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ABSTRACT 

The intriguing history of disturbance cancellation control is reviewed in this thesis 

first, which demonstrates that this unique control concept is both reasonable and practical. 

One novel form of disturbance cancellation, ADRC (Active Disturbance Rejection 

Control), attracts much attention because of its good disturbance rejection ability and 

simplicity in implementation. Hydraulic systems tend to have many disturbances and 

model uncertainties, giving us a great motivation to find out a good control method. In 

this thesis, electro-hydraulic servo control problem is reformulated to focus on the core 

problem of disturbance rejection. An ADRC solution is developed and evaluated against 

the industry standard solution, with promising results. 
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CHAPTER I 

INTRODUCTION 

Control engineering plays a very important role in our lives. Almost every single 

machine has a control system to regulate its behaviors. From aircrafts, automobiles and 

cranes to air-conditioners, robots and even electronic chips, control is closely connected 

to the technological development that brings comfort to mankind. For example, a good 

control system keeps the elevators moving quickly and smoothly even when the load 

changes within a big range. 

Control as it’s commonly defined in current textbooks is mostly limited to 

feedback systems. In this chapter, a different view of control is discussed in section 1.1. 

Then the motivation for seeking advanced control methods in electro-hydraulic servo 

systems is discussed in section 1.2.  
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1.1 Background 

Long before control theory was established, feedback control was used in many 

mechanical systems. The first application can be traced to the period 300 to 1 BCE when 

a float regulator was implemented in the water clock of Ktesibios. Perhaps the most 

famous feedback control device is James Watt’s flyball governor. Watt used the flyball 

governor to control the speed of steam engine by adjusting the steam valve and therefore 

the amount of steam going into the engine, in response to the deviation of the engine 

speed from the desired one [1].  

These old feedback control systems are mostly pure mechanical devices built 

based on sheer intuition of their inventors long before any systematic understanding or 

theory was established. James Maxwell performed the first mathematical analysis of 

feedback control in 1868, followed by the investigations from other mathematicians over 

several decades. Classical control theory, as we know today, originated in the Bode and 

Nyquist’s analysis of the performance of feedback amplifiers in frequency domain during 

1930s and has since become the standard bearer [1]. 

Academically speaking, the history of control theory is a history of the study on 

feedback. In reality, however, there is an alternative, one that is based not on feedback, 

but on disturbance cancellation. It is recorded that, in 2634 BCE China, the south-

pointing chariot was invented in which the disturbance acting on the direction of the 
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chariot is measured and cancelled, thus making the puppet on the chariot always point to 

the same direction it started with [2]. Obviously, this control function is not based on the 

conventional notion of feedback and there is no set-point, nor the measurement of the 

output, which is the direction pointed by the puppet. This form of control is much earlier 

than the first application of feedback control but received little attention throughout the 

history of control. 

The key in disturbance cancellation control is that the information of disturbances 

should be obtained by measurement or estimation. Once this information is obtained, it 

can be used to cancel the effect of disturbances. Since there are plenty of control systems, 

such as in the hydraulic servo systems as shown later in the thesis, where disturbance 

rejection is the most important quality, the disturbance cancellation methodology should 

not be overlooked. 

 

1.2 Motivation 

Hydraulics has an eight thousand years of history. Early uses of water power can 

be traced to Mesopotamia and ancient Egypt. Irrigation has been used since the 6th 

millennium BCE and water clocks had been used since the early 2nd millennium BCE. In 

1619 Benedetto Castelli, a student of Galileo Galilei, published the book "On the 

Measurement of Running Waters", which can be regarded as one of the foundations of 

modern hydrodynamics [3].  

http://en.wikipedia.org/wiki/Mesopotamia
http://en.wikipedia.org/wiki/Ancient_Egypt
http://en.wikipedia.org/wiki/Irrigation
http://en.wikipedia.org/wiki/Water_clock
http://en.wikipedia.org/wiki/Benedetto_Castelli
http://en.wikipedia.org/wiki/Galileo_Galilei
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Hydraulic systems are now widely used in every aspect of our life, such as 

hydraulic punching, pressing, bending and lifting in machinery manufacture. Hydraulic 

systems have great advantages such as high power/mass ratio, fast response, high 

stiffness and high load capability. However, hydraulic systems are highly nonlinear and 

have many dynamic uncertainties which are consequences of physical characteristics, 

disturbances and load variations [4]. 

In industry, PID (Proportional-Integral-Derivative) is commonly used in electro-

hydraulic servo control systems. In a PID feedback control loop, adjustment is made only 

after the disturbance goes into the system and causes the tracking error to occur, often 

wasting energy in the process. Also, PID often has poor disturbance rejection and 

uncertainty toleration. Because of the importance of hydraulic systems and the difficulties 

in control design, there is a great incentive to explore novel control methods to obtain a 

better performance in electro-hydraulic servo control systems. 

 

1.3 Thesis Organization 

This thesis is organized as follows. Literature review on electro-hydraulic servo 

control and the history of disturbance cancellation control are introduced in Chapter II. 

The history of disturbance cancellation includes where this method came from, how it has 

been developed and what is new in recent years. The plant model of electro-hydraulic 

servo control system is identified and reformulated and nonlinear state space equations 
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are given in Chapter III. In Chapter IV, the control design is described. In Chapter V, 

simulation results are provided and analyzed. Conclusions and future works are given in 

Chapter VI. 
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CHAPTER II 

LITERATURE REVIEW 

In this chapter, literature review on electro-hydraulic servo control is provided in 

section 2.1. Then the history of disturbance cancellation, its worldwide expansion and its 

current development are discussed in section 2.2. A summary is made in section 2.3. 

 

2.1 Electro-Hydraulic Servo 

Much research has been done in controlling electro-hydraulic servo systems using 

various control methods. They could be divided into three paradigms, the industry 

paradigm, the model paradigm and the disturbance rejection paradigm [5]. 

The typical control method from the industry paradigm is PID, which must be 

tuned in each system, often in a tedious process. Moreover, changes in the system 

dynamics commonly require the PID controller to be retuned in order to obtain a good 

performance. In addition, PID usually has a poor disturbance rejection. Even so, PID is 

still dominant technology in industry partially because it does not require the plant model. 
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Fuzzy PID, the combination of the traditional PID controller and fuzzy logic, can 

be made to adaptively tune the gain parameters 𝑘𝑘𝑝𝑝 , 𝑘𝑘𝑖𝑖  and 𝑘𝑘𝑑𝑑  according to the error and 

change in error [4]. Fuzzy PID can tune its parameters by itself, but it is still PID and may 

not handle the nonlinear and time-varying dynamics very well. When disturbance occurs, 

it tunes the values of the parameters of PID step by step and finally finds out a solution. 

But, during this progress, significant amount of power and energy could be lost. There is 

also work done on combination of fuzzy logic and PID controller implemented in electro-

hydraulic position control system [6]. The system is switched to use fuzzy controller or 

PID controller, depending on the range of the error. 

In the model paradigm, the design of control algorithm is based on the plant 

model that is assumed given. State feedback, feedback linearization, H∞ control and 

sliding mode control can be included in this paradigm. Feedback linearization has been 

used in electro-hydraulic position control system [7, 8], where the plant is linearized by 

using feedback loop based on the knowledge of system model. Although this control 

method is very straightforward, it cannot handle unexpected disturbances and 

uncertainties of the electro-hydraulic systems very well. Another disadvantage of 

feedback linearization is that system model must be accurate, otherwise linearization 

cannot be accomplished. 

Because of the poor disturbance rejection ability of feedback linearization, H∞ 

control method has also been investigated as an alternative. But its use in industry has 

been very limited because of, among other things, its complexity in implementation, its 

assumption on having a rather accurate model, and its limited range of accommodation of 

model uncertainty [9-11]. 
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Similar arguments can be made with sliding mode controller. In sliding mode 

control, one has to find two functions to satisfy the Lyapunov stability conditions based 

on the plant model, and this is quite complicated, especially for high-order nonlinear 

electro-hydraulic systems [12-14]. However, these control methods from the model 

paradigm can easily outperform the PID controller from industry paradigm, if the plant 

model is given. 

The disturbance rejection paradigm has its focus on the problem of cancelling the 

disturbance before it significantly affects the output. Critical to its success is the 

disturbance information, which is obtained using various estimation methods such as the 

UIO (Unknown Input Observer), the DOB (Disturbance Observer), the POB 

(Perturbation Observer) and the ESO (Extend State Observer). For UIO and DOB, a 

nominal model of the plant is needed based on which the external disturbance is 

estimated. When implemented in electro-hydraulic servo systems, they show some 

tolerance to model uncertainties and are able to estimate the external disturbances [15, 

16]. POB is almost same as DOB, but presented in discrete form [17]. In ESO, the total 

effect of the external disturbances and internal uncertainties is estimated and then 

cancelled in the ADRC framework, which is shown to have great tolerance of plant 

uncertainty and excellent disturbance rejection ability [18]. 

Generally speaking, PID used in its various modifications does not have good 

disturbance rejection and plant uncertainties tolerance. Small changes in the plant require 

operators to retune the controller and much energy could be wasted in the process. With 

the model based paradigm, the biggest problem is that, with so much uncertainty, 

especially in the high-order nonlinear system, the controller is not up to the task. 
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Hence, a better solution for electro-hydraulic servo problem should be sought in 

the disturbance rejection paradigm. Before this, the history of disturbance cancellation 

will be reviewed. It should be made clear where this idea came from, how it was 

developed and what the current situation is. 

 

2.2 The History of Disturbance Cancellation 

Nowadays, control system is everywhere and it seems no stone has been unturned 

in search of better designs. There is one class of solutions, however, known as 

disturbance cancellation, which has been somehow ignored in the textbooks, but quietly 

blossomed in many different forms in practice. The history of this development is 

outlined below. 

The earliest device of disturbance cancellation could be traced to the famous 

Chinese invention of south-pointing chariot [19]. The south-pointing chariot first 

appeared in legends, according to which the Yellow Emperor, in 2634 BC, was in a war 

against Chi You, which had lasted for years. At the time Chi You was going to fail, there 

came a thick fog and Yellow Emperor’s troop lost their direction. Yellow Emperor then 

invented the south-pointing chariot and finally defeated Chi You.  

The first recorded south-pointing chariot was attributed to Ma Jun from the 

Kingdom of Wei, in 235 AD during Three Kingdoms [20]. Later, Zu Chongzhi (478 AD), 

Yan Su (1027 AD) and Wu Deren (1107 AD) reinvented the south-pointing chariot 
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several times [20]. The History of the Song Dynasty, or Sung Shi, has detailed records of 

Yan Su and Wu Deren’s south-pointing chariot, the former is depicted in Figure 2.1[2]. 

Gear B rotates with the rotation of wheel A, which makes gear D rotate with a speed 

proportional to A’s speed. When the chariot is moving forward, gear E is not connected 

to gear D; when the chariot is tuning left, gear E will engage gear D and its rotation will 

exactly cancel out the angle the chariot turns, making the wooden image of a immortal, 

which is connected to gear E and stands on top of the chariot, keep pointing to the same 

direction, south, as it started with [2]. 

 

 

Figure 2.1 Yan Su’s south-pointing chariot [2] 
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Figure 2.2 Picture of south-pointing model 

 

Figure 2.2 is a picture of south-pointing chariot model. Note that in this control 

system, the goal is to make immortal on top of the chariot always points to a certain 

direction (south), and this can be seen as the set point. But this goal is achieved without 

the feedback of actual direction the immortal points to. Instead, a disturbance is measured 

and this information is used to make the pointing device turn, cancelling the disturbance 

effect.  

A similar concept appeared in Western literature over a thousand years later. 

Jean-Victor Poncelet, a French army officer and physicist, proposed a new form of 

engine governor which was based on the use of disturbance cancellation in 1829. He tried 

to measure the load disturbance on the engine by a spring coupling and adjust the steam 

valve accordingly to compensate for it [21], before the engine speed changes. Just like the 

south point chariot, his design doesn’t require the measurement of the actual engine speed, 
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as shown in Figure 2.3. In this system, the load change is the disturbance that tends to 

cause speed change. The torque from prime mover to load passes through a flexible 

spring coupling. The load change creates a twist in the coupling, which reflects the 

disturbance torque, and it then passes through the meshed gears to cause the displacement 

of Gear 2, which changes the throttle valve [22] and regulate the steam flow to cancel the 

load disturbance. 

 

 

Figure 2.3 Poncelet’s load-sensing governor [22] 

 

In other words, in Poncelet’s governor, the load disturbance is measured 

instantaneously, which makes the governor act immediately by adjusting the throttle 

valve (control signal). But Poncelet’s invention was not successfully implemented 
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because of the stability issues such as vibrations due to flexible couplings and sudden 

load changes. The idea of disturbance cancellation, however, lived on.  

It is reported in [23] that disturbance cancellation was applied in Chikolev 

Vladimir Nikolaevich’s “differential” arc lamp. From 1860s to 1870s, the spread of 

electric light arc lamp was limited by its weaknesses such as the complexity of the design, 

the inability to include multiple bulbs in one chain, the need for relatively high current for 

lights, etc. In 1877, Chikolev developed the first differential arc lamp, which solved the 

problem completely. The regulator of the arc lamp uses both the idea of disturbance 

cancellation and the feedback amplifier and this might be the first attempt on the 

combination of disturbance cancellation and feedback. 

Later in 1939, the theory of invariance was developed by G. B. Shchipanov, in 

which Soviet engineers showed great interest. The theory of invariance is to find out how 

to make an output (or outputs) of a system unaffected by one or more of the inputs. This 

theory of invariance is trying to solve the essential problem in a control system, the 

disturbance rejection problem. The conditions of invariance are given by Shchipanov. It 

is impossible to realize absolute invariance only by using feedback, unless infinite gain is 

used, which is not realizable in practical control systems. It is said that both feedforward 

and feedback should be applied to meet the conditions and achieve absolute invariance of 

a controlled variable. In feedforward, input disturbance is cancelled before it goes into 

the system in order to make the output invariant to input disturbance [24]. 

After Shchipanov’s theory of invariance was proposed, many Soviet scholars 

continue to make contributions in the development of disturbance cancellation, 

particularlyA. G. Ivakhnenko, B. N. Petrov and V. S. Kulebakin.  A. G. Ivahnenko 
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showed the importance of disturbance feedforward, which is different from output 

feedback. He pointed out that feedforward and feedback are ‘orthogonal’. They have 

different effects in a system separately. In particular the power consumption of a system 

with feedforward should be much less than the system with only feedback. The greater 

the accuracy of the feedforward, the less work left to the feedback and less power 

consumption [25]. 

Another Soviet scholar, B. N. Petrov, made the following statement: in a dynamic 

system there must be at least two channels for propagation of influences between the 

point of application of the external effect and the point of measurement of magnitude. 

This is later known as the principle of dual channels. It suggests that the controller must 

act on the disturbances, not just react to its effect on the system performance [26]. 

Finally, A. S. Kulebakin insists that disturbance compensation based on the theory 

of invariance deserves more attention among many advanced control methods [27]. That 

is, disturbance rejection is very important in a control design and feedback alone is not 

enough. In this paper, Kulebakin also demonstrates the practicality of invariance 

principle. As combined control system based on dual channel principle was taking roots 

in Soviet Union, the problem of disturbances cancellation was also considered by 

engineers in United States. 

Elmer Sperry, who developed the first PID-type controller in 1911, invented 

devices for measuring of and compensating for disturbances like wind, wave, etc. in 

automatic ship steering system [28]. Figure 2.3 is a simple illustration of a gyrostabilizer 

used to reducing ship from rocking back and forth along big waves: one the left is the 

normal condition with no waves and on the right is when the ship (platform) is tilted by 
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the waves. As indicated on the right in Figure 2.4, the gyro wheel will tilt to an angle 

proportional to the tilt of the ship, which produces the countering force on the platform 

[29]. Based on this natural phenomenon, Elmer Sperry invented a gyrostabilizer which is 

used to automatically adjust the gyro wheel inclination by a motor according to the tilt of 

the ship (Figure 2.5). When the ship rolls, the control gyro will tilt and one of the contacts 

will be closed. Then the motor will be energized in the proper direction, which adjusts the 

inclination of the axis of the gyro wheel accordingly [30]. 

 

 

Figure 2.4 Illustration of precession [29] 

 

Essentially, Sperry used a gyro to measure the rolling angle of the ship and 

eliminated it by aggressively energizing the motor to tilt the gyro wheel. The result is 

much better than the previous design that relies on the natural stabilizing effect of the 

gyroscope. This might be the first disturbance rejection control application in United 

States [31]. 
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Figure 2.5 Sperry’s gyro control design [30] 

 

Harold S. Black, the inventor of negative feedback amplifier, tried to use 

feedforward to cancel the distortion and noise in signal transmission in 1923 [32]. 

Actually, this is another example of disturbance cancellation. According to his 

description, his design is shown in Figure 2.6. First the gain of the amplifier, µ, is 

inverted so that the equivalent input distortion could be obtained, before it is amplified by 

the same gain, µ, and  subtracted from the original amplifier output to obtain an distortion 

free output signal. 
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Figure 2.6 Black’s feedforward design for cancelling distortion and noise 

 

In this design, distortion is calculated and cancelled at the output side, leading to 

40dB reduction of distortion in a single amplifier. However, there are weak points. The 

amplifier gain (system model) should be known exactly for the inverse to be accurate. In 

practice, however, such gain is not only not known exactly, but also changing with 

temperature and other factors in the operating condition, leading to a design that works 

well in laboratories where the gain of the inverse and the second amplifier can be readily 

adjusted, but impractical in the fields of operation. 

Moore discussed a combined open-cycle closed-cycle system with load 

disturbance compensation in his 1951 paper, as illustrated in Figure 2.7 [33]. This system 

has open-loop feedforward for set point, close-loop feedback for error and feedforward 

for load disturbance (disturbance cancellation). However, this design relies on the 

knowledge to dynamics of the system. Feedforward for set point makes the output track 

the input well, feedback makes little correction to the small error between the output and 
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input, and the disturbance compensator cancels the load disturbance out before it goes 

into the system. The system model and the measurement of the load disturbance are 

needed. 

Y(ui) Y(ud)

Y’(ud)

Y(ou)Y(ue)

Y(eo)

Input i+i’

Input open 
cycle 

controler

Load open 
cycle 

controller

Series 
controller

Parallel 
controller

Actuator & 
unalterable elements

Load unalterable element

Output o

Load disturbance d+ +

+ +

+ ++
-

 

Figure 2.7 Open-cycle closed-cycle system with load disturbance compensation 

 

Smith proposed a reasonable load disturbance compensator in 1960. In this design, 

load disturbance is not measured directly, but obtained by comparing a feedback signal 

and the input, as showed in Figure 2.8 [34]. Load disturbance is then cancelled at the 

input side. In this system, the plant model should be known well, while the access to the 

measurement of load disturbance is not needed.  
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Figure 2.8 Smith’s load disturbance compensator 

 

C. D. Johnson presented a control method called Unknown Input Observer control 

(UIO control) in his 1971 paper. He used a novel control algorithm to obtain the 

estimation of unknown input disturbances and subtract them from control signal. In many 

realistic control problems, the plant to be controlled is subjected to persistently acting 

external disturbances which are not known beforehand and are not accessible for 

measurement, but which do have a (more-or-less) known set of possible waveforms. In 

this paper it has been shown that if such disturbances can be modeled by solutions of 

some linear differential equation, then it is possible to construct a dynamical feedback 

controller which, by measuring only the available plant output y(t), can maintain 

accurate set-point regulation (or accurate servo-tracking) in the face of any such 

disturbances [35].(Copyright by IEEE. Reprinted with permission.) 
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Obviously, UIO has the spirit of disturbance cancelling, but it still has drawbacks. 

Specifically, both the system model and disturbance model are required and it can only 

deal with the external disturbances [36]. 

Meanwhile, Japanese researcher developed a similar input disturbance observer 

(DOB) in 1987 without knowing C. D. Johnson’s UIO. It is very similar in principle to 

UIO, with perhaps a simpler form [37-39]. Later on, the equivalence between UIO and 

DOB was established [39]. Figure 2.9 shows the structure of a disturbance observer for a 

motion system. Disturbance is estimated and then cancelled out. However, the model 

information is needed and only external disturbances can be estimated [40]. 

 

K(1+Ts)/Ts Kt 1/(Js+B)

1/(cs+1) (Js+B)/Kt

+
-

+
-

+-

+
+

L

wr

 

Figure 2.9 Structure of DOB (disturbance observer) 

In S. J. Kwon and W. K. Chung’s 2002 paper, a design of discrete perturbation 

observer (POB) is discussed. Figure 2.10 is the illustration of POB [41]. The perturbation 
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observer not only estimates and cancels the perturbation, but also works as a model 

regulator, which makes the inner loop a nominal plant. 

Feedback 
controller
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µ u+
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w

+ +
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Figure 2.10 Structure of POB (perturbation observer) 

 

Finally, the Extended State Observer (ESO) was proposed by Han in 1995 which 

regards both the internal dynamic uncertainties and the external disturbances as total 

disturbance, which is estimated it by treating it as a state, hence the name extended state. 

In one bold stroke, the problem of robust control, arising from the uncertainties in the 

system dynamics, and the problem of disturbance rejection become one single problem 

[42-44]. Han’s ESO was further simplified and parameterized by Gao [45] in 2003. 
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Figure 2.11 ADRC (active disturbance rejection control) system configuration 

 

As shown in Figure 2.11 for a second order plant, the total disturbance (including 

input, output disturbances and model uncertainties) is estimated by ESO and then 

cancelled from the input side, reducing a complex, unknown, nonlinear plant to a simple 

double-integral one which can be easily controlled by a PD controller (for a second order 

system). Since the disturbance is actively estimate and cancelled, the resulting control 

system is denoted as Active Disturbance Rejection Control (ADRC). The main advantage 

of ADRC is that the exact model of the system and disturbance is not needed and the 

disturbance is cancelled out but it significantly affects the system performance. 
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2.3        Summary 

In disturbance cancellation, the disturbances is first measured or estimated and 

then canceled at the input side before they affect the system. Compare to this, the 

feedback only design makes the correction after error has already occurred. So, in this 

sense, feedback is passive, while disturbance cancellation is active. In an ideal system 

whose plant model and disturbance model are known exactly, there is no need of 

feedback. Even in a practical system with disturbance cancellation, feedback should not 

play a major role but do little correction to the small error caused by the uncancelled 

disturbances and uncertainties. 

Between the measuring and estimating methods in obtaining the disturbance 

information, the latter is more attractive for two reasons: 1) it doesn’t require any 

hardware change; 2) it could estimate not only the disturbances but also the dynamic 

uncertainties. With this knowledge, I gained great confidence in ADRC’s implementation 

in the electro-hydraulic servo control systems. Although there are models for hydraulic 

systems, there are still significant disturbances and uncertainties in hydraulic systems, 

which are also quite nonlinear, and this gives a great platform to test ADRC. 
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CHAPTER III 

HYDRAULIC PROBLEM DESCRIPTION AND REFORMULATION 

Electro-hydraulic servo system is a dynamic process. If the dynamic model of the 

system is obtained, the system can be simulated in computer software to see how it acts 

without practically running it. Afterwards, the controllers are designed according to the 

dynamic model and the best one is selected after being tested in the software. Hence, 

model description and analysis are very important. 

In this chapter, the dynamics of the electro-hydraulic servo system is discussed 

and the nonlinear state space equations are obtained in section 3.1. The electro-hydraulic 

servo control problem is reformulated in section 3.2 
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3.1 Plant Dynamics 

There are many kinds of electro-hydraulic servo systems, which can be generally 

divided to valve-controlled system [9] and direct drive system [4]. Valve-controller 

system uses proportional valve, while direct drive system does not. This thesis only 

focuses on the problem of the valve-controlled system. This is a high-order nonlinear 

system, which is used widely in industry. 

 

3.1.1        Main Structure Of The Valve-Controlled System 

Figure 3.1 shows the main structure of the electro-hydraulic system [9]. This is a 

SISO (Single-Input Single-Output) system. The input is the voltage 𝑢𝑢 and the output is 

the displacement 𝑥𝑥𝑝𝑝 .  

First of all, the input voltage 𝑢𝑢  causes a spool displacement 𝑥𝑥𝑣𝑣  in a two-stage 

electro-hydraulic proportional servo valve. When the spool moves, the orifices in the 

valve are opened. Then, flow goes through one orifice from the valve to the cylinder and 

through another from the cylinder back to the valve. 
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Figure 3.1 Main structure of electro-hydraulic system. From "Robust H-infinity control 

synthesis of an electro-hydraulic servo system," by Z. S. V. Milic and M. Essert, 2010, 

ISA Transactions. Copyright by Elsevier. Reprinted with permission. 

 

The flow that goes into and gets out of the cylinder has two different pressures 𝑃𝑃1  

and 𝑃𝑃2, at the piston side and rod side, respectively. 𝑃𝑃1  and 𝑃𝑃2 act on the piston and make 

the mass move. 
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3.1.2        Dynamics Of Proportional Valve 

 

Figure 3.2 Two-stage electro-hydraulic servo valve. From Hydraulic Control Systems, by 

H. E. Merritt. Copyright by JOHN WILEY & SONS INC. Reprinted with permission. 

 

The structure of the two-stage electro-hydraulic servo valve is shown in Figure 

3.2 [46]. The sensitive flapper is driven by armature of an electro-magnetic torque motor, 

which causes the spool displacement. 
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The dynamics of proportional valve can be described by the following second-

order linear differential equation: 

                   �̈�𝑥𝑣𝑣 + 2𝜎𝜎𝑣𝑣𝜔𝜔𝑣𝑣�̇�𝑥𝑣𝑣 + 𝜔𝜔𝑣𝑣2 = 𝑘𝑘𝑣𝑣𝜔𝜔𝑣𝑣2𝑢𝑢                                   (3.1) 

 

Where 𝑘𝑘𝑣𝑣 is the proportional valve gain, 𝜔𝜔𝑣𝑣 is the natural frequency, 𝜎𝜎𝑣𝑣 is the damping 

ratio of the proportional valve, 𝑥𝑥𝑣𝑣 is the spool position and 𝑢𝑢 is the input voltage. 

 

3.1.3       The  Nonlinear Relationship Between Flow And Pressure 

 

Figure 3.3 Combination of the proportional valve and the cylinder. From "Unified 

modeling and analysis of a proportional valve," by Bora Eryilmaz and Bruce H. Wilson, 

2006, Journal of the Franklin Institute. Copyright by Elsevier. Reprinted with permission. 
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Figure 3.3 is the combination of the proportional valve and the cylinder [47]. 

When the spool moves, the flow goes into the cylinder and the pressures 𝑃𝑃1 and 𝑃𝑃2 act on 

the piston to make the mass move. 

The equations of the flow through the proportional valve can be written as follows: 

                           𝑄𝑄1 = �
𝐶𝐶𝑣𝑣𝑥𝑥𝑣𝑣�(𝑃𝑃𝑠𝑠 − 𝑃𝑃1), 𝑥𝑥𝑠𝑠 ≥ 0
𝐶𝐶𝑣𝑣𝑥𝑥𝑣𝑣�(𝑃𝑃1 − 𝑃𝑃𝑟𝑟), 𝑥𝑥𝑠𝑠 < 0

�                                       (3.2) 

                          𝑄𝑄2 = �
𝐶𝐶𝑣𝑣𝑥𝑥𝑣𝑣�(𝑃𝑃2 − 𝑃𝑃𝑟𝑟), 𝑥𝑥𝑠𝑠 ≥ 0
𝐶𝐶𝑣𝑣𝑥𝑥𝑣𝑣�(𝑃𝑃𝑠𝑠 − 𝑃𝑃2), 𝑥𝑥𝑠𝑠 < 0

�                                        (3.3) 

where 𝑃𝑃1 and 𝑃𝑃2 are the pressures at the piston side and rod side, respectively, 𝑃𝑃𝑠𝑠 is the 

supply pressure, 𝑃𝑃𝑟𝑟  is the return pressure and 𝐶𝐶𝑣𝑣 is the valve coefficient for all the valve 

ports. 

Hydraulic pressure behavior for a compressible fluid volume can be described by 

the following two equations: 

                                 𝑄𝑄1 = 𝐴𝐴1
𝑑𝑑𝑥𝑥𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝑉𝑉01 +𝐴𝐴1𝑥𝑥𝑝𝑝
𝛽𝛽

𝑑𝑑𝑃𝑃1
𝑑𝑑𝑑𝑑

                                       (3.4) 

                                 𝑄𝑄2 = 𝐴𝐴2
𝑑𝑑𝑥𝑥𝑝𝑝
𝑑𝑑𝑑𝑑

− 𝑉𝑉02−𝐴𝐴2𝑥𝑥𝑝𝑝
𝛽𝛽

𝑑𝑑𝑃𝑃2
𝑑𝑑𝑑𝑑

                                       (3.5) 

 

where 𝑉𝑉01 and 𝑉𝑉02  are the original volumes of the piston side and the rod side of the 

cylinder, 𝐴𝐴1 and 𝐴𝐴2 are the annulus areas of the piston side and the rod side and 𝛽𝛽 is the 

fluid bulk modulus. Rewrite equation (3.4) and (3.5): 

                          �̇�𝑃1 = 𝛽𝛽
𝑉𝑉01 +𝐴𝐴1𝑥𝑥𝑝𝑝

(𝑄𝑄1 − 𝐴𝐴1�̇�𝑥𝑝𝑝)                                              (3.6) 



 

 

30 

                          �̇�𝑃2 = 𝛽𝛽
𝑉𝑉02−𝐴𝐴2𝑥𝑥𝑝𝑝

(−𝑄𝑄2 + 𝐴𝐴2�̇�𝑥𝑝𝑝)                                          (3.7) 

 

3.1.4        Motion Dynamics 

The equation of motion dynamics of the piston can be obtained based on 

Newton’s law of motion: 

                           �̈�𝑥𝑝𝑝 = 1
𝑀𝑀𝑑𝑑

(𝑃𝑃1𝐴𝐴1 − 𝑃𝑃2𝐴𝐴2 − 𝑏𝑏�̇�𝑥𝑝𝑝 − 𝑐𝑐𝑥𝑥𝑝𝑝 − 𝐹𝐹𝑙𝑙)                (3.8) 

 

where 𝑀𝑀𝑑𝑑  is the total mass of the piston and the rod, 𝑏𝑏 and 𝑐𝑐 are the viscous damping 

coefficient of the actuator and the load stiffness, respectively, and 𝐹𝐹𝑙𝑙  is the external 

disturbance force. 

 

 

3.1.5 Nonlinear State Space Equations 
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By defining the state variables as: 𝑥𝑥1 = 𝑥𝑥𝑣𝑣, 𝑥𝑥2 = �̇�𝑥𝑣𝑣, 𝑥𝑥3 = 𝑃𝑃1,𝑥𝑥4 = 𝑃𝑃2, 𝑥𝑥5 = 𝑥𝑥𝑝𝑝 , 

𝑥𝑥6 = �̇�𝑥𝑝𝑝 , the nonlinear model of the electro-hydraulic system can be written as: 

                            

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
�̇�𝑥1 = 𝑥𝑥2                                                             
�̇�𝑥2 = −𝜔𝜔𝑣𝑣2𝑥𝑥1 − 2𝜎𝜎𝑣𝑣𝜔𝜔𝑣𝑣𝑥𝑥2 + 𝑘𝑘𝑣𝑣𝜔𝜔𝑣𝑣2𝑢𝑢            
�̇�𝑥3 = 𝛽𝛽

𝑉𝑉01 +𝐴𝐴1𝑥𝑥5
�𝐶𝐶𝑣𝑣𝑥𝑥1�∆𝑃𝑃1 − 𝐴𝐴1𝑥𝑥6�            

�̇�𝑥4 = 𝛽𝛽
𝑉𝑉02−𝐴𝐴2𝑥𝑥5

�𝐶𝐶𝑣𝑣𝑥𝑥1�∆𝑃𝑃2 + 𝐴𝐴2𝑥𝑥6�            
�̇�𝑥5 = 𝑥𝑥6                                                              
�̇�𝑥6 = 1

𝑀𝑀𝑑𝑑
(𝐴𝐴1𝑥𝑥3 − 𝐴𝐴2𝑥𝑥4 − 𝑐𝑐𝑥𝑥5 − 𝑏𝑏𝑥𝑥6 − 𝐹𝐹𝑙𝑙)

�                        (3.9) 

 

where ∆𝑃𝑃1 and ∆𝑃𝑃2 are defined as: 

                                  ∆𝑃𝑃1 = �𝑃𝑃𝑠𝑠 − 𝑥𝑥3, 𝑥𝑥1 ≥ 0
𝑥𝑥3 − 𝑃𝑃𝑟𝑟 ,𝑥𝑥1 < 0

�                                                      (3.10) 

                                  ∆𝑃𝑃2 = �𝑥𝑥4 − 𝑃𝑃𝑟𝑟 ,𝑥𝑥1 ≥ 0
𝑃𝑃𝑠𝑠 − 𝑥𝑥4, 𝑥𝑥1 < 0

�                                                      (3.11) 

 

As the nonlinear state space equations are obtained, the model of the electro-

hydraulic system can be built in simulation software. 

By observing the state space equations, we can conclude that this electro-

hydraulic servo system is a sixth-order system and is nonlinear. Disturbances may go into 

the system in any part of the process and the load is variable. Hence, this electro-

hydraulic servo control problem is first and for most a disturbance rejection problem. 

Traditional PID usually does not have good performance in this kind of highly nonlinear 

and disturbances involved systems. In feedback linearization, H∞ control and sliding 
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mode control, it is very complicated to build the controller, which is based on the 

knowledge of the plant model and the disturbance model. ADRC is designed to estimate 

the total disturbance including model uncertainties and external disturbances and cancel it 

from the input side. Hence, ADRC is selected as the solution for the electro-hydraulic 

servo system investigated in this thesis. 

 

3.2 Hydraulic Problem Reformulation 

After further observation, it is discovered that this electro-hydraulic servo system 

can be divided to two parts. If the pressure difference is defined as a new variable in the 

form of: 

                                      𝑣𝑣 = 𝑃𝑃1𝐴𝐴1 − 𝑃𝑃2𝐴𝐴2                                     (3.12) 

 

Then the system dynamics  can be expressed in two parts: 

                                           �̇�𝑣 = 𝑉𝑉(𝑢𝑢)                                            (3.13) 

                         �̈�𝑥𝑝𝑝 = 1
𝑀𝑀𝑑𝑑

(𝑣𝑣 − 𝑏𝑏�̇�𝑥𝑝𝑝 − 𝑐𝑐𝑥𝑥𝑝𝑝 − 𝐹𝐹𝑙𝑙)                             (3.14) 

where 𝑉𝑉(𝑢𝑢) represents the first four equations in (3.9), which is a complicated highly-

nonlinear process and (3.14) represents the simple second order motion system. 
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Figure 3.4, Figure 3.5 and Figure 3.6 are the step responses of the pressure 

difference v with different step input voltages. Note that the response changes greatly 

when input voltage changes, indicating great complexity in nonlinear dynamics. To 

simply the design and achieve invariance of the system performance in the present of 

model uncertainties and disturbances, we treat such complex internal dynamics as a part 

of generalized disturbance which is to be estimated and cancelled by the control signal. In 

other words, ADRC is applied to this kind of electro-hydraulic servo system in this thesis. 

 

Figure 3.4 Step response of force difference (final value of 𝑢𝑢 is 0.00005 V) 
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Figure 3.5 Step response of force difference (final value of 𝑢𝑢 is 0.00010 V) 

 

Figure 3.6 Step response of force difference (final value of 𝑢𝑢 is 0.00020 V) 
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CHAPTER IV  

ADRC CONTROL DESIGN 

 

From the brief review of disturbance cancellation history is discussed in Chapter 

II, we know that ADRC (Active Disturbance Rejection Control) is one of the most 

popular disturbance cancellation control methods. Especially for a system with unknown 

disturbances and model uncertainties, ADRC has its own advantages. Meanwhile, 

hydraulic systems usually have many disturbances and uncertainties. ADRC may fit 

hydraulic systems perfectly. 

In this chapter, control design of ADRC is described using a second order system 

as an example in section 4.1. A summary is made in section 4.2. 
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4.1 ADRC Control Design 

ADRC is an advanced control technology which is becoming more and more 

popular in recent years. ESO (Extended State Observer), the most important part of 

ADRC, is used to estimate the total disturbance of the system and cancel it from the 

control signal before it affects the system [45]. 

A second order system is taken as an example, which could be expressed by the 

following differential equation: 

                                            �̈�𝑦 = 𝑏𝑏𝑢𝑢 +  𝑓𝑓(𝑦𝑦, �̇�𝑦,𝑤𝑤, 𝑑𝑑)                                    (4.1) 

 

where 𝑦𝑦 is the output, 𝑏𝑏 is a constant, 𝑢𝑢 is the input, 𝑓𝑓 is the total disturbance including 

internal disturbance and external disturbance, 𝑤𝑤 is the external disturbance and 𝑑𝑑 is time. 

For simplification we use the notation 

                                                 𝑓𝑓 = 𝑓𝑓(𝑦𝑦, �̇�𝑦,𝑤𝑤, 𝑑𝑑)                                          (4.2) 

 

In this system, if the estimation of the total disturbance f̂ can be obtained, the 

control signal then can be built according to the following equation: 

                                            𝑢𝑢 = 𝑢𝑢0−𝑓𝑓
𝑏𝑏

                                                             (4.3) 
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where 𝑢𝑢0  is a part of the control signal to be determined shortly. Then the system 

becomes: 

                                                   �̈�𝑦 = 𝑢𝑢0 − 𝑓𝑓 + 𝑓𝑓                                          (4.4) 

 

Suppose that perfect estimation could be obtained: 

                                                           𝑓𝑓 = 𝑓𝑓                                                     (4.5) 

 

The system can be described as below: 

                                                         �̈�𝑦 = 𝑢𝑢0                                                     (4.6) 

 

It is a pure double-integrator, which is without the external disturbance and internal 

uncertainties, and u0 can be easily designed to meet performance specifications. 

But, how do you obtain the estimation of the total disturbance 𝑓𝑓? Here comes the 

essential part of ADRC, ESO. For a second order system, a third order ESO is designed 

as below: 

                                    �̇�𝑧 = 𝐴𝐴𝑧𝑧 + 𝐵𝐵𝑢𝑢 + 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�)                                     (4.7) 

                                              𝑦𝑦� = 𝐶𝐶𝑧𝑧 + 𝐷𝐷𝑢𝑢                                                  (4.8) 

Where A = �
0 1 0
0 0 1
0 0 0

�, B = �
0
b
0
�, C = [1 0 0], D = 0, L = �

β1
β2
β3

�. 
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Here L = �
β1
β2
β3

� is used to place the poles of the ESO to make sure that the ESO is stable. 

The ESO’s state space equation can be expanded: 

                                        �
�̇�𝑧1 = 𝑧𝑧2 + 𝛽𝛽1(𝑦𝑦 − 𝑦𝑦�)           
�̇�𝑧2 = 𝑧𝑧3 + 𝑏𝑏𝑢𝑢 + 𝛽𝛽2(𝑦𝑦 − 𝑦𝑦�)
ż3 = β3(y − y�)                     

�                            (4.9) 

 

Compared to the original system: 

                               �
�̇�𝑦1 = 𝑦𝑦2                              
�̇�𝑦2 = 𝑦𝑦3 + 𝑏𝑏𝑢𝑢   (𝑦𝑦3 = 𝑓𝑓)
�̇�𝑦3 = ℎ   ��̇�𝑓 = ℎ�              

�                              (4.10) 

 

If the ESO is stable and follows the system well, 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3 will be the accurate estimation 

of 𝑦𝑦, �̇�𝑦,𝑓𝑓, respectively. 

The great advantage of ESO over traditional State Observer is that the total 

disturbance is regarded as an extended state and is also estimated. To simplify the tuning 

problem, the three eigenvalues of the ESO are all placed at −𝜔𝜔𝑜𝑜  [45], and the 

corresponding observer gain  𝐿𝐿 is: 

                                       𝐿𝐿 = �
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3

� = �
3𝜔𝜔𝑜𝑜
3𝜔𝜔𝑜𝑜2

𝜔𝜔𝑜𝑜3
�                                            (4.11) 
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Parameter 𝜔𝜔𝑜𝑜  here is the bandwidth of the observer.  It is preferred to be large, hence the 

observer will be faster and observe the disturbance more quickly. But this bandwidth is 

limited for several reasons. For example, higher bandwidth will bring more noise; it is 

also constrained by the sampling frequency in a digital implementation. 

For the control signal u0, a simple PD controller usually sufficient, in the form of: 

                                       𝑢𝑢0 = 𝑘𝑘𝑝𝑝(𝑟𝑟 − 𝑦𝑦) + 𝑘𝑘𝑑𝑑(�̇�𝑟 − �̇�𝑦)                           (4.12) 

                                                     𝑘𝑘𝑝𝑝 = 𝜔𝜔𝑐𝑐2                                                    (4.13) 

                                                     𝑘𝑘𝑑𝑑 = 2𝜔𝜔𝑐𝑐                                                   (4.14) 

 

Hence, there are only two tuning parameters in this control method: 𝜔𝜔𝑜𝑜  and 𝜔𝜔𝑐𝑐 . 

 

4.2 Summary 

The working principle of ADRC in a second order system is described here. First, 

disturbances and uncertainties are estimated by the observer and cancelled from the input 

signal before going into the plant. This whole part, including ESO, can be regarded as a 

new plant, which should become a pure double-integrator ideally. Then a simple PD 

controller is implemented to control it. This PD controller is parameterized, hence the 

close-loop system has both poles placed at −𝜔𝜔𝑐𝑐 . For a traditional PID, the integral part is 
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used for disturbance compensation. The integral part can help eliminate the steady state 

error. But PID does not have an observer and it can only react after an error takes place. 

Hence, traditional PID control is passive. 

Next, the disturbance rejection ability of ADRC is shown in Chapter V, where 

ADRC and PID are compared. 
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CHAPTER V 

SIMULATION 

In this chapter, Matlab/Simulink is used to simulate the electro-hydraulic servo 

control system with both PID controller and ADRC. The building of the simulation 

model is shown in section 5.1. The simulation results for PID controller and ADRC are 

compared in section 5.2. Finally, some discussion is provided in section 5.3. 

 

5.1 Setting Up The Simulation 

As the state space differential equations have been obtained in Chapter III and the 

parameters of this system are shown in Table 5.1, the electro-hydraulic servo control 

system model is then built in Matlab/Simulink. Figure 5.1 is the nonlinear model built in 

Simulink according to the state space equations. Input1 is the voltage, Input2 is the load 

disturbance and Output is the mass displacement. 
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𝑘𝑘𝑣𝑣(𝑚𝑚/𝑉𝑉) 1.05 × 106 𝐴𝐴1(𝑚𝑚2) 1.9635 × 10−3 

𝜔𝜔𝑣𝑣(𝑟𝑟𝑟𝑟𝑑𝑑/𝑠𝑠) 120.5 𝐴𝐴2(𝑚𝑚2) 9.4562 × 10−4 

𝜎𝜎𝑣𝑣 0.5 𝑉𝑉01(𝑚𝑚3) 2.9452 × 10−4 

𝐶𝐶𝑣𝑣 2.863 × 10−9 𝑉𝑉02(𝑚𝑚3) 1.4184 × 10−4 

𝑃𝑃𝑠𝑠(𝑃𝑃𝑟𝑟) 1.5 × 107 𝑀𝑀𝑑𝑑(𝑘𝑘𝑘𝑘) 100 

𝑃𝑃𝑑𝑑(𝑃𝑃𝑟𝑟) 1 × 105 𝑏𝑏(𝑁𝑁 ∙ 𝑠𝑠/𝑚𝑚) 700 

𝛽𝛽(𝑃𝑃𝑟𝑟) 1.05 × 109 𝑐𝑐(𝑁𝑁/𝑚𝑚) 75000 

 

Table 5.1 Parameters in the electro-hydraulic position control system 

 

Figure 5.1 Plant model of the electro-hydraulic system 
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The whole plant model can be integrated into one block, making it a subsystem. 

Figure 5.2 is the subsystem block for the plant model. 

 

Figure 5.2 Subsystem block for the plant model 

 

Then the PID controller and ADRC are both implemented in Matlab Simulink. 

Figure 5.3 is the system with ADRC and Figure 5.4 is the system with traditional PID 

controller. 

 

Figure 5.3 ADRC controlled system 
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Figure 5.4 Traditional PID controlled system 

 

5.2 Simulation Results 

In this thesis, the electro-hydraulic servo system is reformulated as a second order 

system with disturbance, for which third order ADRC, shown in the previous chapter as 

an example, is first tried but the performance is not satisfactory. Second order ADRC is 

tried afterwards, the performance is more satisfactory. In this case, the system is force to 

behave like a first order system which means �̈�𝑦  is regarded as a part of the disturbance. 

The ESO in the second order ADRC is second order and the controller is a simple 

proportional controller as shown in Figure 5.3. The three parameters of ADRC are: 
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𝑏𝑏0 = 10000 

ωc = 15 

ωo = 150 

 

The performance of the closed-loop system with input disturbance (introduce in at 

1.5s) is shown in Figure 5.5. In this simulation, load disturbance is also considered, 

which is as large as 16000N.  

From Figure 5.5, it can be seen that ADRC has a good tracking and disturbance 

rejection performance even when the constant load is as large as 16000 N. The output is 

driven back to the set point very fast after being influenced by the disturbance. The 

control signal is very small. 
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Figure 5.5 Performance of ADRC controlled system, corresponding control signal and 

corresponding force difference 
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Figure 5.6 Performance of PID controlled system, corresponding control signal and 

corresponding force difference 
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With a traditional PID, tracking performances and disturbance rejection cannot be 

made satisfactory at the same time, after repeated attempts. Figure 5.6 shows load 

disturbance response in the PID system. Input disturbance of 16000N is introduced in at 

1.5s. The parameters of PID are 𝑘𝑘𝑝𝑝 = 0.01,𝑘𝑘𝑖𝑖 = 0.08,𝑘𝑘𝑑𝑑 = 0.0002 . This is the best 

performance that could be obtained from a traditional PID controlled system, considering 

both tracking and disturbance rejection. It can be seen that this PID system’s track and 

disturbance rejection performance are both worse than ADRC system and the control 

signal is even larger in PID system. 

One may wonder: Why ADRC has a better performance than traditional PID 

controller? The essential reason is ESO (Extended State Observer). In this problem, this 

electro-hydraulic servo control system is regarded as a first order system, which can be 

described by the following equations: 

                                                  �̇�𝑦 = 𝑏𝑏𝑢𝑢 + 𝑓𝑓                                                    (5.1) 

                              𝑓𝑓 = 𝑓𝑓(𝑦𝑦(𝑛𝑛),𝑦𝑦(𝑛𝑛−1), … ,𝑦𝑦(2),𝑦𝑦,𝑤𝑤, 𝑑𝑑)                                   (5.2) 

𝑓𝑓  here is the total disturbance, including the external disturbances and model 

uncertainties, 𝑛𝑛 is the order of this system. 

If ESO can estimate the total disturbance quickly and accurately, such disturbance 

can then be cancelled from the input side before it affects the system performance. That is, 

the process is reduced to a first order integrator. This can be illustrated by the following 

equations: 

                                                       𝑓𝑓 ≈ 𝑓𝑓                                                        (5.3) 
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                                                   𝑢𝑢 = 𝑢𝑢0−𝑓𝑓
𝑏𝑏

                                                     (5.4) 

                                �̇�𝑦 = 𝑏𝑏 × 𝑢𝑢0−𝑓𝑓
𝑏𝑏

+ 𝑓𝑓 = 𝑢𝑢0 − 𝑓𝑓 + 𝑓𝑓 ≈ 𝑢𝑢0                  (5.5) 

It should be checked whether the value of  𝑓𝑓 estimated by ESO tracks the real 

total disturbance 𝑓𝑓 accurately. 𝑓𝑓 is the second output of the second order ESO and 𝑓𝑓 can 

be obtained by this equation: 

                                                   𝑓𝑓 = �̇�𝑦 − 𝑏𝑏𝑢𝑢                                                   (5.6) 

where 𝑦𝑦′  and 𝑢𝑢 are accessible in simulation and 𝑏𝑏 is a known constant. 

Figure 5.10 is the comparison of the disturbance 𝑓𝑓 estimated by ESO and real 

total disturbance 𝑓𝑓. This is under the condition of 16000N load and an input disturbance 

coming in at 2.5s. It can be seen that the estimated disturbance 𝑓𝑓  tracks the real 

disturbance 𝑓𝑓 very well. Hence, the previous discussion of ADRC is verified. 
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Figure 5.7 Comparison of ESO estimated disturbance and real disturbance 

5.3  Discussion 

From the simulation results, several remarks provided here. 

Simplicity of choosing the variables for ADRC: In ADRC, there are totally three 

variables, 𝑏𝑏, 𝜔𝜔𝑐𝑐  and 𝜔𝜔𝑜𝑜 . If some knowledge of the system model is obtained, 𝑏𝑏 might be 

found rather than tuned. Usually, 𝜔𝜔𝑜𝑜  is in the range of 1𝜔𝜔𝑐𝑐~10𝜔𝜔𝑐𝑐 . Hence, things will 

become easy in deciding the values of the three variables of ADRC. On the contrary, 

traditional PID controller has three unrelated variables whose ranges are very large. 

Nonlinear PID, fuzzy PID and other advanced PIDs have even more variables. 
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Tracking and disturbance rejection performance: ADRC can perform both 

tracking and disturbance rejection very well, while traditional PID controller sometimes 

can make only one of them acceptable. The new “self-tuning PID” block in Simulink is 

used to find out best sets of PID parameters for different systems. This function block can 

only consider either tracking or disturbance rejection, but not both at the same time. 

Better tracking performance tends to make the disturbance rejection poor, and vice versa. 

 Appealing to intuition: According to the simulation study on how ESO tracks the 

real total disturbance, it could be said that the working principle of ADRC is very 

reasonable and intuitive. In this problem, the system is regarded as a first order system 

and all the other things in the system are regarded as disturbance. ESO tracks the total 

disturbance very well and cancels it from input side. This is done actively and it makes 

sense. The whole complicated process becomes a simple, pure integrator, while the 

traditional PID controller passively respond to output changes, leading to significant error.   
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Based on the literature review of disturbance cancellation history, it is amazing to 

discover developments of this active control method from all over the world. Electro-

hydraulic servo control system has many disturbances and model uncertainties and is 

nonlinear. A new advanced control method is needed. ADRC, a novel form of 

disturbance cancellation control, is then implemented in the electro-hydraulic system and 

simulation results are obtained. With the comparison to traditional PID controller, the 

reason why ADRC has a better performance is analyzed. 

In this chapter, concluding remarks will be provided in section 6.1 and future 

work will be discussed in section 6.2.  
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6.1  Conclusions 

From long ago, people gradually realized that if a system’s disturbance can be 

obtained by certain methods and cancelled before it goes into the system, the 

performance will be much better. The precondition is that the disturbance is accessible. 

Because of this and the stability reasons, researchers proposed the dual-channel control, 

combining disturbance cancellation and feedback control together. Actually, disturbance 

cancellation and output feedback are not contradictory to each other. On the contrary, 

they can work together perfectly. Disturbance cancellation control eliminates the major 

part of the source that causes the output deviation and feedback corrects the remaining 

error. The stability condition is also satisfied by the feedback. But, in the real world, 

many disturbances are unknown and even not accessible. The old disturbance 

governor/compensator based on the measurement of the disturbance cannot be 

implemented widely in practice because of the additional sensor required. The invention 

and development of state observers give new vitality to disturbance cancellation. ADRC 

is one of the novel forms of disturbance cancellation. It combines ESO, which uses an 

extended state to estimate the disturbances and model uncertainties, and traditional PD 

controller.  
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From the simulation results, it can be seen that ESO can estimate disturbances 

quickly and accurately, giving ADRC a better performance than traditional PID controller 

in electro-hydraulic servo control system. 

 

 

6.2  Future work 

Based on the understanding of the principle of disturbance cancellation, Active 

Disturbance Rejection Control may not be restricted to ESO. Whatever disturbance 

information of system we have, and we have a lot, it could all be used to controller 

anticipate and preempt the effect of disturbances. Some states of the system can be 

obtained by measurement and we do not have to rely on ESO to obtain all the states. 

Hence, ESO’s bandwidth could be reduced and the effects of noise could be reduced. 

This idea of disturbance cancellation should be emphasized in future work as it’s 

central to almost all control problems. In different control problems, the idea of active 

disturbance rejection could be realized in different, innovative ways. 
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