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Abstract

Applications of high-performance plastics and composites have widely been

expanded to various industries due to their superior properties, such as high

strength-to-weight ratio, chemical resistance, and thermal/electrical insula-

tion. However, the numerous possible combinations of polymers and rein-

forcements/fillers, the variability of these materials, and their complex

manufacturing processes pose challenges in terms of efficiently developing

new plastics and composites, accurately modeling their properties, and effec-

tively monitoring and controlling their manufacturing processes. Integrating

data-driven techniques, such as machine learning, artificial intelligence, and

big data analytics, is a promising pathway to overcome these challenges as it is

demonstrated by the state-of-the-art research works presented in this special

issue. This article provides background to the readers and introduces the range

of topics covered by the articles in this special issue.
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1 | BACKGROUND

The advances in the areas of digitalization and data analytics
such as the internet of things (IoT), cloud and edge comput-
ing, big data, and artificial intelligence (AI) along with the
technological advancements in automation and additive
manufacturing can significantly impact manufacturing
industries. In this context, the plastics and composites
manufacturing industry is taking a slightly longer time to
visibly adopt these technologies. The main reason is that
plastics and composites manufacturing is more challenging
than other industries in terms of data collection and analysis
due to their inherent complexity. The extensive possible
combinations of polymers, fillers, and reinforcements; the
multi-physics nature of their manufacturing processes;

complex tooling systems; and the requirement of human
expertise in some sections complicate every aspect of their
design and manufacture. This means that the plastics and
composites industries have more to gain from these new
technologies by implementing data-driven systems for accel-
erating material development, optimizing product design,
and enhancing their manufacturing. In this regard, the fol-
lowing topics are discussed in this special issue.

2 | DATA-DRIVEN MATERIAL
DEVELOPMENT AND MODELING

The main opportunities and issues in the manufacturing
processes involving polymeric systems are related to the
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high reactivity of the resins at relatively low tempera-
tures. This means that precise planning of each step
(from the storage of the raw materials to the final product
delivery) must be carefully planned and carried out. Nev-
ertheless, on the other hand, it means that the physical
and mechanical properties of the resin system can be pre-
cisely calibrated to improve the manufacturability and
behavior of the final product.

Currently, data-driven approaches are providing
researchers with paramount support in the definition of
optimal manufacturing setups to avoid the presence of
process-related weaknesses as shown by Gao, et al. in their
work related to predicting the strength of injection molded
fiber-reinforced composites.[1] Due to their wide applica-
tions, the requirements to be fulfilled can be highly differ-
ent, ranging from the optimization of the static or
dynamic properties to the improvement of the contact
properties and wear resistance. In different cases, the opti-
mal material definition can be achieved by the inclusion
of ingredients or by choosing a better topology. Topology
optimization is particularly relevant in 3D printing pro-
cesses due to its versatility and the possibility to realize
complex internal fillings and shapes. Of course, the draw-
back of the high flexibility is the complexity in the defini-
tion of the optimal topology, and data-driven methods are
the only reasonable way to define the deposition strategy.
In this regard, Agarwal et al. utilized several machine
learning models for predicting the compressive strength of
additively manufactured orthopedic cortical screws[2] and
Cai et al. employed machine learning methods to link the
dynamic strength of 3D-printed continuous fiber rein-
forced biocomposites with different printing parameters.[3]

The model-based choice and dosage of additives included
in the polymeric systems play a key role in the mechanical
and tribological properties conferred on the products as
investigated by Singh et al. by developing a neural net-
work model to predict such properties of FDM printed
polylactic acid parts and accordingly optimize the printing
process parameters.[4]

Based on the phenomenological modeling of constitu-
tive law, reaction kinetics, and heat transfer, the optimi-
zation of the process parameters can be performed by
using advanced computation techniques for data-driven
and/or physics-based modeling. This possibility is partic-
ularly intriguing in the case of multi-material/multi-layer
applications, largely widespread in the aeronautics and
automotive industry. In these cases, the presence of dif-
ferent polymers gives place to the necessity to find opti-
mal conditions to co-cure all the phases and achieve
high-quality sandwiches in terms of porosity and overall
quality. This opportunity was demonstrated by Lavaggi
et al. in their study on the development of several theory-
guided machine learning (TGML) models for finding the

optimal autoclave co-curing of sandwich composite
structures.[5]

Often the realization of composite or polymeric parts
is not the last productive step in the manufacturing pro-
cess, and the product can be furthermore treated, drilled/
milled, and assembled. The material removals are partic-
ularly critical in fiber-reinforced polymers, where the cut-
ting processes determine discontinuity and local
misorientation of the continuous reinforcement. Clearly,
the development of data-driven strategies based on
numerical and experimental outcomes can support the
selection of optimal parameters or additives to improve
and control the quality of the product, which is described
by two articles in this special issue related to the drilling
of fiber-metal laminated structures[6] and water jet dril-
ling of glass fiber-reinforced composites.[7]

3 | DATA-DRIVEN PROCESS
MONITORING AND OPTIMIZATION

There are often too many initial parameters involved in
plastics and composites manufacturing processes includ-
ing different material properties and compositions, pro-
cess settings, and geometrical specifications. Finding the
correlation between these initial parameters and the
quality of the final product is a challenging process,
especially considering the interactions of these parame-
ters. Hence, machine learning and other data analytics
methods can be used to better understand such correla-
tions and develop data-driven models to monitor pro-
cess conditions and/or predict product quality based on
a set of training data. Although physics-based simula-
tions can also be used to obtain insight into the
manufacturing processes and predict the quality of the
final part, they usually require high computational effort
which limits their applications in a real-time process mon-
itor or parameter adjustment. On the other hand, experi-
mentally generating the training data set needed for
developing the data-driven predictor models is a tedious
and costly process. Hence, an efficient approach is often-
times to validate a physics-based simulation using limited
experimental results and then use the validated simulation
to generate the needed data set for training the predictor
models. In this regard, Hoa et al. used a unique combina-
tion of finite element and machine learning methods to
predict several process variables, such as the degree of cure
and temperature distribution, during the curing of thermo-
set prepreg in compression molding.[8] The developed pre-
dictor models provided a more efficient way of searching
the process window (compared to the physics-based simu-
lations) hence enabling more accurate process
optimization.

2 FARAHANI ET AL.
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The use of data-driven techniques is not only suitable
for automated processes and can be used to improve
manual processes, such as vacuum infusion molding, by
reducing trial-and-error experiments and/or scrap rates.
To enable real-time process monitoring and perhaps real-
time parameter adjustment in such manual processes,
vision systems are effective tools for the real-time collec-
tion of transient process variables as investigated by
Lazaro et al. in their study on monitoring and controlling
resin flow during infusion process.[9] This will provide
further opportunities to analyze the collected graphical
data using image processing tools and train deep learning
models to predict the quality or performance of the final
part during the manufacturing processes. Such vision-
based systems coupled with data-driven techniques can
be used to develop in-line systems to monitor the size
and dispersion of the reinforcements in different compos-
ite manufacturing processes. This opportunity was
explored by Zhu et al. in their work on the development
of in-line property monitoring and characterization of the
extruded glass bead-filled polypropylene.[10]

Not always it is possible to monitor composites
manufacturing processes using vision-based systems,
especially in closed-tool processes in which the tooling
needs to be modified to accommodate the installation of the
camera and lighting devices. Moreover, vision systems only
capture information from the surface layer of the composite
structures, which is insufficient for monitoring all the pro-
cess variables and understanding the process status, espe-
cially in thick or sandwich structures. Placing a network of
compatible sensors at different locations and layers of a
composite structure and monitoring their resistance varia-
tion during the composites processing is a potential
approach to overcome the limitation of vision systems as
presented by Zhang et al. in this special issue.[11] They
developed a flexible MXene/CNT film with high conductiv-
ity and good compatibility with resin and demonstrated its
application for online monitoring of large and complex liq-
uid composite molding. Using such networks of embedded
sensors, the collected data from the process is not limited to
the flow of the resin, and other critical process variables,
such as reinforcement compaction response, infiltration,
race tracking, and resin cure can also be monitored as
explored by Khan et al. for both thermosets and thermo-
plastics.[12] Besides the technical requirement of developing
sensors, which need to be accurate, compatible with the
resin, and yet inexpensive, analyzing the data collected by
these sensors (usually resistance variation) is also a highly
challenging task. Hence, data-driven techniques can be
used to analyze the collected data from the embedded sen-
sors and correlate them not only to the process variables
(e.g. flow position, flow rate, and infiltration status) but also
to the quality and performance of the final products.

The use of recent advancements in monitoring tech-
niques and instrumentation is not only limited to the
composites manufacturing processes and has been
expanded to their post-processing steps as well. As the
majority of defects created during machining, drilling, or
cutting of composites, such as matrix burnout, fiber pull-
out, and delamination, are directly or indirectly related to
the heat generated during these processes, monitoring
the tool/workpiece temperature is critical in optimizing
their parameters and/or providing real-time control. This
opportunity was explored by Parodo et al. in their study
on monitoring the drilling process of fiber metal lami-
nated using the data captured from the thermocouples
embedded in their drill bits.[6]

4 | DATA-DRIVEN
SUSTAINABILITY

With the widespread application of petrochemical plas-
tics, our planet is being polluted by plastic wastes, from
land to ocean, and recently microplastic particles were
even found in our and animal bodies. This becomes a
serious sustainable development problem for humans,
which requires great efforts to effectively recall or recycle
non-degradable petrochemical plastics to avoid their
environmental pollution. Besides improving recycling
and upcycling measures, the use of degradable and natu-
ral polymers such as polylactic acid, polybutylene tere-
phthalate, ramie, cellulose, and their composites should
be expanded to reduce the dependency on petrochemical
plastics. Whether the former or the latter, data-driven
approaches can play an important role in the sustainabil-
ity of plastics and composites manufacturing. In this
regard, Verma et al. provided a comprehensive discussion
on recycling plastics and plastic waste using artificial
intelligence (AI) and blockchain technology.[13] They also
detailed the recently developed plastic regulation policies,
AI utilization, and AI-enabled multi-sensor to alleviate
manual segregation in the collection of plastics from
waste and the follow-on recycling. Their demonstration
of using blockchain technology in the plastics circular
economy and effective utilization of plastic waste man-
agement is another interesting contribution of this paper.

Data-driven systems can also be used to expand the
application and improve the properties of biodegradable
materials as a promising approach to maintaining sus-
tainability in plastics and composites manufacturing. In
this special issue, this opportunity was demonstrated by
three studies related to the additive manufacturing of
natural or degradable polymers. In the first one, Singh
et al. introduced a feedforward backpropagation artificial
neural network model for the prediction of tensile
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strength, material consumption, build time, and surface
quality considering multiple printing process parameters
in additive manufacturing of PLA parts.[14] In the second
study conducted by Cai et al., a machine learning method
was employed to link the dynamic strength of 3D-printed
continuous ramie fiber reinforced biocomposites (CRFRC)
with different printing parameters, and build their non-
linear and interactive relationships.[3] The trained
models from experimental data were utilized to predict
the dynamic strength of CRFRC printed using different
conditions. In the last study, Agarwal et al. studied the
application of several machine learning models including
k-nearest neighbors, support vector regression, decision
trees, and random forest for predicting the compressive
strength of additively manufactured polylactic acid-based
cortical screws.[2]

5 | CONCLUDING REMARKS AND
OUTLOOK

The range of studies presented in this special issue shows
the potential of using data-driven techniques to improve
the plastics and composites industries by solving the
inherent complexity of the material and manufacturing
systems used in these industries. The amount of data
available in the manufacturing industry is growing rap-
idly, driven by advances in sensor technology, the
increasing prevalence of connected devices, and the rise
of the Industrial Internet of Things (IIoT). These
advancements enable collecting vast quantities of data
from every aspect of the plastics and composites
manufacturing process, from raw material inputs to fin-
ished product outputs. Additionally, the technology to
process this data is becoming more advanced, with new
tools and algorithms being developed specifically for the
manufacturing industry.

As the amount of data available continues to grow and
the technology to process it becomes more advanced, the
potential for data-driven systems in plastics and compos-
ites manufacturing is immense. The integration of Indus-
try 4.0 principles, such as digital twins and networked
systems, will enable real-time monitoring and predictive
modeling of material behavior and manufacturing pro-
cesses, leading to a significant reduction in material waste,
energy consumption, and production cycle times. Further-
more, the implementation of these systems will facilitate
the development of novel plastics and composite formula-
tions by harnessing the potential of high-dimensional data
generated from multiscale experiments and simulations.
This shift towards a more data-centric approach will foster
the creation of next-generation materials with superior
mechanical, thermal, and chemical properties, ultimately

driving innovations in various sectors, including aero-
space, automotive, and renewable energy. As a result, the
development and utilization of data-driven systems will
not only propel the plastics and composites industry to
new heights but also contribute to sustainable develop-
ment goals by reducing the overall environmental foot-
print of these materials.
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