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RADIATION VIEW FACTORS BETWEEN A DISK AND

THE INTERIOR OF A CLASS OF AXISYMMETRIC

BODIES INCLUDING CONVERGING DIVERGING

ROCKET NOZZLES

MARK RICHARD MURAD

ABSTRACT

A general symbolic exact analytic solution is developed for the radiation view

factors including shadowing by the throat between a divergence thin gas disk between

the combustion chamber and the beginning of the rocket nozzle radiating energy to

the interior downstream of the nozzle contour for a class of coaxial axisymmetric

converging diverging rocket nozzles. The radiation view factors presented in this

thesis for the projections which are blocked or shadowed through the throat radiating

downstream to the contour have never been presented before in the literature It was

found that the curvature of the function of the contour of the nozzle being either

concave up or down and the slope of the first derivative being either positive or

negative determined the values used for the transformation of the Stokes Theorem into

terms of x, r (radius) and f(x) for the evaluation of the line integral. The analytical

solutions from the view factors of, for example, the interior of a combustion chamber,

or any radiating heat source to a disk may then be applied to the solution of the

view factor of the disk to the interior of the rocket nozzle contour presented here.
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This modular building block type approach is what the author desires to allow the

development of an interstellar matter antimatter rocket engine. The gases of this

type of reaction shall approach those towards the speed of light, which shall involve a

transport phenomena, which the author is looking forward to researching the solution.
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CHAPTER I

MATHEMATICAL FORMULATION

The following procedure is employed to formulate the view factor between a

disk and the interior of an arbitrary axisymmetric body.

1. The contour integral method [6, page 81-88] [2] [1]is used to derive the shape

factor between a differential element and a disk.

2. An analytical expression for the view factor, dFd−δr is obtained from the disk

to the interior of a differential conical ring, which is generated by rotating the

above differential element around the axis passing through the center of the

disk.

3. The above result is integrated along the interior surface of the axisymmetric

body to give the view factor from a disk to the interior of a coaxial axisymmetric

body. Details of mathematical formulation procedure follow.

1
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1.1 View Factor From a Differential Planar Source

to a Disk

Figure 1: Differential Element with a full view and Normal in Quad I Radiating to
Disk

This problem can be divided into two parts, namely, the disk is fully visible by

the differential element and the disk is partially visible from the differential element

in Figure 1 . The first case holds when the plane of the differential element does not

intersect the disk, while the second case corresponds to the situation when dA2 and

the disk intersect.

Case la. The disk is fully visible by the element This case holds when the normal

vector, ~n2 points towards the II Quadrant with respect to itself plus −π/2 ≤ θ ≤ π/2

and tan−1 h
p−r

≤ θ ≤ tan−1 h
p+r

where r is the disk radius, h and p are the distance

from the disk and differential element to the center of coordinates. The shape factor

FdA1−d can be expressed as the sum of the contour integrals in the following manner

[1].

FdA1−d = l2

∮

C

(z2 − z1)dy − (y2 − y1)dz

2πL2
+ m2

∮

C

(x2 − x1)dz − (z2 − z1)dx

2πL2
+

n2

∮

C

(y2 − y1)dx − (x2 − x1)dy

2πL2
(1.1)

Where C is the contour around the disk and 12, m2 and n2 are the direction
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Figure 2: Differential Element with a full view and Normal in Quad 11 Radiating to
Disk

cosines of the outward normal vector, ~n2

It can be seen from Figure 2 that x2 = 0, y2 = P, z2 = 0, x = r sin ω, y =

r cos ω, z = h, 12 = 0, m2 = − sin(−θ), n2 = cos(−θ) and L2 = r2 sin2 ω + (p −

r cos ω)2 + h2 = r2 + p2 + h2 − 2pr cos ω

FdA1−d = 0 − sin(−θ)

∮

C

−(h − 0)r cos ωdω

2π(r2 + p2 + h2 − 2pr cos ω)

+ cos(−θ)

∮

C

(r cos ω − p)r cos ωdω − (r sin ω − O)(−r sin ωdω)

2π(r2 + p2 + h2 − 2pr cos ω)
(1.2)

FdA1−d = cos(−θ)

∮

C

r2 − pr cos ωdω

2π(r2 + p2 + h2 − 2pr cos ω)

− sin(−θ)

∮

C

−hr cos ωdω

2π(r2 + p2 + h2 − 2pr cos ω)
(1.3)

FdA1−d = cos(−θ)

∫ 2π

0

r2 − pr cos ωdω

2π(r2 + p2 + h2 − 2pr cos ω)

− sin(−θ)

∫ 2π

0

−hr cos ωdω

2π(r2 + p2 + h2 − 2pr cos ω)
(1.4)

and the result of this integration is as follows

F(dA2−d)RegionINormalQuadII =

p cos(θ) + h sin(θ) +

q

1− 4pr

h2+(p+r)2
(−p(h2+p2−r2) cos(θ)−h(h2+p2+r2) sin(θ))

h2+(p−r)2

2p
(1.5)
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Figure 3: Differential Element with a full view and Normal in Quad III radiating to
Disk

Case lb. The disk is fully visible by the element This case holds when the

normal vector, ~n2 points towards Quadrant III with respect to itself plus π/2 ≤ θ ≤ π

and tan−1(h/(p − r)) ≤ θ ≤ tan−1(h/(p + r)) where r is the disk radius, h and p are

the distance from the disk and differential element to the center at coordinates. The

shape factor FdA2−d can be expressed as the sum of the contour integrals by following

equation 1.1 as illustrated below. Where C is the contour around the disk and l2, m2

and n2 are the direction cosines of the outward normal vector, ~n2

from Figure 3 that x2 = 0, y2 = P, z2 = 0, x = r sin ω, y = r cos ω, z = h, l2 =

0, m2 = − sin(−θ), n2 = cos(−θ) and L2 = r2 sin2 ω + (p − r cos ω)2 + h2 = r2 + p2 +

h2 − 2pr cos ω .

Substituting the above expressions into equation 1.1 yields.

F(dA2−d)RegionINormalQuadIII =

−p cos θ + h sin θ +

q

1− 4pr

h2+(p+r)2
(p(h2+p2−r2) cos θ−h(h2+p2+r2) sin θ)

h2+(p−r)2

2p
(1.6)

Case IIa. The disk is partially visible by the element. This case holds when the

normal vector ~n2, points towards the II Quadrant with respect to itself plus 0 ≤ θ ≤ π
2

and tan−1 h
p+r

≤ θ ≤ tan−1 h
p−r

. As shown in Figure 4, the differential element can

only ”see” a part of the disk (the shaded part in the top view of Figure 4).
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Figure 4: Differential Element with partial view and Normal in Quad II radiating to
Disk

The corresponding contour C consists of a partial circle and a straight line.

For the circle part, x = r sin ω, y = r cos ω, Z = h, l2 = 0, m2 = − sin ω, n2 = cos ω

and L2 = r2 + p2 + h22Pr cos ω, with contour limits of integration as from

ω = cos−1(h cot θ+p

r
) to ω = π . For the straight line part,

x = x, y = p+h cot θ, z = h, x2 = 0, y2 = p, z2 = 0 and L2 = x2 +h2 cot2 θ +h2

, with contour limits of integration as from x = O to x =
√

r2 − (h cot θ + p)2 .

Substituting the above expressions into equation 1.1 and integrating yields
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F(dA2−d)RegionIINormalQuadII =

+
h arctan(

√
F1√
G1

) cos(θ) cot(θ)

π
√

G1
+

h arctan(
√

F1√
G1

) sin(θ)

π
√

G1
+

+ 2 cos(θ)(
1

4
−

arccos(A1) +
2(H1) arctan hypobolic

(C1) tan(
arccos(A1)

2 )
√

D1√
D1

4π
)

− 2 cos(θ)(
(H1)

√

Sign(D1)
√

−( Sign(C1)2

Sign(D1)Sign(E1)2
)Sign(E1)

4
√

D1Sign(C1)
)

− 2 sin(θ)(
−(h(arccos(A1) +

2(B1) arctan hyperbolic(
(C1) tan(

arccos(A1)
2 )

√
D1

)
√

D1
))

4Pπ
)

− 2 sin(θ)(
h(1 −

(B1)
√

Sign(D1)

r

−(
Sign(C1)2

Sign(D1)Sign(E1)2
)Sign(E1)

√
D1Sign(C1)

)

4p
)

where

A1 =
p + h cot θ

r

B1 = h2 + p2 + r2

C1 = h2 + (p + r)2

D1 = −h4 − (p2 − r2)2 − 2h2(p2 + r2)

E1 = π − cos−1(A1)

F1 = −p2 + r2 − 2hp cot θ − h2 cot2 θ

G1 = h2 + h2 cot2 θ

H1 = h2 + p2 − r2

(1.7)

Case IIb. The disk is partially visible by the element This case holds when

the normal vector, ~n2 points towards the III Quadrant with respect to itself plus

π/2 ≤ θ ≤ π and tan−1 h
p+r

≤ θ ≤ tan−1 h
p−r

. As shown in Figure 5, the differential

element can only ”see” a part of the disk (the shaded part in the top view of Figure 5).
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Figure 5: Differential Element with partial view and Normal in Quad III radiating to
Disk

The corresponding contour C consists of a partial circle and a straight line.

For the circle part, x = r sin ω, y = r cos ω, z = h, l2 = 0, m2 = − sin θ, n2 = − cos θ

and L2 = r2 + p2 + h2 − 2pr cos ω with contour limits of integration as from ω =

cos−1((p − h cot(π − θ))/r) to ω = π .For the straight line part, x = x, y = p +

h cot θ, Z = h, x2 = 0, y2 = p, z2 = 0 , and L2 = x2 + h2 cot2 θ + h2 , with contour

limits of integration as from x = 0 to x =
√

r2 − (p − h cot(π − θ))2 . Substituting

the above expressions into equation 1.1 and integrating yields
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F(dA2−d)RegionIINormalQuadIII =

−
h arctan(

√
F2√
G2

) cos(θ) cot(θ)

π
√

G2
+

h arctan(
√

F2√
G2

) sin(θ)

π
√

G2

− 2 cos(θ)(
1

4
−

arccos(A2) +
2(H2) arctan hyperbolic(

C2 tan(
arccos(A2)

2 )
√

D2
)

√
D2

4π
)

− 2 cos(θ)(
H2

√

Sign(D2)
√

−( Sign(C2)2

Sign(D2)Sign(E2)2
)Sign(E2)

4
√

D2Sign(C2)
)

+ 2 sin(θ)(
h(arccos(A2) +

2(B2) arctan hyperbolic(
C2 tan(

arccos(A2)
2 )

√
D2

)
√

D2
)

4pπ
)

− 2 sin(θ)(
h(1 −

B2
√

Sign(D2)

r

−( Sign(C2)2

Sign(D2)Sign(E2)2
)Sign(E2)

√
D2Sign(C2)

)

4p
)

where

A2 =
p + h cot θ

r

B2 = h2 + p2 + r2

C2 = h2 + (p + r)2

D2 = −h4 − (p2 − r2)2 − 2h2(p2 + r2) = −(h2 + (p + r)2)(h2 + (p − r)2)

E2 = π − cos−1(A2)

F2 = −p2 + r2 − 2hp cot θ − h2 cot2 θ = (r − p − h cot θ)(r + p + h cot θ)

G2 = h2 + h2 cot2 θ = h2/ sin2 θ

H2 = h2 + p2 − r2

(1.8)

When

0 ≤ θ ≤ π and tan−1 h
p+r

≤ θ ≤ tan−1 h
p−r

Equation 1.5 through Equation 1.8 for the Radiation View Factors between
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and disk and the interior of axisymmetric bodies are not yet available in the open

literature. Figure 6 plots the view factors from the differential element to the disk

versus θ with p as.a parameter when H = 1

Figure 6: Graph of the radiation view factors of the differential element versus θ with
p as parameter.



10

1.2 View Factor from A Disk to A Coaxial Differ-

ential Ring

Equation 1.5 through Equation 1.8 are employed to develop an expression for

the geometry factor from a disk to the interior of a coaxial differential conical ring.

We now consider the radiation between the disk and any differential element on the

interior of the coaxial ring as shown in Figure7. The application of the reciprocal rule

leads to

Figure 7: Disk radiating to interior of coaxial differential conical Ring 3D view

dFd−dA2 =
dA2

πr2
FdA2−d =

ydξds

πr2
FdA2−d (1.9)

Where y is the radius of the differential ring.
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Integrating dFd−dA2 with respect to ξ and noting that the FdA2−d is independent

of Ixi due to the symmetrical configuration, we obtain an expression for the view

factor from the disk to the coaxial differential ring as

dFd−δr =

∫ 2π

0

yds

πr2
FdA2−ddξ =

2y

r2
FdA2−dds (1.10)

Where FdA2−d is given by Equation 1.5 through Equation 1.8. Note that the expression

for dFd−δr is in a closed form.
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1.3 View Factor from a Disk to the Interior of a

Coaxial Axisymmetric Body

Let the differential ring obtained from Equation 1.10 be a differential section

of the interior of an axisymmetric body and let y = f(x) be the function generator of

this axisymmetric body (i.e., the axisymmetric body is generated from the rotation

of f(x) around the x-axis). Referring to Figure 8 we have

Figure 8: Nozzle 3D view

ds =
√

1 + [f ′(x)]2dx

θ = cot−1[f ′(x)]

sin θ =
1

√

1 + [f ′(x)]2

cos θ =
f ′(x)

√

1 + [f ′(x)]2

p = f(x)

h = x

(1.11)
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Substituting Equation 1.5 through Equation 1.8 into Equation 1.10 and making

use of Equation 1.11 we obtain the following results for dFd−δr in terms of x, r and

f(x).

dF(d−δr)RegionINormOuadII =

− (x + f(x)f ′(x) −
√

1 + 4rf(x)

x2+(r−f(x))2
(x(r2 + x2 + f(x)2) + f(x)(−r2 + x2 + f(x)2)f ′(x))

r2 + x2 + 2rf(x) + f(x)2 )
dx

r2

(1.12)

dF(dA2−δr)RegionINormOuadII =

−

√

1 + f ′(x)2

r2

(
x

√

1 + f ′(x)2
+

f(x)f ′(x)
√

1 + f ′(x)2

+

√

1 + 4rf(x)

x2+(r−f(x))2
(−(x(r2+x2+f(x)2)√

1+f ′(x)2
) − f(x)(−r2+x2+f(x)2)f ′(x)√

1+f ′(X)2
)

x2 + (−r − f(x))2 )
dx

r2

(1.13)

dF(dA2−δr)RegionINormOuadIII =

(x − f(x)f ′(x)

+

√

1 − 4rf(x)

x2+(r+f(x))2
(−(x(r2 + x2 + f(x)2)) + f(x)(−r2 + x2 + f(x)2)f ′(x))

r2 + x2 − 2rf(x) + f(x)2 )
dx

r2

(1.14)
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When 0 ≤ x ≤ xi

dF(dA2−δr)RegionIInormOuadII =

(2f(x)f1 − x(G22 − F22 f2) + f(x)f ′(x)(G22 − J22 f2))
dx

πrA2

where

f1 =

√
A22

|x| arctan(

√
H22√
I22

)

f2 = 2
arctanhyperbolic(C22 tan(D22)√

E22
)

√
E22

+π

√

Sign(E22)
√

−( Sign(C22)2

Sign(E22)Sign(G22)2
)Sign(G22)

√
E22Sign(C22)

A22 = 1 + f ′(x)
2

B22 =
f(x) + xf ′(x)

r

C22 = x2 + (r + f(x))2

D22 =
1

2
cos−1(B22)

E22 = −x4 − (f(x)2 − r2)2 − 2x2(f(x)2 + r2) = −(x2 + (f(x) + r)2)(x2 + (f(x)− r)2)

F22 = x2 + f(x)2 + r2

G22 = π − cos−1(B22)

H22 = r2 − f(x)2 − 2xf(x)f ′(x)− x2f ′(x)2 = (r − f(x)− xf ′(x))(r + f(x) + xf ′(x))

I22 = x2 + x2f ′(x)
2

= x2A22

J22 = x2 + f(x)2 − r2

(1.15)
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dF(dA2−δr)RegionIInormOuadIII =

(2f(x)f1 − x(G23 − F23 f2) + f(x)f ′(x)(G23 − J23 f2))
dx

πrA2

where

f1 =

√
A23

|x| arctan(

√
H23√
I23

)

f2 = 2
arctanhyperbolic(C23 tan(D23)√

E23
)

√
E23

+π

√

Sign(E23)
√

−( Sign(C23)2

Sign(E23)Sign(G23)2
)Sign(G23)

√
E23Sign(C23)

A23 = 1 + f ′(x)
2

B23 =
f(x) + xf ′(x)

r

C23 = x2 + (r + f(x))2

D23 =
1

2
cos−1(B23)

E23 = −x4 − (f(x)2 − r2)2 − 2x2(f(x)2 + r2) = −(x2 + (f(x) + r)2)(x2 + (f(x)− r)2)

F23 = x2 + f(x)2 + r2

G23 = π − cos−1(B23)

H23 = r2 − f(x)2 − 2xf(x)f ′(x)− x2f ′(x)2 = (r − f(x)− xf ′(x))(r + f(x) + xf ′(x))

I23 = x2 + x2f ′(x)
2

= x2A23

J23 = x2 + f(x)2 − r2

(1.16)

To determine the configuration factor between the disk and the interior of a

coaxial axisymmetric body, expressions given by Equation 1.12 through Equation 1.16

have to be integrated over the entire interior of the axisymmetric body. To do so

we divide the interior of the axisymmetric body into the following three regions as

illustrated in Figure 9.
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Figure 9: 3D view of a nozzle labeled Full and Partial view radiation sections

Region I. The region which can be seen from the disk but none of the tangent planes

intersect the disk, i.e., xi ≤ x ≤ xe. portion of the interior of the axisymmetric

body whose tangent planes always intersect the disk, i.e.,xi ≤ x ≤ xe. the

interior of the axisymmetric body which cannot be seen by the disk, i.e., x ≥ xe.

Integrating

dFd−δr over the Regions I and II mentioned above yields the radiation shape

factor from the disk to the entire interior of the axisymmetric body, Fd−ax,

Fd−ax =

∫ xi

0

dFd−δrI
+

∫ xe

xi

dFd−δrII
= Fd−I + Fd−II (1.17)

The first part of the integrals in Equation 1.17 is most unlikely to be explic-

itly integrated exactly as being an explicit definite integral so therefore a numerical

integration may be used to solve Fd−I which is written in the following forms:
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F(d−I)RegionINormQuadII =

−
∫ xi

0

(x + f(x)f ′(x)−

√

1 + 4rf(x)

x2+(r−f(x))2
(x(r2 + x2 + f(x)2) + f(x)(−r2 + x2 + f(x)2)f ′(x))

r2 + x2 + 2rf(x) + f(x)2 )
dx

r2

(1.18)

F(d−I)RegionINormQuadII =

−
∫ xi

0

2f(x)

r2
(

1

2f(x)
(

x
√

1 + f ′(x)2
+

f(x)f ′(x)
√

1 + f ′(x)2

+

√

1 + 4rf(x)

x2+(r−f(x))2
(−(x(r2+x2+f(x)2)√

1+f ′(x)2
) − f(x)(−r2+x2+f(x)2)f ′(x)√

1+f ′(x)2
)

x2 + (−r − f(x))2 ))

√

1 + f ′(x)2dx

(1.19)

F(d−I)RegionINormQuadIII =

∫ xi

0

(x − f(x)f ′(x)

+

√

1 − 4rf(x)

x2+(r+f(x))2
(−(x(r2 + x2 + f(x)2)) + f(x)(−r2 + x2 + f(x)2)f ′(x))

r2 + x2 − 2rf(x) + f(x)A2
)
dx

r2

(1.20)
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F(d−I)RegionINormQuadIII =

∫ xi

0

2f(x)

r2

1

2f(x)
(

x
√

1 + f ′(x)2
− f(x)f ′(x)

√

1 + f ′(x)2

+

√

1 − 4rf(x)

x2+(r+f(x))2
(−(x(r2+x2+f(x)2)√

1+f ′(x)2
) + f(x)(−r2+x2+f(x)2)f ′(x)√

1+f ′(x)2
)

x2 + (−r + f(x))2 )

√

1 + f ′(X)2dx

(1.21)

The second part of the integrals in Equation is most unlikely to be explic-

itly integrated exactly as being an explicit definite integral so therefore a numerical

integration may be used to solve Fd−II which is written in the following forms:
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F(d−II)RegionIINormQuadII =

∫ xe

xi

(2f(x)f1 − x(G22 − F22f2) + f(x)f ′(x)(G22 − J22f2))
dx

πr2

where

f1 =

√
A22

|x| arctan(

√
H22√
I22

)

f2 = 2
ArcTanh(C22 tan(D22)√

E22
)

√
E22

+ π

√

Sign(E22)
√

−( Sign(C22)2

Sign(E22)Sign(G22)2
)Sign(G22)

√
E22Sign(C22)

A22 = 1 + f ′(x)
2

B22 =
f(x) + xf ′(x)

r

C22 = X2 + (r + f(x))2

D22 =
1

2
cos−1(B22)

E22 = −x4 − (f(x)2 − r2)2 − 2x2(f(x)2 + r2) = −(x2 + (f(x) + r)2)(x2 + (f(x)− r)2)

F22 = x2 + f(X)2 + r2

G22 = π − cos−1(B22)

H22 = r2 − f(x)2 − 2xf(x)f ′(x)− x2f ′(x)2 = (r − f(x)− xf ′(x))(r + f(x) + xf ′(x))

I22 = x2 + x2f ′(x)
2

= x2A22

J22 = X2 + f(x)2 − r2

(1.22)
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F(d−II)RegionIINormQuadIII =

∫ xe

xi

(2f(x)f1 − x(G23 − F23f2) + f(x)f ′(x)(G23 − J23f2))
dx

πr2

where

f1 =

√
A23

|x| arctan(

√
H23√
I23

)

f2 = 2
ArcTanh(C23 tan(D23)√

E23
)

√
E23

+ π

√

Sign(E23)
√

−( Sign(C23)2

Sign(E23)Sign(G23)2
)Sign(G23)

√
E23Sign(C23)

A23 = 1 + f ′(x)
2

B23 =
f(x) + xf ′(x)

r

C23 = X2 + (r + f(x))2

D23 =
1

2
cos−1(B23)

E23 = −x4 − (f(x)2 − r2)2 − 2x2(f(x)2 + r2) = −(x2 + (f(x) + r)2)(x2 + (f(x)− r)2)

F23 = x2 + f(X)2 + r2

G23 = π − cos−1(B23)

H23 = r2 − f(x)2 − 2xf(x)f ′(x)− x2f ′(x)2 = (r − f(x)− xf ′(x))(r + f(x) + xf ′(x))

I23 = x2 + x2f ′(x)
2

= x2A23

J23 = X2 + f(x)2 − r2

(1.23)

Referring to Figure 10 the integration limits in Equation 1.17 through Equa-

tion 1.23 can be obtained from the following Equation 1.24 and Equation 1.25:
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Figure 10: Limits of begining and end of Partial view factors Cross section y=f(x)
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xif
′(xi) − f(xi) = −r (1.24)

−xef
′(xe) − f(xi) = −r (1.25)



CHAPTER II

MATHEMATICAL FORMULATION OF

SHADOWING

The radiation of the differential area to the disk is shadowed by the throat

section where only tangent lines continue their path as illustrated in the following

Figure 11 through Figure 15 below.

FdA1−d = l2

∮

C

(z2 − z1)dy − (y2 − y1)dz

2πL2
+ m2

∮

C

(x2 − x1)dz − (z2 − z1)dx

2πL2
+

n2

∮

C

(y2 − y1)dx − (x2 − x1)dy

2πL2
(2.1)
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Figure 11: Shadowed projection through throat upon disk at zbegin=20
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Figure 12: Shadowed projection through throat upon disk at zbegin=20
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Figure 13: Shadowed projection through throat upon disk at zbegin=60

Figure 14: x=omega rotation around nonlinear cone axis, y=zbegin where the differ-
ential element, z=radius of curve projected upon the xy plane with center of curve
being the function alpha which moves along x axis depending on zbegin position see
alpha function in next figure
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Figure 15: alpha function which is the center of the radius of xy projected plane curve
vs. zbegin position
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x1 = P

Y1 = 0

z1 = 0

x2 = α + r cos ω

y2 = r sin ω

z2 = h

l1 = sin θ

m1 = 0

n1 = cos θ

L2 = ((((α + (r cos ω)) − p)2) + ((r sin ω)2) + h2))

dx2 = (∂z1α + ∂z1r cos ω)dz1 + (−r sin ω + ∂ωr cos ω)dω

dy2 = (r cos ω + ∂ωr sin ω)dω + (∂z1r sin ω)dz1

dz2 = 0

(2.2)

FdA2−d = sin(θ)

∫ 2π

0

h((r cos ω) + ((∂ωr) sin ω))dω

(2π((((α + (r cos ω)) − p)2) + ((r sinω)2) + h2))

+cos(θ)

∫ 2π

0

(((r sinω)(((∂ωr) cos ω) − r sin ω)) − (((α + (r cos ω)) − p)(r cos ω + ((∂ωr) sin ω))))dω

(2π((((α + (r cos ω)) − p)2) + ((r sin ω)2) + h2))

(2.3)
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FdA2−d =
−((p − α)

(

h2 + (−p + r + α)2) cos(θ) + h
(

h2 + (−p + r + α)2) sin(θ))

2 (p − α)
(

h2 + (−p + r + α)2
)

+

√

h2+(−p+r+α)2

h2+(p+r−α)2
((p − α) (h2 + p2 − r2 − 2 p α + α2) cos(θ) + h

(

h2 + r2 + (p − α)2
)

sin(θ))

2 (p − α)
(

h2 + (−p + r + α)2)

(2.4)

For an example of shadowing radiation view factor calculation, if we use a

surface plot of the radius of projection upon the disk as illustrated in Figure 14 which

center is from a function alpha that moves along the x axis as illustrated in Figure 15

where both function plots depend upon where the originating differential area source

of radiation along the rocket contour at zbegin as illustrated in the Figure 11through

Figure 13 We can take the equation of the surface plot and name it r and plug it in

to Equation 2.3 along with the equation for alpha and integrate from 0 to 2π with

respect to omega rotating around the nonlinear cones axis to end up with a result

in terms of zbegin and thus therefore allow us to eliminate the need of the problem

of the partial differential non linear tangent points curve rotated around the inside

of the throat and simply have where the source of radiation starts and then projects

upon the disk thus providing us for the first time no where to be found in the open

literature with a radiation view factor from the differential area shadowed through

the interior of a differential geometric surface of revolutions throat to a disk. which

is now provide by the author of this thesis as illustrated in Equation 2.4.

Now then we can take the result in Equation 2.4 and plug it in to Equation 1.10

to provide us with the radiation view factor of the differential circular ring shadowed

to the disk again no where available in the open literature.

Then we can take the result in the shadowed view factor for circular ring to disk

and then plug it into Equation 1.17 and integrate along the entire interior contour

of the axisymmetric differential geometric surface of revolution to then be provided
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for the first time the shadowed radiation view factor from a disk of the combustion

chamber to the interior contour of a rocket nozzle. No where to be found in the open

literature.

Why do we need this shadowing view factor between the disk and the interior

of rocket nozzle and Why is it so important? The answer is as follows, In order to get

the temperature downstream past throat to properly cool the rocket nozzle at any

point along its contour, this has been a problem since 1958 and which the first time

in man kinds history which now has been solved by the author of this thesis.



CHAPTER III

RESULTS AND DISCUSSION

Based on the aforementioned general formulations, equations (1-10) - (1-13),

the view factors from a disk to the interior of any converging diverging rocket nozzle

is investigated. The first illustration is with a straight line cone nozzle with the

following data in Figure 16.

please look at Figure 16 Figure 17 The example rocket nozzle in this thesis

which is the original problem rocket contour from 1958 by Robbins [5, 3, 4] at NASA

is from 0 to 69 but as illustrate by Robbins they could only calculate a view factor up

to where the z axis length of 14.3765 with a view factor of 0.9798436 as illustrated in

Table I. Robins [5, 3, 4] and all other authors considered the rest of the heat transfer

with the view factors from 0.9798436 to 1.0 to be considered as negligible but from

z=14.3765 where the view factor is 0.9798436 to z=69 along the z axis of the rocket

nozzle is where the view factor approaches or near a view factor value of 1.0 past the

invisible range of around z=14.3765 to around z=15.34 where then the shadowing

occurs is a very important section where compressible flow shock waves occur near

the exit of the rocket nozzle and where temperatures could not be calculated before

30
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Figure 16: Nozzle Geometry. Wall Thickness and Material, 0.020-Inch Stainless Steel;
Chamber Temperature, 4680 Degrees R; Throat Diameter, 6 Inches; Ratio of Inlet
Area To Throat Area, 16; Ratio of Exit Area to Throat Area, 59; Nozzle Axial
Length,70 Inches

Figure 17: Graph of Radiation View Factor of Disk to Interior of Rocket Nozzle
Length
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DISTANCE
FROM INLET
DISK ALONG
LENGTH
AXIS OF THE
INTERIOR
OF ROCKET
NOZZLE
CONTOUR

VIEW FACTOR
OF DISK TO
INTERIOR OF
THE ROCKET
NOZZLE
CONTOUR
FOR
SPECIFIED
DISTANCE
ALONG
LENGTH OF
ROCKET
NOZZLE AXIS

TOTAL VIEW
FACTOR OF
DISK TO THE
INTERIOR OF
ROCKET
NOZZLE
CONTOUR
FROM THE
BEGINNING
OF THE
ROCKET
NOZZLE TO
THE END OF
THE
SPECIFIED
DISTANCE
ALONG THE
ROCKET
NOZZLE
LENGTH AXIS

TOTAL VIEW FACTOR
OF DISK TO THE
INTERIOR OF ROCKET
NOZZLE CONTOUR
FROM THE BEGINNING
OF THE ROCKET
NOZZLE TO THE END
OF THE SPECIFIED
DISTANCE ALONG THE
ROCKET NOZZLE
LENGTH AXIS USING
Fdisk1-interior = 1 − Fdisk1-disk2

0-1 0.0799334 0.0799334 0.0799334

1-7 0.720457 0.8003904 0.800408

7-9 0.126896 0.92728 0.927339

9-9.47039 0.0250127 0.9522991 0.952352

9.47037-11 0.0062562 0.9585553 0.966566

11-14.3765 0.0212883 0.9798436

Table I: Table of Radiation View Factors of Disk to Interior of Rocket Nozzle up to
Invisible Section Range14.3765-15.34which is before where the Shadowing Phenomena
occurs Range15.34-69
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because the previous authors did not have the shadowing View factors that the au-

thor of this thesis have now provided today in his lords year of 2008. Nor did the

previous authors have the Super computers or the symbolic integration capabilities

of Mathematica or Maple which we now have today that we needed in order to have

done the shadowing view factors.

For the sake of a rough estimation of the view Factor of a disk to the interior

of a converging diverging rocket nozzle a View Factor of an enclosure around a disk

is considered to be near the value of 1 with considering the exit of the nozzle which

is out to the environment. Now if the View Factor of a disk at the beginning of

the rocket nozzle to the disk at the throat of a converging diverging nozzle value is

calculated, and then that value is subtracted from 1 which is the value of a disk with

an enclosure above, then this value therefore provides a rough estimate of the view

factor of a disk to the interior of a rocket nozzle which then may be obtained for a

rough comparison of the contour line integration values calculated in this paper. For

example the view factor of the inlet disk to the throat disk and interior of the given
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nozzle in Figure 16 is illustrated and calculated below.

r1 = 12.0

r2 = 3.0

h = 11.0

R1 =
r1

h
= 1.09091

R2 =
r2

h
= 0.272727

X = 1 +
1 + R2

2

R1
2 = 1.90278

FINLETDISK-THROATDISK =
1

2
[X −

√

X2 − 4(
R2

R1
)2] = 0.0334342

FINLETDISK-INTERIOROFROCKETNOZZLE = 1 − FINLETDISK-THROATDISK = 0.966566

(3.1)

It has been illustrated that a comparison of the rough estimate of the view

factor of a disk to the interior of a rocket nozzle being of a value of 0.97 for a dis-

tance of 11 inches along length axis of the nozzle from the beginning of the rocket

nozzle contour to the throat is within reason of the calculated contour integral view

factor of 0.96. The total view factor including all partial views of the disk along the

rocket nozzle contour has been found to 0.98 these values are illustrated in Figure 17.

Mathematica 5.0 and 6.0 were found to have a bug in the integrations and only Math-

ematica 4.0 could do the integrations Maple 11 could not simplify the view factors

like Mathematica could and this made it a big problem for the supercomputer to do

parallel cluster nodes and batch files had to be done. for the shadowing view factors

Wolfram is presently working on the bug in the integral development department.



CHAPTER IV

CONCLUDING REMARKS

The shadowing view factors were found to be very small within the .02 range

as expected and the author shall be updating these values and new shadowing View

Factors in a web site at www.csuohio.edu/engineering/mce by June 4th, 2008 or the

author may be reached at mark murad@hotmail.com for all updates from Wolfram

and Maple supercomputer results with the new method that Professor John Oprea

and the author are working on. The Future View Factors must be parameterized for

the Differential Geometrists

35
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APPENDIX



APPENDIX A

MATHEMATICA AND MAPLE

PROGRAMS

Rocket Nozzle Geometry

> restart:

> with(plots):with(LinearAlgebra):

>

> EFG := proc(X)

> local Xu,Xv,E,F,G;

> Xu := <diff(X[1],u),diff(X[2],u),diff(X[3],u)>;

> Xv := <diff(X[1],v),diff(X[2],v),diff(X[3],v)>;

> E := DotProduct(Xu,Xu,conjugate=false);

> F := DotProduct(Xu,Xv,conjugate=false);

> G := DotProduct(Xv,Xv,conjugate=false);

> simplify([E,F,G]);

> end:

> UN := proc(X)

38
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> local Xu,Xv,Z,s;

> Xu := <diff(X[1],u),diff(X[2],u),diff(X[3],u)>;

> Xv := <diff(X[1],v),diff(X[2],v),diff(X[3],v)>;

> Z := CrossProduct(Xu,Xv);

> s:=VectorNorm(Z,Euclidean,conjugate=false);

> simplify(<Z[1]/s|Z[2]/s|Z[3]/s>,sqrt,trig,symbolic);

> end:

> lmn := proc(X)

> local Xu,Xv,Xuu,Xuv,Xvv,U,l,m,n;

> Xu := <diff(X[1],u),diff(X[2],u),diff(X[3],u)>;

> Xv := <diff(X[1],v),diff(X[2],v),diff(X[3],v)>;

> Xuu := <diff(Xu[1],u),diff(Xu[2],u),diff(Xu[3],u)>;

> Xuv := <diff(Xu[1],v),diff(Xu[2],v),diff(Xu[3],v)>;

> Xvv := <diff(Xv[1],v),diff(Xv[2],v),diff(Xv[3],v)>;

> U := UN(X);

> l := DotProduct(U,Xuu,conjugate=false);

> m := DotProduct(U,Xuv,conjugate=false);

> n := DotProduct(U,Xvv,conjugate=false);

> simplify([l,m,n],sqrt,trig,symbolic);

> end:

Finally we can calculate Gauss curvature K as follows.

> GK := proc(X)

> local E,F,G,l,m,n,S,T;

> S := EFG(X);

> T := lmn(X);

> E := S[1];

> F := S[2];

> G := S[3];
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> l := T[1];

> m := T[2];

> n := T[3];

> simplify((l*n-m^2)/(E*G-F^2),sqrt,trig,symbolic);

> end:

The procedure below finds the z-values z_k where the

line from a given z-value z_i is tangent to the rnoz

surface of revolution. The procedure now handles z_k’s

both above and below the throat. The procedure plots

the surface with style = wireframe. To see the surface

better, switch to style=patch.

> rocketnoz2:=proc(f,g,z_i,N,u0,u1,x0,x1,y0,y1,z0,z1,zz,p,q)

> local L,K,F,G,i,sol,V,pl1,pl2,surf,minn,line_at_minn,ww:

> L:=[];

> F:=t->eval(f,u=t);

> G:=t->eval(g,u=t);

> minn:=F(zz);

> print(‘Gauss curvature at z_i is‘,evalf(eval(GK(<F(u)*cos(v),

F(u)*sin(v),G(u)>),{u=z_i,v=0})));

> K:=[];

> for i from 0 to N do

> sol:=fsolve(-F(z_i)*diff(G(s),s)*cos(i/N*2*Pi)+

F(s)*diff(G(s),s)

> -G(s)*diff(F(s),s)+G(z_i)*diff(F(s),s)=0,

s=zz-p..zz+q);

> if type(sol,numeric)=true then

> if sol<=zz then

> ww:=fsolve(G(z_i)+w*(G(sol)-G(z_i))=zz,w=0..1);
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> if type(ww,numeric)=true then

> line_at_minn:=map(evalf,

(<F(z_i)+ww*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

ww*F(sol)*sin(i/N*2*Pi),

> G(z_i)+ww*(G(sol)-G(z_i))>));

> V:=Norm(<line_at_minn[1],line_at_minn[2]>,

Euclidean,

conjugate=false);

> if V <= minn then L:=[op(L),[i/N*2*Pi,sol]];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),

F(sol)*sin(i/N*2*Pi),G(sol)]];

> #print(evalf(DotProduct

(eval(UN(<F(u)*cos(v),F(u)*sin(v),G(u)>),

{u=sol,v=i/N*2*Pi}),

> #(<F(sol)*cos(i/N*2*Pi),

F(sol)*sin(i/N*2*Pi),G(sol)> -

<F(z_i),0,G(z_i)>)/

> #VectorNorm((<F(sol)*cos(i/N*2*Pi),

F(sol)*sin(i/N*2*Pi),G(sol)> - <F(z_i),0,G(z_i)>),

> #Euclidean,conjugate=false),conjugate=false)))

> fi;

> fi;

> if type(ww,numeric)=false then next; fi;

> fi;

> if zz<sol then L:=[op(L),[i/N*2*Pi,sol]];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),

F(sol)*sin(i/N*2*Pi),G(sol)]];

> fi;



42

> fi;

> od;

> print(L);

> pl1:=pointplot3d([[F(z_i),0,G(z_i)]],color=blue,thickness=3,

symbol=cross,symbolsize=28):

> pl2:=pointplot3d(K,connect=true,color=black,thickness=3,

symbol=cross,

symbolsize=28):

> surf:=plot3d(<F(u)*cos(v),F(u)*sin(v),G(u)>,u=u0..u1,

v=0..2*Pi,shading=XY,

grid=[30,25],

> style=wireframe):

> display(pl1,pl2,surf,scaling=constrained,

view=[x0..x1,y0..y1,z0..z1]);

> end:

> rocketnoz_disk_proj:=proc(f,g,z_i,N,zz,p,q)

> local K,F,G,i,sol,V,pl1,pl2,surf,minn,line_at_minn,

ww,tt,disk_pl:

> F:=t->eval(f,u=t);

> G:=t->eval(g,u=t);

> minn:=F(zz);

> K:=[];

> for i from 0 to N do

> sol:=fsolve(-F(z_i)*diff(G(s),s)*cos(i/N*2*Pi)+F(s)*diff(G(s),s)

> -G(s)*diff(F(s),s)+G(z_i)*diff(F(s),s)=0,s=zz-p..zz+q);

> if type(sol,numeric)=true then

> if sol<=zz then

> ww:=fsolve(G(z_i)+w*(G(sol)-G(z_i))=zz,w=0..1);
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> if type(ww,numeric)=true then

> line_at_minn:=map(evalf,(<F(z_i)+ww*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

ww*F(sol)*sin(i/N*2*Pi),

> G(z_i)+ww*(G(sol)-G(z_i))>));

> V:=Norm(<line_at_minn[1],line_at_minn[2]>,Euclidean,

conjugate=false);

> if V <= minn then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> K:=[op(K),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> fi;

> fi;

> if type(ww,numeric)=false then next; fi;

> fi;

> if zz<sol then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> K:=[op(K),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> fi;

> fi;

> od;

> disk_pl:=pointplot3d(K,connect=true,color=blue,thickness=3,

symbol=cross,symbolsize=28):

> display(disk_pl,scaling=constrained,orientation=[0,0]);

> end:

> rocketnoz_with_proj:=proc(f,g,z_i,N,u0,u1,x0,x1,
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y0,y1,z0,z1,zz,p,q)

> local K,J,F,G,i,sol,V,pl1,pl2,surf,minn,

line_at_minn,ww,tt,disk_pl:

> F:=t->eval(f,u=t);

> G:=t->eval(g,u=t);

> minn:=F(zz);

> K:=[];

> J:=[];

> for i from 0 to N do

> sol:=fsolve(-F(z_i)*diff(G(s),s)*cos(i/N*2*Pi)+F(s)*diff(G(s),s)

> -G(s)*diff(F(s),s)+G(z_i)*diff(F(s),s)=0,s=zz-p..zz+q);

> if type(sol,numeric)=true then

> if sol<=zz then

> ww:=fsolve(G(z_i)+w*(G(sol)-G(z_i))=zz,w=0..1);

> if type(ww,numeric)=true then

> line_at_minn:=map(evalf,(<F(z_i)+ww*(F(sol)*cos(i/N*2*Pi)

-F(z_i)),

ww*F(sol)*sin(i/N*2*Pi),

> G(z_i)+ww*(G(sol)-G(z_i))>));

> V:=Norm(<line_at_minn[1],line_at_minn[2]>,Euclidean,

conjugate=false);

> if V <= minn then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> J:=[op(J),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)

-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),F(sol)*sin(i/N*2*Pi),
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G(sol)]];

> fi;

> fi;

> if type(ww,numeric)=false then next; fi;

> fi;

> if zz<sol then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> J:=[op(J),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)

-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),F(sol)*sin(i/N*2*Pi),

G(sol)]];

> fi;

> fi;

> od;

> pl1:=pointplot3d([[F(z_i),0,G(z_i)]],color=blue,

thickness=3,symbol=cross

,symbolsize=28):

> pl2:=pointplot3d(K,connect=true,color=black,

thickness=3,symbol=cross,

symbolsize=28):

> disk_pl:=pointplot3d(J,color=blue,thickness=3,

connect=true,symbol=cross,

symbolsize=32):

> surf:=plot3d(<F(u)*cos(v),F(u)*sin(v),G(u)>,

u=u0..u1,

v=0..2*Pi,shading=XY,
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grid=[30,25],

> style=wireframe):

> display(pl1,pl2,disk_pl,surf,scaling=constrained,

view=[x0..x1,y0..y1,z0..z1]);

> end:

>

> rocketnoz_with_projlines:=

proc(f,g,z_i,N,u0,u1,x0,x1,y0,y1,z0,z1,zz,p,q,

theta,phi)

> local K,J,F,G,L,M,i,sol,V,aa,pl1,pl2,p13,surf,minn,

line_at_minn,ww,tt,disk_pl:

> F:=t->eval(f,u=t);

> G:=t->eval(g,u=t);

> minn:=F(zz);

> K:=[];

> J:=[];

> L:=[];

> M:=[];

> for i from 0 to N do

> sol:=fsolve(-F(z_i)*diff(G(s),s)*cos(i/N*2*Pi)+

F(s)*diff(G(s),s)

> -G(s)*diff(F(s),s)+G(z_i)*diff(F(s),s)=0,

s=zz-p..zz+q);

> if type(sol,numeric)=true then

> if sol<=zz then

> ww:=fsolve(G(z_i)+w*(G(sol)-G(z_i))=zz,w=0..1);

> if type(ww,numeric)=true then

> line_at_minn:=map(evalf,(<F(z_i)+
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ww*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

ww*F(sol)*sin(i/N*2*Pi),

> G(z_i)+ww*(G(sol)-G(z_i))>));

> V:=Norm(<line_at_minn[1],line_at_minn[2]>,

Euclidean,conjugate=false);

> if V <= minn then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> J:=[op(J),map(evalf,[F(z_i)+

tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> if i=0 then

> M:=[op(M),map(evalf,[F(z_i)+

tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])] fi;

> if i=N/2 then

> M:=[op(M),map(evalf,[F(z_i)+

tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])] fi;

> L:=[op(L),spacecurve([F(z_i)+s*(tt*(F(sol)*cos(i/N*2*Pi)

-F(z_i))),

s*(tt*F(sol)*sin(i/N*2*Pi)),

> (1-s)*G(z_i)],s=0..1,color=magenta)];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),F(sol)*sin(i/N*2*Pi),

G(sol)]];

> fi;
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> fi;

> if type(ww,numeric)=false then next; fi;

> fi;

> if zz<sol then

> tt:=fsolve(G(z_i)+t*(G(sol)-G(z_i))=0,t);

> J:=[op(J),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)

-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])];

> if i=0 then

> M:=[op(M),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)

-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])] fi;

> if i=N/2 then

> M:=[op(M),map(evalf,[F(z_i)+tt*(F(sol)*cos(i/N*2*Pi)-F(z_i)),

tt*F(sol)*sin(i/N*2*Pi),

> G(z_i)+tt*(G(sol)-G(z_i))])] fi;

> L:=[op(L),spacecurve([F(z_i)+

s*(tt*(F(sol)*cos(i/N*2*Pi)-F(z_i))),

s*(tt*F(sol)*sin(i/N*2*Pi)),

> (1-s)*G(z_i),s=0..1],color=magenta)];

> K:=[op(K),[F(sol)*cos(i/N*2*Pi),

F(sol)*sin(i/N*2*Pi),G(sol)]];

> fi;

> fi;

> od;

> aa:=(M[1]+M[2])/2;
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> print(‘The center of the projected curve is‘,aa);

> M:=[op(M),aa];

> print(‘The radius at omega=0 and omega=Pi are‘,M);

> pl1:=pointplot3d([[F(z_i),0,G(z_i)]],color=blue,

thickness=3,symbol=cross,

symbolsize=28):

> pl2:=pointplot3d(K,connect=true,color=black,

thickness=3,symbol=cross,

symbolsize=28):

> p13:=pointplot3d(M,connect=false,color=red,

symbol=cross,symbolsize=28);

> disk_pl:=pointplot3d(J,color=blue,thickness=3,

connect=true,symbol=cross,

symbolsize=32):

> surf:=plot3d(<F(u)*cos(v),F(u)*sin(v),G(u)>,

u=u0..u1,v=0..2*Pi,shading=XY,

grid=[30,25],

> style=wireframe):

> display(pl1,pl2,p13,disk_pl,surf,L,scaling=constrained,

view=[x0..x1,y0..y1,z0..z1],orientation=

> [theta,phi],axes=boxed,labels=[x,y,z],

labelfont=[TIMES, BOLD, 14],

resolution=1000);

> end:

>

> a(0):= 14.57090740:

> a(1):= 8.175351173:

> a(2):= 2.146354487:
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> a(3):= -3.16176960:

> a(4):= 1.557809867:

> a(5):= -0.22956536:

> a(6):= -0.44950961:

> a(7):= 0.653013519:

> a(8):= -0.40905088:

> a(9):= 0.247331332:

> a(10):= -0.04046052:

> a(11):= -0.18397363:

> a(12):= 0.184463347:

> a(13):= -0.04796984:

> a(14):= -0.03453818:

> a(15):= 0.075301420:

> a(16):= -0.08041342:

>

> [seq([x, ChebyshevT(3,x)],x = -2 .. 2)];

> h := proc (x, n) options operator, arrow;

sum(a(i)*ChebyshevT(i,.2898550725e-1*x-1),i = 0 .. n) end proc;

> rnoz:=expand(h(u,16));

> plot(rnoz,u=0..69,scaling=constrained);

> minimize(rnoz,u=0..15);

> fsolve(rnoz=3.02778568,u=10..12);

OK, I’m taking z_i = 60 and checking 100 points around the circle.

The M is gone now and the interval where Maple looks for a

numerical solution to the equation using fsolve is given by

the throat z, called zz, and the final two inputs p and q.

Interval is zz-p..zz+q.

> rocketnoz2(rnoz,u,60,100,0,69,-5,5,-5,5,7,20,11.41365589,
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2.5,3);

> rocketnoz2(rnoz,u,60,100,0,69,-30,30,-30,30,0,69,

11.41365589,2.5,3);

> rocketnoz2(rnoz,u,43,100,0,69,-5,5,-5,5,7,20,

11.41365589,2.5,3);

> rocketnoz2(rnoz,u,30,50,0,69,-23,23,-23,23,0,40,

11.43730691,2.5,3);

> rocketnoz2(rnoz,u,20,30,0,69,-23,23,-23,23,0,40,

11.43730691,3.5,3);

> rocketnoz2(rnoz,u,20,30,0,30,-23,23,-23,23,0,40,

11.43730691,3.5,3);

> rocketnoz2(rnoz,u,13,60,0,69,-23,23,-23,23,0,40,

11.43730691,5.515,1.5);

> rocketnoz_disk_proj(rnoz,u,60,100,11.41365589,2.5,3);

> rocketnoz_disk_proj(rnoz,u,43,100,11.41365589,2.5,3);

> rocketnoz_with_proj(rnoz,u,60,100,0,69,-15,15,-15,

15,-0.1,20,11.41365589,2.5,3);

> rocketnoz_with_proj(rnoz,u,43,100,0,69,-15,15,-15,

15,-0.1,20,11.41365589,2.5,3);

> rocketnoz_with_proj(rnoz,u,20,30,0,69,-23,23,-23,23,

-0.1,40,11.43730691,3.5,3);

>

> rocketnoz_with_projlines(rnoz,u,60,30,0,69,-28,28,

-28,28,-0.1,62,11.41365589,

2.5,3,-117,-126);

> rocketnoz_with_projlines(rnoz,u,20,30,0,69,-23,23,

-23,23,-0.1,62,11.43730691,
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3.5,3,-117,-126);

>

>
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