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QUALITY CONTROL USING INFERENTIAL STATISTICS IN WEIBULL BASED 

ANALYSES OF COMPONENTS FABRICATED FROM MONOLITHIC CERAMICS 

ANKURBEN PARIKH 

 

ABSTRACT 

This work presents the mathematical constructs for certain statistical elements that 

when combined properly produce a quality control program that can be used to accept or 

reject ceramic materials based on mechanistic strength information. Due to the high 

tensile strength and low fracture toughness of ceramic materials the design engineer must 

consider a stochastic design approach.  Critical flaws with lengths that cannot be detected 

by current non-destructive evaluation methods render a distribution of defects in ceramics 

that effectively requires that the tensile strength of the material must be treated as a 

random variable.  The two parameter Weibull distribution (an extreme value distribution) 

with size scaling is adopted for tensile strength in this work.   

Typically the associated Weibull distribution parameters are characterized 

through the use of four-point flexure tests.  The failure data from these tests are used to 

determine the Weibull modulus (m) and a Weibull characteristic strength (σθ).  To 

determine an estimate of the true Weibull distribution parameters maximum likelihood 

estimators are used.  The quality of the estimated parameters relative to the true 

distribution parameters depends fundamentally on the number of samples taken to failure 

and the component under design.  The statistical concepts of “confidence intervals” and 

“hypothesis testing” are discussed here relative to their use in assessing the “goodness” of 

the estimated distribution parameters.  Both of these inferential statistics tools enable the 
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calculation of likelihood confidence rings.  Work showing how the true distribution 

parameters lie within a likelihood ring with a specified confidence is presented. 

A material acceptance criterion is defined here and the criterion depends on 

establishing an acceptable probability of failure of the component under design as well as 

an acceptable level of confidence associated with estimated distribution parameter 

determined using failure data from a specific type of strength test.  A standard four point 

bend bar was adopted although the procedure is not limited to only this type of specimen.  

This work shows how to construct likelihood ratio confidence rings that establishes an 

acceptance region for distribution parameters relative to a material performance curve.  

Combining the two elements, i.e., the material performance curve based on an acceptable 

component probability of failure and a likelihood ratio ring based on an acceptable 

confidence level, allows the design engineer to determine if a material is suited for the 

component design at hand – a simple approach to a quality assurance criterion. 
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NOMENCLATURE 

 

A  = Area of test specimen 

AE  = Effective surface parameter 

Acomp    =  Failure surface of the component 

Aeffective  =  Effective area of the four point bend bar 

Ainner   =  Inner area of the thin wall pressure vessel 

Aouter   =  Outer area of the thin wall pressure vessel 

F  = Load at the fracture point 

H0  = Null hypothesis 

H1  = Alternative hypothesis 

KIC  = Fracture toughness 

L  = Likelihood function 

Li  = Length of the inner load span 

Lo  = Length of the outer load span 

N  = Number of sample size 

Pf   = Probability of failure 

(Pf )component  =  Probability of failure of the component 

R  = Reliability of the continuum element 

Ri  = Reliability of the i
th

 sub-element 

T  = Test statistic 

Y  = Geometry factor 

b, d  = Width and Depth of the specimen 
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c  = Half the crack length 

m  =  Weibull modulus  

mA  = Weibull modulus associated with surface area 

 = Estimated Weibull parameter 

p  = Applied internal pressure in thin wall pressure vessel 

r = Radius of thin wall pressure vessel 

ravg  = Average radius to the middle of the pressure vessel wall 

t  = Wall thickness of thin wall pressure vessel 

α  = Significance level 

β  = Scale parameter 

  Confidence level 

σ  = Applied far field stress 

σθ  = Weibull characteristic strength 

(σθ)A  =  Weibull characteristic strength associated with surface area 

0  =  Weibull material scale parameter 

(σ0)A  = Weibull material scale parameter associated with surface area 

σmax  = Maximum tensile stress in a test specimen at failure 

 = Estimated Weibull characteristic strength 

0  = Contains all the MLE parameter estimates 

 = All point estimates that are not MLE parameter estimates 

L   = Natural log of the likelihood function 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

Ceramic materials possess numerous advantageous properties such as high 

strength at elevated use temperatures, low density, high stiffness, superior wear properties 

and inert behavior in aggressive environments.  Ceramics can be thermally conductive or 

act as insulators.  They can be electronically opaque or translucent.  These attributes 

make ceramics attractive in engineering applications.  There are many potential 

applications that can take the advantage of the strong mechanical, thermal and electrical 

properties of this material.  When compared to high temperature conventional ductile 

materials, advanced ceramics possess high-strength properties at elevated service 

temperatures.  Ceramics have demonstrated functional abilities at temperatures above 

1300 °C.  This is well beyond the operational limits of most conventional metal alloys 

used in advanced diesel and turbine engine applications.   

Specific high value added applications of ceramics include rocket nozzles, hip and 

knee prosthetics, dental crowns and dental bridges.  This material is used to fabricate 

industrial parts such as cutting tools, grinding wheels and bearings.  Ceramics are used in 
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microturbines, pressure sensors and thin film membranes in micro-electro-mechanical 

systems (MEMS).  Oxygen ion-conducting ceramic membranes are used in solid oxide 

fuel cells, extra-corporeal membrane oxygen (ECMO) separators and catalytic membrane 

reactors.  Military applications of ceramics include missile radomes (electronically 

opaque), advanced armor, blast protection systems for tactical wheeled-vehicle fleet and 

advanced gun barrel systems.  The range of applications for ceramics is quite broad.   

Even though ceramics are extremely useful in high temperature and/or wear 

resistant applications, designing components fabricated with this material is not straight 

forward.  Ceramic materials exhibit relatively high tensile strength with a comparatively 

low fracture toughness (quantified by KIC).  Lack of fracture toughness leads to low strain 

tolerance and huge variations in fracture strength.  Current nondestructive evaluation 

(NDE) methods cannot detect small critical defect sizes.  The minute critical defect size 

is a result of the combination of high strength and low fracture toughness.  The random 

distributions of these defects produce the observed scatter in tensile strength associated 

with ceramics.  These defects have various crack sizes and orientations.  If the 

distribution of the size and orientation of defects is random and distributed 

homogeneously, then this leads to a decrease in tensile strength as the size of the 

specimen increases.  Due to this strength-size effect, bigger components have a higher 

probability of deleterious flaws present.  Design methods for ceramics must 

accommodate this strength-size effect.  This is done using system reliability concepts.  

The ceramic component is treated as a system and the probability of system failure is 

ascertained.  Due to inherent scatter in strength and size effects, reliability analysis of 

components fabricated from advanced ceramics is preferred over the use of standard 



 

3 

 

safety factors for acceptable loading.  Statistical analysis should be an integral part of the 

design procedure and this requires accepting a finite risk of failure. 

Typically, finite element methods are used for designing brittle material structural 

components subjected to complex boundary conditions.  A number of reliability 

algorithms such as CARES (1990) and STAU (1991) have been coupled with commercial 

finite element software.  These reliability algorithms allow for component failure to 

originate in any discrete element.  This is a result of considering the component as a 

system and using system reliability theories.  When one discrete element of series system 

fails, then a component is modeled by weakest link reliability theories.  However, in 

parallel systems, when one element fails the remaining elements maintain the applied 

load through redistribution.  This type of failure is characterized through the use of 

bundle theories and tends to be used in the design of ceramic composites which won’t be 

considered here.  In reliability analysis, weakest-link theories and bundle theories 

represent the bounds on the probability of system failure.  One can also consider more 

complex systems such as “r out of n” systems where at least r elements have to fail before 

the system fails.  This produces intermediate values of the probability of failure relative 

to weakest link and bundle theories.  Returning the focus to monolithic ceramics, these 

materials fail in a sudden and catastrophic manner.  So a weakest-link, i.e., a series 

system is adopted.  

Ceramics have relatively low KIC values, i.e., in the range of 1-12 MPa · m
1/2

.  

When combined with high tensile strengths, this produces a distribution of flaw sizes 

assuming mode I failure, characterized by the following simple relationship: 
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(1.1) 

Here, σ is the applied far field stress, Y is a geometry factor and c is half the crack 

length.  Based on low KIC values, critical flaw sizes produced in the fabrication process 

are extremely small (well beyond detection limits), so a random distribution of flaw sizes 

and orientations occur and results in a wide variation of tensile strengths.  Due to this 

variation, tensile strength must be considered as a random variable.  Failure strength is 

taken either for a comparison of the relative quality of two materials, or for the prediction 

of the probability of failure when designing a component fabricated from ceramic 

materials.  The calculation of a component probability of failure first requires 

characterizing parameters for the distribution function adopted to describe the tensile 

strength random variable.  Characterizing distribution parameters is accomplished via 

strength tests; the most common are flexure tests and tensile tests.  Of the two, tensile 

tests are preferred if they can be performed properly.  

 Tensile tests are useful for quality control purposes and also to predict how a 

material fails under a uniform stress state.  This specimen geometry tends to interrogate 

flaw populations distributed through the volume of the specimen.  Alignment of tensile 

test specimens is very critical for brittle materials, since misalignment produces bending 

stresses that affect the failure stress associated with the specimen.  This situation can be 

managed with careful attention to alignment procedures.     

Flexural strength is the measure of the ultimate strength of a beam test specimen.  

The bend test is conducted using specimen geometry with either a rectangular or circular 

cross section.  Since the maximum tensile stress occurs at the outer surface of this 
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specimen and a linear stress gradient is present from the neutral axis to the outer surface, 

this specimen geometry tends to interrogate flaws along the surface and subsequently 

assesses the material’s surface finish.  The specimen is failed using either a four point or 

three point load configurations.  Four point flexure testing specimen is symmetrically 

loaded at two locations that are typically situated at the quarter points.  This test 

introduces a uniaxial state of stress within the gage section (between the inner load 

points) of specimen.  For a rectangular specimen under a load in four-point bending, 

stress is expressed as 

 
22

)(3

bd

LLF io   (1.2) 

Where, 

F  =  load at the fracture point 

     Li =  length of the inner load span 

Lo =  length of the outer load span 

b, d = width and depth of the specimen 

The three point flexure test specimen is an alternative specimen geometry that 

produces lower quality data.  Here the specimen is loaded at a location midway between 

two support bearings.  This test introduces shear stresses between the load points and is 

considered inferior test specimen geometry when interrogating the tensile strength of the 

material.  For a rectangle specimen under a load in a three-point bending specimen, stress 

is given by 

  
22

3

bd

FL
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(1.3) 
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For all uniaxial tensile specimens we assume that the scatter in ceramic tensile 

strength is characterized by the two parameter Weibull distribution.  The probability that 

the random variable X assumes a value between a and b is given by the expression 

 



a

b

r dxxfbXaP )()(        (1.4) 

The continuous random variable X has a two-parameter Weibull distribution if the 

probability density function is given by  
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(1.6) 

and the cumulative distribution function is given by  

 0exp1)( 
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

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


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
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 x

x
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m
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  00)(  xxf                                  (1.8) 

Here, m is the shape parameter or “Weibull modulus” (>0) and β is known as scale 

parameter (>0).  For ceramic strength tests the industry refers to β as a “characteristic 

strength” and is designated as σθ.  Both parameters are determined through the analysis of 

tensile strength data from the specimens geometries just discussed. 

There are at least three methods that can be utilized in parameter estimation, 

including the method of moments, linear regression techniques and maximum likelihood 

techniques.  These approaches yield optimized estimates based on specified criterion.  At 

times the estimators from all three techniques coincide, most times they do not.  Here we 

will always estimate Weibull parameters using maximum likelihood estimator (MLE).  
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Estimates are approximate values of the true parameter values.  The method of maximum 

likelihood is a commonly used estimation technique because this type of estimator 

maintains some attractive features.  Specifically, these estimates are efficient in that they 

produce the least amount of bias and they are invariant as well. 

Weibull distribution parameters are estimated on the basis of observations from a 

number of strength tests.  Usually there is no preconceived notion regarding the value of 

the Weibull distribution parameters when sampling and testing, but obviously there is a 

preconception regarding the type of distribution that characterizes the population.  The 

Weibull distribution is an extreme value distribution and this facet makes it a preferred 

distribution to characterize material “strength.”  We wish to characterize a material’s 

minimum strength.  Thus the first step is simply ascertaining values for the distribution 

parameters.  The next issue is have we estimated parameters to the best of our ability?  

This is directly related to the fundamental question asked repeatedly “how many samples 

must be tested?”  The typical ceramics industry answer to this question is 30.  However, 

the question that should be asked is “how many samples must be tested to establish a 

given confidence level for component reliability?”  Helping to answer this question 

quantitatively is the goal of this thesis.  To address the issue properly one needs to utilize 

interval estimates along with hypothesis testing.   

Confidence intervals are used to indicate the reliability of estimated parameters.  

Keep in mind that parameter estimates are random variables.  Every time a sample is 

taken from the same population a point estimate is made using maximum likelihood 

estimators and rarely do successive samples produce the same point estimate values.  

Thus interval estimates are as necessary as point estimates.  Interval estimates will reflect 
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our confidence that the true population parameters actually belong to their respective 

intervals, as well as give an indication of the amount of variability that is associated with 

the point estimates.  A large confidence interval indicates that the parameter estimates 

maintain a high degree of uncertainty.  Increasing the sample size will always narrow 

confidence intervals unless there is a deficiency with the point estimation functions.  In 

essence, confidence intervals on parameter estimates represent the range of values for the 

distribution parameters that are both reasonable and plausible. 

In contrast, when testing a hypothesis on distribution parameters, there is a 

preconceived notion of the value the distribution parameters take on.  There are two 

statistical hypotheses proposed concerning the estimated parameter values.  The 

hypotheses are then tested with the samples (data) taken from the distribution 

populations.  The two hypotheses are the one being proposed by the analyst, and the 

negation of this hypothesis.  The former, denoted H1, is referred to as the alternative 

hypothesis, but more accurately this should be called the analyst’s hypothesis.  The latter 

hypothesis, denoted here as H0, is referred to as the null hypothesis.  The goal of the 

analyst is to decide whether there is enough evidence (data) to refute the null hypothesis.  

The decision is made by observing the value of a well defined test statistic which is ratio 

of two likelihood functions whose probability is known under the assumption that H0, the 

null hypothesis, is true.  This statistic lends credence to the alternative hypothesis, H1, if 

the statistic takes on a value rarely encountered using the data collected.  If this happens 

to an unacceptable degree then the null hypothesis is rejected.  The value of the test 

statistic at which the rejection is made defines a rejection region.  The probability that the 
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test statistic falls into the rejection region by chance is referred to as the significance 

level, and is denoted α.   

 

1.2 Scope 

We wish to apply the concepts outlined above for the specific case where the 

tensile strength of a ceramic material can be characterized by the Weibull distribution, 

which is an extreme value distribution.  A two-parameter Weibull distribution with size 

scaling is used here to characterize the tensile strength and strength data from four-point 

flexure tests are used to estimate the Weibull distribution parameters.  To bring out 

certain underlying principles of the procedures used here tensile strength is generated 

from Monte-Carlo simulations.  Maximum likelihood estimators are used.  The quality of 

the estimated distribution parameters depends on number of sample size taken. Here 

confidence intervals and hypothesis testing are used to ascertain the quality of the 

parameter estimates.  Material acceptance and rejection regions are defined and 

inferential statistics are used to generate likelihood confidence rings.  Likelihood 

confidence rings establish an acceptance region for the estimated distribution parameters.  

A thin wall pressure vessel example is used as an example of how to develop material 

performance curves and the corresponding confidence ring. 
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1.3 Objective 

 It is assumed that the tensile strength is the paramount design parameter for 

components fabricated from ceramic or graphite materials.  To assess the quality of the 

material relative to a component application the component fabricator needs a quality 

control process designed to combine information regarding the reliability of the 

component as well as data from the material supplier regarding the parameter estimates.  

The objective of this thesis is to define in detail a process that yields a useful tool for the 

component fabricator that does just that, i.e., develop a quality control process relative to 

strength testing of ceramic materials that establishes robust material acceptance criteria.  

It is presumed that the test data mentioned above will be available to all parties.  This 

quality control process is described in the following chapters. 
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CHAPTER  II 

RELIABILITY BASED FAILURE ANALYSIS AND STRENGTH TESTS FOR 

COMPONENTS FABRICATED FROM CERAMIC MATERIAL 

 

Advanced ceramics typically exhibit linear stress-strain behavior to failure.  

Strength is determined based on intrinsic fracture toughness and a distribution of flaws 

present in the material.  Monolithic ceramics fail due to the catastrophic propagation of 

flaws present in the material - minute flaws that result from high strength and low 

fracture toughness cannot be detected.  Hence tensile strength is a random variable.   

We know that a fundamental principle of structural reliability is that as the 

complexity of a system increases the reliability of the system decreases if the design 

engineer does not compensate in some fashion.  Assume that a differential element is 

subjected to a general three dimensional state of stress, and that the state of stress is 

characterized by the principal stresses (σ1, σ2, σ3).  Load, as characterized by the applied 

stresses, is a deterministic variable and also is a function of position, i.e., the principal 

stresses associated with the state of stress at a point can be characterized as follows: 

 ),,(11 zyx   (2.1) 

 ),,(22 zyx    (2.2) 
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Note that we will assume that the principal stresses do not interact with each other 

to produce failure, i.e., the basic tenet of the principle of independent action.  Thus failure 

may occur independently due to any of the tensile principal stresses.  Recall that we 

earlier assumed that a two-parameter Weibull distribution characterizes the tensile 

strength of the ceramic material.  The reliability of a continuum element under the 

application of any of the three principal stresses is given by 
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Here m and 0 are parameters associated with the assumed Weibull distribution.  The 

parameter m is the Weibull modulus and 0 is strength like parameter per unit volume.  

Assuming that three failure modes are statistically independent, and the reliability of the 

continuum element is 

 321 RRRR    (2.7) 

Substitution leads to 
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Hu (1994), showed how the reliability of continuum elements in a structure can be 

combined to yield the reliability of the entire structure.  From Hu’s (1994) work the 

reliability of the structure, or component, is given by 
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Here Ri is the reliability of the i
th

 sub-element. 

 

2.1 Size Scaling 

The Weibull distribution is ideal for ceramic materials because it allows for 

strength scaling.  As components, or test specimens, increase in size the probability 

increases that a larger critical flaw is present and the average strength of the material 

being tested decreases.  Assuming that strength experiments are conducted quickly such 

that slow crack growth does not occur, then the observed strength value is partially 

dependent on test specimen size, geometry and stress state also material KIC and flaws.  

We further assume that failure is an isotropic phenomenon, i.e., there are no preferred 

orientations of strength.  With only one principal tensile stress present in a test specimen 

then the failure probability of specimen is given by cumulative distribution function, 

 

0exp1 max

max 
























 







m

fP   (2.11) 

and 

 
00 max  fP

 
(2.12)

 
 



 

14 

 

Here, Pf is the probability of failure, σmax is the maximum tensile stress in a test specimen 

at failure, and σθ is the Weibull characteristic strength. 

 As noted before, strength controlling flaws can be distributed through the volume, 

or over the surface, or along the edges of a test specimen.  For volume-distributed flaw 

populations the characteristic strength is designated (σθ)V and the Weibull modulus is 

designated mV.  For surface-distributed flaws, the characteristic strength is designated 

(σθ)A and the Weibull modulus is designated mA.  Also, for edge-distributed flaw 

populations the characteristic strength is designated (σθ)L and the Weibull modulus is 

designated mL.  Surface distributed flaw distributions are discussed thoroughly in the next 

section.  Volume and edge flaw distributions follow similar treatments.  The issue of 

multiple flaw populations are (surface, volume, edge) is mentioned for completeness as it 

relates to how various test specimens and components interrogate certain types of flaw 

distributions. 

 

2.2 Flaw Distribution Along The Surface 

Assuming that failure is caused by a flaw located along the surface of a test 

specimen then the probability of failure is given by the following surface integration.  
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In the above equation, integration is performed over regions of the test specimen where 

the principal stress values are tensile.  The Weibull modulus (mA) and the Weibull 

material scale parameter (σ0)A are associated with the strength controlling flaws 
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distributed along the surface.  The Weibull material scale parameter has units of 

stressarea
(1/mA

 
)
 so that Pf is dimensionless.  The integration defined by the above equation 

results in the following expression 
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Here k is a dimensionless load factor and σmax is the maximum stress at failure.  

Therefore, 
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Alternatively, 
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 (2.17) 

Where an effective surface parameter is introduced and defined as  

 AE = kA  (2.18) 

We now have a relationship between the Weibull scale parameter (σ0)A, which is a 

material strength parameter, and the Weibull characteristic strength (σθ)A which is a 

strength measure always dependent on the test specimen geometry.  The effective surface 

AE is functionally dependent on mA and the specimen geometry.  Similar expressions can 

be developed for distributions distributed through the volume of the test specimen (see 

ASTM C 1239-10), or along the edges of the test specimen (Wereszczak, 2010). 

 

2.3 Maximum Likelihood Estimators 

Throughout this effort Monte-Carlo simulation is used to generate “data sets” 

with the requisite random characteristic strength values.  By using well defined functions 
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that incorporate the failure data one can obtain point estimates of the unknown Weibull 

parameters.  These defined functions are known as estimators.  As noted earlier the types 

of estimators include moment estimators, least-squares estimators and maximum 

likelihood estimators.  Maximum likelihood estimators (MLE) are most useful due to the 

efficiency and the ease application when censored failure populations are present.  Here 

censored data which has more than one flaw population will not be considered.  

The parameter estimates calculated using the maximum likelihood technique, are 

unique and as the size of the sample increases, the estimates statistically approach the 

true values of the population parameters.  The likelihood function used to derive the 

estimation function is constructed such that the likelihood function is dependent on the 

two unknown Weibull distribution parameters m and σθ.  The likelihood function for the 

two-parameter Weibull distribution for a single-flaw distribution is given by the 

following expression (see ASTM Standard C1239-2010) 

 





















































N

i

m

i

m

im
L

1

~1~

~exp~~

~

 








 

 (2.19) 

Note here that  and denote estimates of the Weibull distribution parameters 

whereas m and σθ denote the true population parameters, which are always unknown.  A 

system of equations is obtained by differentiating the log likelihood function with respect 

to  and   and setting each derivative equal to zero, i.e., 
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where N is the number of failed specimens in the sample set tested.  Equation (2.20) is 

solved numerically for  which is subsequently used in equation (2.21) to solve for . 
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CHAPTER III 

LIKELIHOOD RATIO CONFIDENCE BOUNDS AND INFERENTIAL STATISTICS  

 

Having obtained samples from Mote-Carlo simulation our tensile strength tests 

we now would like to draw conclusions about the population we sampled from.  We 

would like to know if our sample was large enough such that the parameters estimated 

are in the same statistical neighborhood as the true population parameters.  The 

techniques for making this kind of assessment utilize inferential statistics.  The type of 

inference that is focused on here is given that the underlying population can be 

characterized by a two parameter Weibull distribution this is assumed for actual 

ceramics, what are the bounds on the true population parameter (both of which are 

unknown) given a particular sample.  In general small bounds are better than large 

bounds, but bounds on estimates must be objective in what they characterize.  Sampling 

from a population generates information that allows us to calculate point estimates of the 

true distribution parameters.  But they are estimates.  We note ahead of the discussion 

below that the bounds on the true population parameter values are dependent upon the 

sample size (N) and the data values used to compute the point estimates.  The focus here 

will be on a particular type of bound referred to as “likelihood ratio confidence bounds.”  
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But before that discussion takes place some history is presented regarding goodness-of-fit 

approaches as well as background on hypothesis testing as it pertains to this effort.   

K. Pearson (1895) outlined a goodness-of-fit test that spoke to the applicability of 

a statistical distribution chosen for a population under study.  Initially there was little use 

for this type of analysis because there were so few alternatives to the normal (Gaussian) 

distribution available at the time.  K. Pearson’s work (1900a) pointed to the formulation 

and use of the 2
-distribution.  Fisher (1922b, 1935) saw the need for hypothesis testing 

and developed the concept of the null hypothesis.  The null hypothesis as proposed by 

Fisher utilizes a general default position that is never proved or established, but is 

possibly disproved in the course of experimentation or sampling.  Subsequent to Fisher’s 

work the concept of the alternative hypothesis was put forth by Neyman and E. Pearson 

(1933), and it is used to formulate the Neyman–Pearson lemma.  Their lemma holds that 

when conducting hypothesis testing the power of a test statistic, here it is ratio of two 

likelihood functions, can be characterized by the likelihood ratio test.  This lemma serves 

as a major component in modern statistical hypothesis testing and the “likelihood ratio 

test” is used here.  However, the alternative hypothesis was not part of Fisher's approach 

of statistical hypothesis testing, and he generally opposed its use.  Modern statistical 

hypothesis testing accommodates both types of hypotheses since the alternative 

hypothesis can be quite useful which will be pointed out later. 

The basic issue is this: consider a large population with a known frequency 

distribution.  Due to diminished knowledge of the population represented by a small 

subset of the population, a sample will generate a different frequency distribution than the 

parent population because the parameters estimated from the sample (a subset) will not 
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be the same as the parent population.  That is the population and the subset can be 

characterized by the same frequency distribution but will have different distribution 

parameters.  As the subset size increases, its frequency distribution more closely 

resembles that of the parent population and the estimated parameters approach the parent 

population parameters asymptotically.  The likelihood ratio test and its close relationship 

to the 2
 test can be used to determine what sample size will provide a reasonable 

approximation of the true population parameters.  With this as background the 

relationship between parameter estimates, hypothesis testing, significance levels, the 

likelihood ratio test and the 2
-distribution are outlined. 

 

3.1 Hypothesis Testing 

The two most common statistical inference procedures are confidence interval 

estimation and hypothesis testing.  Confidence interval estimates provide a range of 

possible values within which the true, unknown population parameters reside.  The values 

establishing the range for each distribution parameter are made and found acceptable 

from some quantifiable procedure.  In contrast, when we make a declaration about the 

population parameters we are stating a hypothesis.  For example, one can hypothesize 

that a true population parameter is equal to a specified value and do so without making a 

commitment a priori on whether the assumption is true or valid.  The acceptance of the 

hypothesis is made based on data and how it relates to a relevant test statistic.  The act of 

making inferences is known as hypothesis testing.  A random sample (the data) is taken 

from the parent population and a statistical hypothesis is stipulated and tested.  If the 

observations do not tend to support the hypothesis made, then the hypothesis is rejected.  
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On the other hand if the observations support the hypothesis, the hypothesis is not 

rejected, this does not necessarily mean that the hypothesis is accepted.  It must be 

pointed out that hypotheses are not made in regards to estimated parameters, but rather 

about the true distribution parameters of the parent population.  However, the estimated 

parameters are utilized as part of the process of drawing inferences.   

Making a decision regarding a hypothesis can be considered a statistical event 

with an associated probability.  Linked with the decision to accept or reject a hypothesis 

is a concept referred to as the level of significance, which is represented by the parameter 

.  Hypothesis testing is a procedure for rejecting a statement or not rejecting it, and one 

needs an ability to assess the probability of making incorrect decisions of either kind.  

Fisher (1925a) established a method to quantify the amount of evidence required to 

accept that an event is unlikely to occur by chance and defined this as the significance 

level.  Significance levels are different then confidence levels but the two are related.  

Designating the confidence level as , the significance level and the confidence level are 

functionally related through the following simple expression 

   1  (3.1)
 

The confidence level when it is applied to parameter estimation is associated with a 

range, or more specifically with bounds or an interval, within which a true population 

parameter resides.  Thus the confidence level, and by the equation above the significance 

level, is chosen arbitrarily based on the design application at hand and they impact the 

economics of the component design.  The “significance level” is defined as the 

probability of mistakenly rejecting a hypothesis when the hypothesis is valid.  
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Establishing a value for either of this parameter effectively removes subjectivity from the 

decision making. 

In the previous chapter the basic idea of estimating distribution parameters from 

strength data was presented.  The quantities computed in that chapter are point estimates.  

The assumption is made throughout this work that the population distribution can be 

characterized by the Weibull distribution.  Two distribution parameters, identified here 

generically as the pair of population parameter (1, 2), will be estimated from a sample 

using maximum likelihood estimators.  There are no preconceived notions concerning the 

values of these parameters when performing the point estimation calculations.  One is 

simply trying to ascertain the best possible values of these parameters from a sample 

containing limited information.  In contrast, when testing hypotheses made regarding (1, 

2) there are preconceived notions concerning their values.  These preconceptions are 

embodied in the “null hypothesis” and the “alternative hypothesis”.  The latter, 

designated as H1 and the former as H0.  The null hypothesis is the hypothesis that is 

tested.  The null hypothesis assumes that samples obtained from the parent population are 

truly random.  If the null hypothesis is true then any observed difference between the 

values obtained from the sampling procedure and the value assumed for the null 

hypothesis is merely a consequence of sampling variation, i.e., the differences are random 

errors and not systematic errors.  

As part of the hypothesis testing process an alternative hypothesis is declared.  

Formally we test the null hypothesis, but the alternative hypothesis turns out to be just as 

important in determining the confidence bounds.  In order to test the “null and alternative 

hypotheses” we need a test statistic pertinent to the population distribution and the 
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distribution parameters.  The random variables in this process are the point estimates and 

the test statistic.  A rejection region is defined, and this is known as the critical region for 

the test statistic.  The observed tensile strength data is used to determine if the computed 

value of the test statistic (not the parameter estimates) lies within or outside the rejection 

region and thus defines the size of the critical region.  If the test statistic is within the 

rejection region then we say the hypothesis is rejected at the 100 percent significance 

level.  If is quite small, then the probability of rejecting the null hypothesis when it is 

true is quite small. 

Consider for example that if for a true distribution parameter  there is a need to test 

the null hypothesis that  = 0 against the alternative that  ≠ 0, then this test can be 

performed by determining whether the confidence interval for  contains the value of 

zero.  In a more general fashion, we can test the hypothesis that a true distribution 

parameter is equal to some stipulated value other than zero, i.e.,   = θ0 (in the context 

here θ0 is a stipulated value) against the alternative that θ ≠ θ0.  Under these hypotheses a 

confidence interval can be constructed that contains the true population parameters with a 

probability of  = (1 – α) and this interval also contains the value θ0.  The null hypothesis 

that the true distribution parameter equals θ0 is not rejected at a significance level .  As 

noted earlier we can make mistakes in rejecting the null hypothesis.  In hypothesis testing 

procedure, two types of errors are possible.  

1. Type-I Error: The rejection of the null hypothesis (H0), when it is true.  The 

probability of committing a Type-I error is denoted as α. 
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2. Type-II Error: The failure in rejecting hypothesis (H0), when the alternative 

hypothesis (H1) is true.  The probability of committing a Type-II error is denoted 

as β. 

For either situation we are wrong in our judgment of the null hypothesis, H0. 

Now consider the two situations where correct decisions have been made.  In the 

first case the null hypothesis is not rejected and the null hypothesis is true.  The 

probability of making this choice is  = (1 - ).  This is the same probability associated 

with the confidence interval for the true population distribution parameters discussed 

above.  The second situation, the probability of correctly rejecting the null hypothesis, is 

the complement of a Type II error, i.e., (1 – ).  In statistics this is known as the power of 

the test of the null hypothesis.  This important criterion is used to determine the sample 

size.  So in the process of making a correct decision we require high values of (1 – ) and 

(1 – ). 

Since a decrease in one type of error increases the other type of error, we must 

design our decision rules in order to minimize both types of errors in an optimal fashion.  

The probability of a Type-I error is controlled by making  a suitable number, say 1 in 

10, or 1 in 20, or something smaller depending on the consequence of making a Type-I 

error.  Minimizing the probability of making a Type-II error is not straight forward.  

Here  is dependent on the alternative hypothesis, on the sample size n, and in addition, 

on the true value of the distribution parameters tested.  As we see in the next section the 

alternative hypothesis is greatly influenced by the test statistic chosen to help quantify 

our decision. 
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Hence when hypothesis testing is applied to the distribution parameters (1, 2), a 

statement of equality is made in the null hypothesis H0.  Achieving statistical significance 

is equivalent to accepting that the observed results (the point estimates) are plausible if 

the null hypothesis is not rejected.  The alternative hypothesis does not in general specify 

any specific values for the true population parameters but helps us to establish bounds.  

This is important when a confidence ring is formulated for a distribution pair.  The size of 

the ring can be enlarged or reduced based on two parameters under our control, the 

significance level , and the sample size, N. 

 

3.2 The Test Statistic: The Likelihood Ratio Test  

The test statistic utilized in this work is a ratio of the natural log of two likelihood 

functions.  In simple terms one likelihood function is associated with a null hypothesis 

and the other is associated with an alternative hypothesis.  Using the general approach to 

hypothesis testing the null and alternative hypotheses are defined respectively as 

 00 :  H
 (3.2)

 

 11 :  H  (3.3) 

As they are used here, the hypotheses describe two complementary notions regarding the 

distribution parameters and these notions compete with one another.  In this sense the 

hypotheses can be better described mathematically as 
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Where r corresponds to the number of parameters in probability density function.  The 

notion is that θ0 and θ1 are scalar values whereas 0 is a vector of distribution parameters.  

The likelihood function associated with each hypothesis is 
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for the null hypothesis and 
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for the alternative function.  The likelihood function, L0, associated with the null 

hypothesis is evaluated using the maximum likelihood parameter estimates.  Since the 

sample population is assumed to be a two parameter Weibull distribution, then a vector of 

distribution parameters whose components are the MLE parameter estimates is identified 

as  
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that is 0 contains all the MLE parameter estimates, and  

 
cH 01 : 
 (3.10)   

 

with 0
C
 representing all point estimates that are not MLE parameter estimates.  In 

essence we are testing the null hypothesis that the true distribution parameters are equal 

to the MLE parameter estimates with an alternative hypothesis that the true distribution 

parameters are not equal to the MLE parameter estimates. 

Now the likelihood functions are expressed as 
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A test statistic is introduced that is defined as the natural log of the ratio of the likelihood 

functions, i.e., 
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The Neyman-Pearson lemma states that this likelihood ratio test is the most powerful test 

statistic available for testing the null hypothesis.  We can rewrite this last expression as 
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The natural log of the likelihood ratio of a null hypothesis to an alternative 

hypothesis is our test statistic and its distribution can be explicitly determined.  The test 

statistic is then used to form decision regions where the null hypothesis can be accepted 

or rejected.  A convenient result due to Wilks (1938) indicates that as the sample size n 

approaches infinity, the test statistic −2ln (T) for a nested composite hypothesis will be 
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asymptotically χ
2
-distributed.  If one hypothesis can be derived as a limiting sequence of 

another, we say that the two hypotheses are nested.  In our case the sample X1, X2, … Xn 

are drawn from a Weibull distribution under H0.  These same samples are used in the 

alternative hypothesis, H1, and since their parent distribution is assumed to be a Weibull 

distribution under both hypotheses, then the two hypotheses are nested and the conditions 

are satisfied for the application of Wilk’s theorem.   

The test statistic is designed in such a way that the probability of a Type I error 

does not exceed a constant , a value that we control.  Thus the probability of a Type I 

error is fixed and we search for the test statistic that maximizes (1 – ) where again  is 

the probability of a Type II error.  In our case where inferences are being made on 

parameters from a two parameter Weibull distribution the degree of freedom for the χ
2
-

distribution is one and the values of the χ
2
-distribution are easily calculated.  One can 

compute the likelihood ratio T and compare −2ln (T) to the χ
2
 value corresponding to a 

desired significance level and define a rejection region.  This is outlined in the next 

section.  The ratio L0 /L1 of the two likelihood functions defined above should be low in 

the optimal critical region – a result of minimizing  and maximizing (1 – ).  The ratio 

is high in the complementary region.  A high ratio corresponds to a high probability of a 

correct decision under H0. 

The likelihood ratio depends on parameter estimates and is therefore a function of 

the sample strength data X1, X2, … Xn, and thus the likelihood ratio is random variable.  

The likelihood-ratio test infers that the null hypothesis should be rejected if the value of 

the ratio is too small.  How small is too small depends on the significance level of the 

test, i.e., on what probability of Type I error is considered tolerable.  



 

29 

 

The numerator corresponds to the maximum probability of an observed outcome 

under the null hypothesis.  The denominator corresponds to the maximum probability of 

an observed outcome varying parameters over the whole parameter space.  The 

numerator of this ratio should be less than the denominator or we have chosen our 

estimation function badly.  The likelihood ratio hence is between 0 and 1.  Lower values 

of the likelihood ratio mean that the observed result was much less likely to occur under 

the null hypothesis as compared to the alternate.  Higher values of the likelihood ratio 

mean that the observed outcome was more than or equally likely or nearly as likely to 

occur under the null hypothesis as compared to the alternate and the null hypothesis 

cannot be rejected. 
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Figure 3.1 Likelihood Frequency Plot L (θ1, θ2) with Likelihood Confidence Ring and 

Associated Test Statistic T for θ1= θ’1 and θ2= θ’2 
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3.3 Likelihood Ratio Ring (Region of Acceptance) 

The likelihood ratio confidence bound is based on the equation,  
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Equation (3.17) is also written as 
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The only unknowns in this equation are the generic parameters  and .  The generic 

distribution parameters  and  are computed to satisfy equation (3.18).  There is no 

closed-form solution, so an iterative numerical approach is used here.  For a given 

significance level the confidence bounds are calculated by finding the extreme values of 

the contour ring in a plane perpendicular to the log likelihood axis (see Figure 3.1).  A 

change in the significance level results in a different ring.   

The iterative procedure is best conducted from inside the ring.  To do this we use 

the maximum likelihood parameter estimates which are typically inside the ring.  For a 

two parameter Weibull distribution equation (3.18) is now expressed as  

      0)
2

(expˆ,ˆ,

2

1;







 mLmL  (3.19) 

and one of the MLE parameter estimates, say , is used for m in the above equation to 

start the iterations.  A pair of values is found for σθ .  This procedure is repeated for a 

range of m-values until we have enough data points to saturate the ring which is then 

plotted. 
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CHAPTER IV 

MATERIAL QUALITY ACCEPTANCE PROCESS WITH EXAMPLES 

 

The material acceptance approach outlined here depends on several things.  First 

one must have the ability to compute the probability of failure of the component under 

design.  This will be designated (Pf)component and throughout this chapter this will be 

quantified using a hazard rate format, i.e., expressed as a fraction with a numerator of 

one.  The hazard rate is simply the reciprocal of the probability of failure a quantity 

usually expressed as a percentage.   

For monolithic ceramic materials the component probability of failure is modeled 

using a weakest link (series) reliability model.  The underlying strength is characterized 

by a two parameter Weibull distribution.  Thus a component probability of failure curve 

can be generated in an m – 0 graph.  Points along the curve represent parameter pairs 

equal to a specified probability of failure.  This curve will be referred to as a “Component 

Performance Curve.”  We overlay this graph with point estimates of the Weibull 

distribution parameters obtained from tensile strength data that a typical material supplier 

might have.  Point estimates from this data to the right of the “component design curve” 

represent lower probability of failures.  Conversely points to the left of this curve are 
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associated with performance curves with higher probability of failures.  Thus one 

component design curve defines two regions of the m – 0 space, an acceptable 

performance region and a rejection region relative to a specified component probability 

of failure.  See Figure 4.1 for an example. 

Through Weibull size scaling the material characteristic strength 0 can be 

converted to a characteristic strength associated with a test specimen.  For this effort the 

four point bend bar is chosen, and the characteristic strength is designated ()specimen in 

generals of the bend bar.  Thus the component performance curve (m – 0 graph) can be 

converted to an equivalent test specimen performance curve plotted in an m – ()specimen 

graph.  The reader is directed to Figure 4.2 for an example of this type of curve.  Once 

again parameter pairs to the right of the material performance curve have lower 

probability of failures, and parameter pairs to the left are associated with higher 

probability of failures.  So a choice is made a priori on the type of test specimen used to 

collect tensile failure strength. 

Finally, the test performance curve, a curve representing a unique combination of 

component and test specimen, is married to a likelihood confidence ring that was 

discussed earlier.  This allows the component fabricator to decide if the material supplier 

is providing a high enough quality material based on the component design and the 

failure data from four point bend tests (or other test specimen geometries).  Keep in mind 

that parameter estimates are estimates of the true distribution parameters of the 

population, values that are never known in real life applications.  However, through the 

use of the likelihood confidence ring method outlined in the previous chapter we can 

define a region in some close proximity of the estimated point parameter pair, and with 
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some level of assurance knowing that the true distribution parameters are contained 

within that region.  If that region falls to the right of the test specimen performance curve 

the fabricator can accept the material based on the estimates of the Weibull parameters 

with a known level of quality, i.e., the significance level.  Not surprisingly we define that 

particular procedure as the quality acceptance criterion.  The details of this approach are 

outlined in this chapter using a simple thin wall pressure vessel as the component and as 

mentioned above, a four point bend bar as the test specimen of choice.  The approach can 

easily extend to other components and other test specimen geometries. 

 

4.1 Component Performance Curve – Example 

For the state of stress in a thin wall pressure vessel 

 σ1 = p r / t (4.1) 

 σ2 = p r / 2 t  (4.2) 

 σ3 = 0 (4.3) 

Here p is the applied internal pressure, t is the wall thickness and r is a radius.  The 

component probability of failure for a thin wall pressure vessel is given by 
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Here ravg is the average radius to the middle of the pressure vessel wall.  With  

 σmax =  pravg / t  (4.5) 
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then the expression above becomes 
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In the example presented here the pressure vessel geometry is    

 inner radius = 100 mm (4.7) 

 thickness = 5 mm (4.8) 

 length of the vessel = 400 mm (4.9) 

and Acomp  in equation (4.6) is the combined inner and outer area of the thin wall pressure 

vessel, i.e., failure can take place on either surface.  Thus 

 Acomp  =  Ainner   +   Aouter    

                                  =  628.32 mm
2
   +   659.73 mm

2   
 

        =   1,288.05 mm
2
 (4.10) 

and we are looking for a ceramic material whose Weibull distribution parameters yield a 

component probability of failure of 

 (Pf)component = 1/500,000 = 2 x 10
-6

  (4.11) 

In the above all values are arbitrarily chosen to illustrate the approach.  The Weibull 

distribution parameter pairs that satisfy equation 4.6 with the geometry above are 

depicted as a curved line in Figure 4.1 below.  If the probability of failure is increased the 

curve shifts to the right.  Correspondingly if the probability of failure decreases the curve 

shifts to the left. 
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Figure 4.1 Component Performance Curve for a Thin Wall Pressure Vessel 

 

4.2 Material Performance Curve 

The next step in the quality assurance process is converting the information 

contained in Figure 4.1 to a test specimen configuration.  Four point bend specimens tend 

to be the specimen geometry of choice to evaluate ceramic tensile strength due to 

alignment issues associated with tensile specimens.  For this illustration a four point 

flexure specimen was selected in accordance with the guidelines set forth in ASTM 

C1161 configuration B.  The ASTM standard for this specimen stipulates overall 

dimensions of 4 mm x 3 mm x 45 mm.  The outer support span (Lo) of 40 mm (with 2.5 

mm overhang on each side) and the inner support span (Li) of 20 mm.  Here we will 

identify the geometry of the cross section as  
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 b = 4 mm  (4.12) 

and 

 d = 3 mm  (4.13) 

where b is the width of the specimen and d is depth of the specimen.  The Weibull 

material characteristic strength parameter is related to the Weibull characteristic strength 

parameter through the expression  

    
A

m
effective

AA



1

0
  (4.14) 

Equation 4.14 is the expression that allows us to transform the component design 

information contained in Figure 4.1.  For this application we assume that we will have a 

flaw population distributed along the tensile surface of the bend bar.  If this is the case 

then the four point bend bar has an effective area of 
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Inserting equation 4.15 into equation 4.14 yields 
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With equation 4.16 and the geometry of the pressure vessel geometry then 

equation (4.6) can be solved for σ  with assumed values of the Weibull modulus (m) and 

a specified failure rate Pf.  These computed values of  are associated with a four point 

bend specimen.  A plot of these parameter pairs is given in Figure 4.2 for the four point 

bend test specimen described above as well as the Pf  stipulated in equation 4.11.   
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Figure 4.2 Material Performance Curve for Bend Bar Test Specimen 

 

4.3 Likelihood Confidence Rings 

In order to present aspects of the likelihood confidence rings we must utilize 

Monte Carlo simulation in order to obtain “test data.”  The details of Monte Carlo 

simulation as it applies to ceramic bend tensile data can be found in Palko (1992) and Hu 

(1994).  Using Monte Carlo simulation allows us the knowledge of what the true 

distribution parameters are for a particular data set.  These values can be arbitrarily 

chosen since the quality assurance process outlined here is invariant with respect to the 

Weibull distribution parameters.  Here it is assumed that the Weibull modulus is 17 and 

the Weibull characteristic strength is 400 MPa.  For a 90% confidence level and a sample 

size of 10, the likelihood confidence ring is plotted in Figure 4.3 along with the true 
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distribution parameters and the estimated distribution parameters.  If the true distribution 

parameter pair was unknown we would be 90% confident that the true parameters are 

within the ring.  If the Monte Carlo simulation process were continued nine more times, 

i.e., we were in possession of ten simulated data sets, then on average, one of those data 

sets would produce a likelihood confidence ring that did not contain the true distribution 

parameter pair. 

 

Figure 4.3 Confidence Ring Contour for a Sample Size of 10 and True Weibull 

Distribution Parameters (m = 17,  = 400) 

 

In the next figure the effect of holding the sample size fixed and varying the 

confidence level is presented.  The result is a series of nested likelihood confidence rings.  

Here we have one data set and multiple rings associated with increments of the 

confidence level from 50% to 95%.  Note that as the confidence level increases the size 
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of the likelihood confidence ring expands.  For a given number of test specimens in a 

data set the area encompassed by the likelihood confidence ring would expand as we 

become more and more confident that the true distribution parameters are contained in 

the ring.   

 

Figure 4.4 Likelihood Confidence Rings for 30 sample size with different γ values  

 

The next figure, Figure 4.5, depicts the effect of varying the sample size and 

holding the confidence level fixed which is γ = 90%.  The sample size is increased from 

N = 10 to N = 100.  Note that all the likelihood confidence rings encompass the true 

distribution parameters used to generate each sample.  In addition the area within the 

rings grows smaller as the sample size increases.  As the sample size increases we gain 
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information on the population and we thereby reduce the region that could contain the 

true distribution parameters for a given level of confidence.   

 

Figure 4.5 Likelihood Confidence Rings for 10 to 100 sample sizes and True Weibull 

Distribution Parameters (m = 17,  = 400) 

 

Figure 4.6 depicts a sampling procedure where the size of the sample is held 

fixed, i.e., N = 10, and the sampling process and ring generation has been repeated 100 

times.  For a fixed confidence level of 90% one would expect that ten rings would not 

encompass the true distribution parameters.  Indeed that is the case.  The 90 likelihood 

confidence rings that encompassed the true distribution parameters are outlined in blue.  

The 10 likelihood confidence rings that did not contain the distribution parameters are 

outlined in dark orange. 
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Figure 4.6 100 Numbers of Likelihood Confidence Rings for N = 10, γ = 0.9 and 

True Weibull Distribution Parameters (m = 17,  = 400) 

 

Finally we combine the two concepts, i.e., the likelihood confidence ring and the 

material performance curve.  This is depicted in Figure 4.7.  Here the material 

performance curve given in Figure 4.2 is overlain with the likelihood confidence ring 

from Figure 4.3.  This is a graphical representation of the quality assurance process.  

Rings that reside completely to the right of the material performance curve would 

represent “acceptable” materials.  Those rings to the left would represent unacceptable 

materials and would be rejected.  In the specific case presented the material performance 

curve cuts through the likelihood confidence ring.  In this case there are certain regions of 

the likelihood confidence ring that produce a “safe” design space and there is a region of 
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the likelihood confidence ring that produces an “unsafe” design space.  In this situation 

we know the distribution parameters and they were purposely chosen to the right of the of 

the material performance curve.  But given the sample size the ring did not reside entirely 

in the safe region.  Moreover, in normal designs we never know the true distribution 

parameters so we do not know where the true distribution parameter pair resides inside 

the likelihood confidence ring.   

 

Figure 4.7 Material Performance Curve and Likelihood Confidence Ring Contour 

for N=10 and True Weibull Distribution Parameters (m = 17,  = 400) 

 

For the case where the likelihood confidence ring resides totally to the left of the 

performance curve the choice to reject the material is quite clear.  When the likelihood 

confidence ring lies completely to the right of the material performance curve, then once 

again, the choice is quite clear – accept the material.  When the material performance 

curve slices through the likelihood confidence ring we can shift the material performance 

curve to the left, as is depicted in Figure 4.8.  This shift represents a reduction of 
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component reliability, or alternatively an increase in the component probability of failure.  

Alternatively, the confidence bound associated with likelihood confidence ring can be 

reduced so the ring shrinks enough such that the ring is completely to the right of the 

material performance curve.  This is depicted in Figure 4.9. 

 

Figure 4.8 Two parallel Material Performance Curves and Likelihood Confidence 

Ring for True Weibull Distribution Parameters (m = 17,  = 400) 
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Figure 4.9 Material Performance Curves and Likelihood Confidence Rings after 

changing γ Values for True Weibull Distribution Parameters (m = 17,  = 400) 

 

An interesting aspect of this approach to quality assurance is that it seems that the 

likelihood confidence rings give a good indication of which side of the material 

performance curve the true distribution parameters lies.  If the material performance 

curve slices through a likelihood confidence ring for a specified confidence level, then as 

the ring size is diminished the ring becomes tangent to one side of the curve or another.  

At the time this was written it was our experience that the side of the component 

reliability curve that the ring becomes tangent to matches with the side in which the true 

distribution parameters lie.  It is emphasized that this is anecdotal.  An example of where 

the true distribution parameters were chosen to the left of the material performance curve 

is depicted in Figure 4.10.  The true distribution parameters are known because we are 

conducting a Monte Carlo simulation exercise to produce the data.  As the confidence 
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level is reduced in Figure 4.10 the rings become tangent to the curve on the rejection side.  

This has not been rigorously proven, but it is an interesting observation from the 

interrogation of the process. 

 

Figure 4.10 Material Performance Curves and Likelihood Confidence Rings after 

changing γ Values for True Weibull Distribution Parameters (m = 6,  = 350) 
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CHAPTER V 

SUMMARY AND FUTURE WORK 

 

 In summary, this effort focused on ceramic materials and the details associated 

with calculating point estimates for the Weibull distribution parameters associated with 

the tensile strength.  One can easily generate point estimates from ceramic failure data 

using maximum likelihood estimators (recommended) or other estimators (e.g., linear 

regression or method of moments).  What is not readily available is the ability to assess 

the quality of the point estimates.  More information regarding the population, i.e., more 

data, will always improve point estimates; the question becomes how much data is 

sufficient given the application.  The work outlined in this thesis speaks directly to this 

issue. 

 The details of calculating point estimates were presented and are summarized in 

Table 5.1.  The concept of size scaling was introduced.  The methodology is based on the 

well accepted practices outlined in ASTM C 1239.  The system of equations needed to 

compute the Weibull parameters were presented in terms of a flaw population spatially 

distributed along the surface of the test specimen. 
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 Hypothesis testing and the relationship it maintains with parameter estimation 

were outlined.  A test statistic was defined which was then used to map out an acceptance 

region in the distribution parameter space.  This provided the theoretical support for the 

equations used to generate the likelihood rings.  Inferential statistics allowed us to 

generate confidence bounds on the true distribution parameters utilizing the test data at 

hand.  These bounds are dependent on the size of the sample used to calculate point 

estimates.  The effort focused on a particular type of confidence bound known as 

likelihood confidence rings.   

 Component reliability curves were discussed.  A transformation method for size 

scaling available in ASTM C 1683 was utilized to demonstrate how a simple component, 

a thin wall pressure vessel, could have an attending component probability of failure 

curve presented in terms of the test specimen geometry.  In the case presented here the 

test specimen was a four point bend bar.  The concepts of the likelihood confidence rings 

and the component probability of failure curves in terms of a test specimen were 

combined graphically.  This combination gives rise to a material qualification process.  

This process combines information regarding the reliability of the component as well as 

the parameter estimates to assess the quality of the material.  A summary of the procedure 

is outlined in Table 5.1. 
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Table 5.1 Procedure For Establishing Performance Curves  

and Likelihood Confidence Ring 

 

Steps Procedure 

1. Develop the “Component Performance Curve.”  Find the Weibull distribution 

parameter pairs (m, σ0) that satisfy equation (4.6) for a specific component and 

stipulated probability of failure.  In this thesis the structural component was a thin 

wall pressure vessel and the probability of failure was specified as 

  

Pf = 1:500,000 

 

Plot  the m - σ0 curve (Figure 4.1) for a given component failure probability. 

2. Establish the “Material Performance Curve.” Convert the Component 

Performance Curve to specific test specimen geometry.  In this thesis the four-

point bend specimen was used and dimensions are chosen as per ASTM C1161 

configuration B. Convert the material characteristic strength, σ0, to a 

characteristic strength (σθ) associated with a given test specimen.  Here the 

expression 

   
A

m
effective

AA



1

0
  

 

was used for corresponding values of m. The effective area Aeffective was calculated 

from equation (4.15). Plot the m - σθ curve (Figure 4.2) for a given component 

failure probability. 

4. Estimate the Weibull parameters using maximum likelihood estimators. i.e., 
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from the strength data.  Select a confidence level appropriate for the application 
 

γ = 1 – α 
5. Use the test statistic T and compute pairs of (m, σθ) using the expression 
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Draw the likelihood confidence ring (Figure 4.3).  Adjust the confidence ring 

such that it is tangent to the Material Performance Curve. 
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 Looking beyond this effort, the approach outlined here would serve the nuclear 

graphite industry as well.  Components fabricated from graphite will be used extensively 

in the next generation of nuclear reactors.  Graphite is a brittle material in tension as well 

as in compression.  However, the size effect exhibited by graphite materials is not 

characteristic of the size effect exhibited by ceramic materials.  When a range of test 

specimen geometries are tested the mean strength from one size specimen to the next size 

does not faithfully follow the Weibull size scaling outlined in this work.  There is a sense 

in the literature that density plays a role in impacting the size effect in graphite material.  

Mapping out an appropriate approach that would allow the methods outlined here to be 

adapted in qualifying components fabricated from graphite and utilized in nuclear 

reactors. 
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