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AN ACTIVE DISTURBANCE REJECTION BASED APPROACH TO 

VIBRATION SUPPRESSION IN TWO-INERTIA SYSTEMS

Shen Zhao and Zhiqiang Gao

I. INTRODUCTION

Vibration suppression is important in motion 
control applications because vibration causes dynamic 
stresses, energy wastes and performance degradations 
[1]. By law of physics, mechanical resonance is 
unavoidable in every system involving motion, but 
the natural frequencies of such systems are usually 
quite high and not excited during most common 
motion maneuvers, where a simple proportional- 
integral-derivative (PID) controller is often sufficient to

meet the design requirements. Control design becomes 
an issue, however, when the performance improvements 
push the loop bandwidth to its limit where the resonant 
modes come into play. The most common resonance 
seen in industry can be attributed to the compliant 
couplings, such as gear boxes, long shafts and belts, 
which can be treated as springs [2].

To deal with resonance, there are mechanical and 
electrical means. Since the resonance is caused by 
compliance, a stiffer transmission, i.e. a direct coupling 
in place of a belt, will be an obvious solution. Adding 
more mechanical damping will surely be helpful. In 
addition, increasing the motor inertia is found to be 
an effective way to alleviate the resonance [2]. These 
mechanical methods are costly, which leads us to 
electrical options, consist of low-pass filter, notch filter 
[3] and bi-quad filter [4], all for the objective of 
attenuating the loop gain amplitude at the resonant 
frequency so that the resonance is suppressed. Some 
of the electrical methods are equivalent mathematically



to the mechanical methods mentioned above. Active 
resonance damping control [4] actually increases the 
effective physical damping by adding a torque that is 
proportional to the speed difference between the motor 
and load. In [5], the active suspension indeed increases 
the effective damping or spring constant depends on 
the control design. Acceleration feedback control [4,6], 
however, increases the motor inertia equivalently. There 
are still other control methods available, such as center 
of mass control [2, 4] and resonance ratio control [7, 8].

All of the above control methods predicate on the 
detailed mathematical model of the physical process 
that may or may not be readily available. Even if such 
a model is obtained at considerable cost, the parameters 
of the model often change during operation, which may 
lead to variations in the resonant frequency, leaving 
the notch filter approach, for example, vulnerable. The 
attempt to address this flaw leads to solutions such as 
the adaptive notch filter [9], which is designed to tune 
the filter parameters on the fly based on adaptive control 
theory, adding complexity and cost to the design, 
implementation, and tuning of the control system. It 
is in this background that an alternative solution is 
proposed in this paper.

To deal with the resonance problem in motion 
control, as described above, we resort to a rather novel 
control method that requires very little system model 
information and makes the control system tolerant of 
unknown changes in system dynamics. This method is 
known as active disturbance rejection control (ADRC) 
[10-15], based on the key concept of treating the 
unknown dynamics and disturbances in a physical 
process as the total disturbance, building a state 
observer, known as the extended state observer (ESO), 
to estimate it in real time, and then canceling its effect 
using a part of the control signal. In the context of 
the motion control, the resonant mode is not canceled 
out using a notch filter, but its effect to motion, the 
ripples in torque, is estimated and canceled in real time 
using the motor torque, after which the motion dynamic 
behaves largely like a rigid body. Note that a similar 
disturbance rejection method was shown in [16], where 
only the external disturbance is estimated using a state 
observer and transfer function combined design based 
on detailed model information.

This paper is organized as follows. The problem 
description based on two-inertia system model is given 
in Section II, followed by the main result in Section
III, where the motion control problem is reformulated 
in the context of ADRC. Simulation results and 
comparison to existing methods are shown in Section
IV. Hardware experiments are conducted to verify the

simulation results and are presented in Section V. 
Finally concluding remarks are included in Section VI.

II. PROBLEM DESCRIPTION AND 
EXISTING SOLUTION

The compliant resonance problem can be simpli- 
fied and represented by the two-inertia system model 
[2, 8] as shown in Fig. 1.

Fig. 1. Two-inertia system model.

(5)



ωar = Ks/JL (6)
The Bode plots of velocity transfer functions of 

rigid body model and compliant model (two-inertia 
system model) are shown in Fig. 2 for comparison. 
At low frequency (below the anti-resonant frequency) 
the two models behave the same. The motor and load 
are connected as a whole just like the rigid body. As 
frequency goes higher, the motor and load become 
disconnected and behave differently. Around resonant 
frequency there is a 180 degree phase difference 
between the motor and load, which to some extent 
represents the resonance as well.

Fig. 2. Bode plots of velocity transfer functions - Rigid vs. Compliant.

Several existing methods are described in [4] that 
deal with the resonance. A notch filter in the form of

(7)

is often used to attenuate the open loop gain at the 
resonant frequency. The bi-quad filter

(8)

as another solution, not only attenuates the open loop 
gain at the resonant frequency but also increases the 
open loop gain at the anti-resonant frequency making 
it more like a rigid body system. The acceleration 
feedback method employs a rigid-body Luenberger 
observer to estimate the motor acceleration and uses it 
as a feedback for the purpose of increasing the motor 
inertia.

In a typical configuration of two-inertia system, the 
sensor is normally mounted at the motor end, where 
only the motion of the motor is measured and fed back. 
We denote this set up as motor feedback and this is 
the common practice in industry. In most cases seen in 
industry, however, the objective is to control the motion 
of the load. Consequently, we will also investigate the 
alternative where we mount the sensor at the load end 
and use the measurement of the load as feedback, which 
is denoted as the load feedback. Although the load 
feedback provides the direct information on how the 
load behaves, there is a considerable amount of phase 
lag, comparing to the motor feedback, which makes the 
control design more challenging. One may suspect that 
this might be a main reason why the motor feedback 
configuration is widely used in industry.

Different applications may have different design 
objectives. Some regulate velocity, others position. To 
show the generality of the proposed method, both 
velocity control and position control are addressed in 
this paper.

III. The Proposed Solution

As mentioned in Section I, active disturbance 
rejection control (ADRC) provides an alternative 
design paradigm for the resonance problem in motion 
control. The main idea of ADRC is to treat any 
unknown dynamics of the system together with external 
disturbance as a total disturbance, use an extended state 
observer (ESO) to estimate this total disturbance in real 
time, and then cancel it in the control law [10]. In 
this manner we do not have to know the exact system 
model in order to control it, and particularly in this 
application we can treat the resonance, no matter what 
the frequency is, as part of the total disturbance.

For completeness, we consider two types of motion 
control, velocity control and position control, and two 
feedback options, motor feedback and load feedback. 
Since the only difference between velocity control 
and position control is that the plant has one more 
integrator in position control, we will only present 
the problem reformulation for velocity control in the 
ADRC structure with both feedback options.

3.1. Velocity control with motor feedback

With b0 = l/JM, b1 = bs/(JMJL), b2 =
a1 =bs/Jp, a2 = Ks/Jp, and 

considering an external disturbance w, (1) can be
rewritten as

Vm + arym + a2//„, = b(,u + bru + b2u + w (9)



where ym is the motor velocity, and u is torque applied 
to the motor. Integrating (9) twice on both sides, 
the third-order system with a relative degree of one 
becomes a first-order system [12] as below

y/m = + ( Urn,

J " + &2 JJ it + JJ w)

= bov, + f(y mi | Umi w ) (10)

Here f(•), including both external disturbance 
and internal dynamics — the resonance, represents the 
“total disturbance” to be estimated and mitigated. For 
the first order system (10), the output ym is defined 
as the first state x1 as usual; additionally, the total 
disturbance f is defined as the extended state x2. Thus 
the state space representation of (10) is

f i = A2x + b0B2u + E2f
I Vm — C2X

where b0 is the estimated value of b0, L2 = 
[ β1 β2 ] is the observer gain vector, and eo = x1 — 
z1 is the observer error. The observer gains are selected 
based on the observer bandwidth defined and discussed 
in Section 4.1. Mathematical proof has been shown in 
[15,17] that the observer error is bounded if the derivate 
of the total disturbance f is bounded, and the bound 
of the observer error is inversely proportional to the 
observer bandwidth. With appropriate selection of the 
observer gains, the observer states z1 and z2 will track 
ym and f respectively.

With the total disturbance being estimated, the 
control law is then designed as

bo

uo = kp(r — ym) (14)

where kp is the controller gain and r is the reference 
input. Substituting (13) into (10), (15)

Here we can see clearly that the total disturbance is 
“cancelled” and the plant becomes a pure integrator 
which can be easily controlled using a proportional 
controller given in (14).

Compare to the method in [16], the ESO estimates 
the total disturbance directly, not just the external 
disturbance, and it uses only a simple, easy to 
implement and tune state observer, without the need for 
an additional filter. Furthermore, in the ADRC design 
less system information is required namely only the 
motor inertia Jm, whereas in [16] a full system model 
is needed.

3.2. Velocity control with load feedback

Considering an external disturbance w, (3) can be 
rewritten as

V l + a^l + a2yi = b^u + b2u + w (16)

where yl is the load velocity, and u is torque applied to 
the motor. Integrating (16) once on both sides, the third- 
order system with a relative degree of two becomes a 
second-order system

Similarly, for the second order system (17), define 
the states x1 = yl, x2 = yl and x3 = f. The states 
representation of (17) is

where b1 is the estimated value of b1, L3 = 
[ β1 β2 β3 ] is the observer gain vector, and eo = 

./• 1 — z1 is the observer error. With appropriate selection 
of the observer gains, the observer states z1, z2 and z3 
will track yl, yl and f respectively.

The control law is similarly designed as

(20)



u0 = kp(r - yt) + kd(f - yt) (21)

where kp and kd are the controller gains. In this case z3 
is the extended state and a PD controller is designed for 
the double integrator plant.

For the more detailed derivation of the ADRC 
control law and recent mathematical analysis of this 
design approach, the readers are referred to [17-22]. 
The focus of this paper is on its possible application in 
motion control in the presence of resonant mode.

IV. SIMULATION RESULTS AND 
COMPARISON

In this section, the proposed method is tested in 
simulation and compared to the three existing methods 
described in [4], using the motor feedback configuration 
for velocity control as in [4].

4.1. Parameters and profile selection

The proposed method is tested in simulations using 
the same system parameters as those in [4], with Ks = 
372 N-m/rad. bs = 0.008 N-m-s/rad, JM = 1.88 x 10-3 
kg-m2, JL = 3.13 x 10-3 kg-m2, and JP = 1.17 x 
10-3 kg-m2. In this case, the anti-resonant frequency 

is 345 rad/s (or 55 Hz), and resonant frequency ωR 
is 563 rad/s (or 90 Hz). We also compare our method 
with those discussed in [4] applying their fine tuned 
parameters in velocity control with motor feedback. The 
comparison is not done for other cases because [4] only
considers velocity control with motor feedback.

Using the parameterization technique proposed in 
[23], the observer gains and controller gains are selected 
such that all of the observer eigenvalues are placed at 
-ωo and all of the controller eigenvalues are placed 
at -ωc. Specifically, in a second-order ADRC, ft = 
2ωo, ft = kp = ωc; in a third-order ADRC, = 
3ωo, ft = 3ω2, ft = ω3, kp = kd = 2ωc; and in 
a fourth-order ADRC, ft = 4ωQ, ft = 6ω2, ft = 4ω3, 
ft = kp — kd = 3ω2, kdd = 3ωc. Above ωo 
is the observer bandwidth and is the controller 
bandwidth. By fixing the ratio between the observer 
and controller bandwidth, ωo becomes the only tuning 
parameter making the tuning process very easy and 
intuitive. In this paper we set ωc = ωo/2.

Observer and controller bandwidth are selected 
based on following considerations: 1) the controller 
bandwidth should be higher than the required band- 
width given in the specification; 2) the observer 
bandwidth should be two to five times higher than 
the controller bandwidth; 3) the observer bandwidth

should be five to ten times less than the sampling 
rate. Normally higher the bandwidth is, better the 
performance is; the cost is that the system is more 
susceptible to noise and has less robustness.

Step reference is a commonly used profile in 
simulations and real tests, but it is too aggressive and 
contains components with very broad bandwidth, which 
will excite the resonant mode of the system. So in 
industry the trapezoidal profile, which is less aggressive 
and also energy saving, is widely used instead of step 
reference.

Even if a trapezoidal profile is used, the rising time 
of the profile is still crucial to the system performance. 
The faster the rising time is, more possible the system 
is going to have resonance. In order to avoid the 
resonance, we choose our rising time between 0.05 s 
and 0.1 s in our simulations.

4.2. Observer performance

The proposed method is simulated with the rising 
time set to 100 ms (0.1 s), the profile starting time set 
to 0.5 s and a disturbance of 1 N.m applied to the motor 
at 1 s. Fig. 3 and Fig. 4 show the plots of the observer 
states versus the actual system states with the observer 
bandwidth set to 400 Hz. It is noticed that the error is 
bounded and converges to zero very quickly indicating 
very good observer performance.

Fig. 3. Estimation of state I.

4.3. Comparison

The proposed method is then compared to 
the notch filter, bi-quad filter, acceleration feedback 
methods with the same profile and disturbance as



Fig. 4. Estimation of state 2.

Table 1. Motor responses : tracking performance
Overshoot

(%)
5%o Settling Time 

(ms)
Notch Filter 4.2 133

Bi-quad Filter 1.3 115
Accel. Feedback 4.8 137

adrc 100 0.6 108
(Hz) 200 0.2 97
I*12-1 400 0.1 96

Table 2. Motor responses : disturbance rejection performance

Max. Error 
(%)

5%o Settling Time 
(ms)

Notch Filter 135 >1000
Bi-quad Filter 70 >1000

Accel. Feedback 72 72
ADRC 100 58 66
L (Hz) 200 34 86

18 94

described in the previous subsection. The results are 
shown in Table 1 and 2, as well as in Fig. 5.

It is observed that acceleration feedback has the 
biggest overshoot. Bi-quad filter has less overshoot 
because it cancels out both resonant and anti-resonant 
terms in the transfer function. ADRC has even 
less overshoot and the overshoot decreases as the 
bandwidth increases. The disturbance rejection ability 
of acceleration feedback is better than both notch filter 
and bi-quad filter, which have big errors and oscillate. 
But ADRC has the best disturbance rejection ability 
which increases as the bandwidth increases.

Fig. 5. Motor response comparison. (a) tracking response; (b) 
disturbance response.

Note that the bandwidth of ADRC can go well 
beyond the resonant frequency, which is quite difficult 
to achieve with other methods. As shown in [4] the 
closed-loop bandwidths associated with the notch filter, 
the bi-quad filter and acceleration feedback design are 
32 Hz, 47 Hz and 37 Hz, respectively, well below the 
resonant frequency (90 Hz). Based on the frequency 
response analysis of ADRC [24], with ωo set to 400 
Hz, however, the closed-loop bandwidth of ADRC is 
found to be 192 Hz, which is well beyond the resonant 
frequency, unlike the existing methods.

The robustness of each controller is also tested by 
varying the load inertia without changing the controller 
parameters. The tests are performed with the load 
changing to 0.9, 1.1, 2 and 5 times of its original 
value. The bi-quad filter is found to be the most fragile, 
because the system becomes unstable for all four load 
changes. With the notch filter, the system is stable for 
the first two changes but becomes unstable for last two 
in the presence of external disturbances. Acceleration 
feedback and ADRC are stable for all four cases, but 
the former results in a bigger overshoot of 15%. The 
motor overshoot in ADRC remains mostly unchanged,



but the load oscillation becomes more pronounced with 
the increasing load.

4.4. Position control

In this subsection, some simulation results are 
provided to demonstrate the proposed method works for 
position control as well. The results are summarized 
in Table 3. The best performance is obtained at the 
medium bandwidth of 80 Hz; when the bandwidth goes 
beyond 150 Hz the system becomes unstable. Fig. 6 
shows the response with = 80 Hz.

Table 3. Tracking performance of position control

ωo
(Hz)

Overshoot
(%)

5%o Settling Time 
(ms)

40 0.4 157
60 0.3 133
80 0.1 116
100 0.2 105
120 0.3 102

V. EXPERIMENT VERIFICATION

In addition to the simulation comparison with 
other methods, the proposed control solution to the 
vibration problem is also verified in hardware tests for 
the velocity control with motor feedback case. The 
experiments are conducted on the torsional apparatus 
Model 205 from Educational Control Products. For a 
fast validation, the control algorithm is implemented

using the MATLAB real-time workshop in this paper. 
For application purpose, the implementation of the 
proposed algorithm can be found in [25].

5.1. Test setup

The torsional apparatus Model 205 has a flexible 
vertical shaft connecting three disks (lower, middle and 
upper), with an encoder mounted on the lower disk for 
the purpose of position measurement. The lower disk is 
driven by a DC servo motor via belt and pulley system 
with 3 to 1 speed reduction ratio. In this experiment 
since we only consider the vibration in a two-inertia 
system, the upper disk is not used and the belt is 
tightened to provide a rigid connection that matches the 
simulation model. There are also brass weights that can 
be added to the middle disk to test the effect of changing 
the inertia of the load.

A personal computer (PC), with MATLAB real- 
time workshop installed, is used to implement the 
proposed control algorithm. A four-channel quadrature 
encoder input card (PCI-QUAD04) and a multi- 
function analog and digital I/O card (PCI-DAS 1002), 
both from Measurement Computing, are install in the 
computer to interface with the torsional apparatus. A 
photo of the experimental system is shown in Fig. 7. A 
diagram is also given (see Fig. 8) to clearly show the 
mechanical and electrical connections of the system.

Fig. 7. Photo of the test setup.



Fig. 8. Diagram of the test setup.

5.2. System parameters

The torque constant (Kt = Te/U) of the motor 
is 0.058 N.m/V. The encoders generate 16000 pulses 
per round. Therefore the resolution for position 
measurement is 3.927 x l0-4 rad (6.25 xl0-5 round). 
The resolution for velocity measurement depends on the 
sampling rate, and is 0.196 rad/s (0.03125 round/s) at 
500 Hz and 0.393 rad/s (0.0625 round/s) at 1 KHz, i.e. 
higher the sampling rate lower the resolution. To get a 
better resolution, a sampling rate of 500 Hz is adopted 
for velocity control.

To determine the parameters of the test equipment, 
a frequency sweep test is run by applying a chirp 
signal with an amplitude of 2 volts to the amplifier. 
The frequency changes from 0.1 Hz to 15 Hz in 30 
seconds. Fig. 9 shows the motor velocity response. 
The anti-resonant frequency (ωAR) and the resonant 
frequency (ωr) are observed at 37.6 rad/s (or 5.99 Hz) 
and 48.1 rad/s (or 7.65 Hz) respectively from the test. 
The peak velocity at the resonant frequency is 3.08 
round/s.

From Fig. 2 we can see that at low frequency the 
motor response and the load response are consistent 
and the whole system behaves like a rigid body. 
Thus another test is run with a 0.3 Hz sinusoid 
input to determine the total inertia (Jt = Jm + Jl) 
of the system. The gain at 0.3 Hz is found to be 
107.76 round/s/N/m. From (1) JT is calculated to be 
4.92x10- kg-m2. Together with the above frequency 
sweep test results, from (5) and (6), we get JM = 
3.01 x 10-3 kg-m2, JL = 1.91 x 10-3 kg-m2, JP = 
1.17 x 10-3 kg-m2, Ks = 2.71 N-m/rad, bs = 0.006 
N-m-s/rad.

According to the equipment manual the motor 
inertia, which includes the inertial of the DC motor, 
pulley and the lower disk, is around 2.65 x 10-3 kg-m2 
and the load inertia is around 2.00x 10-3 kg-m2, which 
matches the tests quite well.

5.3. Test results

A trapezoidal profile, as mentioned in subsection 
4.1, with a magnitude of 8 round/s is used to run the 
tests. The rising time is chosen to be 0.5 seconds which 
is slower, due to a relative lower resonant frequency 
compared to the simulation case. The controller under 
test is described in subsection 3.1, with the observer 
bandwidth and the controller bandwidth set to 320 rad/s 
and 160 rad/s respectively. The results are shown in 
Fig. 10.

Both motor response and load response track the 
reference very well before the load change. A load with 
inertia of 3.29x 10-3 kg-m2 is added to the middle disk, 
which is equivalent to 2.7 times load change, to test the 
robustness of the control method. The motor velocity 
remains well controlled with the load change. But the 
load exhibits oscillations as expected, since resonant 
frequency is lowered with the load increase and the 
previous profile is a little fast compare to the new 
resonance. Test results show that decreasing the rising 
time to one second will greatly reduce the oscillations.

5.4. Frequency response analysis

Based on the system model, the open loop and 
closed-loop transfer functions are derived using the 
above system and controller parameters and the Bode 
plots are given in Fig. 11 and 12. From Fig. 11, the 
phase margin of the system is found to be 50 degrees. 
The closed-loop bandwidth is read from Fig. 12 to be



Fig. 10. Velocity control test results.

158 rad/s, which is well beyond the resonant frequency 
of the system (48.1 rad/s). The resonant mode of the 
system is attenuated by applying the proposed control 
method.

Fig. 11. Open loop Bode plot.

VI. CONCLUSIONS

A novel solution for resonance suppression in 
motion control is proposed. By reformulating the

Fig. 12. Closed-loop Bode plot.

problem in the framework of active disturbance 
rejection control, solutions for both velocity control 
and position control are presented and compared with 
the existing methods favorably. It is shown that, with 
the proposed method, vibration can be eliminated even 
when the control bandwidth is pushed well beyond 
the resonant frequency, which is assumed unknown. 
Both simulation and hardware test results show that the 
proposed solution works quite well, making it a rather 
robust and practical solution for motion control.
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