage control input u , which is 

directly controls the current,  has three integrations between position displacement. The 

left side of the block diagram is electrical subsystem which depicts how input influences 

the current through inductance. The right side of the block diagram is electro mechanical 

subsystem, where the position displacement is governed directly by the current. An 

external disturbance signal, functioning as a step input, is added to the mechanical 

subsystem. The configurations of the system parameters are listed in Table 1. 
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Table 1: Parameter configurations 

Parameter Symbol Value(unit) 

Force-Displacement 
Constant 

s
K  142860 N/m 

Force-Current 
Constant 

i
K  100 N/A 

Coil Self Inductance 
s

L  120 mH 

Air Gap Inductance 
0L  70 mH 

Weight of Rotor m  4.6 kg 

Coil Resistance R  8 

Nominal Air Gap 
0x  0.0007 m 

Bias current 
0i  1 A 

Disturbance Force 
d

F  4.6 N 

 

2. 3  Summary of the chapter  
 

This chapter used basic physical principles to construct a one DOF AMB model. The 

development of the linearized state equations for the AMB is given. Because the 

linearized model is unstable, the AMB system has to be stabilized.  We will employ ABC 

and AOBC to control and stabilize the AMB respectively. The controller design will be 

explained in the next two chapters. 
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CHAPTER III  

ADAPTIVE BACKSTEPPING CONTROL WITH FULL-STATE 

FEEDBACK 

 
 
In this chapter, the ABC is developed in details. Then it is applied to and simulated on the 

AMB model. An investigation of the control system’s robustness is discussed. The tuning 

of the parameters of the controller is also introduced in this chapter.  

 

 

3. 1 Control objective and strategy 

 

Since AMB is an unstable system, the primary control objectives are to stabilize the AMB 

and to drive the position of the rotor to its equilibrium point in the presence of an external 

force with the knowledge of three states feedback. In addition, the control system must be 

robust against external disturbance and the uncertainties of the physical system. It is also 
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desired that disturbance be estimated accurately so it can be canceled in the control effort.  

 

Adaptive backstepping controller consists of two parts: backstepping controller and 

adaptive laws. The backstepping controller is used to stabilize and control rotor’s position 

and adaptive law estimates the disturbance. The general control Lyapunov function (CLF) 

is constructed to include the position displacement, errors between virtual estimates and 

stabilized functions, and of the difference between estimated and real disturbance. In the 

design of ABC, it is assumed that the system is in a basic form as following equations 

which is called “strict feedback form” [24].  

1

1 1 1 1 1 2

2 2 1 2 2 1 2 3

1 1 1 1 1 1 1

1 1

( ) ( )

( , ) ( , )

( , , ) ( , , )

( , ) ( , )

( , ) ( , )

k k k k k k

k k k k k

x f x g x

f x g x

f x g x

f x g x

f x g x u

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

− − − − −

= +

= +

= +

= +

= +

�

�

�

�

� � �

� � �

    (17) 

Equation (17) is a general system in strict feedback form, in which 
nx R∈  and the rest of 

the states ( 1 )
i

i kξ = �  are scalars, functions f and g only depend on the previous state 

variables that are fed back to the current states. When we design the ABC, the state 

equations of AMB system should be transformed to the form like (17). 

 

Four components constitute a typical closed-loop ABC system as Figure 4. In the figure, 

position, velocity and current sensors are used to measure the system’s three states and 

transfer them to the ABC. The amplifier acts as a proportional part of control signal 

which usually occurs in some practical situation, however, it is not used in the thesis. 
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Figure 4: Model of ABC of AMB 

 

3. 2 Model transformation  

 

The state equations of AMB (15) can be represented as  

  

0 1 0 0 0

0 0

0 0
s

x x

v a b v u f F

i c d i e

         
         = + +         
                  

�

�

�

    (18) 

where 
2 sk

a
m

= , 
2 ik

b
m

= , 
0

i

s

k
c

L L

−
=

+
, 

0 s

R
d

L L

−
=

+
, 

0

1

s

e
L L

=
+

, 
1

f
m

= . For creating 

a “strict feedback form”, equation (18) can be transformed into (19), (20) and (21), where 

the 1

1
x x

b
= , 2

1
x v

b
= , 3x i= . 

1 2x x=�          (19) 

2 3 1 3 1 1( , )
a

x x x x x
b

θ ϕ θ= + + = +�      (20) 

' '
3 2 3 2x u cbx dx u ϕ= + + = +�      (21) 
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In (19), (20) and (21), the control and the disturbance force are defined as  

' 1
0.023,sF

u u
bm e

θ = = = . 

 

3. 3 Design procedure 

 

In this section, adaptive laws and backstepping design are introduced separately. Our 

control goal is to regulate the position of the rotor x1. For (19), we suppose that the virtual 

control 2x  can be used to drive 1x  to zero. Then we take 1 1 1c xα = −  as stabilizing 

function or virtual controller (virtual state) to replace 2x , ( 1, 2,3)
i

c i =  are positive 

numbers. If 12 α=x , the desired state 1x  will be asymptotically stable by constructing the 

CLF 2
12

1
xV = ( 2

11xcV −=� ). Since there must be an error between 2x  and 1α , we need to 

construct new state space equations called “error system” [13] whose states are the 

differences between the real states and stabilizing functions, and drive the error states to 

zeros. The control goal then becomes asymptotically stabilizing all the states of the error 

system. In the AMB system, rotor displacement 1x  needs to be driven to zero. We 

consider the displacement 1x  as the first state 1z  of the error system, hence 1 1z x= , and 

the error between second state 2x  and its stabilizing function 1α  as 2 2 1z x α= − . Then the 

CLF consisting of these two values is   

2 2
1 1 2

1 1

2 2
V z z= +        (22) 

Since (22) is the CLF for (19) and (20), our task is to find a suitable input denoted by 

the virtual control 3x  to make the derivative of (22) negative definite so that the two 
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terms z1 and z2 will be driven to zero eventually. Even if it is negative semi-definite, 

LaSalle-Yoshizawa theorem [13] shows that 1x  will still be driven zero. 

 

With (19) and (20), the derivative of (22) is 

1
1 1 2 2 3 1 2

1

( )V x x z x x
x

α
ϕ

∂
= + + −

∂
�      (23) 

We choose x3 as virtual control signal. If the second stabilization function is given by 

1
2 3 2 2 1 2 1

1

x c z x z
x

α
α ϕ

∂
= = − − + −

∂
       (24) 

the derivative of 1V  will become 2 2
1 1 2 2c z c z− −  which is negative semi-definite. However, 

there is still an error 3 3 2z x α= − . So a new CLF including all the existing errors and 

displacement is created as 

                
2 2 2

2 1 2 3

1 1 1

2 2 2
V z z z= + +      (25) 

The derivative of V2 is 

    
2 2

2 1 1 2 2 2 3 3 2 2

2 2 '
1 1 2 2 3 2 2 2

( )

( )

V c z c z z z z u

c z c z z z u

ϕ α

ϕ α

= − − + + + −

= − − + + + −

� �

�
      (26) 

where u’ is chosen as 

'
3 3 2 2 2u c z z ϕ α= − − − + �                                                 (27) 



 

25 

Then the derivative of the CLF (26) of the system can be rewritten as 

2 2 2
2 1 1 2 2 3 3V c z c z c z= − − −�                                                 (28) 

which means the derivative of the final CLF is negative semi definite. So the control goal 

is achieved.  

 

The above procedure is under the consumption that no external disturbance exists. If 

there is one, we will have to generate an adaptive law to make estimate error of 

disturbance to be zero so as to obtain an accurate value of the disturbance and 

compensate it. The estimated disturbance will be additional feedback information in 

control law.  The details about disturbance estimation are given as follows. 

 

Let disturbance be θ, and estimated disturbance be 1̂θ . We will have an estimation error 

1 1̂θ θ θ= −� . We add the quadratic form of it to (23) and then form a new CLF (29). 

Positive numbers ( 1,2,3)
i

iγ =  are chosen as adaptive coefficients.  

2 2 2
1 1 2 1

1

1 1 1 ˆ
2 2 2

V z z θ
γ

= + +       (29)        

Because of the disturbance, the second part in (23) becomes 1
2 3 1 2

1

( )z x x
x

α
ϕ θ

∂
+ − +

∂
. We 

reselect α2 as  

2 1 2 2 1 1 1 1

1 2 1 1 1 2 2 1

ˆ( )

ˆ( 1) ( )

z c z x

c c x c c x

α ϕ θ α

ϕ θ

= − − − − +

= − + + − + −

�
              (30)      
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Then the derivative of the CLF becomes 

2 2
1 1 1 2 2 2 1 3 2 1 1

1

2 2
1 1 2 2 3 2 1 2 1

1

1 ˆ

1 ˆ( )

V c z c z z z z

c z c z z z z

θ θ θ
γ

θ θ
γ

= − − + + −

= − − + + −

�� ��

��
        (31) 

In (31), if we choose adaptive law as 1 1 2
ˆ zθ γ=
�

, it will make the derivative function of V1 

negative definite assuming the 2 3z z  term could be cancelled in the future. Next we need 

to calculate the derivative of 2V  that includes 2α . Considering external disturbance, the 

derivative of α2 becomes  

2 2 2
2 1 2 1

1 2 1

2 2 2
1 3 1 1 1

1 2 1

ˆ
ˆ

ˆ( ( ) )
ˆ

z x
z x

z x x
z x

α α α
α θ

θ

α α α
ϕ θ θ

θ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
= + + + +

∂ ∂ ∂

i

� ��

�
�

   (32) 

In (32), there is still a disturbance θ  existing in 2α�  which can not be replaced by 1̂θ . 

Employ θ 2̂  instead of θ . Therefore, the whole CLF can be reconstructed as 

2 2 2 2 2
2 1 2 3 1 2

1 2

1 1 1 1 1

2 2 2 2 2
V z z z θ θ

γ γ
= + + + +� �        (33) 

The control law that was derived before is repeated as follows.  

'
3 3 2 2 2u c z z ϕ α= − − − + �       (34) 

Substituting (32) into (34) yields 



 

27 

'
3 3 3 1 2 1 1 3 1 2 2 3 1 2

ˆ( ) [ ( 1) ] [ ( ) 1 ]
a

u c d x c c c c x c c c cb x c
b

θ α= − + − + + + − + + + − + �   (35) 

Given the control law above, the derivative of 2V  becomes 

2 2 2 2
2 1 1 2 2 3 3 2 2 3 2

2 2

1 ˆV c z c z c z z
x

α
θ θ θ

γ

∂
= − − − − −

∂

�� ��        (36) 

In order to make (36) negative semi definite, we need to eliminate the error parts which 

contain 2θ� . If we choose adaptive law as 

2
2 3 2

2

ˆ z
x

α
θ γ

∂
= −

∂

�       (37) 

the last two terms of (36) will be eliminated by substituting (37) into (36). Then the 

derivative of V2 becomes  

2 2 2
2 1 1 2 2 3 3V c x c z c z= − − −�      (38) 

Now that the derivative of the final CLF is negative semi definite, the system will be 

stabilized at its equilibrium point. The final adaptive backstepping control law is 

generated by calculating (35) as 

2

'
1 2 3 1 3 1 2 3 1

1 2 2 3 1 3 1 1 2

1 2 3 3

( ( ) 2 )

( 3)

( )

a
u c c c c c c c c x

b

c c c c c c cb c c x

c c c d x

ϕ

= − + + + + +

− + + + + + + +

− + + +

   (39) 

The above equation is the final controller which includes three-state feedback. 

3. 4 Simulation results  
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Since 
i

z  ( 1, 2,3i = ) represent the states of the error system, we can write the error 

system’s state equation as follows. 

1 1 1

1
2 2 2

2
3 3 3 2

2

11
1

22
22

2 3

1 0 0 0

1 1 1 0

0 1
0

0 0

0 0

z c z
d

z c z
dt

z c z

x

z
d

z
dt

x z

θ

θ
α

γ
θ

α
γθ

 
 −     
        = − − +         
        − − ∂       

∂  

  
    = ∂    −   ∂    

�

�

   (40) 

Based on (40), we can draw the diagram of closed-loop adaptive system as Figure 5. 
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Figure 5: The closed-loop adaptive system 

 

Figure 5 represents the properties of the system after applying control law to it. The 

constant system matrix has negative diagonal elements, while its off-diagonal elements 

are skew-symmetric. Each step of the design generates an error variable, a stabilizing 

function 
i

α  and a new estimate 
î

θ . 
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Using the system parameters shown in Table 1, we can construct the Simulink model for 

this ABC controlled AMB system. We choose simulation time as 5 seconds. The 

disturbance as a step input is added to the system at 1 s. All the initial values are zero. 

Including the control law (39), the closed-loop ABC system is illustrated as Figure 6. 

 

Figure 6: SIMULINK model of ABC 

 
The block “plant” is the unstable AMB model, which has two inputs: control signal u  

and a disturbance, and three state variables , ,x v i . The control law is computed in ABC 

block to provide input signal of this plant.  

 

In the following part, two sets of simulation results are given with different Lyapunov 

backstepping coefficients ( 1, 2,3)
i

c i =  (LCs) and adaptive coefficients ( 1, 2)
i

iγ = (ACs) 

respectively for the purpose of investigating how these coefficients affect the control 

results of three states, disturbance estimate and control effort. Note that the desired 

estimation value of disturbance is 0.023sF

bm
θ = = . 

 

The first set of simulation results is produced and shown in Figures 7, 8, 9, and 10 for 

which AC values are: 1 21, 1γ γ= = . The figures shows the time domain response of the 
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three states, disturbance estimation and control effort for different LCs  We choose LCs 

values as 1 2 3 500c c c= = =  and 1 2 33000, 1000, 500c c c= = =  respectively. 
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Figure 7: Control results of the three states with different LC 
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Figure 8: Disturbance (θ ) estimates when 1 2 3 500c c c= = =    
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Figure 9: Disturbance and estimates when 1 2 33000, 1000, 500c c c= = =  
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Figure 10: Control effort (voltage) with different LC  

 

From Figure 7 through Figure 10, it is observed that the rotor’s displacement is not driven 

to zero though the fact that the spike value of  1x   is not exceeding 0.7 mm that can still 

guarantee the rotor not touching stator. If we set simulation time long enough, the 

displacement will converge to zero eventually, and estimators also reach the disturbance 

value. We can find out that by setting LC values large without changing AC, the 

overshoot of the displacement could be remarkably reduced. 

 

 In Figure 10, it is noted that the control effort changes rapidly at the time instant when 

the disturbance jumps from zero to 0.023 (with simulation unit). Such a fast-changing 

control effort will be very difficult to implement in the real world. However, in reality, 

the disturbance generally increases gradually from zero to a specific value [22]. 
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Therefore, the real rate of change for the control effort will not be as fast as the one 

shown Figure 10. The control effort for a gradually increased disturbance (ramp 

disturbance) is given in Figure 11, where the control effort for ramp disturbance changes 

much slower than the one for step disturbance.   
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Figure 11: Control efforts with step disturbance and ramp disturbance when 

1 2 3 1 23000, 1000, 500, 1, 1c c c γ γ= = = = =  

 

In order to investigate the effect of AC, we change their values in the second set of 

simulation while leaving LC values unchanged. We choose 1 2 33000, 1000, 500c c c= = = . 

We increase the first AC 1γ  from 1 to 3000, and decrease the second AC 2γ  from 1 to 0.1. 

The simulation results for different ACs are shown in figures 12 through 15. 
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Figure 12: Control result with different AC  
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Figure 13: Disturbance and its estimates when 1 210, 1γ γ= =  
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Figure 14: Disturbance and its estimates when 1 22000, 0.1γ γ= =  
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Figure 15: Control efforts with different AC 
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Figure 12 through Figure 15 demonstrate that the responding speed of disturbance 

estimator relies on the value of ACs. Increasing the ACs value can drive the estimates of 

disturbance to the real one much faster. As a consequence, the settling time of the 

displacement 1x  responding to the disturbance is reduced, and 1x  is limited within 0.7 

mm. This can also be seen from the previous adaptation laws that the converging times 

and ACs are linear related respectively. In addition, the disturbance load is successfully 

estimated by two adaptation laws. However, in Figure 15, the control effort changes 

rapidly corresponding to a step disturbance. In reality, the disturbance will be gradually 

increased. So the rate of the change for control effort will be reduced accordingly as 

shown in Figure 11.  

 

As shown from Figure 7 through Figure 15, the displacement of the rotor in AMB has 

been successfully controlled to almost zero without steady-state error by the ABC with 

different LCs and ACs. The adaptive laws estimate disturbance accurately. When 

choosing different LCs to achieve better performance, Lyapunov direct method 

guarantees a bounded value for each part in CLF at all time, and it drives the first state 

variable (displacement) to zero even when 0V =� . Comparing the two sets of the results 

with different coefficients, we can see that the LCs play an important role in system’s 

response. The larger the LCs values are, the smaller the overshoot values are. However, 

increasing LCs could lead to oscillations in control effort. It is also observed that if LCs 

are too small, transient responds for disturbance will oscillate significantly when the 

disturbance occurs. Adaptive coefficients (ACs) are in charge of the response time to the 

disturbance load. Increasing ACs can amplify the adaptation signals so that the estimation 
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errors will converge to zeros faster. The simulation results also imply that even if the 

adaptation is turned off, that is when 0 ( 1, 2)
i

iγ = = , the states of the system are 

bounded as well, though there is a steady-state error in 1x . 

 

3. 5 Robustness of ABC  

 

One of the most important features of the adaptive control method is robustness. The 

uncertainties in the system parameter of AMB could be caused by the external forces 

such as a moving base or earthquake, or inner characteristic change due to temperature 

variations and the fatigue of the materials. If the closed-loop system has high robustness, 

those uncertainties should be tolerated in a certain margin. In the design process above, 

we can conclude that adaptation law estimates the disturbance no matter how big the 

disturbance is. However the bigger the disturbance is, the larger the spike value of 1x  

becomes. A simulation under an extraordinary load disturbance of 450,000 N still shows 

that the peak position displacement remains within 0.0007 m, the system is very robust to 

the disturbance [2]. Unfortunately, the overshoot of the control effort becomes 

unacceptable. Adding a saturation block in front of the control signal will destroy the 

stability of the system.  

 

In the following simulation, ABC’s robustness is tested by changing the system’s 

parameters ( , , , )a b c d , which are defined in (19), (20) and (21), by 200 and 1/200 

times from their original values. We also increase the variation to the maximum in our 

simulation till the system becomes unstable to find the tolerance of the system to 
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uncertainties. Figure 16 demonstrates the three states when varying parameter a to 200 

and 1/200 of its actual value under the condition of. The figure shows the convergence of 

the displacement to zero in the presence of parameter variation. 
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Figure 16: Position displacement when varying the parameter a to 200 and 1/200 times 

its original value 

 

Table 2 lists the maximum overshoot values when the parameters vary 200 times of their 

original values.  
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Table 2: Position of AMB with four parameters at a floating rate of 20000% 

 

 

 

 

Peak Position (m) with 

20000% Parameter 

Value 

 

Peak Position (m) with 

-20000% Parameter 

Value 

a  98.21 10−×  97.092 10−×  

b  98.216 10−×  97.431 10−×  

c  97.434 10−×  97.087 10−×  

d  Unstable 97.105 10−×  

 

When the parameters are at their original values, the peak value of the position 

displacement is 97.094 10−×  m. In the simulation results, position is still bounded within 

the limitation and driven to zero while the settling time and overshoot value nearly the 

same as those with original parameter value. Table 3 shows the maximum factors by 

which system parameter can increase before the onset of instability.  

 

Table 3: Maximum factors by which system parameter can increase before the onset 

of instability 

a  b  c  d  

790 110000 110000 117 

 

This test shows that the ABC has a very tolerant capability for the uncertainty of every 

parameter that may change in reality. When it goes to the extreme situations that cause 
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unstable control, a  should be at least 790 times of its original value and other parameters 

should be as large as listed in the table. It is worthwhile to mention that decreasing 
i

c  

will weaken this robustness since smaller LCs generates bigger pike value of rotor 

displacement. 

 

3. 6 Comparison with PID control 

 

The block diagram of a closed-loop PID controlled AMB system is shown in Figure 17.  

 

Figure 17: PID control of AMB with  position feedback and current control 

 

The PID controller has an input of the position error and its output is the current. The 

controller’s optimized gains are defined in [4] and given in Table 4. 

 

Table 4: Optimized PID gains [4] 

PID Gain Value 

KP 12258 

KI 2303 

KD 250 
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The comparison of PID and ABC is represented by simulations as following in terms of 

performance and control effort when the disturbance is added to the system at 1s. The 

Lyapunov settings for ABC are 1 2 350, 50, 50,c c c= = = 1 2100, 10γ γ= = . These 

settings will result in a worse performance than that of Section III.4. The simulation 

results for both PID and ABC are shown in Figure 18 and Figure 19. 
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Figure 18: Position responses of ABC and PID controlled AMB 
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Figure 19: Control efforts of ABC and PID controlled AMB 

 

 
From Figure 18 and Figure 19, we can see that the results of ABC are better than that of 

PID control whose coefficients are optimized in [4]. The overshoot of the position in 

ABC is less than PID control and ABC has no oscillations. But the settling time is nearly 

the same for both controllers. Except for the oscillation at the very beginning of the onset 

of the displacement, the transient performance in control efforts in ABC is better than that 

of PID controller. There are several reasons why ABC performs better than PID. With the 

help of adaptive laws, external load is estimated on-line and compensated by control. 

However, in PID controller, proportional and derivative terms cause large overshoot and 

oscillation, meanwhile the use of integral term slows down the transient response. 

Nevertheless, the PID controller uses only one feedback that is position while the ABC is 

constructed based on three feedback signals (position, velocity, and current).  
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3. 7 Summary of the chapter 

 

The ABC strategy is derived with the knowledge of three state variables. Simulation 

results validate the effectiveness of this control law. The system returns to its equilibrium 

point when 1 0x =  in a short settling time with very small peak overshoot. Steady-state 

error converges to zero asymptotically. The variations of LCs and ACs can change the 

responding performance of the AMB system. However, the selection of these positive 

constants depends on the designer’s experience. If they exceed some limitations, 

oscillation becomes obvious and control effort increases, and the most serious 

consequence is unstable control. 

 

In addition, the robustness of the ABC controlled AMB system against parameter 

variations is tested and demonstrated in this chapter. The ABC also shows superior 

control performance to a PID control system. 
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CHAPTER IV  

ADAPTIVE OBSERVER-BASED BACKSTEPPING CONTROL 

 

The results in chapter III are under the assumption that full state feedback is available. In 

this chapter, we remove the non-measurable states (velocity and current) and develop an 

AOBC design based on one measurable state that is position displacement. Meanwhile, 

the disturbance signal (
d

F ) is also taken as the unknown force on the rotor.  

 

4. 1 Control objective and strategy 

 

Our control objective is to design a control law to track reference position input with the 

position feedback of the plant. Figure 20 shows the typical structure of AOBC with an 

amplifier that will not be used in our design. 
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Figure 20: Model of AOBC applied AMB 

  

Since the only information that can be measured is the position displacement, we need an 

exponentially convergent observer to estimate other unavailable states. The observation 

errors will be treated in the design of CLF by a special designed term called nonlinear 

damping. Based on the observed information, we can design the AOBC laws in the way 

introduced in Chapter III. In order to make the control system asymptotically stable and 

to regulate the error terms, CLF has to be constructed as in Figure 21. 

 

Figure 21: Construction of CLF in AOBC 

 

Control Lyapunov 
Function 

State estimation errors 

Virtual control errors 

Disturbance estimate errors 

Tracking error of output 
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For applying the AOBC strategy to the AMB system, we have to transform the model of 

the ABM to output-feedback form [13] as shown in (41) for which the exponential 

observers are assumed to be available and the output is the displacement. The terms φi (i 

=1, 2….n) and β  are linear and nonlinear functions of y and bi (i = 0, 1, 2…..m) are 

constants. 

1 2 1

2 3 2

1

1 1 1

0

1

( )

( )

( ) ( )

( ) ( )

( ) ( )

m

n n n

n n

x x y

x x y

x x y b y u

x x y b y u

x y b y u

y x

ρ ρ ρ

ϕ

ϕ

ϕ β

ϕ β

ϕ β

+

− −

= +

= +

= + +

= + +

= +

=

�

�

�

�

�

�

�

     (41) 

The system represented by (41) is assumed to be a minimum phase system, that means 

1 0
m

m
b s b s b+ +�  has to be a Hurwitz polynomial and ( ) 0yβ ≠ . This ensures the 

existence of an exponentially convergent observer. Another assumption is that the 

reference signal and its first derivatives are known, and they are bounded and piecewise 

continuous. These assumptions ensure that there exists a feedback control which could 

guarantee the global boundless of x  and x̂ . 

 

4. 2 Model transformation 

 

In order to apply AOBC to the AMB system, we need the system to be transformed to the 

observable output feedback form. The transfer functions of the AMB with the respect to 

output ( )X s and disturbance ( )
d

F s  are:  
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3 2 2

2( )

( ) 2( ) 2
i

i s s

kX s

U s mLs mRs k Lk s k R
=

+ + − −
   (42) 

3 2 2

( )

( ) 2( ) 2
d

i s s

F s Ls R

U s mLs mRs k Lk s k R

+
=

+ + − −
    (43) 

We can transform the system transfer functions (42) and (43) to the following output 

feedback form.  

2

1 0
0

0
2( ) 1

0 1 0

2
2

0 0

i s
d

i
s

R

L

k Lk
x x u F

mL m
k

k R R
mL

mLmL

   −     
    
 − −   = + +    
    
         

�    (44) 

1y x=  

The first state variable in (44) is position and input is control effort u . However, due to 

the transformation, the second and third state variables are not the velocity and current 

anymore. Instead, they do not have physical meanings but are just used for the 

convenience of constructing the state equations in (44). 

 

4. 3 Observer design  

 

We can rewrite (44) as 

 

1 2 1

2 3 2

'
3 3

( )

( )

( )

x x y

x x y

x y u a

ϕ

ϕ θ

ϕ θ

= +

= + +

= + +

�

�

�

     (45) 
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where 1 1( )
R

y x
L

ϕ = − , 
2

2 1

2( )
( ) i s

k Lk
y x

mL
ϕ

− −
= , 

R
a

L
= , 3 1

2
( ) s

k R
y x

mL
ϕ = , 

' 2
i

k
u u

mL
= , 1d

F

m
θ = = . 

The state observer can be constructed as 

0 1
estimate
errorvirtual control

candidates

x ξ θξ ε= + +
�����

     (46) 

where x is a state vector, [ ]T

0302010 ζξξξ = , and [ ]T

1312111 ζξξξ = . The 

definitions of the vectors ξ0 and ξ1 are given as follows.  

01 1 01 02 1

02 2 01 03 2

'
03 3 01 3

( ) ( )

( ) ( )

( ) ( )

k y y

k y y

k y u y

ξ ξ ξ ϕ

ξ ξ ξ ϕ

ξ ξ ϕ

 = − + +


= − + +


= − + +

�

�

�

    (47) 

and 

11 1 11 12

12 2 12 13

13 3 13

1

k

k

k a

ξ ξ ξ

ξ ξ ξ

ξ ξ

 = − +


= − + +


= − +

�

�

�

     (48) 

Equation (47) shows the filters without disturbance. Equation (48) describes the filters 

including disturbance. The constants ( 1, 2,3)ik i =  are chosen as following. 

 

We set a matrix as
1

0 2

3

1 0

0 1

0 0

k

A k

k

− 
 = − 
 − 

 and choose gain vector 1 2 3[ ]Tk k k  to make 0A  

Hurwitz. Then the system can be represented by 
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'
0 ( ) [0 1 ] [0 0 1]T Tx A x ky y a uϕ θ= + + + +�    (49) 

The two filters become  

[ ] '
0 0 ( ) 0 0 1

T
A ky y uξ ξ ϕ= + + +�     (50) 

[ ]1 0 1 0 1
T

A aξ ξ= +�     (51) 

Given (49), (50) and (51), we have the observer error 

0 1 0 0 1 0( )x A x Aε ξ ξ ξ ξ θ ε= − − = − − =� �� � . Since 0A  is a Hurwitz matrix, the estimation 

errors of the states which are observed by this observer will exponentially decay. 

 

4. 4 Design procedure of the control law  

 

In this section, we develop the control law in a similar way to the one in Chapter III. We 

also need to take estimator errors into consideration. The special tool we use to 

counteract the observer error is nonlinear damping, which strengthens the negativity of 

the derivative of the CLF by adding a negative square term. Our control goal is to make 

output y  zero. At first, like we have done in Chapter III, the first state of the error system 

is chosen as  

1z y=        (52) 

The derivative of 1z  is 

1 2 1( )z x yϕ= +�      (53) 
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Since 2x  is non-measurable, we replace 2x  with the observed state of it in (46). Then we 

will have 

2 02 12 2x ξ ξ θ ε= + +      (54) 

Substituting (54) into (53) to obtain 

1 02 12 2 1( )z yξ ξ θ ε ϕ= + + +�     (55) 

Then the product of z1 and 1z� will be 

1 1 1 02 12 2 1( ( ))z z z yξ ξ θ ε ϕ= + + +�    (56) 

Now we need to choose the virtual control from the above known variables. Since only 

0ξ  contains the control 'u , 01ξ  is the virtual control, so the stabilization function to 

replace 01ξ  will be 

1 1 1 1 1 12 1 1( )c z d z yα ξ θ ϕ= − − − +     (57) 

where 1θ  is the first estimate of the disturbance. Set the CLF for the first equation of (45); 

all the terms which need to be driven to zero should be included. 

2 2
1 1 0 1

1 1

1 1 1

2 2 2
TV z P

d
ε ε θ

γ
= + + �     (58) 

This is different from (22) by the term 0
1

1

2
T P

d
ε ε , in which ε  represents the observer 

error which needs to be compensated by nonlinear damping.   
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In (58), 0P  is a positive definite and symmetric matrix. If we define 0 0 0 0
TA P P A Q+ = − , 

where 0A  is defined in our estimator error system 0Aε ε=� , then this system’s derivative 

of CLF 0
TV Pε ε=  will be 

0 0

0 0 0 0( )

T T

T T

T

V P P

A P P A

Q

ε ε ε ε

ε ε

ε ε

= +

= +

= −

� � �

    (59) 

In our case, matrix Q I= , then TV ε ε= −� . We will use this result along with a nonlinear 

damping to counteract the estimation error affect. 

2 2
1 1 1 1 1 1 1 12 1 1 2 1 2z z c z d z z z z zξ θ ε= − − + + +��        (60)  

It should be noticed that there is a new term 2
1 1d z−  appears in the above equation. This 

term is designed to cooperate with the derivative of 0
1

1

2
T P

d
ε ε  and 1 2z ε  to make up a 

quadratic negative term shown in (61). Substituting (60) into V� to obtain 

2 2 2 2 21
1 1 1 1 1 1 2 1 1 12 1 1 2 2

1 1 11

ˆ 1 1 1
( ) ( )

42
V c z d z z z z d z

d dd

θ
θ ξ ε ε ε

γ
= − − + + − − − + −

�
��   (61) 

As we expounded in Chapter III, the term 1 2z z  in (61) will be eliminated later by 2α� , if 

only the adaptive update law of first estimator is selected as 

1 1 1 12
ˆ zθ γ ξ=
�

      (62) 

then 1 0V ≤� . Let’s consider the second equation in (45). 
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2 02 1

1 1 1
03 2 2 01 02 12 2 1 1

1 1 12

( ) ( ) ( ( ))

z

y k y y
z

ξ α

α α α
ξ ϕ ξ ξ ξ θ ε ϕ θ

θ ξ

= −

∂ ∂ ∂
= + + − − + + + − −

∂ ∂ ∂

� ��

�  (63) 

The second stabilizing function is chosen as 

21
2 1 2 2 2 2 2 2 01

1

1 1 1
02 12 2 1 1 12

1 1 12

( ) ( ) ( )

ˆ( ( ))

z c z d z y k y
z

y
z

α
α ϕ ξ

α α α
ξ ξ θ ϕ θ ξ

θ ξ

∂
= − − − − − −

∂

∂ ∂ ∂
+ + + + +

∂ ∂ ∂
� �

   (64) 

so that 

2 2 2 21
2 2 2 3 2 1 1 1 12 2 1 1 1 2 2 2 2 2 2 2

1

( ) ( ) ( )z z z z z c d c d z c z d z z
z

α
ϕ ξ θ ϕ ε

∂
= + + + + + + − −

∂
��  (65) 

We construct the second CLF as 

2 2
2 1 2 0 2

2 2

1 1 1

2 2
TV V z P

d
ε ε θ

γ
= + + + �     (66) 

Given (65), the derivative of second CLF becomes 

2 2 2 21
2 1 2 2 2 2 2

1 2 22 2

1 1 1
( )

42
V V c z d z

z d dd

α
ε ε

ε

∂
= − − − + −

∂
� �   (67) 

If the adaptive updated law of the second estimator is 

1
2 2 2 12

1

ˆ ( )z
z

α
θ γ ξ

∂
= −

∂

�
     (68) 

the final CLF will be set as 
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2 2
3 1 2 3 0 3

3 3

1 1 1

2 2
TV V V z P

d
ε ε θ

γ
= + + + + �    (69) 

whose derivative includes 

'
3 3 3 3 3 01 2( ( ) ( ) )z z z y u k yϕ ξ α= + + − − ��    (70) 

If the control law is designed as 

' 22
3 3 3 3 2 3 3 01 2

1

( ) ( ) ( )u c z d z z y k y
z

α
ϕ ξ α

∂
= − − − − − − +

∂
�   (71) 

the derivative of the CLF will be  

2 2 2 232 2
3 1 2 3 3 3 3 3 12 3

1 1 3 3 33 3

ˆ1 1 1
( )

42
V V V c z d z z

z z d dd

θα α
ξ ε ε

γε

 ∂ ∂
= + − − − − + + −  ∂ ∂ 

� � �  (72) 

Therefore, we design the third disturbance estimator as 

2
3 3 12 3
ˆ z

y

α
θ γ ξ

∂
= −

∂

�
      (73) 

Substituting (73) into (72), we will have 3 0V ≤� . The control goal will be achieved by 

applying 'u  derived in (71) to (44). 

 

 

4. 5 Simulation results and analysis 

 

The block diagram in Figure 22 is constructed based on the control law developed above. 

The subsystem “plant” contains the original AMB model and its observer, and the input 
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of the plant is the control law constructed by the AOBC. The output of the plant is the 

position displacement. The reference r  is set to be zero. 

 
 

Figure 22: Block diagram of AOBC  

 

The following figures show the rotor displacement, disturbance estimation and control 

efforts of the closed-loop AMB system. In the parameter settings, the measured 

disturbance in Matlab should be 1 because of the transformation from the original system 

to the output feedback form. The step time of the disturbance begins at 1 s and the 

Lyapunov coefficients settings are: 1 2 35000, 1000, 50,c c c= = =  

1 2 315000, 100, 1γ γ γ= = = , these are selected based on the experience in previous 

chapter. The nonlinear damping coefficients are chosen as 5
1 2 3 1d d d e−= = = . 
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Figure 23: Position displacement under the control of AOBC  
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Figure 24: Disturbance estimates by three adaptive laws  
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Figure 25: Control effort of AOBC 

 

Figure 23 and Figure 24 illustrate that the control objective is achieved by AOBC. The 

position of the rotor is driven to its equilibrium point with its peak value within the 

limitation of the air gap width. The three adaptive updated laws successfully estimate the 

disturbance. Because the other two state variables have been changed by a matrix 

transformation, it is no need to measure them as long as the position is still 1x . The ways 

of tuning Lyapunov coefficients also affects control results in AOBC, it acts in a similar 

way as well as ABC. The noisy oscillations in Figure 25 are caused by the large 

Lyapunov coefficients and can be improved by reducing the values of LCs and ACs. 

However, the position overshoot will grow as the values of LCs and ACs are increased.  
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The overshoot and settling time of the position response with respect to different 

coefficients LCs and ACs are shown in Table 5. The LCs and ACs are increased 

separately. 

Table 5: Disturbance response characteristics in position with different Lyapunov 

coefficients 

 
1 2 3

1 2

3

500

100

1

c c c

γ γ

γ

= = =

= =

=

 
1 2

3 1 2

3

5000, 1000

50, 100

1

c c

c γ γ

γ

= =

= = =

=

 
1 2

3 1

2 3

5000, 1000

500, 150000

100, 1

c c

c γ

γ γ

= =

= =

= =

 

Peak value(m) 35.87 10−×  41.34 10−×  58.32 10−×  

Settling time(s) 0.87 1.88 0.31 

 

From Table 5, we can see that all of the three sets of simulations achieve the control goal. 

However, by comparing the performance of the AOBC with that of ABC in Chapter III, 

we can observe that the overshoot value of the position response for AOBC is much 

larger than the one for ABC. The control effort of ABC is smooth only except for a sharp 

overshoot at the time instant when disturbance changes while the control effort of AOBC 

oscillates unpredictably in Figure 25. The decrease of the control performance of AOBC 

is because the only available information of the original system is the position signal. We 

have to increase the Lyapunov coefficients to achieve a better control result.  

  

4. 6 Robustness of AOBC  

 
From the adaptive update law deviation for the disturbance, AOBC has a high capability 

of disturbance rejection. To make the peak of 1x  pass its limitation, the disturbance 
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should be increased by 9.6 times, which means the external load could be 44.2 N while 

the system is still stable. By changing the value of the parameter 3ϕ  to 2.3 times and 

1/2.3 times of its original value, we test the robustness of AOBC when 

1 2 35000, 1000, 50,c c c= = =  1 2 3150000, 100, 1γ γ γ= = =  without tuning the observer 

parameters and control law. The position responses are shown in Figure 26. 
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Figure 26: Position responses when 3ϕ  varies  

 

If the parameters do not change, the peak value of position displacement is 58.32 10−× m. 

The figure above shows that with the parameter 3ϕ  varying from its original value to 

230% of its original value, the displacement is still in the air gap limit. If we increase 3ϕ  

by over 2.3 times, or increase 1ϕ  and 2ϕ  by over 2.3 times, the system will be unstable or 

the peak value of the rotor displacement will exceed the limitation, which means a failure 

of operation. The existence of observer implies that AOBC has a lower robustness 
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compared to ABC given the fact that average overshoot value and settling time are 

significantly larger in the simulation results for AOBC. That is because its feedback 

information is not accurate at first and it takes time for the observer to generate correct 

data.  

 

4. 7 Comparison with PID 

 

In Figure 27 and Figure 28, we compare the simulation results of AOBC with that of PID. 

Both of the controllers have only position measurements. The PID gains are the 

optimized ones in Chapter III: 12258pK = , 2303iK = , 250dK = ; the AOBC gains are 

the same as section IV.5. The solid line denotes the position displacement under the 

control of AOBC and the dotted line shows the PID control result. 

0 0.5 1 1.5 2 2.5 3
-2

0

2

4

6

8

10

12

14

16

18
x 10

-5

time(s)

p
o

s
it
io

n
(m

)

 

 

AOBC

PID

 

Figure 27: Position responses of AOBC and PID controlled AMB systems 
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Figure 28: Control efforts of AOBC and PID controlled AMB systems 

 

As shown in Figure 27, the displacement response of the AOBC from equilibrium point 

is smaller than that of PID. Also, the settling time of AOBC is shorter than PID. However, 

Figure 28 shows that the control effort of AOBC has more oscillations than PID.  

 

4. 8 Summary of the chapter 

 

In this chapter, because the only output is position displacement, an exponentially 

convergent observer is introduced in front of the AOBC to estimate the information of 

those non-measureable states. The control law is generated in a similar way as Chapter III 

with the addition of estimator error. Despite the facts that the states and uncertainty can 

be estimated and the system is forced to be stable, the simulation results show that the 

response of the closed-loop system is not as ideal as that of ABC, and the robustness 
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against either disturbance or parameter variations is weaker, too. On the other hand, 

AOBC requires more computation time due to the complexity of the control system.  
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CHAPTER V  

SUMMARY AND FUTURE RESEARCH 

5. 1 Summary 

 

This thesis introduces two types of adaptive backstepping control, ABC and AOBC, to 

regulate the AMB position in the presence of a force disturbance on its rotor. Our control 

objectives are to stabilize the closed-loop system and to discuss the tunings of the two 

types of adaptive controllers. A detailed process of how to construct the dynamic model 

of AMB was explained in the beginning. Lyapunov method had proved the stability of 

the control system without knowing the explicit knowledge of the solution. In simulation 

results, the effectiveness and robustness of the control system are verified, and ABC and 

AOBC also estimate the value of the disturbance via adaptive updating law. Because the 

symbols used in design procedure represent the general case, ABC and AOBC methods 

are able to be applied to other nonlinear system models only if those systems are given as, 
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or can be transformed, to the “strict feedback form” and “output feedback form” 

respectively. 

 

In order to obtain better performances, we tuned the LCs and ACs separately to test their 

effects on the states, estimators and control effort in both ABC and AOBC. Simulations 

showed that increasing LCs could make response time, and the maximum overshoot 

smaller. Larger ACs drive the estimator to its target faster and also lead a smaller control 

effort. However, those increasing coefficients will lead to more oscillations in the 

transient response. Those experimental results could also be deduced from the physical 

meaning of the CLF’s value: the increasing of the LCs will speed up the decrease of the 

system’s energy by making V�  more negative. Though AOBC also successfully achieved 

the control goal, the overshoot value was larger than that in ABC with same settings. 

Also, the time that Simulink required for the simulation was longer due to the complexity 

of the controller. 

 

Compared with PID, ABC and AOBC could achieve better performance if the Lyapunov 

coefficients’ setting is proper. The overshoot was smaller and there were no oscillations 

in the transient response, and the settling time is shorter. 

 

However, there are some shortcomings of AOBC. First of all, because an output-

feedback form is needed, AOBC is not applicable for those systems which can not be 

transformed to that form. Second, the speed of computing the adaptive control law is 

slow, which is a barrier in some situations in need of fast calculation, so this problem 
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needs to be solved by a faster industrial computer. Finally, the control effort has an 

uneven trajectory when the Lyapunov coefficients are large, and we need to find a 

balanced way to tune the LCs and ACs to achieve both good response and low control 

effort. 

 

5. 2 Future work 

 

In the future, a clear study of how to choose Lyapunov coefficients adequately should be 

made firstly since the experiments reveal that their variations influence the system 

performance to a large degree. We need to find a balanced way to set CLF coefficients 

and obtain a control law which could result in better outcomes than the best situation 

simulated above without sacrificing speed. Second, the observer-based ABC can be 

improved by employing different estimators which can provide more precise estimation 

information to minimize the observer errors’ with which the control law deals.  

 

As a promising advanced controller, adaptive backstepping has the potential to be widely 

applied in the real world with its reliability and the ability of on-line estimation of 

uncertainties. According to [13], there is a systematic way to design the control law, and 

how to apply this complicated control method to industry field needs to be considered. 

One possible way of implementation is to input the completed controller to the 

programmable control system, as long as the exact tuning method of the Lyapunov 

coefficients is discovered. Besides the programmable problem, the unsmooth control 

effort is also difficult to implement and needs to be improved. Another item is that the 
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ignored conditions such as power loss and some equivalency assumptions should be 

handled by the robustness of the controller if no other method deals with that. 
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