Synthesis and Cytotoxic Analysis of Some Disodium 3β,6β-Dihydroxysterol Disulfates

Jianguo Cui
Guangxi Teachers Education University

Hui Wang
Guangxi Teachers Education University

Yi Xin
Cleveland State University

Aimin Zhou
Cleveland State University, A.ZHOU@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation
Cui, Jianguo; Wang, Hui; Xin, Yi; and Zhou, Aimin, "Synthesis and Cytotoxic Analysis of Some Disodium 3β,6β-Dihydroxysterol Disulfates" (2009). Chemistry Faculty Publications. 414.
https://engagedscholarship.csuohio.edu/scichem_facpub/414

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Synthesis and cytotoxic analysis of some disodium 3β,6β-dihydroxysterol disulfates

Jianguo Cui, Hui Wang, Yanmin Huang, Yi Xin, Aimin Zhou

Introduction

In recent years, a variety of steroids with unusual and interesting structures have been isolated from a wide range of marine organisms, particularly from sponges and echinoderms [1–3]. Among these steroidal compounds, many are sulfated polyhydroxysterols in sodium salt forms [4,5]. These compounds have exhibited a broad spectrum of biologic activities, such as suppression of HIV replication [6–9], inhibition of protein tyrosine kinases [10] and antitumor activities [11–13]. Therefore they greatly attract the attention of organic chemists and biomedical scientists [14–16]. Most of the sulfated polyhydroxysteroids isolated from these echinoderms or ophiuroids are found that the disulfation occurs on two hydroxyls located at C-2 and C-3 or C-3 and C-7, or C-3 and C-21 [17]. In this report, we synthesized three disulfated steroids with sulfate groups located at C-3 and C-6 on the ring A and B as shown in Fig. 1 and determined their cytotoxicity against cancer cells. Interestingly we found that the cytotoxicity of these compounds was differentially changed along with the structure of the R group. Our finding provides new evidence for the relationship between chemical structure and biofunctions.

Results and discussion

Chemistry

The synthesis of sulfated 3,6-dihydroxysterol was based on the methodology developed by Arnostova et al. [18]. Here we present a more efficient method for the synthesis of disodium 3β,6β-dihydroxysterol disulfates with a cholesterol-like or stigmasterol-like or sitosterol-like side chain at position 17 [19,20]. As shown in Scheme 1, cholesterol, stigmasterol, and β-sitosterol were used as raw materials.

Compounds (4a–4c) were converted to the corresponding 4-en-3, 6-dioxysteroids (5a–5c) via oxidation with PCC in CH2Cl2. The reduction of 5a–5c by NaBH4 in the presence of NiCl2 gave 3β,6β-dihydroxysteroids (6a–6c) according to the synthetic method we previously developed [21]. The compounds 6a–6c presented a typical difference in their spectrum from their parent compounds 5a–5c. In the IR spectra the absorption at 1714 and 1686 cm⁻¹ for the original diketone carbonyl groups (CO) of 5b, was replaced by a new broad absorption at 3427 cm⁻¹ for 6b, indicating that the carbonyl groups in 5b had been changed to the hydroxy groups in 6b. In addition, the double bond of 5b at 1609 cm⁻¹ had been eliminated in 6b. In the ¹H NMR spectrum the chemical shifts at 3.650 ppm (1H, tt, J = 11.0, 5.0, C3-αH) and 3.803 ppm (1H, dd, J = 5.5, 2.5, C6-αH) for 6b showed a α-configuration of 3-H and 6-H.

Based on the synthetic method developed by Comin et al. [14], the treatment of 6a–6c with triethylammonium-sulfur tri-
oxide complex gave the ammonium sulfate of compounds 1–3, which was converted to their disodium salt via ion exchange (Scheme 1). The presence of the sulfate group in 1–3 was confirmed by the downfield shift of 3-H and 6-H to 3.961–3.968 ppm and 4.140–4.152 ppm, and by comparing to the 1H NMR spectra of 6a and 6c (3.65–3.70 ppm and 3.80–3.82 ppm, respectively).

Antitumor activities

The antitumor activities of all these sulfated 3β,6β-dihydroxysterols were determined in vitro on Sk-Hep-1 (human liver carcinoma), H-292 (human lung carcinoma), PC-3 (human prostate carcinoma) and Hey-1B (human ovarian carcinoma) tumor cells. The results were summarized as IC$_{50}$ values in nmol/mL in Table 1.

Compound 1 displayed significantly higher cytotoxicity against these cancer cells when compared to compounds 2 and 3. Interestingly, the cytotoxicity of the compounds against these cancer cells was increased along with the order of the side chain at 17-C: cholesterol-like side chain (1), stigmasterol-like side chain (2), and sitosterol-like side chain (3). Obviously the presence of a cholesterol-type side chain at 17-C is necessary for the best biological activity. The morphological change of the cancer cells induced by compound 1 was shown in Fig. 1A and B.

Experiments

The sterol and NaBH$_4$ were purchased from Merck Co. All chemicals and solvents were analytical grade and solvents were purified by general methods before being used. Melting points were determined on an X-5 apparatus and were uncorrected. Infrared spectra were measured with a Nicolet FT-360 Spectrophotometer. The 1H and 13C NMR spectra were recorded in CDCl$_3$ or DMSO on a Bruker AV-500 spectrometer at working frequencies 500 and 125 MHz, respectively. Chemical shifts are expressed in ppm (δ) values and coupling constants (J) in Hz. Mass spectra (ESI) were recorded on a LCMS-2010A instrument. The cell viability was determined by the MTS method using 96-well plates in a LD400 AD/ID analysis spectrometer (Beckman Coulter).

The synthesis of compounds 5a-5c

Cholest-4-en-3,5-dione (5a): Pyridinium chlorochromate (PCC) (2.564 g, 11.87 mmol) was added to a solution of cholesteral (4a) (0.924 g, 2.2 mmol) in dried CH$_2$Cl$_2$ (40 mL) in one portion at room temperature. The reaction was completed in 28 h. To the mixture was then added 30 mL of CH$_2$Cl$_2$, and the suspension was poured over a silica gel column and eluted with CH$_2$Cl$_2$. The eluate was washed with cold water and saturated brines. After drying over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the crude product was purified by chromatography on silica gel using petroleum ether (60–90°C)/EtOAc (5: 1) as the eluent to give 0.795 g (84%) of 5a as pale yellow crystals, m.p. 90–91°C; IR (KBr) ν 2953, 2985, 2865, 1693, 1600, 1486, 1249, 1221, 1117, 942 cm$^{-1}$; 1H NMR (CDCl$_3$, 500 MHz): 0.746 (3H, s, 18-CH$_3$), 0.886 (3H, d, J = 6.4, 26 or 27-CH$_3$), 0.899 (3H, d, J = 6.4, 26 or 27-CH$_3$), 0.952 (3H, d, J = 6.5, 21-CH$_3$), 1.117 (3H, s, 19-CH$_3$), 2.546 (1H, dd, J = 14.5, 5.2, C$_2$-O), 7.265 (1H, dd, J = 16.0, 4.0, C$_7$-O), 6.356 (1H, s, C$_8$-H).

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sk-Hep-1</th>
<th>H-292</th>
<th>PC-3</th>
<th>Hey-1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>63</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>120</td>
<td>121</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
</tr>
</tbody>
</table>

The MTS method was used to analyze the antiproliferative activity.

![Fig. 1](image-url)

Fig. 1. The morphology of cancer cells. Hey 1B (A) and Sk-Hep-1 (B) cells were treated with compound 1 at various doses for 24 h and 48 h, respectively. The photos of cell morphology were taken under an Olympus CKX41 microscope at 100× magnification.
24-Ethylcholest-4,22-dien-3,6-dione (5b): Yield: 83%, m.p. 134–135 °C; IR (KBr) ν: 2959, 1714, 1688, 1609, 969, 864 cm⁻¹; 1H NMR(CDCl₃, 500 MHz): 0.743(3H, s, 18-CH₃), 0.805(3H, t, J = 7.0, 29-CH₃), 0.798(3H, d, J = 6.5, 26- or 27-CH₃), 0.849(3H, d, J = 6.5, 26- or 27-CH₃), 1.036(3H, d, J = 7.0, 21-CH₃), 1.169(3H, s, 19-CH₃), 5.040(1H, dd, J = 15.2, 9.0, C₂₂-H), 5.150(1H, dd, J = 15.2, 8.5, C₂₃-H), 6.171(1H, s, C₃-H).

24-Ethylcholest-4-ene-3,6-dione (5c): Yield: 86%, m.p. 172–174 °C. IR (KBr) ν: 2959, 1683, 1601, 1581, 1461, 1377, 1246, 1124, 948, 871 cm⁻¹; 1H NMR(CDCl₃, 500 MHz): 0.724(3H, s, 18-CH₃), 0.816(3H, d, J = 7.0, 26- or 27-CH₃), 0.841(3H, d, J = 7.0, 26- or 27-CH₃), 0.848(3H, t, J = 8.0, 29-CH₃), 0.935(3H, d, J = 6.5, 21-CH₃), 1.167(3H, s, 19-CH₃), 2.13–2.17(1H, m, C₂₂-CH), 2.44–2.58 (2H, m, C₂₇-βH and C₂₃-βH), 2.682(1H, dd, J = 15.5, 4.5, C₃⁻αH), 6.170(1H, s, C₄⁻H).

The synthesis of compounds 6a–6c

Cholest-3β,6β-diol (6a): NaBH₄ (90 mg, 2.38 mmol) was added to a solution of 5a (200 mg, 0.50 mmol) and NiCl₂·6H₂O (120 mg, 0.50 mmol) in CH₃OH (20 mL) in 1 min at room temperature. After 20 min, the reaction was stopped. The solution was neutralized with 1 M HCl. After evaporating the majority of the MeOH under reduced pressure, ethyl acetate (40 mL) was added to the residue. The resulting solution was washed with cold water and saturated brines. After drying over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the crude product was then purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (1:1) as the eluent, to give 6a as a white solid (164 mg, 81%), m.p. 161–162 °C; IR (KBr) ν: 3399, 2925, 2886, 1470, 1360, 1319, 1172, 1078, 1041, 1021, 955, 767 cm⁻¹; 1H NMR(CDCl₃, 500 MHz): 0.709(3H, S, 18-CH₃), 0.878(3H, Jd = 2.2, 26- or 27-CH₃), 0.891(3H, d, J = 6.5, 26- or 27-CH₃), 0.927(3H, Jd = 6.4, 21-CH₃), 1.052(3H, s, 19-CH₃), 3.64–3.82(1H, m, C₃⁻αH), 3.825(1H, s, C₆⁻αH), 4.152(1H, Jd = 3.4, C₆⁻βH), 5.031(3H, Jd = 15.1, 8.6, C₂₂-CH), 5.161(1H, dd, J = 15.1, 8.8, C₂₃-H); 13C NMR(DMSO, 125 MHz): 35.1(1-C), 72.4(2-C), 70.1(3-C), 33.4(4-C), 31.8(5-C), 76.1(6-C), 45.7(7-C), 29.2(8-C), 54.2(9-C), 38.6(10-C), 21.4(11-C), 40.6(12-C), 44.2(13-C), 56.4(14-C), 25.3(15-C), 29.0(16-C), 56.0(17-C), 12.7(18-C), 15.9(19-C), 42.6(20-C), 21.6(21-C), 138.6(22-C), 129.3(23-C), 47.8(24-C), 30.5(25-C), 21.1(26-C), 19.4(27-C), 24.4(28-C), 12.6(29-C); (-)ESIMS m/z: 611[M–Na]⁻, 588[M–2Na]⁻.

Disodium 24-ethyl-3β,6β-dihydroxycholest-22-ene disulfate (7): Yield: 65%; m.p. 242–249 °C; IR(KBr) ν: 3427, 2925, 1634, 1401, 1209, 815 cm⁻¹; 1H NMR(DMSO, 500 MHz): 0.650(3H, s, 18-CH₃), 0.798(3H, d, J = 7.0, 26- or 27-CH₃), 0.818(3H, d, J = 7.0, 26- or 27-CH₃), 0.825(3H, t, J = 6.5, 29-CH₃), 0.896(3H, d, J = 6.3, 21-CH₃), 0.923(3H, s, 19-CH₃), 1.924(1H, brd, J = 12.5, C₂₂-βH), 3.961(1H, m, C₃⁻H), 4.181(1H, d, J = 3.5, C₂₃-H); (-)ESIMS m/z: 613[M–Na]⁻, 590[M–2Na]⁻.

Assay for cell viability

Materials and methods
Stock solutions of compounds 1, 2 and 3, were prepared in sterile dimethyl sulfoxide (DMSO) (Sigma) at a concentration of 10 mg/mL, and diluted to proper concentrations according to the experimental design with the cell culture medium.

Cell culture
SK-Hep-1, H-292, PC-3 (ATCC) and Hey-1B (a gift from Dr. Yan Xu, University of Indiana) cells were cultured in a proper medium supplemented with 10% fetal bovine serum and 0.1 g/L penicillin G + 0.1 g/L streptomycin sulfate in a humidified atmosphere of 5% CO₂ at 37 °C.

Treatment of cancer cells
Cancer cells (4 × 10⁶ cells/mL, 200 μL) were seeded into each well of a 96-well microtiter plate. After incubation for 24 h, the compounds with a series of concentrations (range 5–100 μg/mL) were added to the cells. An equal amount of DMSO was added to the cells as negative controls. All were treated in triplicate.

Determination of cell viability
MT Stetrazolium salt ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium]) (CellTitre 96 AQassess Non-Radioactive Cell Proliferation Assay, Cat #G5421, Promega Corporation) dye reduction assay was used to determine the cell viability. The assay is dependent on the
reduction of MTS by mitochondrial dehydrogenases of viable cells to a blue water soluble formazan product, which can be measured spectrophotometrically. The absorbance of the formazan product at 490 nm is in linear proportion to cell numbers. Briefly, after treatment (see 3.4.3) with the compounds for 48 h, the medium was removed and the cells were incubated with 100 μL of fresh medium plus 20 μL of MTS solution for additional 4 h according to the instruction provided by the manufacturer. The absorbance (A) at 490 nm was measured using a LD400 AD/LD analysis spectrometer (Beckman coulter). The IC50 value was calculated as the concentration of drug yielding 50% cell survival.

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (No.: 20562001), the Natural Science Foundation of Guangxi Province (No.: 0575054) of China.

References