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SENSING AND CONTROL OF MEMS ACCELEROMETERS  

 USING KALMAN FILTER  

 

 

KAI ZHANG 

 

ABSTRACT 

 

Surface micromachined low-capacitance MEMS capacitive accelerometers which 

integrated CMOS readout circuit generally have a noise above 0.02g. Force-to-rebalance 

feedback control that is commonly used in MEMS accelerometers can improve the 

performances of accelerometers such as increasing their stability, bandwidth and dynamic 

range. However, the controller also increases the noise floor. There are two major sources of 

the noise in MEMS accelerometer. They are electronic noise from the CMOS readout circuit 

and thermal-mechanical Brownian noise caused by damping. Kalman filter is an effective 

solution to the problem of reducing the effects of the noises through estimating and canceling 

the states contaminated by noise. The design and implementation of a Kalman filter for a 

MEMS capacitive accelerometer is presented in the thesis in order to filter out the noise 

mentioned above while keeping its good performance under feedback control. The dynamic 

modeling of the MEMS accelerometer system and the controller design based on the model 

are elaborated in the thesis. Simulation results show the Kalman filter gives an excellent 

noise reduction, increases the dynamic range of the accelerometer, and reduces the 

displacement of the mass under a closed-loop structure. 
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CHAPTER I   

INTRODUCTION 

 

 

This chapter will give a brief review of the existing MEMS accelerometers and the 

sensing and control methods used in accelerometers. In addition, the proposed control 

solution to be employed in this thesis will be discussed. 

  

1.1 Introduction 

 
With the development of micro fabrication technology, Micro-Electro-Mechanical 

System (MEMS) which integrated mechanical sensors and actuators with electrical circuits 

has been broadly applied to various fields such as airbags in automotives, bio-medical area, 

and military system. This thesis will focus on MEMS capacitive accelerometer which has 

two fundamental problems: sensing and control.  

MEMS technology gives possibility to integrate complex systems into a small single chip 

with low cost and multiple functions. However, the miniaturized devices also reduce the 

signal to noise ratio (SNR) and the dynamic range (DR), and also increase the system 

uncertainties during the manufacturing process. 
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Inertial MEMS sensors including MEMS accelerometers and gyroscopes occupy more 

than 20% of MEMS markets.  MEMS accelerometers alone have the second largest sales 

volume after pressure sensors. As an acceleration and deceleration sensor, MEMS 

accelerometers have been extensively applied to airbag deployment systems in automobiles 

[1]. 

Fig 1 shows the performance and cost of different MEMS fabrication technologies which 

can be used to manufacture MEMS accelerometers. Capacitive sensing mechanism structure 

is the most popular in MEMS accelerometer. 

.

 

Figure 1: Performance and cost of different MEMS accelerometer [1] 
  

As shown in Fig 1, bulk and surface micromachining technologies are two particular 

methods used in fabricating capacitive sensing accelerometers. Compared to surface micro-

machined accelerometers, the bulk micromachined devices have high sensitivity and low 

noise floor since they have large mass and more sensing capacitors. However, the surface 
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micromachined devices are low cost and easy to be integrated with signal processing circuits 

[2] while low cost and easy implementation are always two desirable features in MEMS. 

Moreover, capacitive sensing mechanism is currently the most popular sensing technology in 

MEMS accelerometer. Compared to other two sensing mechanisms which are piezoresistive 

sensing and tunnel current sensing, capacitive sensing has the advantages of low power 

dissipation, low cost, and low temperature coefficients [1]. Therefore, in this thesis, we will 

construct Kalman filter observer based on surface micro-machined capacitive accelerometers. 

Brownian noise caused by damping effect and electronic noise from CMOS readout 

circuit are two major noise sources in both bulk and surface micromachined capacitive 

accelerometers. Brownian noise is higher in surface micromachined accelerometers than in 

bulk micromachined ones because of the small mass of a surface micro-machined 

accelerometer. Noise floor is the measurement of the signal created by noise sources and 

unwanted signals. We can not detect a signal if its value is under noise floor. The value of 

noise floor normally changes with different frequency and has a unit relates to frequency. 

The Brownian noise in surfaced micro-machined accelerometers has the noise floor 

between10 100 /g rtHzμ− . The noise floor of electronic noise in the surface micromachined 

accelerometer is above 20 /g rtHzμ  and is much more critical than the one in the bulk 

micromachined accelerometers because of the lower capacitance in surface micro-machined 

accelerometers.   

Besides noise, the sensing accuracy of low-cost surface micro-machined accelerometer is 

also limited by the nonlinearities and system uncertainties due to fabrication imperfections. 

Therefore, a feedback controller is essential for surface micro-machined accelerometers to 

compensate for the fabrication imperfections and improve its performance. It can reduce the 
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offsets caused by mechanical imperfections and increase the bandwidth, sensitivity and 

dynamic range of accelerometers. Nevertheless, noise is still a challenging problem to the 

surface micro-machined accelerometers even with a feedback controller. This leads us to use 

Kalman filter to reduce the noise. The Kalman filter will be functioning as an observer in 

feedback control. 

 

1.2 Existing sensing and control solutions for MEMS accelerometers 

 

Three major capacitive sensing accelerometer circuit designs for accelerometers are 

reported in current literature. They are modulation/demodulation voltage sensing [2, 3, 4], 

current sensing [5] and switch capacitor charge sensing [6].  The most popular method is 

switch capacitor read-out circuit sensing, which is also the sensing method used in this thesis. 

The modulation/demodulation voltage sensing is more accurate than the switch capacitor 

charge sensing, but it requires more electronic components such as buffer, amplifier, and 

high speed sampling switch. The modulation/demodulation voltage sensing is expensive and 

makes the fabrication process complicated. The current sensing is noisy as mentioned in [5].  

In addition, two major control methods are applied in capacitive accelerometers. They are 

force-to-rebalance closed-loop control [4, 7] and a compensator inΔΣ  loop control [8, 9, 10, 

11]. Currently, most MEMS products use open-loop control method instead of closed-loop 

control due to their space limit and their low requirements for dynamic range. The 

complication and high cost of closed-loop operation also limit its use. However, compared to 

open-loop control method, closed-loop control is more robust against noise and external 

disturbances. Force-to-rebalance closed-loop control has been applied in Analog Devices’ 
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recent ADXL series MEMS accelerometers. A readout circuit and a ΔΣ  loop with feed-back 

compensator have been introduced in [8], [9], [10] and [11]. The ΔΣ  modulators are also 

called over-sampling Analog to Digital (AD) converters. A digital signal has higher noise 

immunity than that of analog signal. In addition, the digital signal can be easily implemented 

using powerful digital signal process (DSP) algorithm.  

The bulk micro-machined accelerometer in [8] gives a lower noise floor at 3.7 /g rtHzμ , 

because it has a big mass of  and large capacitance at610 kg− Fμ level and also uses ΔΣ  

compensator control. In [12], bulk micro-machining technology shows a more significant 

noise floor at 2200 /g rtHzμ  due to nonlinearities and uncertain parameter effects through 

open-loop control method. The capacitive accelerometer in [9] shows more noise at 

1600 /g rtHzμ  since it uses surface micro-machined process with smaller mass at  and 

capacitance at . All of the accelerometers in [3], [4], [10] and [11] are surface micro-

machined accelerometers with modulation voltage sensing. But they use different control 

methods including open-loop control [3], force-to-rebalance control [4] and  compensator 

[10] [11]. In [11], an advanced sensing method named chopper stabilized voltage modulation 

is used and makes the noise floor at

910 kg−

pF

ΔΣ

4.6 /g rtHzμ . Force-to-rebalance control method in [4] 

gives a 500 /g rtHzμ  noise floor which is larger than open-loop control in [3] at 200 /g rtHzμ  

because of controller post-set which is going to discuss in chapter 3. From above the 

literature review, we can see the more complicated and advanced sensing and control 

methods we use, the smaller noise floor we will obtain.  

Although different fabrication methods (such as surface and bulk micro-machining 

fabrications) could affect the performances of MEMS accelerometers in noise rejection and 

sensitivity, appropriate sensing and control strategy could compensate for the mechanical 
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imperfections and improve the performance of accelerometers. The growing applications of 

control designs have been investigated and used to overcome the noise problems caused by 

low cost surface micromachined fabrication. In this thesis, we will discuss a surface micro-

machined MEMS capacitive accelerometer with switch capacitive sensing and force-to-

rebalance control strategy.  

 

1.3 Proposed control solution in this thesis 

 

Our goal is to reduce the noise in a low-cost surface-micro-machined MEMS accelerometer 

while keeping its good sensing performance through a close-loop control system. Our method is 

to use the Kalman filter as an observer to estimate the states of accelerometer using measured 

outputs, and then instead of feeding back the noised output signal to the input of the MEMS 

accelerometer system, we use the estimated states which have much lower noise influence to 

close the system. This method not only gives a noiseless estimated output, but also improves 

the control performance with noiseless feedback signal. Using this type of technique (i.e. 

Kalman filter), we can improve the performance of low-cost surface-machined MEMS 

accelerometer and replace the costly bulk micromachined accelerometer with it. The Kalman 

filter can be added in a microcontroller or DSP chips which have already been used in 

MEMS accelerometer application.  

 

1.4 Organization 

 

The organization of this thesis is as follows. Chapter 2 presents the surface 

micromachining MEMS capacitive accelerometer which we are going to construct the 
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Kalman filter on. This chapter is going to give description of fabrication process, to establish 

the dynamic modeling, and to conduct frequency-domain analyses. In Chapter 3, a noise 

consideration will be discussed. Electronic noise from the CMOS readout circuit and 

thermal-mechanical Brownian noise caused by damping are reviewed and analyzed. Chapter 

4 presents the design of Kalman filter and its advantages and disadvantages.  Chapter 5 simulates 

Kalman filter on a capacitive accelerometer. It also compares the simulation results of the 

Kalman filter with the ones of other existing solutions.  Chapter 6 makes the concluding 

remarks and suggests future research directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7



CHAPTER II 

MEMS CAPACITIVE ACCELEROMETER 

 

 

In this chapter, the modeling of a typical MEMS accelerometer, including sensing 

principle and electronic readout circuit will be introduced. In addition, the open-loop and 

closed-loop MEMS accelerometers are discussed.  Based upon the modeling of 

accelerometers, stability, measurement performance and frequency response will be 

investigated. 

 

2.1 Surface micromachining process and structure 

 

The process flow of surface micro-machining technology with CMOS circuit fabrication 

is illustrated in Fig 2 [3]. This technology was initially developed by Carnegie Mellon 

University. As shown in Fig. 2, there are two steps after the standard CMOS fabrication 

process. An anisotropic reactive ion etch (RIE) with  is the first step to etch away 

the silicon oxide which is not covered by the metal layer. Then an isotropic RIE with 

is used to remove the underlying silicon layer and release the microstructure.

3 2CHF /O

6 2SF /O
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(a) After CMOS fabrication 

 

(b) After anisotropic RIE 

 

(c) After isotropic RIE 

Figure 2: CMOS-MEMS process flow [3] 

The two dry etching steps make the CMOS-MEMS micromachining not expensive to 

archive. And the integration of mechanical structure and electronics gives more possibility to 

implement sensing and control methods. But thin-film structure limits the device’s 

performance. Small mass not only causes the low sensitivity to the acceleration at the range 
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of1 , but increases the Brown noise. Moreover low capacitance of CMOS circuit also 

causes a large electronics noise. 

/mv g

A prototype of CMOS-MEMS accelerometer is shown in Fig 3. The seismic mass with 

parallel capacitor fingers is connected to the substrate by springs. The acceleration on the 

substrate makes the seismic mass up and down, and consequently changes the capacitance 

between each two fingers. The change of capacitance will be converted into electrical signal 

such as voltage. Each two paralleled capacitor fingers also form an electrostatic actuator that 

can be used to create electrostatic forces for force-to-rebalanced feedback control.   

 

Figure 3: Scanning electron micrographs (SEM) of a CMOS MEMS accelerometer [3] 
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2.2 Dynamic Modeling 

2.2.1 Mechanical sensing principle 

 
Accelerometer is a transducer which transfers the acceleration into an electronic signal 

such as voltage, current and digital stream. We will use Newton’s laws to model MEMS 

accelerometers. The basic mechanical structure of the accelerometer is shown in Fig 4. 

 

Figure 4: Mechanical model of accelerometer [11] 

In Fig. 4, after the acceleration is created along y direction, the mass will move a distance 

x which is a relative displacement between the mass and seismic base. The whole distance 

that the seismic base has moved is y. Symbol z represents the absolute displacement that the 

mass moves. Following Newton’s law, we can obtain: 

( ) ( ) ( ) 0m z t b x t kx t
•• •

+ + =        

( )( ) ( ) ( ) 0m x y t b x t kx t
•• •

− + + =         

( ) ( ) ( ) ( ) ( )m x t b x t kx t m y t ma t
•• • ••

+ + = =     (2-1)                   
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where  is the seismic mass, b is the damping coefficient, k  is the spring constant and  

is acceleration. The transfer function between a(s) and x(s) can be written as: 

m ( )a t

 

2

( ) 1( )
( )

x sH s b ka s s s
m m

= =
+ +

       (2-2) 

We define the natural frequency ωn and damping ratio ζ as 

n

k
mω =

               2
b
km

ζ =
                                       (2-3) 

The device is underdamped when ζ <1, critical damped as ζ =1 and over damped as 

ζ >1. Over damped accelerometer can stabilize the seismic mass. However, large damper 

also intensifies Brownian noise which is caused by damping effect. In this thesis, we will 

consider the under-damped situation, which is very common for the accelerometers in the 

market.  We design the accelerometer to have a resonant frequency ωn which is much larger 

than the expected maximum frequency of the acceleration signal. For a large ωn, and a 

constant acceleration a, the quasi-static response is 2
n

ax
ω

= . Therefore, the sensitivity of the 

accelerometer is given by 

2

( ) 1
( ) n

x s m
a s k ω

= =        (2-4) 
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2.2.2 CMOS readout circuit 

 

MEMS capacitive accelerometers are shown in Fig 5. There are two fixed electrodes and 

a movable seismic mass in an accelerometer. A high frequency sinusoid signal  is added to 

the upper fixed electrode and an inversed same signal  is added to the lower fixed electrode.  

1v

2v

 

Figure 5: Accelerometer capacitor [11] 

As show in Fig. 5,  and  are the variable sensing capacitors formed between the 

fixed electrodes and movable seismic mass, and x is the relative displacement between 

seismic mass and fixed bass. The fundamental readout circuit is shown in Fig. 6. 

1C 2C

Assuming the operational amplifier in Fig. 6 is ideal, we will obtain the output voltage  

(or V

ov

out) as follows. 
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3 2 1 1 2 2

4 2 1 2 3 1

( )
1 1o

sC R v sC v sCv s
sC R sC sC sC R/

+
= −

+ + + +
i                             (2-5) 

Suppose , , and 1 0C C C= + Δ 2 0C C C= −Δ 1v 2v= − , where C0 is the capacitance when the 

movable seismic mass is in the middle of two fixed plates, ΔC is capacitance change caused 

by the movement of seismic mass. Equation (2-5) can be rewritten as 

3 2 1

4 2 1 2 3 1

2( )
1o

sC R v s Cv s
sC R sC sC sC R1/

Δ
= −

+ + + +
i

    (2-6) 

Then assume >> ,3C 1 2C C+ 11/ R –>0 and 4 2sC R >>1 . Equation (2-6) can be simplified as 

0
4

2( ) ( )Cv s v s
C
Δ

= − 1        (2-7) 

 

Figure 6: Readout circuit of capacitor accelerometer [10] 

Based on the parallel-plate capacitor’s formula, we will have: 
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0
1 2 2 2

0

22
( )

r AxC C C
d x
ε ε

Δ = − =
−

       (2-8)   

In (2-8),  is the distance between fixed plate and movable seismic mass when the  

mass is in the middle, 

0d

0ε is electric permittivity of vacuum, rε is relative dielectric constant 

and A is the area of the parallel plate. Then (2-7) can be written as: 

0
0 2 2

4 0

2( ) ( )
( )

r Axv s v s
C d x 1

ε ε
= −

−
      (2-9) 

If assume d0 >> x the output voltage  will have a linear relationship with the 

displacement x. The relationship can be represented by 

0v

0 1
0 2

4 0

2 (( ) r )Av sv s x
C d

ε ε
= −       (2-10) 

 

2.2.3 Electrostatic actuator 

 

As mentioned before, two high frequency sinusoid signals are added on the both sides of 

fixed electrodes. Then two electrostatic forces will be produced on the seismic mass.  From 

Fig 5, the two electrostatic forces  and  have same magnitudes and opposite directions 

as the seismic mass is in the middle. If the seismic mass is not in the middle, the electrostatic 

forces will have influence on the seismic mass. The electrostatic force between two parallel 

plates is shown in the equation below: 

1elF 2elF

20
22
r

v
AEF v

d d
ε ε−∂

= = ⋅
∂        (2-11) 
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where 0ε  is electric permittivity of vacuum, rε is relative dielectric constant, A  is the area of 

the parallel plate and d is distance between the two plates. Since 1 2 1 sinv v V tω= − = , we can 

obtain the total electrostatic force of the MEMS accelerometer capacitor structure in (2-12). 

2
0 1

1 2 2 2
0 0

( sin ) 1 1(
2 ( ) (

r
el el el

A V tF F F
d x d x

ε ε ω
= − = −

− +
)

)
  (2-12) 

In (2-12),  is the distance when the seismic mass is in the middle. From equation (2-

12), the electrostatic force  must have the same direction as the displacement x, so it is 

always a positive feedback. The positive feedback not only has the potential to make the 

system unstable but also cause a big displacement of seismic mass. The big displacement of 

seismic mass could make the mass touch the top or bottom plate, causing the failure of 

operation of the accelerometer. 

0d

elF

 

2.2.4 Open loop capacitive accelerometer 

 

Now we can create an open loop model in Fig 7 by using all the information we get 

above.  
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Figure 7: Open-loop capacitive accelerometer system 

In Fig. 7, function x V→  is based on the equation (2-10) and describes the relationship 

between the output voltage and displacement x. Function  is based on equation (2-12) and 

describes the positive feedback electrostatic force. The saturation is used to limit the maxim 

movement of the seismic mass. The value is equal to pull-in distance between fixed plate and 

movable seismic mass. 

elF

For small deflections which are caused by small acceleration and are smaller than 310−  

times of , a constant damping coefficient can be assumed as:  0d

3
( / )

2

2 W L

o

E W L
b

d
μ

=
                                 (2-13) 

where μ  is the viscosity coefficient of air, W  and L  are length and width of the seismic 

mass and  is a function of the aspect ratio of the seismic mass for( / )W LE W L= , and 

=0.42. For large deflections caused by large acceleration which is bigger than ( / )W LE 310−  

 17



times of , the damping coefficient b  becomes a function of the deflection. Its 

mathematical expression can be represented by 

0d

 
2

3 3

1

o x+
1 1( ) ( )
2 ( ) ( )o

b x A
d x d

μ= −
−                 (2-14) 

 All the mechanical and electronic parameters are listed in Table I [3]. 

Table I: Mechanical and electronic parameters 

Area of seismic mass, A  1200 1550 mμ×  
viscosity of air, μ  51.78  10  /( )kg m s−× ×  
Seismic Mass,  m 93.8 10 kg−×  
Gap,  0d 2.3 mμ  
Operation signal voltage,  1V 0.6volt   
Operation signal frequency, f  1MHz  
Spring coefficient,  k 13Nm−  
Damping coefficient, b  47 10 kgs 1− −× (small deflection) 
Relative dielectric constant, rε  4  
Capacitor,  4C 20 pF  
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Assume d0 >> x, the Bode diagram of the open-loop capacitive accelerometer is shown in 

Fig. 8. 

 

Figure 8: Frequency response of open loop capacitive accelerometer 

From Fig. 8, we can see that the open-loop accelerometer has an over-damped 

performance and works as a low pass filter. In case of a low pass filter, the bandwidth is 

equal to its upper cutoff frequency at around 500  or 80Hz. Fig. 8 also shows that 

the gain margin is close to infinity proving the open loop system is stable. The magnit

/radius s

ude 

response has -50dB at maxim which is corresponding to about 10-7 meters of seismic mass’s 

displacement with 10g accelerator. The relatively big value of x (which is not much smaller 

than ) makes the MEMS accelerometer system nonlinear. Also large displacement limits 0d
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the DR of high acceleration measurement. In addition the electrostatic force produces a 

positive feedback which can introduce instability to the accelerometer system. 

 

 

2.2.5 Force-to-rebalance closed-loop MEMS accelerometer 

 

The open-loop capacitive accelerometer design limits the bandwidth, linearity, stability 

and DR.  Therefore a closed-loop design is needed for the accelerometer. However, the 

electrostatic force gives a positive feedback.  How to get a negative feedback to obtain a 

close-loop control is the key part for controller design. A common method is adding an extra 

negative electrostatic force to the original open-loop system to form a negative feedback. In 

Fig 5, a pair of bias voltages VB and –VB BB are added to the fixed beam. These bias voltages 

combine with the feedback voltage  and the driving voltages vFv 1 and v2 to create new 

electrostatic force Fel’ which is represented as follows: 

2 2
0 1 1

1 2 2 2
0 0

( sin ) ( sin )' ' ' (
2 ( ) ( )

r B F B F
el el el

A V t V v V t V vF F F
d x d x

ε ε ω ω− + − + +
= − = −

− +
)  (2-15) 

Neglecting the high frequency parts and assume d0 >> x, we get: 

2 2 2
21

0 0

0 4
0

( )
2' 2
B F

B F

el r

V V vd x V d v
F A

d
ε ε

+ +
−

=     (2-16) 

Assuming the seismic mass is almost at the middle position, we can reduce (2-16) to: 

0 2
0

' 2 B F
el r

V vF A
d

ε ε= −        (2-17) 
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In equation (2-17), we can see there is a linear relationship between electrostatic force 

 and feedback voltage  . The bias voltage  is selected based on the dynamic range of 

the accelerometer. We assume the dynamic range is 10g. Then the bias voltage  can be 

obtained by follow equation: 

'elF Fv BV

BV

2
0

0
B

r

madV
Aε ε

=
                                    (2-18) 

The negative feed back force '  gives the possibility to compensate the seismic mass’ 

displacement x which is created by input acceleration and push the seismic mass back to the 

initial balanced middle position (x =0). This is why we name it force-to-rebalance closed-

loop control.  

elF

Fig. 9 shows the force-to-rebalance closed-loop system with a proportional-integral (PI) 

controller. 

 

Figure 9: Closed-loop system model with a PI controller 
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In Fig. 9, PI controller is used to control the voltage which is added on the fixed 

electrodes to create the feedback force.  To analyze the frequency response of the closed-

loop accelerometer system, a Bode diagram was produced as shown in Fig. 10. The 

parameters of PI controller are chosen as Kp =10, =1, where KKi p represents the 

proportional gain, and Ki represents the integral gain for a PI controller.  

 

Figure 10: Frequency response of closed-loop capacitive accelerometer 

From Fig 10, the bandwidth of the system is increased from 80 Hz for (open-loop system) 

to 80 KHz as expected. As an accelerometer, large bandwidth can track acceleration with 

large frequency range. The bandwidth up to 80 KHz would be sufficient for the performance 

of recent accelerometers. However, the large bandwidth could also be easily influenced by 
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noise. In Fig. 10, the magnitude for the closed-loop system is lower than the one for open-

loop system. The low magnitude makes the displacement of seismic mass smaller and it also 

makes the system more linear. In addition, the lower magnitude leads to high system 

sensitivity which is about and increases the DR of the system. However, the high 

sensitivity also easily increases the SNR of the system.    

1 /mV g

 

2.3 Summary of this chapter 

 

In this chapter, the modeling of a typical surface micromachining accelerometer, 

including sensing principle and electronic readout circuit is introduced. With this modeling 

open-loop and force-to-re-balance closed-loop MEMS accelerometers are discussed. Based 

upon the frequency response, the closed-loop system shows a larger bandwidth, more 

linearity, more DR and more stability than the open-loop system. 

. 
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CHAPTER III 

NOISE CONSIDERATION 

 

 

Brownian noise and electronic noise are two main causes that degrade the performance of 

MEMS accelerometers. The complete analyses of these noises are conducted to successfully 

design a more reliable MEMS accelerometer with better sensitivity and large SNR [13]. In 

this chapter, we will study the Brownian and electronic noises and their effects on the MEMS 

accelerometer. 

 

3.1 Brown noise and electronic noise 

3.1.1 Brown noise 

 

Brownian noise is thermal-mechanical noise. It creates a random force with Brownian 

motion of air molecules caused by damping and is directly applied to seismic mass. The 

power spectral density (PSD) of the Brownian noise force is shown in (3-1): 

2 ( ) 4BF f k Tb= B        (3-1) 
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In (3-1),  is the Brownian noise force, is Boltzman constant, T is absolute 

temperature and b  is damping coefficient. From (3-1), the bigger the damping coefficient is, 

the more the Brownian noise we have. To reduce the Brownian noise, small damping 

coefficient is anticipated. However, small damping coefficient causes small damping ratio 

that makes the MEMS accelerometer work at under-damped condition. The under-damped 

condition could make the mass in accelerometer oscillate. Equation (3-1) also shows the 

Brownian noise is a white noise which has a zero mean and 

BF Bk

2
BF  variance.   

The accelerometer’s noise performance is determined by acceleration-referred noise floor. 

Brownian noise could produce the following acceleration from Newton’s law.  

2
2

2 2 2

4
( ) /BB

B

k TbFa f g Hz
m g m

= = 2      (3-2) 

The thermal-mechanical Brownian noise floor is between 10 ~ 100 /g rtHzμ .This noise 

affects the process of system. So we consider it as process noise. 

 

3.1.2 Electronic noise 

 

In Fig 6, the readout circuit of capacitive accelerometer can be divided into two parts: 

capacitive sensor part and interface circuit part. From (3-3), capacitive sensor part has high 

impedance about  when operating frequency f is 1710 Ω MHz . The symbol Z is the 

impedance of the sensor part, C is the sensing capacitance formed between the fixed 

electrodes and the movable seismic mass. To match this high impedance output, a high-

impedance input MOSFET is used in interface circuit. 
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1
2

Z
fCπ

=         (3-3) 

Fig 11 shows three major electronic current noises in a MOSFET: input MOSFET 

thermal noise, input MOSFET flicker noise and diode leakage noise.  The capacitor   is the 

parasitic capacitor, and 

pC

gdC  and gsC  are gate-to-drain and gate-to-source capacitors.  

 

Figure 11: Thermal, flicker and leak current noises of MOSFET [12] 

Assuming long transistor channel, the PSD of three noises are given by the following 

equations [12]: 

2 ( ) 4 4 2 ( / )ntherm B m B n ox Di f k Tg k T C W L Iγ γ μ= =    (3-4) 

2
ker 2( ) f D

nflic
ox

K I
i f

C L f
=        (3-5) 

2 ( ) 2nleak leaki f qI=        (3-6) 

In (3-4), (3-5) and (3-6), 2 ( )nthermi f ,  2
ker ( )nflici f  and 2 ( )nleaki f  are MOSFET thermal noise, 

MOSFET flicker noise and diode leakage noise in term of current, γ  is the thermal noise 

coefficient,  is transconductance, mg nμ  is carrier mobility, is the gate capacitance per oxC
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unit area, W  and L are the MOSFET channel width and length, DI  is the bias current, fK is 

flicker noise coefficient, f  is the circuit operating frequency, q  is the electron charge, and 

leakI  is the diode leakage current. 

Then we can get the electronic noises in terms of voltage 2 ( )nthermv f , 2
ker ( )nflicv f  and 

2 ( )fnleakv  as follows. 

 2 2 2 4 4( ) /
2 ( / )

B B
ntherm ntherm m

m n ox D

k T k Tv f i g
g C W L I
γ γ

μ
= = =    (3-7) 

2 2 2
ker ker 2 2 2( ) /

2
f D f

nflic nflic m
ox m n ox

K I K
v f i g

C L fg C WLfμ
= = =    (3-8) 

2
2

2( )
(2 ) (2 )

nleak leak
nleak

total total

i qIv f
C f C fπ π

= = 2     (3-9) 

In (3-9), Ctotal is the total capacitance of the whole readout circuit including the sensor 

part and interface circuit. For the capacitive MEMS accelerometer which detects the signal 

by using capacitive dividers, the parasitic capacitor  can degrade sensitivity. To reduce the 

effects of parasitic capacitors, small-size MOSFET is anticipated. However, from (3-7), (3-8) 

and (3-9), all of the three electronic noises are inversely proportional to the capacitances and 

the size of the MOSFET. The PSD of the total output noise voltage is 

pC

2 2 2 2
ker

2 2

( ) ( ) ( )

4
2 (22 ( / )

n ntherm nflic nleak

f leakB

n ox totaln ox D

v v f v f v f

K qIk T
C WLf C fC W L I

γ
μ πμ

= + +

= + +
)

  (3-10) 

 We can get the open-loop voltage-referred electronic noise floor as shown in Fig 12. 
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Figure 12: Voltage -referred electronic noise floor versus frequency 

With a constant circuit’s operating frequency, the noise voltage can be determined as a 

random noise with zero mean and variance of 2
nv .  Combining (3-10), (2-7) and (2-12), we 

can also get the acceleration-referred electronic noise around 20 /g rtHzμ . As the circuit’s 

operation frequency is 1 MHz, the acceleration-referred electronic noise is 0.  which is 

close to . Since this acceleration-referred electronic noise affects the measurement 

result of accelerometer system, we will consider it as measurement noise.     

02g

20.2 /m s
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3.2 Noise performance in open-loop and closed-loop system 

 

Based on the information from section 3.1, we can get the closed-loop model shown 

in Fig. 13.  

 

Figure 13: Closed-loop accelerometer model with Brownian and electronic noises 

As shown in Fig. 13, the Brownian noise FB is added to the system as a random force and 

the electronic noise V

B

+

N is added to the system output as a random voltage. As we discussed in 

chapter 2, for a real MEMS accelerometer, the PI controller can not control force error 

directly. However, voltage signal can be measured and used as feedback signal to create 

electrostatic force . PI controller in Fig. 13 is used to control the feedback voltage signal. 

The output equation of the closed-loop system can be obtained through following equation 

development. 

'elF

( ) [( ( ) ( )) ( ) ] ( )B NV s ma F H s V s M s V G s= + − +  

(1 ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( )B NH s M s G s V s mM s G s a F M s G s V G s+ = +  

( )( ) ( )( ) ( )( )
1 ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

NB V G sF M s G sM s G s maV s
H s M s G s H s M s G s H s M s G s

= + +
+ + +

  (3-11) 
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In (3-11), the output  has three inputs: acceleration , Brownian noise  and 

electronic noise . Then we can get the SNR (B) between Brownian noise and acceleration 

and SNR (E) between electronic noise and acceleration. They are given by (3-12) and (3-13). 

( )V s a BF

NV

( ) ( )
1 ( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) ( )

B B

M s G s ma
maH s M s G sSNR B F M s G s F

H s M s G s

+=

+

=      (3-12) 

( ) ( )
( )1 ( ) ( ) ( )( ) ( )

1 ( ) ( ) ( )
N N

M s G s ma
M s maH s M s G sSNR E V G s V

H s M s G s

+= =

+

    (3-13) 

Based on the open-loop system model in Fig 7, we get a new open-loop model with 

Brownian and electronic noises as shown in Fig14. In Fig. 14, V1 is output signal of 

accelerometer before measurement noise is added.   

 

Figure 14: Open-loop model with Brownian and electronic noises 
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The output equation of the open-loop system can be obtained from equation (3-14) and 

(3-15).  

1( ) ( ( ) 1( )) ( )
( ) ( ) ( ) ( ) 1( )
( ) ( )
1 ( ) ( )

B

B

B

V s ma F H s V s M s
M s ma M s F M s H s V s
M s ma M s F

M s H s

= + +
= + +

+
=

−

    (3-14) 

( ) 1( )
( )( )

1 ( ) ( ) 1 ( ) ( )

N

B
N

V s V s V
M s FM s ma V

M s H s M s H s

= +

= +
− −

+
     (3-15) 

Then, same as the closed-loop system, we can get the SNR (B) between Brownian noise 

and acceleration and SNR (E) between electronic noise and acceleration. They are given by 

(3-16) and (3-17) 

( )( )
( ) B B

M s ma maSNR B
M s F F

= =        (3-16) 

( )( )
(1 ( ) ( )) N

M s maSNR E
M s H s V

=
−

       (3-17) 

 

Comparing (3-16) with (3-12), (3-17) with (3-13) (the equations about SNR), we can see 

that the SNRs for Brownian noise are same for both open-loop and closed-loop systems. In 

(3-17), the term1 ( ) ( )M s H s−  is always smaller than 1. So the SNR (E) of open-loop system 

is larger than that of closed-loop system. The noise performance is worse in force-to-

rebalance closed-loop feedback control with PI controller than the one for open-loop system.. 
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3.3 Summary of this chapter 

 

In this chapter, we analyzed two major noise sources that are thermal-mechanical and 

electronic noises. The thermal-mechanical noise which we considered as a process noise is 

between 10 ~ 100 /g rtHzμ  and the electronic noise which we considered as a measurement 

noise is above 20 /g rtHzμ  while the electronic circuit is operating at the frequency of1MHz .  

In addition, we found that the SNR for electronic noise is worse in the closed-loop MEMS 

accelerometer system than the one in open-loop configuration. In order to reduce the 

influence of noise, a new sensing and control method has to be found to replace the 

traditional PI controller and to improve the SNR in closed-loop accelerometer system. 
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CHAPTER IV 

KALMAN FILTER AS OBSERVER 

 

 

This chapter discusses the design of a Kalman filter for MEMS accelerometers. We start 

our discussion with a quick review of what is an observer and what is a Kalman filter 

observer. Then we will prove the properties of Kalman filter and give a basic concept of 

discrete time Kalman filter. Finally we will give a quick overview of hybrid extended 

Kalman filter which we can use to perform a noiseless MEMS accelerometer.   

 

4.1 Observer 

 

Estimation of immeasurable state variables is called observation. A device that observes 

the states is called state-observer or just observer [14]. Open-loop and Closed-loop observers 

are two basic types of observers. In this thesis, we will use closed-loop observer which can 

drive the estimated states to the actual states if the observer parameters are properly designed. 

Closed-loop observers can improve the robustness of a system against parameter 

uncertainties and noise. Filter can estimate useful information from noise measurements. In 
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frequency-domain, filtering is used to separate the frequency response of useful signal 

from that of noise. The Kalman filter (KF) is a special type of observer based on the 

knowledge of statistics for both process and measurement noise.  

There are two types of commonly used observers, Luenberger and Kalman observers. 

Luenberger observer is based upon the fact that the system is deterministic. Kalman Filter is 

stochastic type. The basic Kalman filter is only applied to linear stochastic systems while 

extended Kalman filter (EKF) can be used on non-linear systems. For continuous-time non-

linear systems with discrete-time measurements, a hybrid EKF will be employed.    

We can describe a linear time-invariant system in the following state equation (4-1): 

( )  ( )  ( )
( )  ( )

x t Ax t Bu
y t Cx t

•

= +
=

t       (4-1) 

In (4-1), matrices A, B, and C represent state matrix, input matrix, and output matrix 

respectively. If this system is observable, state estimation ( )x t
∧

 can be obtained based on the 

input  and output with the knowledge of( )u t ( )y t A , B  and . A feedback based on the 

difference between the plant output and observer output is added to the input of observer. 

The observer equation given by: 

C

( ) ( ) ( ) ( ( ) - ( ))

( ) ( )

x t Ax t Bu t L y t y t

y t C x t

•

= + +

=

      

  

� � �

� �
    (4-2)  

Define the estimation error as �( ) ( ) ( )e t x t x t= − . Then we will have 

( ) ( - ) ( )e t A LC e t
•

=        (4-3) 

In (4-3), if L  can be designed (via pole placement method) to make the above equation 

stable, estimation error  will converge to zero no matter what the initial condition of x(t) ( )e t
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is. Equation (4.2) is a basic Luenberger observer which is applicable to linear, time-invariant 

deterministic systems.  

 

4.2 Kalman Filter 

4.2.1 Introduction 

 

With the development of digital computing, Kalman filters have been introduced to 

academic research and industrial application in many fields. Success in the areas of 

aeronautics and aerospace engineering in 1960’s made the Kalman filter popular [15]. The 

Kalman Filter is a recursive solution for the linear filtering problem which is estimating the 

states of a linear system from output measurements linearly related to estimating states but 

influenced by Gaussian white noise. Kalman Filter is an optimal estimator according to a 

quadratic function of the estimation errors between real states and observed states.         

Mathematically, Kalman Filter is a set of equations which give a combination of 

recursive least square method [15] and propagation of states and covariance. There are two 

different noise sources that are process noise and measurement noise. Recursive lease square 

method deals with the measurement noise and propagation of states and covariance, and 

hence reduce the effect of process noise. The performance of Kalman Filter is excellent in 

several aspects. It can give estimation of the past, the current and the future states even 

without knowing the precise value of the parameters of the modeled system. When applied to 

a physical system, Kalman Filter works as an extremely effective method which uses noisy 

sensor outputs to estimate uncertain dynamic system states.  
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4.2.2 Property of Kalman Filter 

 

Consider a Linear Time Invariant (LTI) system in following equation: 

( )  ( )  ( )  ( )
( )  ( )  ( )

x t Ax t Bu t w
y t Cx t v t

•

= + +
= +

t      (4-4) 

where  is process noise and  is measurement noise. There are three following 

assumptions that need to be made before we design the Kalman filter.  

( )w t ( )v t

(1) ( , )A C is observable.  

(2) and   are independent white noises, their expect value , their 

autocorrelation 

( )w t ( )v t [ ( )] [ ( )] 0E v t E w t= =

[ ( ) ( )] ( )TE w t w Q tτ δ τ= −  and [ ( ) ( )] ( )TE v t v R tτ δ τ= − are positive 

semidefined. That means and0TQ Q= ≥ 0TR R= ≥ . 

(3) ( )1
2,A Q is stable. 

Same as our discussion of the Luenberger observer before, Kalman filter is used to design 

a state observer to estimate the state ( )x t  by �( )x t , such that the cost function (given by (4-

5))  is minimized.  

eJ

� �[( ( ) ( ) ( ( ) ( ))]T
eJ E x t x t x t x t= − −      (4-5) 

The dynamic equation of steady state Kalman Filter is as follow: 

� � �

� �
( - )kx Ax Bu K y y

y C x

•

= + +

=
      (4-6) 

In equation (4-6), is Kalman gain which is given as: kK

1T
k eK P C R−=         (4-7) 
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where  is the positive definite solution of Riccati equation: eP

       (4-8) 1 0T T
e e e eP A AP PC R CP Q−+ − + =

If initial state �(0)x  is given and �e x x= − , Kalman filter has two major properties [16]: 

(1) �lim [ ( )] lim [ ( ) ( )] 0
t t

E e t E x t x t
→∞ →∞

= − =

eP

�) - ]

     (4-9) 

(2)       (4-10) lim lim [ ( ) ( )]T
et t

J E e t e t trace
→∞ →∞

= =

The proof of the properties of Kalman Filter is given as follows. Recall (4-4) and (4-6), 

we can get 

� �

�
- ( ) - - - [ (

( - )( - ) ( ) - ( )
( )

( - ) [ - ]
( )

k

k k

k k

e x x Ax Bu w t Ax Bu K Cx w t Cx

A K C x x w t K v t
w t

A K C e I K
v t

•• •

= = + + +

= +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

  (4-11) 

Here we define kA K C A− =  and
( )

[ ]
( )k

w t
( )I K

v t
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

d t , then we get 

( )e Ae d t
•

= +         (4-12) 

( )

0

( ) (0) ( )
t

At A te t e e e d dτ τ τ−= ⋅ + ⋅∫      (4-13) 

Then the covariance of estimation error  is obtained by ( )P t
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( )

0

( )

0

( )

0

( )

0

( ) ( )

0 0

( ) [ ( ) ( )] [( (0) ( ) ) ( (0)

( ) ) ]

[ (0) (0)] [ ( ) (0)]

[ (0) ( )]

[ ( ) ( )]

T

T

T

t
T At A t At

t
A t T

t
At T A t A t T A t

t
At T A t

t t
A t T A t

P t E e t e t E e e e d d e e

e d d

e E e e e e E d e e d

e E e d t e d

e d E d d e d

τ

τ

τ

τ

τ σ

τ τ

τ τ

τ

τ

τ τ σ σ

−

−

−

−

− −

= = ⋅ + ⋅ ⋅

+ ⋅

= +

+ ⋅

+ ⋅

∫

∫

∫

∫

∫ ∫

T

τ

⋅

⋅

=

 (4-14) 

Assume the initial error and are independent of each other. Then 

.  Recall (4-7) and (4-8), we can get: 

(0)e ( )d t

[ (0) ( )] 0TE e d t =

1 1 1 0

( ) ( ) 0

T T T T
e e e e e e e e

T T T T
e k k e k k

P A PC R CP AP PC R CP PC R CP Q

P A C K A K C P K RK Q

− − −− + − + +

− + − + + =
 (4-15) 

As we defined before, kA K C A− = . Then (4-15) is rewritten as 

T T
e e k kP A A P K RK Q+ = − − = ∇      (4-16) 

In (4-16), ∇  is obtained from the autocorrelation of : ( )d t

[ ( ) ( )] [ ( ) ( )]
[ ( ) ( )] [ ]

[ ( ) ( )] [ ( ) ( )]

( ) 0
[ ]

0 ( )

( ) ( )
( )

k

k

T T
T

k TT T

k T

T
k k

IE w t w E w t v
E d t d I K

KE v t w E v t v

IQ t
I K

KR t

Q K R K t
t

τ τ
τ

τ τ

δ τ
δ τ

δ τ
δ τ

⎡ ⎤⎛ ⎞
= − ⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤−⎛ ⎞
= − ⎢ ⎥⎜ ⎟ −− ⎢ ⎥⎝ ⎠ ⎣ ⎦
= + −
= ∇ −

 (4-17) 

Since , we will have0TQ Q= ≥ 0T
k kQ K RK∇ = + ≥ .  Assuming  ( )1

2,A Q  is stabilizable, 

the matrix kA A K C= −  will be asymptotically stable. As t , we get →∞ 0Ate → . Recall the 

(4-13), we can get first property (4-9) approved. Now (4-14) can be transformed to: 
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( ) ( )

0 0

( ) ( )

0

0

( ) [ ( ) ( )]
T

T

T

t
A t T A t

A t A t

A A

P e d E d d e

e d e d

e d e d

τ σ

τ τ

π π

dτ τ σ

τ τ

τ π

∞
− −

∞
− −

∞

∞ = ⋅

= ∇ ⋅

= ∇ ⋅

∫ ∫

∫

∫

σ

P

   (4-18) 

Then we need to prove  which is the solution of Kalman filter Riccati equation (4-

8). Assume 

( ) eP ∞ =

T
z A z
•

=  and initial condition  is given, we get (0)z ( ) (0)Atz t e z=  and ( ) 0z ∞ = .  

Now in view of equation (4-16), we have: 

-

[ ] -
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T T
e
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z P A A P z z z

z P z z P z z z
d z P z z z
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••

+ = ∇

+ =

+ = ∇

= ∇

∇
      (4-19) 

Next, we integrated both sides of (4-19) to obtain: 

0 0

0

(0) (0)

(0)[ ] (0)

(0) ( ) (0)

T

T

T T A t At

T A t At

T

z z dt z e e z dt

z e e dt z

z P z

∞ ∞

∞

− ∇ = ∇

= ∇

= ∞

∫ ∫

∫      (4-20) 

0
0

( ) ( ) ( ) |

(0) (0)

T T
e e

T
e

d z P z dt z t P z t
dt

z P z

∞
∞=

=

∫       (4-21) 

Thus, from (4-20) and (4-21) we can get:   

          (4-22) ( ) eP ∞ = P

Now recall the (4-18), we can proof the second property (4-10). 
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Finally we approve the properties of Kalman filter shown in equations (4-9) and (4-10).  

Kalman filter can be used to design a state observer to estimate the state ( )x t  by �( )x t , such 

that the estimation error  as t and the cost function  is minimized [16]. 0e → →∞ eJ

 

4.2.3 Discrete Time Kalman Filter 

 

We can use Kalman Filter to estimate the state ( )
n

kx R∈  of a discrete-time system as well. 

A discrete-time system is described in following equation: 

( 1) ( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( )

k k k k k

k k k k

)kx F x G u w

y H x v
+ = + +

= +
     (4-23) 

where  is the process noise and  is the measurement noise.  and  are white, 

zero-mean, uncorrelated white noise with covariance  and 

( )kw ( )kv ( )kw ( )kv

kQ kR  respectively. Matrix  

gives the relationship of the states from step time kT (T is sampling time and T=

( )kF

1k kt t −− ) to 

step time (k+1)T. Matrix  relates the control input u to state x. Matrix ( )kG ( )kH  relates state 

to measurement .Matrices ,  and ( )ky ( )kF ( )kG ( )kH  are discretized from continuous dynamic 

system matrices A ,  B  and C  in equation (4-1).  The mathematical expressions for F(k), G(k), 

and H(k) are given in (4-24). The mathematical expressions for ωk and vk and their covariance 

are given by (4-25). 

                   1

( )

( )
( )

( )

( )k

k

AT
k

t A t
k t

k

F e

G e Bu

H C

τ dτ τ− −

=

=

=

∫               (4-24) 
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~ (0, )
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δ
−

−

=

=

=

      (4-25) 

A posteriori state estimation is represented by � kx
+
. A priori state estimation is represented 

by � kx
−
.   We defined  as the covariance of the state estimation error of 

k
P− �

kx
−
 and 

k
P+  as the 

covariance of the state estimation error of � kx
+
. Then we will have 

� �

� �
[( )( ) ]

[( )( ) ]

T
k kk k k

T
k kk k k

P E x x x x

P E x x x x

− −−

+ ++

= − −

= − −
      (4-26) 

Kalman filter algorithm can be described as a recursive feedback loop between time 

update equations and measurement update equations. As shown in Fig 15, the time update 

equations produce a priori estimate for the state in next time step from the current state and 

error covariance. The measurement update equations add a new measurement to the priori 

estimate of the next step to obtain a corrected posterior estimate.  

 

�
1kx

−
−

�
1kx

+
−

1kP+
−

1k −  k time 

1kP−
−  

�
kx
−

kP+

�
kx
+

1kP−
−

time update 

measurement 
update 

Figure 15: On-going timeline of a priori and a posteriori state and covariance estimation 
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The equations of discrete-time Kalman filter algorithm are as follows. 

The initialized state and covariance are 

�

� �
0 0

0 00 0 0

( )

[( )( ) ]T

x E x

P E x x x x

+

+ ++

=

= − −
      (4-27) 

The time updates equations are 

� �
11 1k kk k 1kx F x G u

− +
−− −= + −

1

      (4-28) 

1 1 1 1
T

k k k k kP F P F Q− +
− − − −= +       (4-29) 

The measurement updates equations are 

1( )T T T
k k k k k k k k k kK P H H P H R P H R− − − += + = −     (4-30) 

� � �(k k k kk k )x x K y H x
+ − −
= + −       (4-31) 

( ) ( ) ( )T T
k k k k k k k k k k kP I K H P I K H K R K I K H P+ −= − − + = − T

k
−  (4-32) 

From the above equations we can see that after the time and measurement updated at 

each time step, the recursive algorithm keeps using the previous posterior estimate to predict 

the new priori estimate. Because Kalman filter only uses the previous state to predict the 

current states, it is much easier and flexible to make a real-world implementation of it. From 

equations (4-29), (4-30) and (4-32), we found the calculation of error covariance  and 

Kalman gain  is not based on the measurements

kP

kK ky . It only depends on the dynamic 

system parameters  and  and tuning noise covariance  and kF kG kQ kR  ( and kQ kR  are the 

tuning parameters of Kalman filter which we will discuss later). This fact makes Kalman 

filter more feasible, because all the error covariance and gains of Kalman filter can be 

calculated. The operating process of standard Kalman Filter is shown in Fig 16. 
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Time Update 

Measurement Update 

Initial estimate  
0x  and 0P  

1. Computer the Kalman Gain 
1( )T T

k k k k k k kK P H H P H R− − −= +  
2. Update state estimate with 

measurement yk 

� � �( )k k k kk kx x K y H x
+ − −
= + −  

3. Update the error covariance 
( )T

k k k kP I K H P+ −= −  

1. Compute the priori state  
� �

11 1 1k kk k kx F x G u
− +

−− − −= +  
2. Computer the priori 

error covariance 
1 1 1 1

T
k k k k kP F P F Q− +

− − − −= +

Figure 16: Standard Kalman Filter [15] 

 

4.2.4 Tuning 

 

Tuning is the process of optimizing the parameters of Kalman filters.  To achieve a good 

performance for Kalman filter, tuning the process noise  (or mechanical thermal noise) 

and the measurement noise covariance 

kQ

kR  (or electronic noise) are required. For the 

measurement noise, it is possible to determine the range of  kR  by taking some sample 

measurements. However,  is usually difficult to measure.  kQ

The process noise source normally represents the uncertainty of the dynamic system and 

we can not directly observe the process. That is the reason why we need observer. Choosing 
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an appropriate  including uncertainty can make the system more reliable. But the larger 

the  is chosen, the worse estimated model we will have.  

kQ

kQ

 

4.2.5 Extended Kalman Filter (EFK) 

 

The standard discrete-time Kalman filter gives the state estimation of a LTI system. In 

the real-world, there is almost no absolutely linear dynamic system or sensors. Therefore the 

EKF is introduced to estimate the states of non-linear dynamic systems. We can use Taylor 

series to expand the non-linear equations around a nominal point which includes the nominal 

control , state0u 0x , output 0y  and noise  and . After linearization, we will employ 

Kalman filter to estimate the linearized state. Then we use this priori estimation as the new 

linearized nominal point on the next time step and implement Kalman filter theory again to 

estimate the new linearized model. This makes the EKF a recursive optimum state-observer 

that can be used for the state and parameter estimation of a non-linear dynamic system in real 

time. We can derive the discrete-time EKF algorithm as follows. 

0w 0v

Suppose we have a non-linear discrete-time system model: 

1 1 1 1( , ,k k k k kx f x u w− − − −= )

)

k

      (4-33) 

,(k k k ky h x v=         (4-34) 

~ (0, )
~ (0, )

k

k k

w Q
v R

        (4-35) 

where the process noise   and measurement noise  are assumed to be zero-mean, white 

and uncorrelated noises. We can use Taylor series expansion on (4-33) to get Jacobian matrix 

, which is the partial derivatives of function 

1kw − kv

F (.)f  with respect to state x , and Jacobian 
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matrix L , which is the partial derivatives of function (.)f  with respect to process noise w  

around the nominal state �
11 kkx x

+
−− =  and 1 0kw − = . Then we get: 

�
�

�
�

� �
1 1

1 1
1 11 1 1

1 11 1 1 1 1 1 1

1 11 1

( , ,0) ( )

[ ( , ,0) ]

k k

k k
k kk k k k k

x x

k kk k k k k k k

k kk k

f f
1x f x u x x w

x w

F x f x u F x L w

F x u w

+ +
− −

+ +
− −

− −− − −

+ +
− −− − − − − − −

− −− −

∂ ∂
= + − +

∂ ∂

= + − +

= + +
∼ ∼

−

  (4-36) 
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−
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−

−
−

−
−

∂
=

∂

∂
=

∂

       (4-37) 

In (4-36), we defined the � �
11 1 1( , ,0)kk k k 1kf x u F x

+ +
− −− − −−  as known control signal � 1ku −  and 

 as the noise signal . We can do the same thing on measurement equation (4-34) 

to get Jacobian matrices 

1k kL w− −1 1kw −

∼

H  and M which are the partial derivatives of function  with 

respect to 

(.)h

x  and  around the nominal point v �
kkx x
−

=  and 0kv = . Then we get: 

� �
�

� �

( ,0) ( )

[ ( ,0) ]

k

k
k kk k k k

x

k kk k k k k k

kk k k

hy h x x x v
v

H x h x H x M v

H x z v

−

− −

− −

∂
= + − +

∂

= + − +

= + + �
    (4-38) 

�

�

k

k

k
k

x

k
k

x

hH
x

hM
v

−

−

∂
=
∂

∂
=
∂

        (4-39) 

In (4-38), the measurement equation is defined based on the known signal 

� �( ,0)kk k k kz h x H x
−

= −
−
 and measurement noise . Combining (4-36) with (4-38), we k k kv M v=�
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get a linear dynamic system at each time step. Standard discrete-time Kalman filter algorithm 

can be applied to estimate the state. The equations of discrete-time Kalman filter algorithm 

are as follows. 

The initialized state and covariance: 

�

� �
0 0

0 00 0 0

( )

[( )( ) ]T

x E x

P E x x x x

+

+ ++

=

= − −
      (4-40) 

Computing the partial derivative matrices of dynamic equation yields 
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�
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1

1
1

1
1

k

k

k
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k
k

x

fF
x

fL
w

+
−

+
−

−
−

−
−

∂
=

∂

∂
=

∂

       (4-41) 

The time-update equations are given by 

1 1 1 1 1
T

k k k k k k kP F P F L Q L− +
− − − − − −= + 1

T      (4-42) 

� �
11 1( , , 0k kk kx f x u

− +
−− −= )       (4-43) 

Computing the partial derivative matrices of measurement equation gives 

�

�

k

k

k
k

x

k
k

x

hH
x

hM
v

−

−

∂
=
∂

∂
=
∂

        (4-44) 

Measurement-update equations are 

1(T T
k k k k k k k k kK P H H P H M R M− −= + )T −      (4-45) 

� � �[ ( ,k k kk k kx x K y h x
+ − −
= + − 0)]

) k

      (4-46) 

(k k kP I K H P+ −= −        (4-47) 
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The EKF algorithms are implemented on nonlinear dynamics and are used to estimate the 

states for nonlinear systems. The calculation of error covariance matrices are dependent upon 

consistent linearization which are based upon most recent state estimates. System Jacobian 

matrices  and measurement Jacobians F H  are time varying matrices. Their values are based 

on the most recent state estimates. Also the priori estimate error covariance , the posteriori 

estimate error covariance and the Kalman gain are time varying matrices based on the 

most recent state estimates. The EKF needs to be calculated online. The calculation for EFK 

is more complicated than the one for standard Kalman filter. When EKF is applied to real-

system, a fast digital computational device has to be used for the online matrix computation. 

kP−

kP+
kK

 

4.2.6 Hybrid Extended Kalman Filter 

 

For most real engineering problems, systems are working as continuous time dynamic 

processes but the measurements are obtained by discrete-time samplings. In this section, a 

hybrid EKF based on the continuous-time dynamic system and discrete-time measurements 

is introduced. Its implementation becomes more and more popular in today’s digitalized 

world. 

The differences between discrete-time EKF and hybrid EKF are the time update 

equations and discrete model. Suppose we have hybrid system equations as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k k k

x t Ax t Bu t Lw t
y H x v

= + +
= +

·

      (4-48) 

( ) ~ (0, )
~ (0, )k k

w t Q
v R

        (4-49) 
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Comparing (4-48) and (4-49) with the discrete-time equations (4-23) and (4-24), we can see 

the differences between discrete-time EFK and hybrid EFK are A , B  and , . As 

shown it (4-25),  

( )kF G( )k

( )kF  and G  are discretized from continuous dynamic system matrices( )k A  

and B . Same as the discrete-time EKF, we use priori estimation state as the linearization 

nominal point to obtain the continuous-time system for time update equations. The equations 

of hybrid EKF algorithm are given as follows. 

The initialized state and covariance are given by 

�

� �
0 0

0 00 0 0

( )

[( )( ) ]T

x E x

P E x x x x

+

+ ++

=

= − −
      (4-50) 

Computing the partial derivative matrices of dynamic equation produces 

�

�

1

1

k

k

x

x

AA
x
LL
w

+
−

+
−

∂
=
∂

∂
=
∂

        (4-51) 

The times update equations are 

TP AP PA LQL= + +
·

T       (4-52) 

� �( ) ( )x Ax t Bu t= +
·

       (4-53) 

We start this update with � �
1( ) kx t x

+
−=  and 1kP P+

−= . After integration we get � �
kx x
−
=  and 

.  kP P− =

Computing the partial derivative matrices of measurement equation yields 
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Measurement-update equations are 

1(T T
k k k k k k k k kK P H H P H M R M− −= + )T −      (4-55) 

� � �[ ( ,k k kk k kx x K y h x
+ − −
= + − 0)]

) k

      (4-56) 

(k k kP I K H P+ −= −        (4-57) 

The block diagram for hybrid Kalman filter observer is shown in Fig. 17. The continuous 

block in Fig 7 is the system working in continuous. The measurement update block 

represents the discrete-time measurement-update equations. The time update block represents 

the continuous time-update equations.  

 

Figure 17: Closed-loop control with hybrid EKF based observer 
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4.3 Summary of this chapter 

 

In this section, we started with investigating what state observer is. Then we discussed 

the basic Luenberger observer to get a brief review about how an observer works. Then we 

took a close look at the Kalman filter through discussing the conditions under which it works 

as an optimal estimator. The properties of Kalman filter were proved. The discrete time 

Kalman filter which is normally used in LTI system is shown in this chapter. The parameters 

of Kalman filter are calculated. Tuning of the Kalman filter is discussed to achieve a good 

performance of it. We also discussed the application of EKF on non-linear dynamic systems 

in real world. But the EFK need more calculations that require much faster computational 

device. Finally hybrid EKF which is the most practical observer in real engineering system is 

introduced. The hybrid EFK will be used in MEMS accelerometer system. 
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CHAPTER V 

SIMULATION RESULTS AND STABILITY ANALYSIS 

 

 

In this chapter, we will conduct the simulation of the hybrid EFK on a MEMS 

accelerometer model. Two goals have to be achieved by the hybrid EFK. They are obtaining 

an estimated acceleration with reduced noise floor and high SNR, and improving the 

accelerometer system’s performance in stability, linearity, and dynamic operating range. Two 

sets of simulation results will be shown in this chapter. The first set of simulation results is to 

test the effects of noise on three different systems, which are open-loop system, force-to-

rebalance closed-loop system, and Kalman filter observed closed-loop system. Three 

different sinusoidal acceleration signals are used for the first set of simulation. The second 

set of simulation results is based on the Kalman-filter-observed closed-loop system. In the 

second set of simulations, we choose different percentage values of the process noise 

covariance and measurement noise covariance to test the tuning performance of hybrid EKF 

with uncertain noise consideration. All the simulations in this thesis are completed in 

MATLAB/Simulink®.  
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5.1 MEMS accelerometer with hybrid EKF model and stability analysis 

 

In the following simulations, we chose sinusoidal acceleration input at the frequency of 

10 Hz , and with 50  thermal-mechanical Brownian noise. Also we chose0ug 1MHz  as 

readout circuit’s operation frequency, and chose a big electronic noise at 0.02 . For a MEMS 

accelerometer which has sensitivity about , the electronic noise is much more 

significant than thermal-mechanical noise. 

g

1 /mV g

We will use the hybrid EKF state equation (4-48) to estimate the acceleration signal for 

MEMS accelerometers. The matrices A, B and H are given in (5-1), (5-2) and (5-3). The 

mechanical and electronic parameters for the accelerometer are given in Table 1. In addition, 

the parameters which are used in hybrid EKF state equations are shown in Table 2. Whether 

the accelerometer system is linear or non-linear depends on the damping coefficient b  we 

choose. 

0 1
- /  - /

A
k m b m

⎡ ⎤
= ⎢
⎣ ⎦

⎥

⎥

       (5-1) 

0
1/

B L
m

⎡ ⎤
= = ⎢

⎣ ⎦
       (5-2) 

0
2

4 0

2 1 0r AVH
C d
ε ε⎡ ⎤

= ⎢
⎣ ⎦

⎥        (5-3) 
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Table II: Addition system parameters 

Brown noise (Process noise) 
 BF Q=

3.35 - 23e N  

Electrical noise (Measurement 
noise)  N kV R=

4.88e-8V  

Initial state 0x  [0;0]  
Initial covariance of 
estimation error  P

[0 0;0 0] 

Sinusoid input frequency  w 20π  
 

To satisfy the requirements for Kalman filter which we discuss in chapter 4, we need 

check the stability of A , and observability of ( A  H ). 

 
-0.0439

( ) 1.0e+005 *  
-1.7982

eigen A ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
     (5-4)  

       (5-5) ( ) ( ) 2
H

rank O rand
HA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

=

In (5-5), matrix O is observation matrix which is used to check the observability of the 

system. From (5-4), we can see that all of the eigenvalues of state matrix A  have negative 

real parts. So according to Lyapunov’s indirect method, the system is asymptotically stable. 

From (5-5), O  is a full-rank matrix. So the system is also observable. Also we assume the 

process noise and measurement noise are independent white noise. Now we can construct the 

hybrid EKF on MEMS accelerometer model to get the properties of Kalman filter which are 

obtained in equations (4-9) and (4-10).  
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5.2 Open-loop, force-to-rebalance closed-loop and hybrid EKF observer based closed-

loop MEMS accelerometer systems 

 

In this set of simulations, we are going to test the performance of three different MEMS 

accelerometer system configurations. The first configuration is open-loop system which is 

shown in Fig 14. The second configuration is force-to-rebalance closed-loop system which is 

shown in Fig 13. The third configuration is hybrid EKF observer based closed-loop system 

which is shown in Fig 17. The mechanical and electronic parameters are given in Table 1. 

We can obtain the Brownian and electronic noises from equations (3-2) and (3-10) and use 

them as process noise covariance Q  and measurement noise covariance R  of hybrid EKF.    

In Chapter 2, we discussed the advantages of closed-loop MEMS accelerometer system 

over the open-loop system. The major advantage of closed-loop system is its negative 

feedback that leads to stability, wide dynamic range, and good linearity of the accelerometer 

system. In chapter 3, the noise consideration tells us the SNR of closed-loop system is lower 

than that of the open-loop. That means small input of a closed-loop system can result in a lot 

more noisy output and makes it harder to determine small acceleration. In chapter 4, we 

introduce the hybrid EKF observer to the MEMS accelerometer system to not only keep the 

advantage of the closed-loop configuration, but also obtain the good SNR performance. In 

order to test the effectiveness of hybrid EFK, we are going to use different input 

accelerations from 0.1  to10 to monitor the accelerometer’s outputs and seismic mass’ 

displacements. 

g g
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Fig. 18, Fig. 19, and Fig. 20 show the voltage and displacement outputs of MEMS 

accelerometer in an open-loop configuration as the input acceleration’s magnitude are 0.1g, 

1g, and 5g.  

 

Figure 18: Open-loop system with 0.1g sinusoid input 

 

Figure 19: Open-loop system with 1g sinusoid input 
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Figure 20: Open-loop system with 5g sinusoid input 

The simulation results about force re-balanced closed-loop MEMS accelerometer system 

are shown in Fig. 21, Fig. 22, and Fig. 23.  

 

Figure 21: Closed-loop system with 0.1g sinusoid input 
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Figure 22: Closed-loop system with 1g sinusoid input 

 

Figure 23: Closed-loop system with 1g sinusoid input 
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The simulation results about hybrid EKF observer based closed-loop MEMS 

accelerometer system are shown in Fig. 24, Fig. 25, and Fig. 26. These three results show the 

estimated output always has better SNR than real output. 

 

 

Figure 24: Hybrid EKF observer closed-loop system with 0.1g sinusoid input 
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Figure 25: Hybrid EKF observer closed-loop system with 1g sinusoid input 
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Figure 26: Hybrid EKF observer closed-loop system with 10g sinusoid input 
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A brief summary of the simulation results listed above is given in Table 3. Table 3 shows 

the different SNRs and mass’ maximum displacements for open-loop system, force-to-

rebalance closed-loop control system, and hybrid observer based closed-loop system 

respectively.  

Table III: Comparison of three different MEMS accelerometer systems 

Open-loop Force re-balanced 
closed-loop 

Hybrid EKF observer 
closed-loop 

Input 
acceleration’s 
magnitude Output 

SNR 
Mass max 
displacement  

Output 
SNR 

Mass max 
displacement 

Output 
SNR 

Mass max 
displacement 

0.1 g  >40 dB 7.00 09e−  m 4 dB 4.00 10e−  m 12 dB 4.00 10e−  m
1 g  >40 dB 7.00 08e−  m 24 dB 4.00 9e−  m 32 dB 4.00 9e−  m 
5 g  unstable exceed limit     
10 g  N/A N/A >40 dB 4.00 8e−  m >40 dB 4.00 8e−  m 

 

Open-loop structure has a dynamic range up to . The positive feedback in the open-

loop system makes it unstable. Therefore the accelerator under open-loop control can not 

track the acceleration input with a magnitude larger than 5g. Also, larger mass’ displacement 

in open-loop system makes the accelerometer more non-linear, and makes the mass’ 

displacement close to the capacitive parallel plate’s pull-in distance between fixed plate and 

movable seismic mass. As the pull-in phenomenon occurs, the movable mass will be pulled 

to either bottom or top plate, causing the failure of operation. Force-to-rebalanced closed-

loop structure increases the dynamic range of accelerometers and can track up to 10  

acceleration. The negative feedback in closed-loop system gives a smaller mass’ 

displacement and produces a more linear system compared to open-loop system. But because 

of the noisy feedback, the smaller SNR in force-to-rebalance system makes it difficult to 

identify small acceleration inputs. Hybrid EKF observer based closed-loop structure keeps 

the advantage of closed-loop systems with wide dynamic range and small mass displacement. 

5 g

g
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Hybrid EKF observer based closed-loop system also has a better SNR than the one for force-

to-rebalanced closed-loop structure. In the Hybrid EKF simulation, x~  which is the difference 

between the estimated displacement �x  and real displacement x , has a zero mean and 

 covariance error no matter what the magnitude of input acceleration is. We can 

also get better SNR with the hybrid EKF observer.  

1.00 10e − m

   The simulation results verified the effectiveness of the hybrid EFK. We also 

demonstrated in our simulation results that the hybrid EKF observer can improve the 

performance of MEMS accelerometer system. In next section, we will conduct more 

simulations on hybrid EKF to observe the system’s tuning performance and of its robustness 

against system uncertainties.  

 

5.3 Hybrid EKF MEMS accelerometer tuning and uncertain parameter analysis 

 

All the simulation results of hybrid EKF in section V.1 are based on the accurate model 

of a MEMS accelerometer system. In the real world, it is impossible to obtain a perfect 

model of real system, especially the exact values of system parameters. As we discussed in 

chapter 2, MEMS accelerometers have a very simple mass-damper-spring structure, but still 

have uncertain parameters such as mass, damping coefficient and spring constant. 

Particularly in MEMS system, we can not measure these system parameters directly and all 

the parameter values are from calculations. These uncertain parameters can affect state 

matrix A  and give a total different system model which is difficult to be estimated by 

Kalman filter. Alternative methods should be introduced to the accelerometer system such as 

adaptive law, linear quadratic regulator and multiple-model estimation and so on which we 
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are not going to discuss here. However, the Brownian noise and electronic noise can be 

estimated, and they are the uncertainty that the Kalman filter can deal with. If we consider 

the system as a linear system, the process noise covariance Q  and the measurement noise 

covariance R  can be pre-computed to get the Kalman gain  and estimation covariance  

for the design of Kalman filter.    

kK P

In the simulation of this section, we will tune the Q  and R  and obtain the estimated 

output, state estimation error, and standard deviation (STD) for state estimation error. We 

will investigate how Q  and R  affect the measurement of MEMS accelerometers. This 

system model is a linear system for which we use the small-deflection damping coefficient.  

The MEMS accelerometer’s parameters are given in Tables 1 and 2 and the sinusoidal input 

acceleration is 0.1 . g

The simulation results about the hybrid KF observer based closed-loop system with 

different Q and R are shown in figures from 27 through 31. 
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Figure 27: Estimated and actual outputs of hybrid KF observer based closed-loop system with 

increased  by ten times Q
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Figure 28: Estimated and actual outputs of hybrid KF observer based closed-loop system with 

reducedQ  by ten times 
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Figure 29: Estimated and actual outputs of hybrid KF observer based closed-loop system with 

increased R by ten times 
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Figure 30: Estimated and actual outputs of hybrid KF observer based closed-loop system with 

reduced R by ten times 
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Figure 31: Estimated and actual outputs of hybrid KF observer based closed-loop system with 

reduced R by ten times 
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From the figures above, we can see that decreasing Q  and increasing R  can improve the 

noise performance on estimated output. The reason is because the electronic noise is hundreds 

times bigger than thermal-mechanical Brownian noise. Increasing the power of measurement 

noise covariance R gives a better performance of the Kalman filter. The best performance we get 

is when we choose increased R by 10 times reduced Q  by 10 times. If we decrease Q  and 

increase R by more than 10 times, the performance will not become better and will remain 

unchanged. Also, decreasing Q  and increasing R  too much will make the estimation covariance 

 not semi-positive, which can ruin the Kalman filter and make it total not workable.  P

The output SNRs, maximum estimation errors, and the STDs of estimation errors for 

different process noise covariance Q  and measurement noise covariance R  are shown in the 

Table IV. 

Table IV: Different SNRs, maximum estimation errors, and STDs with different Q and R 

 
 

Output SNR Max estimation error  STD of  estimation error 

Exact Q , R   12 dB 4.00e-10 2.8023e-011 
IncreasedQ by 10 times 10 dB 2.00e-10 5.1756e-011  
Reduced by 10 times Q 24 dB 4.50e-11 1.1336e-011 
Increased R by 10 times 24 dB 1.50e-11 1.1943e-011 
Reduced R by 10 times 10 dB 5.00e-10 5.2502e-011 
Increased R by 10 times 
and reduced Q by 10 
times 

>40dB 1.00e-11 2.7512e-012 
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5.4 Summary of this chapter 

 

In this chapter, we constructed a hybrid EKF on a MEMS accelerometer model and 

analyzed the stability of the Kalman filter observed closed-loop system. Then we simulated 

the observer system, investigated the system performances of open-loop system, force 

rebalance closed-loop system, and hybrid EKF observer based closed-loop system.  At last 

we discussed the tuning of Kalman filter. These simulation results verified the effectiveness 

of the hybrid EKF in noise rejection. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

  

6.1 Conclusion 

 

This thesis introduced a hybrid EKF with force-to-rebalance feedback control to increase 

MEMS accelerometers’ SNR. The major noise sources, which are mechanical thermal and 

electronic noises, have been modeled and discussed. The properties of Kalman filter have 

been explained in detail and the algorithm of hybrid EKF has been developed. MEMS 

accelerometer was modeled and simulated on three different system configurations that are 

open-loop, force-to-rebalance closed-loop, and hybrid extended Kalman filter based closed-

loop systems. The simulation results verified the effectiveness of hybrid EKF which not only 

improves the SNR of MEMS accelerometer system but keep the advantages of force-to-

rebalance feedback control. In addition, tuning the process noise covariance and 

measurement noise covariance are discussed. The tuning process can be against uncertain 

parameters and hence improve the performance of hybrid EKF.  
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6.2 Future work 

 

In the future, the following research on both hybrid EKF and MEMS accelerometer is 

expected to be conducted. 

Because a hybrid EKF is mainly discrete-time, digitalizing the observer based MEMS 

accelerometer model is highly expected for the implementation of the hybrid EFK. In order 

to digitalize the currently continuous-time LTI system, the sampling time of digitalization 

should be chosen smaller than the inverse of maximum eigenvalue ( 1
max iλ

) of state 

matrix A . For the accelerometer used in this thesis, the sampling time is smaller than 5μs. It 

means all of the calculations for hybrid EKF should be completed within 5μs. The small 

sampling time (5μs) proposed a big challenge of implementing the hybrid EFK using 

embedded system which has to follow fast-changing control signals. In the future, the author 

plans to investigate the feasibility of implementing the hybrid EFK using digital systems and 

eventually to implement the observer with hardware.  

As we discussed in chapter 3, measurement noise is much bigger than process noise in 

MEMS accelerometer. An alternative least squares estimation method, which focuses on the 

estimation of measurement noise, will be added to the Kalman filter. This alternative method 

with less calculation could give us more practical result for the accelerometer’s noise 

rejection. The development of such a least square estimation method will be our future work 

on MEMS accelerometer. 

As we discussed in chapter 5, the Kalman filter works well with accurate system model 

and noise statistics. The filter estimates will be degraded if the system model is not accurate 

in the real world. For the noise covariance uncertainty and uncertainty brought by the non-
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linear system, tuning the EKF would help. But for the problem with uncertainties in the 

stateer matrix A  and the measurement matrix C , tuning EFK will not solve the problem.  

Therefore, in the future, we need to develop a robust Kalman filter to make it robust against 

system uncertainties.  
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