Synthesis of A Spacer-Armed Disulfated Tetrasaccharide of SB1a, A Carbohydrate Hapten Associated with Human Hepatocellular Carcinoma

Qin Li
Peking University

Hui Li
Peking University

Qing Li
Peking University

Qing Hua Lou
Peking University

Bin Su
Cleveland State University, B.SU@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation

Li, Qin; Li, Hui; Li, Qing; Lou, Qing Hua; Su, Bin; Cai, Meng Shen; and Li, Zhong Jun, "Synthesis of A Spacer-Armed Disulfated Tetrasaccharide of SB1a, A Carbohydrate Hapten Associated with Human Hepatocellular Carcinoma" (2002). _Chemistry Faculty Publications_. 420.
https://engagedscholarship.csuohio.edu/scichem_facpub/420

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
Synthesis of a spacer-armed disulfated tetrasaccharide of SB\textsubscript{1a}, a carbohydrate hapten associated with human hepatocellular carcinoma

Qin Li, Hui Li, Qing Li, Qing-Hua Lou, Bin Su, Meng-Shen Cai, Zhong-Jun Li

Introduction

Aberrant cell-surface glycosylation is often closely associated with tumor progression and malignancy.1 In most cases, carbohydrate antigens may be rather specific to a certain type of tumor and are not overexpressed or recognized by the immune system in normal tissues.2 Therefore, carbohydrate antigens have been greatly mesmerizing scientists in relevant fields because of their potential applications in tumor immunotherapy.3 SB\textsubscript{1a}, a glycosphinolipid with a disulfated tetrasaccharide moiety, was first isolated from rat kidney by Tadano and Ishizuka.4 The normal human liver contains essentially no detectable amount of SB\textsubscript{1a}. However, studies have shown that a remarkable accumulation of SB\textsubscript{1a} exists, not only in the cultured human hepatocellular carcinoma (HCC) cell lines, but also in glycolipid fractions extracted from HCC tissues. Therefore, it is suggested that SB\textsubscript{1a} is one of the most important cancer-associated carbohydrate antigens of HCC.5,6

In order to elucidate the functions of SB\textsubscript{1a} in detail, especially its mechanism involved in the onset, progression, and metastasis of HCC, and hence pursue optimal carbohydrate-based anticancer vaccines for HCC, we have synthesized the disulfated tetrasaccharide moiety of the SB\textsubscript{1a} determinant, namely compound 1, in which a 2-aminoethyl group is attached to the reducing terminal as a spacer arm, which could facilitate further formation of immunogenic glycoconjugates by the coupling of the spacer amino group and a carrier protein.
Results and discussion

Of the various approaches available for the preparation of oligosaccharides, we adopted the stepwise synthetic strategy to build the target molecule. The reducing terminal D-lactosyl building block 3 of the target molecule was first synthesized in a good yield (89.6%) via the regioselective etherification of the 3’-OH of 2-azidoethyl 2,3,6-tri-O-benzyl-2,6-di-O-benzyl-β-D-galactopyranosyl-(1 → 4)-β-D-glucopyranoside (2), which was prepared steadily through several steps from D-lactose.7 In the synthesis of 3, the p-methoxybenzyl group (PMB) was introduced to the 3-OH position of the galactosyl moiety via a dibutyltin oxide-mediated procedure,8 followed by addition of p-methoxybenzyl chloride and tetrabutylammonium bromide in boiling toluene (Scheme 1).9

Standard glycosylation of 3 and the glycosyl donor 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-galactopyranosyl trichloroacetimidate (4)10 in toluene at −40 °C gave the desired β-linked trisaccharide 5 (83.2%). Dephaloylation of compound 5 with 1,2-diaminoethane11 in n-butanol at 75 °C, followed by acetylation, resulted in the formation of 6. Subsequent O-deacylation and benzylideneration at the C-4’ and C-6’ hydroxy groups with benzaldehyde dimethyl acetal in acetoneitrile under acidic conditions provided the trisaccharide acceptor 8 in excellent yield.

However, for the assembly of the tetrasaccharide backbone, some interesting results occurred. In our initial design, ethyl 2,4,6-tri-O-acetyl-3-O-p-methoxybenzyl-1-thio-β-D-galactopyranoside (9) or the corresponding glycosyl bromide 10 was chosen as the glycosyl donor to couple with the trisaccharide acceptor 8. No reaction occurred when 9 and 8 were mixed and stirred at room temperature in nitromethane or DMF employing Bu4NBr–CuBr2 as the promoter. Neither did the coupling reaction of 9 and 8 using methyl triflate as the promoter in dichloromethane or diethyl ether. We next investigated the glycosylation of the donor 10 with the trisaccharide acceptor 8, no desired tetrasaccharide was obtained when silver triflate was chosen to promote the coupling reaction. The main product is the asymmetric (1 → 1)-linked disaccharide 11, in which two galactosyl groups were condensed to each other by β and β configurations at the anomic center, respectively.

After a series of failures in the building of the tetrasaccharide backbone, we selected another type of glycosyl donor containing a benzoyl group at C-2 for coupling with acceptor 8. Therefore, we chose the glycosyl bromide 14 as the glycosyl donor. Compound 14 was synthesized by the in situ transformation of ethyl 4-O-acetyl-2,6-di-O-benzyl-3-O-chloroacetyl-1-thio-β-D-galactopyranoside (13), which was prepared from chloroacetylation of the known ethyl 4-O-acetyl-2,6-di-O-benzyl-1-thio-β-D-galactopyranoside (12).12 To our surprise, the silver triflate-promoted glycosylation with 8 using donor 14 in dichloromethane at −20 °C gave the desired tetrasaccharide 15 in very high yield (89%) (Scheme 2).
Deblocking of 15 to the target tetrasaccharide 1 includes several steps as in the following. At first, selective removal of the chloroacetyl group at the 3′-OH position and the p-methoxybenzyl group at 3′-OH position with thiourea and cerium(IV) ammonium nitrate (CAN), respectively, gave 17. Then, treatment of the dial 17 with sulfur trioxide-pyridine complex in pyridine furnished the disulfated compound 18 in 95% yield. But deprotection of 18 was rather complicated. Catalytic hydrogenolysis, using palladium-on-charcoal in different solvents (AcOH, 2:1 MeOH–AcOH) was sluggish and the yield was low. This problem may be ascribed to the catalyst passiveness due to the interaction with the aminethanol fragment formed. A similar phenomenon has been observed by Spijker et al. and Stahl et al. To avoid this inhibitory effect, hydrochloric acid was added to the reaction mixture to convert the formed amine to its hydrochloride salt. This greatly increased the hydrogenolysis rate and yield. Then, deacetylation of 19 with 0.012 M sodium methoxide in MeOH at room temperature provided product 20 with the 2′′-O-benzoyl group retained. Increasing base concentration and prolonging reaction time only led to decomposition of the product. When the O-deacylation was carried out with ammonia in MeOH, no O-deacylation but O-desulfonation was observed. Finally, the saponification of 19 was completed with 0.5 M sodium methoxide in MeOH at 0 °C for 6 h to give the title compound 1 in 90% yield.

Experimental

General methods.—All moisture-sensitive reactions were performed under argon atmosphere, and organic solvents were dried over standard drying agents and freshly distilled prior to use. Optical rotations were measured at 25 °C with an Optical Activity LTD AA-10R polarimeter in a 5-cm, 1-mL cell. Melting points were uncorrected. NMR spectra were recorded at room temperature with a JEOL 300, Bruker AM 400, and INOVA-600 spectrometers. Chemical shifts were expressed in ppm downfield from the signal for internal Me_{4}Si for solutions in CDCl_{3}, CD_{2}OD and DMSO-d_{6}, or DSS in case of D_{2}O. MALDI-TOFMS analyses were performed with an LDI-1700 mass spectrometer. Column chromatography was performed on silica gel H 60, and fractions were monitored by TLC on silica gel 60 GF254 with detection by UV light and/or by charring with 10% H_{2}SO_{4} in EtOH. Solutions were concentrated at or below 40 °C and dried with anhydrous Na_{2}SO_{4}.

2-Azidoethyl 2,6-di-O-benzyl-3-O-p-methoxybenzyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (3).—To a solution of 2-azidoethyl 2,6-di-O-benzyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2, 3.53 g, 4.10 mmol) in dry MeOH (200 mL) was added Bu_{2}SnO (1.77 g, 7.11 mmol), and the mixture was stirred overnight at 60 °C under Ar. After cooling to room temperature, the mixture was concentrated, and the residue was dissolved in dry toluene (200 mL). Bu_{4}NBr (0.585 g, 1.8 mmol) and powdered 4 Å molecular sieves (5 g) were added, and the mixture was stirred for 1 h at room temperature under Ar. Then, p-methoxybenzyl chloride (1.77 mL) was added, and the mixture was stirred for 4 h at 120 °C, at the end of which time TLC (5:1 toluene–EtOAc) showed the disappearance of 2 and the formation of 3. After cooling to room temperature, MeOH (10 mL) and Et_{3}N (2.5 mL) were added, and the stirring was continued for 15 min. After filtration through Celite, the filtrate was concentrated. Column chromatography (4:1 petroleum ether–acetone) of the residue afforded 3 as a white needles (3.60 g, 89.6%). mp 86.0–87.0 °C. [α]_{D} +13.8° (c 1.58, CHCl_{3}). 1H NMR (CDCl_{3}): δ 7.51–7.91 (m, 29 H, Ar-H), 5.12–3.43 (m, 32 H, sugar H, 5 × PhCH_{2}, CH_{2}OC_{6}H_{4}CH_{2}, OCH_{2}CH_{2}N_{3}), 2.64 (bs, 1 H, 4′-OH). 13C NMR: δ 159.1, 113.6 (CH_{2}OC_{6}H_{4}CH_{2}), 138.9, 138.5, 138.4, 138.0, 129.8, 129.2, 128.2, 127.9, 127.8, 127.5, 127.4, 127.3, 127.1 (Ar-C), 103.4, 102.4 (C-1, C-1′), 82.6, 81.6, 79.2, 76.3, 75.1, 75.0, 74.9, 73.3, 72.9, 72.7, 71.7, 68.3, 68.0, 67.9, 65.9 (sugar C, 5 × PhCH_{2}, CH_{2}OC_{6}H_{4}CH_{2}, OCH_{2}CH_{2}N_{3}), 55.0 (OCH_{3}), 50.7 (CH_{2}N_{3}). MALDI-TOFMS: m/z 1002.8 [M + Na]^{+}. Anal. Calcd for C_{17}H_{29}N_{3}O_{17}: C, 69.72; H, 6.42; N, 3.79. Found: C, 69.40; H, 6.56; N, 3.79.

2-Azidoethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimidobeta-D-galactopyranosyl-(1→4)-2,6-di-O-benzyl-3-O-p-methoxybenzyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (5).—To a solution of 3 (1.00 g) and 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimidobeta-D-galactopyranosyl trichloroacetimidate (4, 1.00 g) in dry toluene (50 mL) were added 4 Å molecular sieves (0.93 g), and the mixture was stirred for 1 h under argon. The mixture was cooled to −40 °C, and a solution of TMSOTf (60 μL) in dry CH_{2}Cl_{2} (1 mL) was added. The mixture was stirred at −40 °C for 3 h and then overnight at room temperature. Et_{3}N (0.5 mL) was added, and the mixture was diluted with EtOAc (100 mL) and filtered (Celite). The filtrate was washed with water (100 mL), aq NaHCO_{3} (100 mL) and water (100 mL), dried, concentrated. Column chromatography (4:1:0.1 C_{17}H_{29}N_{3}Cl_{1}–acetone) afforded 5, isolated as a colorless foam (1.12 g, 83.2%). [α]_{D} +8.5° (c 1.42, CHCl_{3}). 1H NMR (CDCl_{3}): δ 8.78–6.79 (m, 33 H, 5 × PhCH_{2}, Phth., CH_{2}OC_{6}H_{4}CH_{2}O), 6.61 (dd, 1 H, J = 3.8 Hz, 3.90 Hz, J_{2,3} = 11.70 Hz, H-3′), 5.55 (d, 1 H, H-4′), 5.35 (d, 1 H, J = 8.40 Hz, H-1″), 3.79 (s, 3 H, CH_{2}O), 2.20, 2.03, 1.85 (3 s, 3 H each, 3 × OAc). 13C NMR (CDCl_{3}): δ 170.4, 170.3, 169.8, 168.2, 167.4 (Phth.), 3 × OAc, 159.4, 113.7 (CH_{2}OC_{6}H_{4}CH_{2}O), 139.1, 138.9, 138.7, 138.4, 138.3, 134.0, 133.7, 132.6,
131.7, 130.1, 129.7, 28.3, 128.2, 128.0, 127.9, 127.5, 127.4, 127.3, 123.4, 123.3 (Ar-C), 103.7, 102.1 (C-1, C-1'), 99.8 (C-1'), 82.7, 81.7, 80.6, 80.1, 77.2, 76.4, 76.1, 75.7, 75.3, 75.1, 74.6, 73.2, 73.1, 72.4, 70.4, 68.9, 68.2, 68.1, 67.4, 66.6, 61.2 (sugar C, CH$_2$OCH$_2$CH$_2$, 5 \times PhCH$_2$, OCH$_2$CH$_2$N$_3$), 55.3 (CH$_3$O), 51.5 (C-2'), 50.9 (CH$_2$N$_3$), 20.7, 20.5, 20.4 (3 \times OAc).

Added NaOMe (108 mg). The mixture was stirred at 0°C for 1 h.

1H NMR (CDCl$_3$): δ 7.99–7.80 (m, 10 H, Ar-H), 5.60–5.52 (m, 2 H, H-2, 4), 5.36 (dd, 1 H, J$_{2,4}$ 9.0 Hz, J$_{4,6}$ 3.0 Hz, H-3), 4.72 (d, 1 H, J$_{6,a}$ 9.0 Hz, H-1), 4.54 (dd, 1 H, J$_{6,a}$ 6.0 Hz, J$_{6,b}$ 11.40 Hz, H-6a), 4.32 (dd, 1 H, J$_{6,b}$ 6.0 Hz, H-6b), 3.88 (m, 2 H, CICH$_2$CO), 2.77–2.68 (m, 2 H, CH$_2$CH$_2$S), 2.19 (s, 3 H, Ac), 1.23 (t, 3 H, CH$_3$CH$_2$S).

13C NMR (CDCl$_3$): δ 170.4, 166.6, 165.9, 165.2 (CO), 133.5 (2 C), 129.8, 129.6, 129.2, 129.0, 128.5 (Ar-C), 84.2 (C-1), 74.4, 73.4, 67.7, 67.3, 61.7 (C-2, 3, 4, 5, 6), 40.3 (CICH$_2$CO), 24.6 (CH$_2$CH$_2$S), 20.7 (Ac), 14.8 (CH$_3$CH$_2$S).

A 2-azidoethyl 2-acetamido-4,6-di-O-benzylidene-2-deoxy-β-D-galactopyranosyl-(1→4)-2,6-di-O-benzyl-3-O-p-methoxybenzyl-β-D-galactopyranosyl-(1→4)2,3,6-tri-O-benzyl-β-D-glucopyranoside (8). To a solution of 6 (1.30 g, 0.992 mmol) in dry MeOH (40 mL) was added NaOMe (108 mg). The mixture was stirred at room temperature for 14 h, then neutralized with cation-exchange resin (H$^+$ form), and filtered.

The filtrate was concentrated affording 7 (125 g, quant). To a solution of 7 (125 g) and Et$_3$N (354 µL) in dry CH$_2$CN (15 mL) was added camphorsulfonic acid until pH 4 was attained. The mixture was stirred at room temperature for 24 h, then Et$_3$N (0.5 mL) was added, and the solvent was removed under reduced pressure. The residue was chromatographed (2:1 petroleum ether–acetone) to give 8 (1.21 g, 90%): 1H NMR (CDCl$_3$): δ 7.59–6.79 (m, 34 H, Ar-H), 5.59 (s, 1 H, PhCH), 4.93–3.35 (m, 40 H, sugar H, 5 \times PhCH$_2$, CH$_2$OCH$_2$H$_2$CH$_2$, OCH$_2$CH$_2$N$_3$), 1.65 (s, 3 H, NHAc). 13C NMR (CDCl$_3$): δ 173.6 (NHAc), 159.9, 114.1 (CH$_2$OCH$_2$CH$_2$), 138.5, 138.4, 138.1, 137.9, 137.8, 130.2, 129.6, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.7, 127.5, 127.2, 126.4 (Ar-C), 101.1 (PhCH), 103.5, 102.9, 102.5 (C-1, C-1', C-1), 82.4, 81.9, 81.5, 80.6, 76.5, 75.9, 75.5, 75.1, 74.7, 74.4, 73.1, 73.0, 72.7, 68.8, 68.0, 67.1, 61.1 (sugar C, CH$_2$OC$_2$H$_2$CH$_2$, 5 \times PhCH$_2$, OCH$_2$CH$_2$N$_3$), 55.2, 55.1 (CH$_2$O, C-2'), 50.8 (CH$_3$N$_3$), 22.4 (NHAc). MALDI-TOFMS: 1294.0 [M + Na]$^+$, 1310 [M + K]$^+$.

Found: C, 67.76; H, 6.50; N, 4.39.

Ethyl 4-O-acetyl-2,6-di-O-benzoyl-3-O-chloroacetyl-1-thio-β-D-galactopyranoside (13). Monochloroacetyl chloride (0.53 mL, 6.67 mmol) in dry CH$_2$Cl$_2$ (10 mL) was added dropwise to a cooled (0°C) solution of ethyl 4-O-acetyl-2,6-di-O-benzoyl-1-thio-β-D-galactopyranoside (12) (2.22 g, 4.26 mmol) in 5 mL CH$_2$Cl$_2$ pyridine (60 mL). After 2 h the solution was washed with H$_2$O, dried, filtered and concentrated. After column chromatography (7:1 petroleum ether–EtOAc) 13 was obtained: $[x]_D + 7.1^0$ (c 1.13, CHCl$_3$). 1H NMR (CDCl$_3$): δ 7.99–7.40 (m, 10 H, Ar-H), 5.60–5.52 (m, 2 H, H-2, 4), 5.36 (dd, 1 H, J$_{2,4}$ 9.0 Hz, J$_{4,6}$ 3.0 Hz, H-3), 4.72 (d, 1 H, J$_{6,a}$ 9.0 Hz, H-1), 4.54 (dd, 1 H, J$_{6,a}$ 6.0 Hz, J$_{6,b}$ 11.40 Hz, H-6a), 4.32 (dd, 1 H, J$_{6,b}$ 6.0 Hz, H-6b). 3.88 (m, 2 H, CICH$_2$CO), 2.77–2.68 (m, 2 H, CH$_2$CH$_2$S), 2.19 (s, 3 H, Ac), 1.23 (t, 3 H, CH$_3$CH$_2$S).

Found: C, 67.6; H, 6.50; N, 4.39.

A solution of 13 (402 mg, 0.731 mmol) in dry CH$_2$Cl$_2$ (16 mL) was added Br$_2$ (35 µL, 0.731 mmol) at 0°C. The solution was stirred at 0°C for 40 min, and the solvent was subsequently evaporated. After co-evaporation twice with benzene, the residue was dissolved in CH$_2$Cl$_2$ (16 mL) and added to a mixture of 8 (560 mg, 0.440 mmol), AgOTf (268 mg), 2,6-di-tert-butyl-4-methylpyridine (94.6 mg) and crushed 4 Å molecular sieves (950 mg) in CH$_2$Cl$_2$ (16 mL), which had been stirred under argon for 40 min, and then cooled to −20°C. The mixture was allowed to warm to room temperature and to stir overnight. The reaction mixture was diluted with CH$_2$Cl$_2$ (100 mL) and filtered through Celite. The filtrate was washed withaq NaHCO$_3$, 10% Na$_2$SO$_4$, and H$_2$O. The organic layer was dried and concentrated. Column chromatography (2.3:1 petroleum ether–acetone) of the residue afforded 15 (690 mg, 89.0%) as a white solid. $[x]_D + 41.2^0$ (c 0.97, CHCl$_3$). 1H NMR (CDCl$_3$): δ 8.08–6.73 (m, 44 H, Ar-H), 5.56–3.23 (m, 50 H, PhCH, 5 \times PhCH$_2$, CH$_2$OCH$_2$CH$_2$, CICH$_2$CO, OCH$_2$CH$_2$N$_3$, and sugar H), 2.24 (s, 3 H, OAc), 1.30 (s, 3 H, NHAc).

13C NMR (CDCl$_3$): δ 171.4, 170.9, 167.0, 166.3, 165.1.
Found: C, 65.41; H, 6.01; N, 3.15.

2-Azidoethyl 4-O-acetyl-2,6-di-O-benzoyl-3-O-sulfo-β-D-galactopyranosyl-(1→3)-2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyranosyl-(1→4) 2,6-di-O-benzyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (16).—To a solution of 15 (220 mg, 0.639 mmol) in dry pyridine was added sulfur trioxide-pyridine complex (668 mg, 4.20 mmol), and the mixture was stirred at room temperature for 36 h. MeOH (1 mL) was added, and stirring was continued for 10 min. The mixture was concentrated, and the residue was purified by flash chromatography (10:1 CHCl_{3}-MeOH) to give 18 (250 mg, 94.3%). [α]_{D}^{25} + 43.4° (c 1.29, MeOH).

1H NMR (CD_{3}OD): δ 8.12–7.13 (m, 40 H, Ar-H), 5.85 (bs, 1 H, H-4°), 5.46 (t, 1 H, J_{2,3} 8.62 Hz, H-2°), 5.17 (s, 1 H, PhCH), 5.16 (d, 1 H, J_{1,2} 7.64 Hz, H-1°), 4.98 (d, 1 H, H-3°), 4.88–4.18 (m, 18 H), 3.96–3.80 (m, 1 H, OCH_{2}CH_{2}Ar), 3.80–3.34 (m, 19 H), 3.22 (t, 1 H, J_{3,2} 8.10 Hz, H-2°). 13C NMR (CD_{3}OD): δ 174.9, 172.3, 167.8, 167.7 (2 × PhCO, OAc, NHAc), 140.1, 140.0, 139.5, 139.4, 134.7, 134.4, 131.7, 131.3, 131.2, 131.1, 130.3, 129.9, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.7, 128.3, 127.9, 127.9 (Ar-C), 104.7 (C-1), 104.2 (C-1°), 103.9 (C-1°), 101.9 (PhCH), 83.9, 82.9, 81.9, 79.6, 78.0, 77.1, 76.7, 76.3, 76.0, 75.3, 74.7, 74.2, 74.1, 72.5, 71.6, 71.0, 69.3, 69.2, 67.7, 67.5, 64.7 (sugar C, 5 × PhCH_{2}, OCH_{2}CH_{2}Ar), 52.2 (C-2°), 49.9 (OCH_{2}CH_{2}OAc), 23.1 (NHAc), 21.0 (OAc). MALDI-TOFMS: m/z 1742.8 [M–2H + Na]+, 1758.9 [M–2H + K]+ (negative-ion mode).

2-Aminoethyl 2-O-benzoyl-3-O-sulfo-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-galactopyranosyl-(1→4)-3-O-sulfo-β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (20).—A solution of 18 (100 mg) in 10:1 MeOH—H_{2}O (15 mL) and HCl (1 M, 160 μL) was hydrogenolyzed at 0.42 MPa in the presence of palladium-on-charcoal (10%, 100 mg) for 60 h. The mixture was then filtered through Celite, and the solid was washed thoroughly with MeOH and water. The filtrate was then concentrated. Flash chromatography (5:4:0.61 CHCl_{3}–MeOH–H_{2}O–HOAc) of the residue afforded 2-aminoethyl 4-O-acetyl-2,6-di-O-benzoyl-3-O-sulfo-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-galactopyranosyl-(1→4)-3-O-sulfo-β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (19).—To a solution of 17 (55 mg, 88%) as a white solid. MALDI-TOFMS: m/z 1184.2 [M–2H + Na]+ (negative-ion mode).
To a solution of 19 (50 mg) in dry MeOH was added NaOMe (10 mg). The mixture was stirred overnight at room temperature, then neutralized with HOAc until pH 7 was reached. The solution was then concentrated. Purification of the residue by passage through a Sephadex LH-20 column using water as eluent afforded, after lyophilization, 20 (44 mg, quant) as a white solid. [α]D +7.4° (c 0.5, water). 1H NMR (D2O): δ 8.10–7.60 (m, 5 H, PhCO), 5.32 (t, 1 H, J2,3 = 8.42 Hz, H-2”), 4.96 (d, 1 H, J1,2 = 7.61 Hz, H-1”), 4.71 (dd, 1 H, J1,2 = 3.30 Hz, J2,3 = 6.47 Hz, H-3”), 4.57 (d, 1 H, J1,2 = 8.06 Hz, H-1”), 4.53 (d, 1 H, J1,2 = 8.06 Hz, H-1”), 4.49 (d, 1 H, J1,2 = 7.69 Hz, H-1), 4.34–4.31 (m, 3 H, H-3, H-4, H-4”), 4.24 (d, 1 H, J1,2 = 2.20 Hz, H-4”), 4.13–4.10 (m, 1 H, OCH2CH2NH2), 3.96–3.71 (m, 13 H), 3.67–3.57 (m, 9 H), 3.36 (t, 2 H, H-2, H-2), 3.27 (t, 2 H, OCH2CH2NH2), 1.20 (s, 3 H, NaAc). 13C NMR (D2O): δ 177.2 (NaAc), 170.3 (PhCO), 137.1, 132.9, 131.7, 131.5 (Ar-C), 105.6 (C-1’), 105.4 (C-1), 105.2 (C-1”), 104.8 (C-1”), 83.2 (C-3”), 82.1 (C-3), 81.2 (C-3’), 80.7 (C-3”), 77.0 (C-4), 75.5 (C-2”), 73.3 (C-2”), 72.1 (C-2’), 70.6 (C-4”), 68.7 (OCH2CH2NH2), 63.7 (C-6, C-6”), 63.6 (C-6’), 63.4 (C-6”), 53.6 (C-2”), 42.3 (OCH2CH2NH2), 24.3 (NaAc). MALDI-TOFMS: m/z 1059.5 [M – 2H + Na]+ (negative-ion mode).

2-Aminooethyl 3-O-sulfo-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-galactopyranosyl-(1→4)-3-O-sulfo-β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (1).—A solution of 19 (50 mg, 0.0422 mmol) in 0.5 M NaOMe–MeOH (10 mL) was stirred at 0°C for 6 h. Work-up of the reaction mixture as described for compound 20 afforded 1 (35.2 mg, 90%) as a white solid. [α]D +10.2° (c 0.8, water). 1H NMR (D2O): δ 4.69 (d, 1 H, J1,2 = 8.52 Hz, H-1”), 4.58 (d, 1 H, J1,2 = 7.83 Hz, H-1”), 4.563 (d, 1 H, J1,2 = 8.00 Hz, H-1”), 4.560 (d, 1 H, J1,2 = 7.83 Hz, H-1), 4.43 (dd, 1 H, J1,2 = 2.92 Hz, H-4), 4.40 (dd, 1 H, J1,2 = 9.89 Hz, H-3”), 4.33 (dd, 1 H, J1,2 = 3.35 Hz, H-3”), 4.30 (bs, 1 H, H-4”), 4.18 (d, 1 H, J1,2 = 3.10 Hz, H-4”), 4.15–4.12 (m, 1 H, OCH2CH2NH2), 4.10–4.08 (m, 1 H), 4.07 (dd, 1 H, J1,2 = 10.88 Hz, H-2”), 4.01–3.98 (m, 1 H, OCH2CH2NH2), 3.93 (dd, 1 H, H-3”), 3.87–3.62 (m, 15 H), 4.16–4.12 (m, 1 H, OCH2CH2NH2), 4.08 (dd, 1 H, H-2’), 4.01–3.99 (m, 1 H, OCH2CH2NH2), 3.87–3.62 (m, 15 H, H-2’), 3.83–3.54 (m, 15 H, H-5), 3.52–3.47 (m, 15 H, H-5’), 3.51–3.46 (m, 15 H, H-6), 3.46–3.42 (m), 3.41–3.36 (m, 15 H, H-6’), 3.35–3.30 (m, 15 H, H-6”), 3.34–3.29 (m, 15 H, H-6”).

13C NMR (D2O): δ 177.8 (NaAc), 170.3 (PhCO), 105.4 (C-1’), 104.8 (C-1”), 83.2 (C-3”), 82.1 (C-3), 81.2 (C-3’), 80.7 (C-3”), 77.0 (C-4), 75.5 (C-2”), 73.3 (C-2”), 72.1 (C-2’), 70.6 (C-4”), 68.7 (OCH2CH2NH2), 63.7 (C-6, C-6”), 63.6 (C-6’), 63.4 (C-6”), 53.6 (C-2”), 42.3 (OCH2CH2NH2), 24.3 (NaAc). MALDI-TOFMS: m/z 932.6 [M – 2H + Na]+ (negative-ion mode).

Acknowledgements

This project was supported by the National Natural Science Foundation of P. R. China (NSFC) and a grant from the Ministry of Science and Technology of P. R. China.

References