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Abstract: Nano-zeolite is an innovative class of materials that received recognition for its potential 
use in water and tertiary wastewater treatment. These applications include ion-exchange/sorption, 
photo-degradation, and membrane separation. The aim of this work is to summarize and analyze the 
current knowledge about the utilization of nano-zeolite in these applications, identify the gaps in this 
feld, and highlight the challenges that face the wide scale applications of these materials. Within this 
context, an introduction to water quality, water and wastewater treatment, utilization of zeolite in 
contaminant removal from water was addressed and linked to its structure and the advances in zeolite 
preparation techniques were overviewed. To have insights into the trends of the scientifc interest in 
this feld, an in-depth analysis of the variation in annual research distribution over the last decade 
was performed for each application. This analysis covered the research that addressed the potential 
use of both zeolites and nano-zeolites. For each application, the characterization, experimental testing 
schemes, and theoretical analysis methodologies were overviewed. The results of the most advanced 
research were collected, summarized, and analyzed to allow an easy visualization and comparison of 
these research results. Finally, the gaps and challenges that face these applications are concluded. ����������
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contaminants and heavy metals from the effuents generated from the secondary treatment 
using advanced wastewater treatment technologies [2]. 

Zeolites, a class of materials, are well known for their wide applications in water and 
tertiary wastewater treatment, where different types of zeolites are used in fltration, ion 
exchange, adsorption, photo-catalytic degradation, and membrane separation technologies. 
These wide applications were designed based on inherent zeolite properties, such as the 
high ion exchange capacity, large specifc surface area, high thermal stability, and lattice 
stability. The three-dimensional porous crystalline structure of zeolites is responsible for 
the development of these properties, where the primary building units (PBU) of silicon 
or alumina tetrahedra (TO4 where T = Si or Al, Figure 1a) are linked to form secondary 
building units (SBU) of different numbers of PBU, e.g., four, fve, . . . ... etc., that encompass 
channels and cavities. Figure 2b illustrates the confguration of SBU formed of fve tetrahe-
dral rings. The structure accommodates exchangeable charge compensating cations (Mb

n), 
and molecules (Ab), e.g., water, salts and can be described using these formulas [3,4]: 

+ + h ix− 
1 2x1 M1 

n 
; x2 M2 

n 
; (y1T1; y1T1 . . .)O2(y1+y2+...) z1 A1; z2 A2 . . . (1) 

M a .(Al2O3) .(SiO2)b.wH2O (2)a 

Zeolites could be classifed based on the ratio of silicon to alumina in PBU, i.e., b/a, 
into high silica (b/a > 5), intermediate silica (2 < b/a ≤ 5), and low silica (2 ≥ b/a). Zeolites 
of low and intermediate silica have good electrostatic felds in the cavities which support 
their uses in the sorption of polar molecules. High silica zeolites are characterized by 
their hydrophobicity, which support their uses in micro-pollutants removal from industrial 
wastewater effuents, e.g., personal care products and pharmaceutical. The ability of the 
PBU to form different confgurations of the SBU leads to the formation of hundreds of 
frameworks of natural and synthetic zeolite and zeotype. The structure of Mordenite 
(MOR), as an example of fve rings’ intermediate silica zeolite (b/a = 5), is illustrated 
in Figure 1c, where the structure accommodates sodium atoms as charge compensating 
cations and encompasses large cavities and channels. 

n 
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Figure 2. Zeolite preparation (a) Hierarchical zeolite bottom-up technique, (b) Hierarchical zeolite 
top-down techniques (Reprinted with permission from [22] 2021) (c) Factors that affect the properties 
of the nano-zeolites. (Reprinted with permission from [24]). 

Natural zeolites are formed in different geological environments. They are sub-
classifed as hydrothermal and sedimentary zeolites; the latter are found in lake, ash 
ponds, and marine sediments and in alkaline deserts [4,5]. Natural zeolite minerals are 
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usually categorized into families of specifed crystalline structure that include different 
minerals. For instance, the Chabazite (CHA) group, an intermediate silica zeolite composed 
of six-cyclic rings, has a rhombohedral shape and includes several minerals e.g., Chabazite, 
willhendersonite, Gmelinite, ... etc. [4,6]. In particular, CHA and Clinoptilolite (CLP) are 
known for their wide scale application in water treatment, where they are used to remove 
NH3, Fe, and Mn from surface water, As and Cu from contaminated water, and F from 
groundwater. These applications are limited for fxed bed operation. In addition, for appli-
cations that need the enforcement of quality requirements on the purity and uniformity of 
the ion-exchanger/sorbent, the importance of synthetic zeolite comes to the surface, where 
the lattice structure, pore sizes, rings, and compensating ions are optimized by control-
ling the synthetic conditions, e.g., Si/Al content, use of templates, temperature, pressure, 
reagent solutions composition and pH, activation process, and ageing conditions [4,7]. 

Synthetic zeolites are usually prepared via the hydro/solvo-thermal method, where 
the synthesis system composes of sources for the structural elements, i.e., Al, Si, the 
mineralizer, e.g., source for OH− or F−, and template [3]. Hydrothermal methods comprise 
of aluminosilicate gel formation followed by aging and crystallization. The gel is formed by 
adding and mixing the structural element solutions in the presence of the mineralizer and 
template (if used) at designed temperature and time. During the synthesis process, the gel is 
kept at a fxed temperature in the range of 80–300 ◦C for specifed aging and crystallization 
time at fxed pressure [3,7–9]. Examples of typical conditions for preparing different types 
of zeolites using hydrothermal (HT) methods are listed in Table 1 [7,8,10–15]. This method 
is widely used to prepare both micro- and nano-scale zeolites in laboratories and in the 
industry [7,9]. Advanced trends in zeolites synthesis aim to reduce the environmental 
impacts of the preparation process and engineer the properties of the produced materials; 
these trends include [10,12,15–27]: 

• Producing green zeolites by using agricultural and industrial wastes as sources for 
the structural elements, e.g., fy and biomass ashes containing silicon, Aluminum ash 
and slag; 

• Improving the performance of the solvo-thermal preparation method by using ionic 
liquid, where these liquids are used to improve the solvation power, reduce the 
vapor-pressure and increase the thermal stability of the produced zeolite; 

• Producing green zeolites by reducing the consumption of chemicals and water; this 
trend is dependent on the use of alternative synthesis routes, e.g., vapor phase transi-
tion (Dry Gel Conversion), and mechano-chemistry processes; 

• Preparation of hierarchical zeolite to enhance the accessibility of the pores; this trend 
relies on either the modifcation of the preparation scheme (bottom up) or post prepa-
ration modifcation (top down) techniques, Figure 2a,b illustrates these techniques; 

• Preparation of zeolite nano-particles to improve the selective separation, to enhance 
the sorption and de-sorption properties, and subsequently to reduce the size of the 
wastewater processing units. The key factors that affect the properties of the prepared 
nano-zeolites are illustrated in Figure 2c; 

• Preparation of nano-sheets (2D) to improve the performance of selective separation 
process by reducing the diffusion path and improving the catalytic activity. 

These advanced trends in the preparation and modifcation of zeolites empowered 
the research and application of zeolites, especially in the feld of water and wastewater 
treatment. In particular, the superior properties of nano-zeolites encouraged several re-
searchers to explore the potential applications of nano-zeolites in this feld. Different classes 
of nano-zeolites, i.e., nano-zeolite, and nano-zeolite composite, were prepared and tested 
for this purpose. The aim of this work is to summarize the current knowledge about the 
application of nano-zeolites in water and wastewater treatment, identify the gaps in this 
feld, and highlight the challenges that face the wide-scale application of these materi-
als. Within this context, the research and development in the application of nano-zeolite 
in sorption/ion exchange, photo-catalytic degradation, and membrane separation will 
be presented. To have insights into the scientifc research interests in these applications, 
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analyses of the indexed research in Scopus database were conducted. This analysis was 
conducted for all the research indexed in that database without restricting the indexing 
time or language. The used keywords were selected to cover a specifc application for 
zeolite and nano-zeolite, where the operators “AND” and “OR” were used to refne the 
search results and the annual research distribution over the last decade was visualized. 
For each application, the characterization, experimental testing, and theoretical analysis 
methodologies will be overviewed. The results of the most advanced research will be 
collected, summarized, and analyzed to allow an easy visualization and comparison of 
these research results. Finally, the gaps and challenges that face these applications will 
be identifed. 

Table 1. Examples zeolites hydrothermal preparation conditions (Reprinted with permission 
from [7]). 

Exchanger Preparation Conditions Ref 

Zeolite Na-A Si:Al < 3, at 100 ◦C for 2–3 days [8] 

Zeolite Na-X Si:Al ratios of 2.8:1, at 50 ◦C (6 h) * and 
100 ◦C (3 h) for 2–3 days [8] 

Si:Al ratios of 2:1, at 80 ◦C (2 h for 
Zeolite Na A-X blend gelifcation), 25 ◦C (24 h for ageing), and [10–12] 

90 ◦C (8 h for crystallization). 

Different silica, alumina and alkali 
Clinoptilolite moleratios, temperatures (250–300 ◦C) and [13] 

pressure (42.5–81.6 atm) for 2–5 days. 

Analcite Si:Al ratios of 2:1, at 275 ◦C for 2–3 days [14] 

Mordenite Si:Al = 6:1 at 275 ◦C for 2–3 days [14] 

Zeolite y, nano scale SiO2:Al2O3 = 4.35:1, at 100 ◦C, 2 days [15] 
Note: * induction period. 

2. Advances in the Investigations of Nano-Zeolites as Ion-Exchanger/Sorbent 

Zeolites are well known for their potential use in the removal of heavy metals, e.g., 
Zn, Hg, ... [17,28–30], organic contaminants, e.g., cationic surfactants, phenol [30,31], reduc-
ing excess ammonia [32,33], salinity, and acidity [34], and removal of radionuclides from 
aqueous radioactive waste effuents [10–12,15,35,36]. These applications are supported 
by their high cation exchange capacity and specifc surface area. In addition, zeolites are 
characterized by high lattice stability, which entails the exchange of the charge compen-
sating species without affecting the structure of zeolite. Moreover, the sorption processes 
that are designed to beneft from the molecular sieving, electrostatic felds, and polar-
izability are always reversible, which allow the reusability of this class of materials [5]. 
Nano-zeolites, inorganic- nano-zeolite composites, polymer-nano zeolite composites, and 
zeolites-nano-particle composites have been prepared and tested for contaminant removal 
either using sorption or ion/exchange batch techniques. The last category of materials, 
i.e., zeolites- nano-particle composite, relies on the modifcation of the micro-zeolite matrix 
using nano-particles; these applications are out of the scope of this work and could be 
found elsewhere [31]. An analysis of the research indexed in the Scopus database was 
conducted on the use of zeolites and nano-zeolite for “Removal” AND “Water” AND 
“Treatment” on 10 October 2021; the results are illustrated in Figure 3a–d. It is clear that the 
assessments of the potential use of zeolite and nano-zeolite in removal studies for water 
treatment represent nearly 47% of the research conducted in the feld of removal studies 
(Figure 3a,c). The total amount of published research on the use of zeolite and removal is 
considerably high compared to that of nano-zaolite and removal. The annual numbers of 
indexed research have an increasing pattern from 2013 to 2020, with a noted reduction in 
2021 (Figure 3b,d). Despite the ratio between the total indexed research for testing zeolite 
for removal and water treatment to that of nano-zeolite being nearly 1:0.045, this ratio 
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increased to 1:0.054–1: 0.076 during the period (2013–2021), where more than 82% of the 
indexed nano-zeolites research has been reported in that period. A recent review article 
reported that the indexed research about zeolite-based composites for adsorption of heavy 
metal in wastewater treatment in the Scopus database equals 180 research papers in the 
period (2011–2020) [31]. In another review article, the total indexed work in the Web of Sci-
ence database during the period (1963–2018) on the use of zeolite with sodium/water/ion 
exchange/adsorption were reported to equal 311 references [34]. 
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2.1. Testing Scheme to Optimize the Ion Exchange/Sorbent Applications 

In general, the testing schemes for evaluating the performance of the ion-exchanger/ 
sorbent materials include material characterization, operational conditions optimization, 
and design the removal process by adopting static batch and/or column operation. The aim 
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of the characterization step is to identify the chemical and physical properties of benefts to 
the ion-exchange/sorption processes. These include: 

• Particle size, morphology, and surface properties determination: usually, these prop-
erties are determined using microscopic techniques. For nano-materials, Scanning 
Electron Microscope (SEM), Transmission Elector Microscope (TEM), and Scanning 
Probe Microscope (SPM) are widely used; 

• Chemical compositions identifcation and detection of impurities: Spectroscopic analy-
sis are widely used, e.g., Ultra-Violet Spectroscopy (UV), Fourier Transform Infra-Red 
Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Energy-Dispersive 
X-ray spectroscopy (EDX); 

• Material crystallinity: Wide Angle X-ray Diffraction (WAXD), Small Angle X-ray scat-
tering (SAXS), and Ultra Small Angle Scattering(UAXS or USAXS) are 
widely used; 

• Pore characteristics, the pore volume, porosity, and specifc surface area could be mea-
sured via nitrogen absorption and application of Brunauer–Emmett–Teller 
(BET) model; 

• The tendency of the material to agglomerate is usually identifed by measuring zeta 
potential and the hydrodynamic radius; 

• The ability of the material to act as cationic or anionic exchanger is usually determined 
by identifying the zero point charge; 

• Cation Exchange Capacity (CEC) procedures are widely used to assess the capacity of 
the cationic exchanger. 

The features of the above-mentioned characterization techniques are listed else-
where [37]. In addition, chemical and thermal stabilities of the materials are important 
to be identifed for materials used under challenging operational conditions, i.e., treating 
alkali or acidic media, and at high ambient temperature. 

The optimization of the operating conditions could be conducted by relying on One 
Factor at A Time (OFAT) technique or the Multi Variant Technique (MVT) to identify the 
optimum ion-exchanger/sorbent mass (m, g), contaminated solution volume (V, L) and 
pH, initial contaminant concentration (Co, mmol/L), mixing velocity (v, rpm), contact time 
(teq, min), and operational temperature (T, K). Table 2 summarizes the features of each 
technique [38,39]. 

Table 2. Comparison between the optimization techniques (Reprinted with permission from [39]). 

Technique Feature Advantage Limitation 

OFAT 

Evaluate isolated effects of the studied 
factors on a single performance measure 

Empirical, mechanistic, and black box 
models are used to analyze the data 

Allow the determination of 
mechanisms, interpolate and 

extrapolate the process 
performance 

Does not allow the determination of 
the effect of interaction between the 
factors that affect the performance 

MVT 
Evaluate the effects of the studied factors 

variability and their interactions on 
single and multi performance measures 

Identify the main infuencing 
factors, 

Provide insights into the 
system reliability 

Does not allow the determination of 
the mechanism 

2.2. Batch Investigations 

Batch investigations of ion-exchanger/sorbents materials are used to support the 
design of the removal process. In this regard, kinetic and equilibrium studies are conducted 
to allow the calculations of the rate constants, material capacity, and the thermodynamic 
parameters. In these investigations, certain mass of the ion-exchanger/sorbent (m, g) is 
mixed with certain volume of the contaminated solution (V, L) of specifed contaminant 
concentration (Co, mmol/L) and pH at specifed mixing speed for a certain period of time 
at determined temperature (T, K). Then, the solid/liquid suspension is separated and 
the contaminant concentration (Ct, mmol/L) in the solution is measured using suitable 
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analytical techniques. The sorbed contaminant amount (qt, mmol/g) is determined using 
the following equation: 

(Co − Ct)V 
qt = (3)

m 
Kinetic batch investigations are used to determine the time to reach equilibrium 

and predict the rate constants and maximum sorbed contaminant amount. Both rate 
and mechanistic models are used to analyze the kinetic behavior of the removal process 
obtained using an OFAT technique, where Pseudo-First Order (PFO), Pseudo-Second 
Order (PSO), Double Kinetic Model (DKM), and Elovich (El) rate models are widely used to 
determine the rate constants. Intra-particle model (IPM) and homogenous particle diffusion 
model (HPM) are used to determine the rate determining mechanism and calculate its 
parameters. The equilibrium behavior is investigated by varying the initial contaminant 
concentration within a specifed range following the OFAT technique, and then the data 
are analyzed using a suitable model, i.e., Freundlich (F), Langmuir (L), and D–R models. 
Table 3 lists the features of these widely used models. Running the experiments at different 
temperatures is an important step to optimize the operating temperature and to determine 
the thermodynamic parameters of the reaction (Table 3). These parameters could be 
determined either from the kinetic data at equilibrium values, where each curve represents 
a single point in the equilibrium, or determined from the equilibrium behavior data. 

Table 3. Models used in analyzing the results of batch investigations for ion-exchanger/sorbents. 

Model Equation Model Features 

K
IN

ET
IC

 

PS
O

 
PF

O
H

PM
 

IP
M

 
D

K
M

El
. 

k1 
Rate model used to determine the rate constant(k1, min−1) and sorbed contaminant amount 

Linear : log(qe − qt) = log(qe) − 2.303 t per unit mass of zeolite at equilibrium (qe , mmol.g−1), 
Entails that the reaction rate is limited by only one process or mechanism on a single class of � � sorbing sites and that all sites are of the time dependent type, k1tNon − linear : qt = qe 1 − e The reaction might be controlled by diffusion through the boundary layer. 

t 1 1 Rate model used to determine the rate constant(k2, g.mmol−1.min−1) and sorbed Linear : = + tqt k2 q2 qee contaminant amount per unit mass of Zeolite at equilibrium (qe, mmol.g−1), 
Entails that the rate of sorption is directly proportional to the number of active surface sites 

k2q2 
e t and that the rate limiting step may be a chemical sorption involving valence forces through Non − linear : qt = 1+k2qet sharing or exchange of electrons between the adsorbent and the adsorbate. 

� � � � A rate model that assumes that the reaction proceed via two subsequent mechanisms. It 
qt = qe − D

M 
1 ekd1t − D

M 
2 ekd2t allows the calculation of the sorbed amount of contaminant in at equilibrium and 

identifcation of the rate constant for each mechanism 

Used to determine the initial sorption rate (α, mEq.g−1.min−1) and the desorption constant 
Linear : qt = β ln(βα) + β ln(t) (β, mmol.g−1). 

Entails that the reaction increases exponentially with time. 

Used to quantify the boundary layer effect (Cpi , mmol.g−1), and determine the rate constant 
√ of the sorption stage (Kpi, mmol.g−1.min−0.5),qt = Kpi t + Cpi Entails that the reaction involves diffusion mechanism and allow the assessment of the 

contribution of the boundary layer in the reaction 

3DC Used to determine the rate controlling step and calculate the diffusion coeffcient (D, m2/s),Film : − ln(1 − X) = trδq Film diffusion model entails that the rate determining step is the contaminants diffusion 
through the liquid flm around the Zeolite particles, � � 3Dr π2 Particle diffusion model entails that the rate determining step is the contaminants diffusion Particle : − ln 1 − X2 = t r2 into the Zeolite particles. 
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Table 3. Cont. 

Model Equation Model Features 

IS
O

T
H

ER
M

 

Used to determine Freundlich constant indicative of the relative adsorption capacity (Kf, 
Linear : log qe = log K f + (1/n) log Ce mmol.g−1), Freundlich intensity constant indicative of the relative sorption capacity (n), 

Empirical model employed to describe the interaction between contaminants and F 
heterogeneous sorbent, 

n 
1 It suggests that sorption energy exponentially decreases onNon − linear qe = K f Ce flling of the sorption centers of the sorbent. 

Linear : Ce = 1 1 Used to determine the mono-layer capacity (Qo, mmol.g−1) and Langmuir constant (b) 
Qo b + Qo Ceqe Assumes that the sorption takes place at specifc homogenous sites, energetically equivalent, 

◦ within the sorbent, 
Q bCeNon − linear : qe = 1+bCe The sorbent has a fnite capacity for the contaminants. 

Linear : ln(qe) = ln(qm) − βε2 � � 
1 √1ε = RT ln 1 + , E = Ce −2β

DR � � 
ε2

Non − linear : qe = qmexp −2E2 

Used to determine the maximum amount of ion that can be sorbed onto unit weight of 
zeolite (qm, mmol.g−1) constant related to sorption energy (mol2.K.J−2), Polanyi sorption 
potential, ε is the work required to remove a molecule to infnity from its location in the 

sorption space, 
Employed to describe the interaction between contaminants and heterogeneous sorbent, 

Used to differentiate between physical and chemical sorption. 

Used to determining the thermodynamic parameters, i.e., Gibbs free energy change ΔG◦ = −RT ln(kc) &Thermo (ΔG, KJ.mol−1) and the change in entropy (ΔS, kJ.mol−1.K−1) and in enthalpy ΔH, kJ.mol−1)ΔG◦ = ΔH◦ − TΔS◦ from the real thermodynamic equilibrium constant (Kc). 

The reusability and regeneration ability of the ion-exchanger/sorbent is an important 
topic to be identifed to ensure the economic feasibility of the materials and to reduce the 
environmental footprint by reducing the material requirement for the treatment process. 
The reusability is usually tested by repeated loading of the ion-exchanger/sorbent with the 
contaminant; this is only useful if the material did not reach each its capacity. The regenera-
bility is the use of eluent to de-sorb the contaminant from the ion-exchanger/sorbent, and 
re-load the material with the contaminant in successive cycles. The latter set of investiga-
tions includes optimization of the eluent (e.g., HCl, HNO3, NaOH), elution time, eluent 
volume to ion-exchanger/sorbent mass ratio, and regeneration cycles [7,38]. It should be 
noted that the repeated use of the ion-exchanger/sorbent in reusability and regeneration 
ability is associated with a decrease in the removal effciency, as the active sites become 
occupied or not fully recovered, respectively. 

2.3. Application in Removing Radioactive Contaminants 

Zeolites have been used for several decades as an ion-exchanger on the industrial scale 
in the nuclear industry. In particular, natural CLP is being used in a Site Ion-EXchange ef-
fuent Plant SIEXP, City, UK [40]. Several studies were dedicated to assess the potential use 
of natural and synthetic zeolites as potential materials for radio-contaminants [40–67] and 
metal ion removals [67–84]. The tested zeolites included natural zeolites, modifed natural 
zeolites, nano-zeolites, and nano-zeolite-composites in the form of magnetic or polymeric 
materials. In this sub-section, the focus is to present the research related to radioactive con-
taminants removal, where, in the next sub-section, the metal ions (Section 2.4.1) and organic 
contaminant (Section 2.4.2) removal will be discussed. Scopus database search retrieved 17 
research papers (eight of them target the immobilization step) of the search (Nano AND 
zeolite AND radioactive AND Cs Or Sr OR Th Or U Or Eu). Table 4 summarizes the tested 
nano-zeolite type, size, if it is a composite and the preparation method. Moreover, the 
results of the kinetic, equilibrium, thermodynamics, and regeneration ability investigations 
of this research are listed. Based on the presented data, it could be concluded that: 

• Different types of synthetic nano-zeolite were investigated that include zeolite A, 
zeolite Y, zeolite X, CHA, and MOR. The listed research employed the hydrother-
mal (HT) preparation method and mostly utilized analytical grade chemicals during 
the preparation. 
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• Both magnetic and polymeric Nano-zeolites composites were tested for the removal 
of the radioactive contaminants. In particular, natural zeolite was ground to nano-
scale then immobilized in polymeric matrix, i.e.,Poly vinyl alcohol(PVA), Alginate 
(ALG)/poly-ethyleneoxide (PEO), and tested. 

• All of the listed research was conducted by using single contaminant solution, where in-
active contaminants were used to reduce the radiological exposure of the researchers. 

• The investigated sorbent mass to waste volume fall in the range (1 ≤ m/V ≤ 20), 
where regeneration studies are limited to one study. 

The examination of the listed data indicates that radioactive contaminants removal re-
actions are mostly best described using the PSO rate model, which indicates the chemisorp-
tion nature of the reaction that involves electron sharing between the contaminants and 
the zeolite [11,15,28,31,35,38,41–87]. For all the reported reactions, the kinetic data can be 
divided into two portions; the frst is fast with a steep slope that is linked to the sorption 
onto the boundary layer and the second is slower approaching an asymptote which is 
closely related to particle diffusion [28,40,41,43,44,61–91]. The Langmuir isotherm model 
is the best model to describe the equilibrium behavior where monolayer capacity is used 
as a comparative parameter to measure the affnity of the sorbent to a specifc contami-
nant. Except for Lee et al. [64], the removal reactions are spontaneous and an endothermic 
process with increased sorbent disorder (−ve ΔG, +ve ΔH, and +ve ΔS, respectively). The 
values of ΔH in the range (2 < ΔH < 40 kJ/mol) that refer to hydrogen bonding between 
the radio-contaminant and the sorbent. It should be noted that the thermodynamic param-
eters calculated by Lee et al. were determined at a single initial concentration experiment 
(100 ppm) at three temperatures, which is a represent for the reaction at this particular con-
tamination level not the system at varying initial concentrations [64]. Only three research 
studies adopted both OFAT and MVT to study and optimize the removal process [15,65,66]. 
The above-mentioned discussions and presented research indicate clearly that limited 
research efforts have been made to study the application of nano-zeolite in removing 
anionic uranium species and iodide [85–87], removal from binary or more complicated 
solutions [38,64,65,88,92], and the impregnation of nano-zeolite [93,94]. Usually, the re-
moval mechanism is based on the radio-contaminant interaction with active OH sites in 
the nano-zeolite, where the radio-contaminant is exchanged with H+ or Na+. For Nano-
zeolite composites, the removal process will occur on the active sites in zeolite and the 
polymer or the magnetic components. An illustrative example for the mechanism is pre-
sented in Figure 4, for Th(IV) and U(VI) ions sorbed onto Poly vinyl alcohol(PVA)/Sodium 
Alginate (SA)/poly-ethyleneoxide (PEO)/HZSM5 nano fber adsorbent, where the radio-
contaminants interact with the negatively charged nano fber adsorbent or via electron 
exchange from adsorbent surface to Th(IV) and U(VI) ions. It was reported that OH and 
COOH groups in that sorbent could be dissociated into O and COO groups in water 
systems and contribute to the sorption process [65]. 



Water 2022, 14, 137 11 of 30 

Table 4. Batch investigations of nano-zeolites applications in radioactive contaminant removal. 

Nano-Zeolite Kinetic Investigations Capacity Thermodynamic Parameters 

Cont. 
Type Size, nm Composite Preparation 

m/Vg/L Co, 
mmol/L pH teq, min Temp, K Model Qo @RT 

mmol/g 
ΔH 

kJ.mol−1 
ΔS 

J.mol−1.K 

(-) ΔG 
@RT 

kJ.mol−1 

Regeneration Ref. 

Zeolite Y 20–50 - 2 5.82 6 60 298–313 PSO 6.72 - - - [15] MVT 

Cs1 

Zeolite Y 

Zeolite A 

CHA 

<100 

>50 

<510 

Mangetite 

Magnetic 

-

HT, 
Chemicals 

2 

10 

1 

-

10 

0.752 

-

8 

-

-

120 

1 

-

298 

RT 

-

PSO 

PSO 

1.17 

1.724 

0.3 

2.75 

3.08 

-20.02 

35 

60 

−14 

7.93 

15.0 

15.8 

- [61] 

[62] 

[64] 

Zeolite A 82 ± 9 - HT, fy ash 10 0.752 7 1440 RT - - - - - - * [67] 

Zeolite X 86 ± 12 - HT, fy ash 10 0.752 7 1440 RT - - - - - - * [67] 

Eu3 

MOR1 

MOR2 

MOR3 

MOR4 

Sphere, D = 50 

Rod, L = 400, 
D = 25:50 

-

-

-

-

HT, 
Chemicals 4 3 1 1440 303 ± 1 PSO 

2.72 

2.87 

2.98 

3.50 

8.81 

7.05 

9.64 

10.15 

74.75 

69.75 

79.02 

82.84 

13.8 

14.1 

14.3 

14.9 

-

-

-

-

[63] 

Zeolite Y 

Zeolite Y 

Zeolite A 

20–50 

<100 

>50 

-

Mangetite 

Magnetic 

HT, 
Chemicals 

2 

2 

10 

19.72 

-

20 

6 

-

8 

60 

-

120 

298–313 

-

298 

PSO 

-

PSO 

15.42 

1.38 

1.016 

-

8.43 

12.16 

-

41 

100 

-

7.16 

18.1 

- [15] MVT 

[61] 

[62] 

Sr2 CHA-3 100–300 - HT, 
Chemicals 10 1.14 - 60 298 PSO 0.131 - - - 5 [54] 

Zeolite A 82 ± 9 - HT, fy ash 10 1.14 7 1440 RT - - - - - - * [67] 

Zeolite X 86 ± 12 - HT, fy ash 10 11.4 7 1440 RT - - - - - - * [67] 

Natural 109.9 PVA/ALG - 20 0.285 6 120 298 PSO - - - - - [76] 

Th4 

MOR1 

MOR2 

MOR3 

MOR4 

Sphere, D = 50 

Rod, L = 400 D 
= 25:50 

-

-

-

-

HT, 
Chemicals 4 4 1 1440 303 ± 1 PSO 

1.18 

1.23 

1.11 

1.55 

11.74 

11.2 

11.78 

9.74 

75.86 

73.65 

78.72 

71.20 

11.2 

11.3 

11.0 

11.8 

-

-

-

-

[63] 

HZSM-5 Fiber D = 98 PVA/ALG/PEO HT, 
Chemicals 1 - 5.5 240 298 DKM 1.138 35.67 145.3 7.704 - [65] 

MVT 

ZSM5 - PVA/ALG/PEO HT, 
Chemicals 1 0.517 5 150 298 DKM 0.569 25.962 97.2 3.039 - [66] MVT 

U4 HZSM-5 Fiber D = 98 PVA/ALG/PEO HT, 
Chemicals 1 - 5.5 240 298 DKM 0.577 21.34 81.9 3.11 - [65] 

MVT 

Note: * Crystallite size. 
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Figure 4. The sorption mechanism of Th(IV) and U(VI) ions on to the PVA/SA/PEO/HZSM5 nano-

fiber adsorbent (Reprinted with permission from [65]). 
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Figure 4. The sorption mechanism of Th(IV) and U(VI) ions on to the PVA/SA/PEO/HZSM5 
nanofber adsorbent (Reprinted with permission from [65]). 

2.4. Application in Industrial Wastewater Treatment 

Zeolites have been tested for their applications as ion-exchangers in industrial wastew-
ater treatment, where most of the applications focused on using zeolites as a cationic 
exchanger. Fewer investigations were devoted to examining the potential use of zeolite as 
an anionic exchanger, where the zeolites surface should have a permanent positive charge 
to ensure its performance. This is achieved via operating the removal process under the 
zero point charge or modifying the surface of zeolite [95–117]. In this case, the design of 
the process should consider the nature of the zeolites as amphoteric materials that tend to 
buffer the acidic and alkaline solution pH to 3.5–8 to equilibrate to the zero point charge and 
have a noted solubility in acidic media [38,96,118,119]. In this subsection, the application 
of nano-zeolites in metal removal and organic contaminant sorption will be summarized. 

2.4.1. Metal Removal Studies 

The search in the Scopus database using the keywords (Nano AND zeolite AND 
metal AND sorption) returned 53 research works. These results cover the removal of 
radio-contaminants and carbon dioxide, modifcation of zolites for its application as cat-
alyst, and ion-exchange/sorption applications, including application of zeolites-nano-
composites. Table 5 lists the investigations that addressed the use of nano-zeolite in metal 
removal [68–71,73–76,78–84]. The following remarks could be drawn from the table: 

• All the listed studies investigated only magnetic and polymeric composites, not the 
nano-zeolite particles. The magnetic composites included the use of magnetite and 
cobalt ferrite, where polymeric composites include various single and binary polymer, 
e.g., PVA, chtiosan, . . . 

• Different types of natural and synthetic nano-zeolites were investigated. Natural 
zeolites were not identifed or presented as CLP, where the synthetic nano-zeolites 
include zeolite Na-X, zeolite Y, Faujasite (FAU), ZSM-5, HZSM5, and MOR. The listed 
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research employed the hydrothermal (HT) preparation method and one research 
work investigated the use of silica and alumina wastes for the preparation of the 
nano-zeolite. 

• All of the listed research was conducted by using a single contaminant solution, the 
sorbent mass to volume ratio fall in the range (0.5 ≤ m/V ≤ 20) and regeneration 
studies were investigated in a comparatively large amount of research. 

By examining the presented research results in Table 5, it is clear that the reactions 
follow PSO and Langmuir models. The removal reactions are spontaneous with increased 
sorbent disorder (−ve ΔG, and +ve ΔS, respectively). All the reactions are endothermic 
except the metal ion reactions with the FAU/Geopolymer matrix and MOR/PEG-EG. They 
are exothermic with a respective high change in enthalpy that falls in the range of a chemical 
reaction (ΔH > 60 kJ/mol). Only two research works utilized the OFAT and MVT to study 
and optimize the removal process [82,84]. In research that compared the nano-zeolite 
with their polymeric composites, the analysis of the mechanism of metal ion removal 
in nano-zeolite- polymeric composites refers to the role of the polymeric composites in 
enhancing the removal by providing more active sites for the reactions. In case of Mn 
removal by CLP/Glutamic acid, the complexation with the organic active groups and 
zeolite sites were reported to be responsible for the sorption [82]. As the availability of the 
negative charges on the surface of the ion-exchanger/sorbent is essential for the successful 
application of the material in the cation removal, it should be noted that the presence of the 
magnetite/polymer affects the behavior of the sorbent at different pH [38,76,90]. At low 
pH, the surface of nano-zeolite/polymer has a positive charge that hinders cation removal 
from the solution. As the pH increases, the COOH groups deprotonate, allowing for the 
presence of a negative charge on the surface of the sorbent. A schematic representation 
of the pH effect on the availability of the negative charge on nano-zeolite/PVA/ALG is 
illustrated in Figure 5. As the pH increases, the hydroxyl spices of the metals will become 
dominant and will precipitate [76,90]. 
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Table 5. Investigations of nano-zeolite in cation removal form single contaminant solutions. 

Nano-Zeolite Kinetic Investigations Capacity Thermodynamic Parameters 

Cont. 
Type Size, nm Composite Preparation 

m/Vg/L 
Co , mmol/L pH teq , min Temp, K Model Qo @RT 

mmol/g 
ΔH 

Kj.mol−1 
ΔS 

J.mol−1K 
(-) ΔG @RT 
Kj.Mol−1 

Regeneration Ref. 

Al3 Natural 109.9 PVA/ALG - 20 0.926 6 120 298 PSO 0.438 - - - 10 [76] 

As3 - 50 Magnetite - 16 1.33 - 60 - - 0.059 - - - - [73] 

Zeolite NaX Fiber 
>170 PVA HT, chemicals 0.5 0.446 5 298–318 PSO 7.279 11.099 82 13.24 5 [75] 

Cd2 - 109.9 PVA/ALG Natural 20 0.222 6 120 298 PSO 0.411 - - - 10 [76] 

CLP - DTPA Natural 0.2 8.763 5.9 205 - PSO 1.235 −10.3 102.89 −20.4 - [84] 
MVT 

FAU <150 Geopolymer HT, Si &Al 
wastes 2 4.237 8 20 298 PSO 2.27 −106.88 323 203.1 - [70] 

Co2 
ZSM-5 - PVA/ALG HT, chemicals 1 1.695 - 240 298 DKM 1.255 16.47 55 0.16 - [69] 

- 12 GLU Natural 10 10 - 360 298 PSO 0.179 - - - - ** [79] 

CLP 59 APS Natural 5 9.448 - 300 298 PSO 1.36 - - - - ** [80] 

Cu2 
FAU <150 Geopolymer HT, Si &Al 

wastes 2 3.937 8 20 298 PSO 1.987 −150.76 464 239 - [70] 

- 109.9 PVA/ALG Natural 20 0.394 6 120 298 PSO 0.764 - - - 10 [76] 

CLP <40 CYS Natural 15 7.874 - 1800 298 PSO 0.521 - - - - ** [81] 

Fe3 - 109.9 PVA/ALG Natural 20 0.448 6 120 298 PSO 0.845 - - - 10 [76] 

Li3 - 109.9 PVA/ALG Natural 20 3.62 6 120 298 PSO 5.527 - - - 10 [76] 

Mn2 
Natural 109.9 PVA/ALG Natural 20 0.455 6 120 298 PSO 0.781 - - - 10 [76] 

CLP - GLU Natural 5 10.6 3.5 120 298 PSO 0.101 - - - 4 ** [82] MVT 

Zeolite NaX Fiber 
>170 PVA HT, chemicals 0.5 0.341 5 298–318 PSO 5.738 6.018 60 11.9 - [75] 

Ni2 
- 109.9 PVA/ALG Natural 20 0.426 6 120 298 PSO 0.812 - - - 10 [76] 

CLP - DMG Natural 10 1.707 5.5 1400 298 PSO 0.96@293 - - - - ** [83] 

FAU 150–250 Cobalt ferrite HT, Chemicals - 1.038 7 60 298 PSO 2.91 - - - - [68] 

Zeolite Y 
150–300 -

HT, Chemicals 0.4 0.483 6 60 299 PSO 
2.19 - - - - [71] 

Pb2 
30–50 chitosan 0.265 - - - - [71] 

- 109.9 PVA/ALG Natural 20 0.121 6 120 298 PSO 0.229 - - - 10 [76] 

HZSM-5 Fiber PVP/chitosan HT, chemicals 1 0.48 5.5 240 298 DKM 1.46 78.35 146.68 8.22 - [74] 

MOR 35.50, PEG-EG HT, chemicals 3 0.241 8 180 298 PSO 0.084 −68.82 218 133.7 5 [78] 

Zn2 
FAU <150 Geopolymer HT, Si &Al 

wastes 2 3.823 8 20 298 PSO 2.017 −83.1 250 154.0 - [70] 

- 109.9 PVA/ALG Natural 20 0.382 6 120 298 PSO 0.739 - - - 10 [76] 

Note: ** thermodynamics are determined from kinetics. EG = ethylene glycol. PEG = polyethylene glycol 200. GLU = glutamic acid. DMG = dimethylglyoxime. DTPA = diethylenetri-
aminepentaacetic acid. 
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2.4.2. Organic Contaminants’ Sorption Studies 

The bibliometric data in Scopus include 77 research works on the (Nano AND ze-
olite AND organic AND removal); these research works include the use of modifed 
nano-zeolite, nano-zeolite, and zeolite-nano-composite in membrane separation, catalysis, 
and dual processes. Most of the relevant papers addressed the use of nano-zeolite in 
dye, BisPhenolS (BPS), and Polycyclic Aromatic Hydrocarbons (PAH) removal using the 
ion-exchange/sorption technique only, as indicated in Table 6 [72,77,120–128]. Table 6 
displays the data related to dye removal; the following remarks could be summarized from 
these researchers: 

• Natural and synthesized nano-zeolites of different types, i.e., Nano-zeolites X, MOR, 
ZSM5, and Sodalite were investigated, where both green and conventional preparation 
routes were adopted, 

• Nano-zeolite particles were mainly investigated for the removal of different types of 
dyes, i.e., MG, CV, MB, BR (18,41,46), and only one research studied the polymeric 
composite of natural nano-zeolite. No study addressed the inorganic nano-zeolite 
composite, 

• The sorbent dosage falls in the range (0.3–10), which is relatively narrower than those 
studied for the radioactive contaminants and for metal removal studies. 

• The studies were conducted using single contaminant solution and the regeneratbility 
studies are very limited. 

By examining the kinetic data in Table 6, the removal reactions are chemisorptions, 
i.e., follow PSO, where Langmuir and Freundlich were found to be the best models to 
describe the equilibrium behavior. The available data indicate that the reactions are mostly 
spontaneous and endothermic. The values of ΔH in the range (2 < ΔH < 40 kJ/mol) that 
refer to hydrogen bonding between the organic contaminants and the sorbent. In addition to 
the listed data, ZSM-5 nano-zeolite (250 nm) was prepared via hydrothermal methods using 
chemicals, and was modifed using hexadecyltrimethylammonium bromide (HDTMA-B); 
the reaction follows PSO and reaches equilibrium at 120, min (Co = 5 mg/L, pH = 4, RT), 
and the reaction follows Freundlich with Langmuir monolayer capacity = 41 mg/g [123]. 
This work revealed that, for single layer HDTMA-B formation on the external surface 
of the nano-zeolites, BPS sorption is very low due to the unavailability of suffcient the 
positive sites onto the sorbent. Finally, the surface of ground natural zeolite (170 nm) was 
modifed using humic acids, and it was found that this Hybrid sorbent allowed anthracene 
and pyrene removal at percentages higher than 90%; fuoranthene, of angular molecular 
structure, was adsorbed at 85% [128]. 
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Table 6. Applications of Nano-zeolites in dye sorption. 

Cont. 
Type 

Nano-Zeolite 

Size, nm Composite 

Preparation 
Technique m/Vg/L 

Co , mg/L pH 

Kinetic Investigations 

teq , min Temp, K Model 

Capacity 

Qo @RT mg/g 

Thermodynamic Parameters 

ΔH ΔS (-)ΔG @RT 
kJ.mol−1 J.mol−1K kJ.mol−1 

Regeneration Ref. 

AB-74 Zeolite 40–500 PA-6 Natural 20 - 120 - PSO 166.66 - - - - [72] 
MVT 

ZF 46.56 - 2 700 - 120 RT PSO 226.757 −5.819 19 11.48 - [77] 

MG 
ZM 

ZS 

26.28 

75.83 

-

-

HT, Al waste 
and Si 

chemical 

2 

2 

700 

50 

-

-

180 

40 

RT 

RT 

PSO 

PSO 

239.234 

29.744 

−5.715 

−22.62 

14 

65 

9.887 

41.99 

-

-

[77] 

[77] 

ZT 38.73 - 2 50 - 50 RT PSO 25.221 −22.473 69 43.03 - [77] 

CV 

Sodalite 

Zeolite X 

40–90 

19–39 

-

-

Low- temp, 
chemicals 

HT, coal fy 
ash 

0.3 

0.75 

20 

-

-

-

40 

-

RT 

-

PSO 

PSO 

227.2 

234.57 

28.006 

-

108.22 

-

4.225 

- 10 

* [120] 

[126] 
MVT 

MB 

BR-41 

BR-18 

Zeolite-X 

MOR 

ZSM5 

170 

55.34 

40–100 

-

-

-

HT, Chemicals 

2.5 

10 

1.2 

1.2 

100 

-

17, M 

33, M 

-

-

7 

5 

120 

60 

60 

RT 

RT 

RT 

RT 

PSO 

PFO 

PSO 

PSO 

0.1 

1.72 

13.76, µM/g 

28.49, µM/g 

-

−18.98 

-

-

-

4.6 

-

-

-

17.6 

-

-

-

-

-

-

[121] 

[122] 

[125] 
MVT 

BR-46 1.2 20, M 60 RT PSO 27.6, µM/g - - - -

Note: * Crystallite size. AB = Acid Blue. MG = Malachite Green. CV = Crystal Violet. MB = Methylene Blue. BR = Basic Red. ZF = fumed silica- based zeolite. ZM = sodium metasilicate-
based Zeolite. ZS = silica gel- based zeolite. ZT = tetraethyl orthosilicate-based zeolite. 
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3. Advances in Nano-Zeolite-Composites Applications in Photo-Catalytic 
Degradations 

Advanced oxidation processes (AOP) are widely applied as tertiary wastewater treat-
ment technologies that aim to convert persistence contaminants into simple biodegradable 
and harmless products [2,129]. These technologies rely on the use of single or combined 
activation method to generate reactive species that can degrade these contaminants. Dif-
ferent activation methods are available including photochemical, chemical, and ionizing 
radiation [2,130]. Photo-catalytic degradation is one of these technologies that utilizes 
photon excitation of the catalyst to generate electron (e−) and hole (h+) pairs, i.e., primary 
radicals, that subsequently hydrolyzes the water molecules to form different types of sec-
ondary radicals that will react with the contaminants. Meanwhile, part of the primary 
radicals recombines with the catalysts surface which reduces the photo-catalytic activity. 
A large variety of metal oxides, zero-valance elements, and bi-metallic materials were 
investigated and applied as a catalyst to generate primary radicals, i.e., TiO2, ZnO, Fe0,Cu0, 
and Zn/Pd [37,129,131]. To engineer sunlight driven photo-catalytic degradation process, 
there is a need to select the catalyst to have a narrow band gap suffcient to capture the solar 
energy, adequate sorption sites and reaction centers, effcient separation and transfer of 
the primary radicals, minimum photochemical corrosion, allow easy separation, and have 
low agglomeration tendency [129,132]. Modifying the catalyst and the use of support were 
proposed in this context. The support should possess high specifc surface area, acceptable 
hydrophobicity especially for organic contaminant degradation and excellent stability in 
water. CLP, ZSM-5, zeolite-Y, MOR, and zeolite beta were tested for their applications as 
support not only due to their excellent sorption properties but also due to the presence of 
acid/base sites that can reduce the e−-h+ recombination. Figure 6a summarizes the applica-
tion of zeolite-composite in the degradation of different organic contaminants in wastewater 
and in air. The photo-catalytic degradation mechanism of these composites is illustrated in 
Figure 6b; the mechanism comprises the adsorption and diffusion of the contaminants on 
the zeolite surface, photo-catalytic degradation, and decomposition/desorption. Different 
techniques are available to prepare these composites including ex-situ, sol–gel, ionic ex-
change, hydrothermal synthesis, and impregnation techniques. A detailed review of the 
preparation techniques is presented elsewhere [129]. 
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The analysis of the bibliometric data in the Scopus database indicated that there are 
450 research works that addressed the (zeolite AND photodegradation) and 68 research 
works addressed the (nano AND zeolite AND photodegradation). By restricting the search 
using the word “Water”, the number reduces to 151 and 21, respectively. The annual 
distribution of these researches are illustrated in Figure 7a,b; the fgure illustrates the 
increasing research trends for the application of zeolites and nano-zeolite in the photo-
degradation of contaminants in water. 
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3.1. Testing Scheme to Optimize the Photo-Catalytic Degradation Applications 

In general, the testing schemes for evaluating the performance of photo-catalytic com-
posites include material characterization, and operational condition optimization. The aim 
of the characterization step is to identify the chemical and physical properties of benefts 
to the photo-catalytic degradation process, where both the sorption and photo-catalytic 
degradation related properties are identifed. Thus, in addition to the characterization 
methods mentioned in Section 2.1, the optical properties of the photo-catalytic composite 
are widely employed. In this context, the diffuse refectance and the photoluminescence 
spectroscopy are used to evaluate the structural changes in the composite during different 
treatments, calculate the band gap value, and identify the defects in the structures [133–137]. 
In Velásquez et al. [137], erosion, reusability, and composite degradation tests were con-
ducted to assess the effect of mixing either mechanical or sonication on the polymer 
composite stability, degradation effciency behavior under repeated reusability, and com-
posite degradation resistance under prolonged exposure to the radiation. It should be 
noted that the reusability is associated with effciency reduction due to the sorption of the 
degradation products on the zeolite surface [138]. Operational conditions optimizations 
could be conducted via the OFAT or MVT technique to identify the optimum catalyst 
composite mass (m, g), optimum catalyst to support ratio, contaminated solution volume 
(V, L) and pH, initial contaminant concentration (Co, mmol/L), contact time (teq, min), and 
effect of the support. 

3.2. Batch Investigations 

Batch investigations of photo-catalytic composites are employed to design the photo-
degradation process. In these investigations, certain mass of the photo-catalytic composite 
(m, g) is mixed with a certain volume of the contaminated solution (V, L) of specifed 
contaminant concentration (Co, mmol/L) and pH at specifed mixing velocity for a certain 
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period of time under specifed illumination conditions. Then, the solid/liquid suspension 
is separated and the contaminant concentration (Ct, mmol/L) in the solution is measured 
using a suitable analytical technique. The degradation effciency (Deg, %) is determined 
using the following equation: � � 

Co − CtDeg.% = ∗ 100 (4)
Co 

The experiments are usually conducted under dark conditions to ensure the achieve-
ment of the sorption equilibrium and then illumination is turned on to allow a clear 
identifcation of the photo-degradation. 

Kinetic studies are conducted to allow the calculations of the operational time and rate 
constants of the degradation reactions. In this respect, the sorption kinetics models PFO, 
PSO, and IPM are widely used to investigate the sorption and diffusion step in the process. 
Langmuir–Hinshelwood (LH), and frst order (FO) are widely used to analyze the photo-
degradation kinetics, and the features of each model are listed in Table 7 [139,140]. Different 
efforts were directed to provide mechanistic models that could be used to better represent 
the reaction kinetics, estimating the controlling steps, and obtaining a precise value for 
the rate constants [140–144]. Equilibrium investigations in terms of varying the initial 
contaminant concentration in the aqueous solution are usually modeled using the sorption 
equilibrium models [139,140,145]. It should be noted that, for sunlight driven processes, 
the variation of the solar intensity with time and reactor depth should be considered during 
the design of the process. 

Table 7. Models used in analyzing the photo-degradation kinetics. 

Model Equation Model Features 

LH 

FO 

Linear: 
ln( C 

Co ) = − kad kLH t 
(Co −C) (Co −C) − kad 

Non-linear: 
C = Coe−kad (kLH t+Co −C) � � 

CLinear : ln = −k f tCo 

−k f tNon − linear : C = Coe

The model assumes that the rate of the photo-degradation reaction 
proportional to the fraction of the surface by the contaminant, 

It assumes that the available contaminants on the surface are sorbed following 
the Langmuir monolayer model, 

The model does not consider the reactions of the intermediates, 
Kx the rate constant for sorption (x = ad) and photo-degradation (x = LH) 

Assumes that the overall degradation process is a frst order reaction 
valid for diluted solutions 

Kf is the apparent frst order rate constant 

The reusability of the photo-catalytic composite is tested by repeating the batch ex-
periment under optimum degradation conditions using fresh contaminant concentration 
at each cycle. The composite is re-used after drying at specifed temperature for a fxed 
amount of time. The regeneration ability is tested after regenerating the surface of the 
materials using chemicals; then, the batch experiments are repeated. 

3.3. Applications in Organic Contaminant Degradation 

The indexed research directed to explore the feasibility of using nano-zeolite in the 
preparation of photo-catalytic composite for the degradation of organic contaminants are 
listed in Table 8 [146–154]. The following concluding remarks could be drawn: 

• Most of the conducted research utilized natural CLP grounded to the nano-scale, and 
limited research utilized synthetic ZSM-5 nano zeolites for their applications in the 
preparation of photo-catalytic composites. 

• The composites included metal oxides e.g., ZnO, CuO, FeO, NiO, and metal sulfde, 
e.g., ZnS, NiS, CuS, and PbS. 

• Most of the conducted experiments employed a single contaminant solution, where 
solutions of model organic contaminant, e.g., 4-Nitrophenol, Dyes, e.g., Rhodamine B, 
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Methylene blue, personal care products and pharmathetical compounds, e.g., Metron-
idazole, Tetracycline, Cefuroxime, Benzophenone. Real effuent, i.e., fsh pond water, 
was only used in one research. 

• The tested photo-catalytic composite dosage was in the range (0.025–3), where, in 
some studies, oxidizer, e.g., H2O2, was supplemented to the contaminant solution. 

Table 8. Results of the applications of nano-zeolite composite for photo-catalytic degradation of 
organic contaminants. 

Cont. 
Type 

Nano-Zeolite 

Size, nm Composite Preparation 
Illumination 

Source 
m/Vg/L 

Optimum Conditions 

Co, pH teq, min ppm 
Model Reuse Ref. 

MB CLP 50 ZnO Natural Fluorescence 
lamp, 60 W 0.25 10 - 50 FO 4 [146] 

MB ZSM-5 - ZnO HT-
chemical 

UV-Mercury 
lamp, 500 W 0.2 50 - 30 FO 6 [147] 

TC CLP 100 FeO Natural Hg lamp, 30 W 0.2 - 4.3 200 FO 6 [148] 

CF CLP 10–70 NiO Natural Hg lamp, 35 W 0.025 - 4.3 200 LH - [149] 

FP CLP - FeO-
ZnO Natural Sunlight 0.1 - 8.3 140 - 5 [150] 

4-NP CLP 52 NiS/PbS Natural Hg lamp, 30 W 0.5 - 7.5 200 FO - [151] 

MB CLP 100 CuO Natural Hg lamp, 75 W 0.2 7 5.9 180 FO - [152] 

MZ CLP 30 ZnS/NiS Natural Hg lamp, 35 W 3 4 3 150 - - [153] 
MVT 

BP CLP -
ZnO/CuO 

ZnS/CuS 
Natural 2 Hg lamp, each 

35 W 
0.12 

0.1 

30 

30 

7.5 

7.5 
300 FO 

5 

5 
[154] 

Note: RB = Rhodamine B. (TC) = Tetracycline. (CF) = Cefuroxime. Fp = Filtered Fish Pond Wastewater. 
4-NP = 4-Nitrophenol. MZ = Metronidazole. BP = Benzophenone. 

The examination of the listed data in Table 8 shows that most of the analyses were 
conducted using the linear form of the FO model, where the experiments were conducted 
after reaching the sorption–desorption equilibrium. The analysis of the integrated process 
of sorption and diffusion, photo-catalytic degradation, and desorption of the degradation 
products were not conducted. Only one research work tested the photo-degradation under 
sunlight, and the rest of the published work employed lamps as an illumination source. 

4. Advances in Nano-Zeolite Applications in Membrane Separation 

Contaminants and/or salt removal from the water and wastewater are achieved 
in membrane technology by using a barrier that allows selective transport of certain 
molecules, ions, or particles under driving force [37]. The driving force could be pressure, 
concentration, or potential gradients. This barrier comprises two-layers or more, where 
the upper layer is a thin denser layer (active layer) that is overlaying more porous and 
thicker substrates. Two categories of materials are widely used to construct the membrane 
namely: polymer and ceramic. The membrane technology is usually classifed based 
on the pore size of the membrane into microfltration (MF), ultra-fltration (UF), nano-
fltration (NF), and reverse osmosis (RO). Compared to polymeric membranes, ceramic 
membranes are characterized by their higher porosity, higher hydrophilicity, and better 
chemical, mechanical, thermal, and biological stabilities which are translated to better 
hydraulic performance, lower fouling rates, and longer service time. Subsequently, ceramic 
membranes are applied in all membrane classes, with wider applications in MF and 
UF [155]. Alumina, silica, zeolite, tetania, and zirconia are fve principal materials in 
ceramic membrane preparation. In particular, zeolites are used to form the active layer 
in MF, UF, and RO with relatively limited utilization as a substrate. Compared to other 
ceramic membrane materials, zeolites have the second highest hydrophilicity and unique 
pore structures, but their chemical and thermal stabilities are not advantageous [155]. Mixed 
matrix membranes (MMM) are formed from Nano-Polymer Composites (NPC) to overcome 
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the drawbacks of the polymeric membranes using inorganic fller or additives [37,156,157]. 
There are two confgurations that are widely used in this context, namely: conventional 
PNC, and thin flm composites (TFC) deposited on the PNC surface [158]. The application 
of adsorptive membranes, adsorption-membranes hybrid treatment system, and nano-
fbrous membranes using electrospinning in water treatment were reviewed [159–161]. The 
analysis of the research indexed in the Scopus database was conducted using the keywords 
zeolite and nano-zeolite combined with the keywords treatment and water; the results 
are illustrated in Figure 8a,b. The annual number of indexed research focused on the 
study of zeolites was considerably larger than those studying nano-zeolites. The research 
that assesses the potential use of zeolites in membrane application for water treatment is 
nearly two thirds of those used for the treatment. On the other hand, almost all the studies 
that addressed the nano-zeolites directed for its use in membranes were focused on water 
treatment. The research trends are slightly increased over the studied time. 
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4.1. Testing Scheme to Optimize the Membrane Applications 

As in the other applications, the testing schemes for evaluating the performance of 
nano-zeolites containing membranes include material characterization and operational 
conditions optimization. Material characterizations are conducted to identify the membrane 
composition and its physical properties, where the particle size, pore structure, morphology 
and surface properties, chemical composition, and crystalinity are identifed as mentioned 
in Section 2.1. In addition, the hydrophilicity of the membrane is characterized using a 
water contact angle technique. Moreover, the stress–strain behavior of the membrane is 
evaluated to have insights on the reliability of the designed membrane. Fouling resistance 
is usually determined by applying repeated cycles of treatment- backwash and or chemical 
treatment. Bio fouling resistance is usually quantifed by assessing the initial bacterial 
attachment to the membrane and the inhabitation of the micro-organisms’ growth, e.g., 
E-coli, P. aeruginosa LB, on the membrane surface. OFAT is usually used to assess the 
performance of the membrane and optimize the operational conditions as will be presented 
in the next subsection. 

4.2. Identifcation of Membrane Performance 

Batch and continuous experiments are conducted; the batch experiments give an indi-
cation on the sorption characteristics for adsorptive membranes. In these experiments, the 
procedure for batch sorption is adopted and sorption characteristics are identifed [162,163]. 
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In continuous experiments, the contaminated solution is fowing through the membrane 
by the action of the driving force. In pressure driven membrane applications, the system is 
subjected to a specifed pressure using a suitable pump. Feed of contaminated solution of 
concentration (Cf, mg/L) is pumped through the membrane and the contaminant concen-
tration in the permeate is measured (Cp, mg/L). The membrane effciency is determined in 
terms of contaminant rejection (R, %) using the following equation: ! 

CpR = 1 − ∗ 100 (5)
Cf 

The permeate fux (Jw, L/(m2.h)) is determined from the ratio between the permeated 
volume in a given time (V(t), l/h), and the membrane area (A, m2) is as follows: 

V(t)
Jw = (6)

A 

Three parameters could be used to compare the fouling resistance, which is the fux 
recovery ratio (FRR), which is the percentage of the permeated pure water after repeated 
fltration cycles to that before the cycles permeate, i.e., Jwn and Jw1, respectively [164]: 

Jwn FRR (%) = × 100 (7)
Jw1 

Total fouling (Rt, %) and irreversible fouling (Rir, %) could be assessed by fnding the 
percentage of the change in water fux after to backwash (Jwb) and chemical treatment (Jwc) 
according to the following equations [165]: 

Jwb − JtRt (%) = × 100 (8)
Jwb 

Jwb − Jwc Rt(%) = × 100 (9)
Jwb 

4.3. The Membrane Investigations 

The results of indexed research that addressed the application of nano-zeolite in 
membrane separation are presented in Table 9 [165–171]. Different types of nano-zeolites 
and modifed nano-Zeolties were tested in a continuous testing scheme following the 
OFAT technique. The research addressed the removal of metal and organic pollutants, 
i.e., dyes, simulated waste effuent, and oil. The research mainly used the pressure as the 
driving force, except for one research work that utilized potential difference. The following 
concluding remarks could be drawn: 

• Zeolite-Y, Na-X, FAU, Na-A, and beta were used as an active layer in the membrane 
composite, via depositing a thin flm on the substrate or embedding onto the mem-
brane matrix; 

• Different modifcations for the nano-zeolites were proposed including the addition of 
metals, e.g., Cu, oxides, e.g., TiO2, and organic modifcation, e.g., D-tyrosine. These 
modifcations were used to increase the fouling resistance. 

• The applications were restricted to MF, UF, and NF, despite there are some research 
studies that tested the use of nano-zolite in membrane applications for dehydration of 
different products using RO and forward osmosis, but these membrane types were 
not tested for wastewater treatment. 
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Table 9. Application of nano-zeolite in membrane separations. 

Cont. 
Active Layer 

Membrane 

Substrate Type 

Contact 
Angle, o 

Co , ppm 

Optimum Conditions 

Flux, lm2/h R, % Pressure, 
bar 

Fouling Ref. 

CV Zeolite-Y CNS UF-
conductive 40 20 210 100 @3 volte - [165] 

Engine Oil Beta CA MF 67.7 2% - 97 Vacuum- - [166] 

Oil Zeolite 
NaX-TiO2 

PES UF - - - - - - [167] 

TPH Zeolite -NaA Polyaniline NF - 35.1-78.0 96.99 77.79 5 - [168] 

Paper mill 
effuent Cu–Zeolite PES UF 73.4–74.8 

COD = 1840, 
PH = 7.6, 

BOD = 660, 
So4 = 205, 
Cl = 340 

38.9 COD = 89 
BOD = 90.5 4.14 Fouling [164] 

Syenthtic 
wastewater 

FAU-
D-tyrosine NF270 NF 20 - - - - Bio fouling [169] 

As Zeolite Chitosan - 74.2–59.2 1000 - 94 - - [170] 

Ni 

Pb 
Zeolite-Na-X PSf UF 67 500 

21 

21 

91 

42 
1 - [171] 

Note: TPH = Total Petroleum Hydrocarbon. CNS = Carbon Nanostructure. CA = Cellulose acetate. 
PES = Polyethersulfone. PSf = Polysulfone. 

5. Conclusions 

The applications of nano-zeolite in water and wastewater treatment were reviewed in 
this work, where the application of zeolites in this feld was introduced, and zeolites struc-
tures and their properties and recent trends in the preparation of zeolites were overviewed. 
The various applications of the nano-zeolites in the feld were addressed by focusing on 
the applications of nano-zeolite in ion-exchange/sorption, photo-degradation, and mem-
brane separation. In this respect, in depth analysis of the variation of the annual research 
indexed in Scopus database was performed for each application to have insights into the 
trends of the scientifc interest in this feld. The characterization schemes, experimental 
investigations, and theoretical analysis of the data were presented. Finally, the results of 
recent research were summarized, analyzed, and concluding remarks were drawn for each 
application. Based on these concluding remarks, some gaps in this innovative feld of study 
were identifed as follows: 

• Despite it being found that the use of nano-zeolite has enhanced the performance of the 
treatment process and subsequently can reduce the size and land requirement of the 
wastewater treatment plant, there is a need to consider the reduction of the materials 
footprints; this could be achieved by following greener nano-zeolite preparation 
techniques, i.e., use of bio-materials and wastes as sources for the preparation, use of 
biosolvent, and low temperature processes. 

• Batch experiment for nano-zeolite applications in ion exchange/sorption process is 
a major research feld with the highest number of published papers. This forms a 
database that can assist with the wide-scale application of several types of nano-
zeolites for the removal of different contaminants including radioactive, metal, and 
organic. Research that assesses the continuous application of nano-zeolites in this feld 
is very limited, where there is a need to assess the hydraulic and sorptive performance 
of this type of application. 

• Despite nano-zeolite being able to be modifed to act as anion exchanger/sorbent, 
these research investigations are very limited. Moreover, the research that includes 
the application of complicated solutions is missing, i.e., real wastewater. Finally, the 
application of nano-zeolites for the treatment of corrosive wastewater stream is not 
suffciently addressed. 

• For photo-degradation applications, there is a need to consider the application on 
complex/ real wastewater effuent, where the research only focuses on the use of a 
single contaminant solution. 
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• For membrane separation, the application of nano-zeolite in RO and forward osmosis 
is missing in the feld of water and wastewater treatment. 

• Hierarchical and 2D zeolites were not investigated yet in any application related to 
water and wastewater treatment. 

• For all the presented applications, neither the cost analysis for the preparation and 
application of nano-zeolite in water and wastewater treatment nor the pilot scale 
applications were addressed. These types of investigations can help in paving the way 
toward the wide application of these materials in the industry. 

• For each application, the research that addressed the life cycle management of nano-
zeolite is missing. In particular, clear assessment of the end of life cycle management 
options for the exhausted nano-materials should be conducted. 
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