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Abstract: Computational fluid dynamics modeling was used to characterize the effect of the inte-
gration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic
serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid
motion along curved channels are combined with elongational flows and asymmetric longitudinal
eddies that develop in the constriction region. The resulting complex flow structure is characterized
by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of
the geometrical parameters defining the constriction region allows for the development of an efficient
micromixer topology that shows robust enhanced performance across a broad range of Reynolds
numbers from Re = 1 to 100.

Keywords: passive micromixers; Dean flows and mixers; elongational flow; stretching flow;
serpentine channels; hyperbolic constrictions; mixing index

1. Introduction

Microfluidic systems have evolved as an important support platform for a vast range of
applications in the chemical and biological sciences, from biological/chemical analysis [1,2]
to reaction engineering and the development of organ-on-chip technologies [3,4]. Their
success lies in their potential for effective operation with limited consumption of reac-
tants, high rates of heat and mass transfer, precise control over reaction variables such as
temperature and concentrations, as well as providing the ability to manipulate particles,
biologically relevant chemical systems, and cells [5,6]. Most of their applications require
the homogenization of two or more chemical and/or biological species, making mixing a
critical functional requirement. However, the flow in the regime of low Reynolds numbers
(Re) encountered in many proposed applications is laminar; thus, the mixing on these
scales is diffusion-dominated, which is unfortunately slow [7–9].

Achieving efficient mixing requires the presence of vortices and the folding/stretching
of fluid volumes. These are the basic phenomena through which the interface between the
species to be mixed is expanded, to increase the effective area for diffusion, and through
which the particles and chemical species of interest are dispersed throughout the volume
of the flow [10,11]. To this end, in microfluidic systems, researchers have employed both
active and passive strategies to induce the desired vortices and flow structures. Active
micromixers use external energy sources to generate the necessary stirring motion [12].
Methodologies include the use of acoustic waves [13,14], magnetic interactions [15–17],
laser-induced bubble formation [18], and electric interactions [19]. While their efficiency
can be high, they can be complicated to design and manufacture [12].

Passive micromixers, on the other hand, rely only on appropriately designed geomet-
rical structures placed in the path of the flow driven by a pressure gradient to manipulate
the fluid motion. The geometrical structure of the system is designed to either split and
recombine the fluid streams multiple times in order to increase the interfacial surface area
between the fluid components and ultimately enhance the diffusional mixing efficiency or
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generate complex flow structures that promote chaotic advection. While high-performance
split-and-recombine passive mixers have been implemented [20–22], their geometry is
quite complex, making their manufacture challenging. Thus, in recent decades, a large
body of work has been dedicated to the development of passive mixers seeking to promote
chaotic advection, as they can achieve good performance while employing less-demanding
topologies [23].

Generally, in passive systems, achieving good mixing requires the fluid volumes to
be subjected to rotational cross-sectional flows that promote crosstalk between the fluid
streams that carry the different chemical/biological species, as well as extensional flows [10],
leading to sequences of folding and stretching of the fluid elements. Methodologies to
achieve cross-sectional flows include: the placement of slated groove–ridge systems across
the bottom or top of the channel, forcing the axial pressure gradient to drive transver-
sal flows [24,25]; adding curved sections to the channel (spirals, helixes, or serpentines)
and relying on the centrifugal forces experienced by the fluid to drive the transversal
flows (i.e., Dean vortices) [23,26]; or using a combination of both [27]. Development of
extensional flows in groove–ridge systems is achieved by using asymmetric grooves ei-
ther organized in periodic half-cycles, such as in the well-known staggered herringbone
configuration [25,28,29], or generated quasi-randomly using a fractal algorithm [30,31].
These result in local extensional flows associated with the shift in the cross-sectional vor-
tices’ centers of rotation. In curved/serpentine channels, a similar local stretching of the
fluid elements has been achieved through a variety of methods. Sayah and Gijs [32] have
employed mixing units composed of multiple curved sections situated in orthogonal planes
that force the fluid to undergo 3D turns. This results in a rapid expansion of the interface
between the components to be mixed and thus increases the efficiency of the molecular
diffusion. Hossain and Kim [33] proposed the use of non-aligned inputs at the T-junction
inlet of a serpentine channel. They show that this initial asymmetry generates a vertical
vortex that increases the complexity of the transversal flow circulation and is conducive to
enhanced mixing. The use of L-shaped non-rectangular cross-sections has been exploited
by Clark et al. [34] as a way of controlling the position of the transversal centers of rotation
for the Dean vortices. This results in the stretching of the fluid elements between the mixing
units and leads to flow structures similar to those found in staggered herring-bone-type
systems, thereby greatly increasing the chaotic advection component of the mixing. Usefian
and Bayareh [35] have developed a mixing strategy based on convergent–divergent sec-
tions that force the fluid through sequences of compressions and expansions. While Dean
vortices are not formed in their configuration, due to the low aspect ratio of the curved
sections, the expansion vortex that forms due to the presence of the convergent–divergent
sections leads to effective mixing performance for a broad range of Reynolds numbers.
The idea of using convergent–divergent sections has also been exploited by Afzal and
Kim [36]. Their design employing sine functions to define the boundaries of the channel
combines the effect of the Dean flows present in subchannels and the split–recombination
of the flows in the main channel sections. In serpentine micromixers, the complex flows
induced by mixing can also be achieved by operating at high Reynolds numbers Re > 100,
where flow bifurcation and the consequent formation of multiple cross-sectional vortices
occurs [37]. However, the pressure differentials required limit the practical feasibility of
operating within these conditions.

In the current work, we propose and evaluate the performance of a micromixer in
which semi-circular curved sections in a serpentine channel are used to generate cross-
sectional flows, while elongational flows are achieved via the inclusion of constrictions
defined by hyperbolic functions between the adjacent curved sections.. The inspiration
for the use of constrictions to increase the mixing in laminar systems originates from the
work of Carson et al. on the mixing of polymers by utilizing converging and diverging
flows achieved through hyperbolic obstacles [38]. In those particular laminar systems,
the large velocity gradients and associated extensional flows have shown robust mixing
across a broad range of flow conditions and viscosities. As described in Section 2, using
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hyperbolic functions allows for the geometrical parametrization of the designs with specific
parameters controlling the length and width of the constriction. Moreover, using this
particular geometry for the constriction allows one to obtain similar velocity gradients
in the flow, but at lower pressure drops across the constriction (Figure 1—data obtained
using the numerical methods as described in Section 3). As discussed in Section 4, the
pairing of the Dean flow characteristics of fluid motion through curved channels with the
elongational flows associated with the constriction enhances the mixing capabilities in
these microscale systems.
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Figure 1. Velocity field maps along the center plane for: (a) a channel with a rectangular constriction
and (b) a channel with a constriction defined by a hyperbolic function, respectively. (c) Corresponding
pressure gradient profiles along the two channels, showing lower pressure drops for the same
constriction diameter for the hyperbolic design.

2. Geometrical Design of the Micromixer

The serpentine design used in this study consisted of rectangular cross-sections of
width W = 200 µm and height H = 100 µm, and semi-circular curved sections of inner
radius Rin = W/2 and outer radius Rout = Rin + W (Figure 2). Adjacent curved sections are
connected by constrictions defined by hyperbolas generated using the following equation:

x2

a2 −
y2

b2 = 1 (1)

where the parameter a corresponds to the half-distance between the vertices of the branches
of the hyperbola, and the parameter b corresponds to half of the height of the rectangle
whose diagonals are the asymptotes of the hyperbola. Hence, a determines Wmin = 2a,
i.e., the minimum width of the constriction, and b determines L, i.e., the length of the
constriction. Straight sections of length L + Rout are placed at the entry and exit of the mixer.
The fluids to be mixed are pumped into the system through two inlets of width W/2.
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tion of the straight sections between adjacent curves; (c) 3D geometry of the channel investigated.

The geometry of the constriction is parametrized by setting the following parameter
values: a = {20, 35, 50, 65, 80} [µm], with b spanning the range b = {0.5a, 0.75a, 1.0a, 1.5a,
2.0a, 2.5a, 3.0a, 4.0a, 5.0a} (Table 1). The performance of the designs with constrictions was
compared with that of serpentine channels of the same length, in which the constriction
region was replaced with a straight section of equal length.

Table 1. List of the combinations of (a, b) geometrical parameters used in the simulations. All
dimensions are listed in micrometers [µm].

a
b

0.5 × a 0.75 × a 1.0 × a 1.5 × a 2.0 × a 2.5 × a 3.0 × a 4.0 × a 5.0 × a

20 µm (20, 10) (20, 15) (20, 20) (20, 30) (20, 40) (20, 50) (20, 60) (20, 80) (20, 100)

35 µm (35, 17.5) (35, 26.25) (35, 35) (35, 52.5) (35, 70) (35, 87.5) (35, 105) (35, 140) (35, 175)

50 µm (50, 25) (50, 37.5) (50, 50) (50, 75) (50, 100) (50, 125) (50, 150) (50, 200) (50, 250)

65 µm (65, 32.5) (65, 48.75) (65, 65) (65, 97.5) (65, 130) (65, 162.5) (65, 195) (65, 260) (65, 325)

80 µm (80, 40) (80, 60) (80, 80) (80, 120) (80, 160) (80, 200) (80, 240) (80, 320) (80, 400)

3. Numerical Modeling and Assessment of Mixing

The steady-state Navier–Stokes equations for an incompressible Newtonian fluid are
solved to determine the flow field in the microchannels investigated:

ρ(v·∇)v = −∇p + η∇2v (2)

∇·v = 0 (3)

where v [m·s−1] is the velocity vector, ρ [kg·m−3] is the fluid density, η [kg·m−1·s−1] is the
fluid viscosity, and p [Pa] is the pressure. The values for the density and viscosity were
set to those for water at room temperature, i.e., ρ = 103 kg·m−3 and η = 10−3 kg·m−1·s−1.
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No-slip boundary conditions were set for all of the side walls of the micromixers, while
the outlet was set at zero pressure. Once the flow fields are mapped, they were used as
inputs for solving the concentration–diffusion equation to determine the concentration c
[mol·m−3] evolution through the volume of the micromixers:

v·∇c = D∇2c (4)

where D [m2·s−1] is the diffusion coefficient. This is set to 1.0× 10−9 m2·s−1
, corresponding

to the typical diffusivity range of most ions in aqueous solutions.
To quantify the quality of mixing, the molar concentration for the fluid entering one

of the inlets is set to c = 1 mol·m−3, while for the opposite inlet it is set to c = 0 mol·m−3.
The mixing index is quantified based on 8-bit grayscale snapshots of the concentration
distribution across the micromixer’s outlet (maximum intensity = 255 corresponding to
c = 1 mol·m−3 and minimum intensity = 0 corresponding to c = 0 mol·m−3, respectively).
The mixing index (M) is calculated using a procedure based on the Shannon information
entropy of concentration maps [28]. Specifically, for a two-component system, the mixing
index is given by:

M = − 1
ln(2)

· 1
Nbins

·
Nbins

∑
j=1

[
p1/jln

(
p1/j

)
+ p2/jln

(
p2/j

)]
(5)

where Nbins is the number of bins in which the image is partitioned; and p1/j and p2/j=1− p1/j
(since we are working with two components and the fluids are incompressible) are the con-
ditional probabilities of the two components to be located in bin j. The latter are calculated
directly based on the intensity of the concentration images. The term ln(2) normalizes the
mixing index based on the fact that there are two components. Under the above definition,
M is easy to interpret as it takes values between 0 and 1, corresponding to completely
segregated (no mixing) and completely mixed components (ideal mixing), respectively.

The simulations for both the flow fields and concentration distributions were per-
formed using the COMSOL Multiphysics Computational Package (COMSOL, Inc., Burlington,
MA, USA) and its Computational Fluid Dynamics and Chemical Engineering modules. For
all simulations, a free unstructured tetrahedral mesh was used with typical mesh elements
with an edge no larger than 12.5 µm for the flow field solver, and no larger than 7.8 µm
for the concentration solver, respectively. The higher resolution mesh size is required
when solving the concentration–diffusion equation, given the small scales associated with
diffusional mixing. The mesh is chosen by performing a grid validation study. This is to
ensure that a sufficiently fine mesh is used to achieve high accuracy and limit erroneous
readings in the mixing performance due to numerical artificial diffusion [39], while keeping
the simulations computationally efficient. Additionally, the computational models used
have been previously validated against experimental data from similar serpentine type
systems [40].

4. Results and Discussion

Typical results for the flow fields and concentration distribution in this type of mi-
cromixer, as well as for the corresponding un-constricted serpentine micromixers, are
shown in Figures 3–5. As described above, a broad set of designs are characterized based
on the parametrization of the geometrical parameters a and b.
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As expected, based on previous studies of spiral, helical, or serpentine systems that
contain curved channel sections, the centrifugal interactions experienced by the fluid led
to the development of cross-sectional Dean flows [23]. These result in the observed C-
shaped stretching of the interface between the two fluid components and their transversal
circulation as they move along the channel. However, at low Reynolds numbers, and in
simple serpentines, while some mixing is associated with this effect, the two components
remain largely separated in distinct regions across the transversal planes of the channel.
On the other hand, visually, in the channels designed with constrictions, the evolution
towards homogeneity of the concentration profiles appears much more rapid. This can be
quantified using the mixing index defined in Equation (5). Figure 6 gives a comparison
of the mixing index in constricted channel geometries relative to their simple serpentine
counterparts for Reynolds numbers taking values of Re = 1, 10, 20, 40, 60, 80, and 100
(corresponding to inflow mean velocities from 0.0075 m/s to 0.75 m/s). Table 2 lists the

corresponding pressure drops and Dean numbers for this simulation set (De = Re·
√

Dh
2·Rmid

,
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where Dh is the hydraulic diameter of the channel and Rmid = 3
4 W is the radius of curvature

corresponding to the central path of the curved sections, respectively).
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Table 2. Dean numbers, De, and pressure differentials, ∆P, for mixers with various (a,b) geometrical
parameters across the Reynolds numbers investigated.

Re 1 10 20 40 60 80 100

(a = 20 µm,
b = 20 µm)

De = 0.66
∆P = 0.167 kPa

De = 6.6
∆P = 1.76 kPa

De = 13.3
∆P = 3.93 kPa

De = 26.6
∆P = 10.1 kPa

De = 40
∆P = 18.8 kPa

De = 53.3
∆P = 30.0 kPa

De = 66
∆P = 43.6 kPa

(a = 35 µm,
b = 70 µm)

De = 0.66
∆P = 0.135 kPa

De = 6.6
∆P = 1.38 kPa

De = 13.3
∆P = 2.85 kPa

De = 26.6
∆P = 6.33 kPa

De = 40
∆P = 10.7 kPa

De = 53.3
∆P = 15.9 kPa

De = 66
∆P = 22.0 kPa

(a = 50 µm,
b = 150 µm)

De = 0.66
∆P = 0.130 kPa

De = 6.6
∆P = 1.32 kPa

De = 13.3
∆P = 2.68 kPa

De = 26.6
∆P = 5.69 kPa

De = 40
∆P = 9.2 kPa

De = 53.3
∆P = 13.3 kPa

De = 66
∆P = 17.9 kPa

For all the Reynolds numbers investigated, the performance of the new mixer design
exceeds or matches that of simple serpentines, indicating that more complex flow struc-
tures are generated in these designs. Particularly, based on the flow velocity magnitude
dependence along the channel (Figures 3–5), one of the distinctive features of the new
type of micromixer is the presence of large velocity gradients in the constriction region
which would expose the fluid elements to large elongational flow components. One way to
quantify this is to compute the stretch rate along the longitudinal axis of the channel

.
εy [41]:

.
εy =

dvy

dy
(6)
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where vy is the component of the velocity vector along the longitudinal axis of the channel,
which for our geometry orientation is the y-axis. Figure 7 shows a comparison between
the elongational flow experienced by the fluid for constrictions with different a and b
parameters. Not unexpectedly, the strength of the stretch rates is maximized for narrow
and short constrictions. More importantly though, the stretch rates experienced by the fluid
are correlated with the values of the mixing indexes achieved, highlighting the importance
of elongational flows in achieving high mixing quality.
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the maximum value

.
εmax of the

.
εy stretch rate observed (Re = 20).

In order to gain insight into the nature of the flows in this type of channels, streamline
plots were constructed from the solutions to the Navier–Stokes equations for both the
transversal and longitudinal sections across the channel. As Figure 8 indicates, the nature
of the flows developing in the channels with constrictions is strikingly different from that
of flows in simple serpentines. Transversal cross-sections of the streamline plots in simple
serpentines indicate the presence of counter-rotating vortices centered on the top half and
the bottom half, respectively, of the channel (Figure 8a). These vortices, i.e., the Dean
flows, are responsible for the initial stretching and subsequent folding of the interface
between the two components to be mixed, and for why this type of design has attracted
interest in passive micromixing applications. While a necessary condition for mixing, the
presence of transversal flows is insufficient for achieving rapid mixing. In the simple
serpentine, the cross-sectional flows are symmetric, with little change in the centers of
rotation of the transversal flows between mixing units. In the constricted serpentines
however, the symmetry of the flows relative to the vertical symmetry axis of the cross-
section is broken (Figure 8b). The transversal flow profiles are more complex and, more
importantly, between mixing units, the positions of the centers of rotation shift from one
side of the channel to the opposite one. Thus, in this geometry, the fluid is subjected to
repeated sequences of folding (within the curved mixing units) and stretching (within
the constrictions). This type of flow structure has been encountered in other systems
where a high quality of mixing is achieved, such as the staggered herringbone groove–
ridge design [25], serpentine mixers with non-rectangular cross-sections [34], or serpentine
mixers operated at very high Reynolds numbers [23]. Additionally, in the particular system
investigated, longitudinal streamline plots indicate the formation of longitudinal eddies
associated with the expansion of fluid past the constriction. Each constriction is associated
with two longitudinal eddies, asymmetric in size, with the larger one on the outer region of
the flow, that further contribute to the redistribution of the fluid components within the
volume of the channel.
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Figure 8. Streamline plots for: (a) transversal section in a serpentine channel; (b) transversal section
in a constricted channel; and (c) longitudinal section in a constricted channel (Re = 40).

The above observations provide qualitative insights into the flow structures that
develop in these geometries and how they are able to enhance mixing performance. In
order to determine the specific geometrical parameters where the effect of this type of flows
is maximized, a full parametric study for a = {20, 35, 50, 65, 80} [µm] and b = {0.5a, 0.75a,
1.0a, 1.5a, 2.0a, 2.5a, 3.0a, 4.0a, 5.0a} has been performed. Based on the results presented
in Figure 9a, at a fixed inflow speed, the maximum mixing performance is achieved in
channels with narrow (small a) and long (large b) constrictions. Later observations seem
to run counter to the previous conclusion that large stretch rates that are associated with
short constrictions are associated with increased mixing. Nevertheless, it has to be noted
that longer constrictions are also geometrically associated with longer channels and thus
longer residence times. Consequently, some of the increased mixing performance at larger
b values is associated with longer times for the diffusion to act on the components to be
mixed. To account for this effect, in Figure 9b, the mixing efficiency as a function of the
b length of the constriction, is normalized by the performance of the corresponding simple
serpentine channels. For each a value set, a clear maximum can thus be identified in the
lower range of b values. Thus, these data are consistent with the expectation that, as the
length of the constriction increases and the stretch rates consequently decrease, the mixing
performance converges to values similar to those observed in unmodified designs. The
procedure then allows for the optimization of the constriction geometrical parameters to
achieve high-quality mixing while minimizing the needed constriction length and thus
maximizing the mixing performance achievable per unit length in this design.
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5. Conclusions

In the present study, we investigated a new design for a serpentine micromixer with
semi-circular curved sections employing constrictions formed by the vertices of hyperbolas
in the connecting sections. The typical Dean flow structures present in curved channels
are complemented in this design by elongational and backstep flows that develop in
the constriction regions. Quantitative assessment of the mixing demonstrated enhanced
performance in these mixers relative to simple serpentine mixers, across all Reynolds
numbers investigated, with optimized designs achieving reliable mixing values better than
0.93 within two mixing cycles for Re > 20. In this work, the constrictions were used as a
mixing-enhancement strategy for serpentine channels; however, it is important to note that
this type of flow modification strategy can be easily integrated within other mixing designs
that achieve transversal flows, through different means, such as groove–ridge systems.
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