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Abstract: In wastewater treatment plants (WWTP), anaerobic digester (AD) units are commonly 
operated under mesophilic and thermophilic conditions. In some cases, during the dry season, 
maintaining a stable temperature in the digester requires additional power to operate a conditioning 
system. Without proper conditioning systems, methanogens are vulnerable to temperature shifts. 
This study investigated the effects of temperature shifts on CH4 gas production and microbial 
diversity during anaerobic digestion of anaerobic sewage sludge using a metagenomic approach. 
The research was conducted in lab-scale AD under stepwise upshifted temperature from 42 to 48 ◦C. 
The results showed that signifcant methanogen population reduction during the temperature shift 
affected the CH4 production. With 70 days of incubation each, CH4 production decreased from 
4.55 L·g−1-chemical oxygen demand (COD) at 42 ◦C with methanogen/total population (M·TP−1) 
ratio of 0.041 to 1.52 L·g−1 COD (M·TP−1 ratio 0.027) and then to 0.94 L·g−1 COD ( M·TP−1 ratio 

Citation: Sudiartha, G.A.W.; Imai, T.; 0.026) after the temperature was shifted to 45 ◦C and 48 ◦C, respectively. Methanosaeta was the most 
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Temperature Shifts in Anaerobic was a thermotolerant archaea. Anaerobaculum, Fervidobacterium, and Tepidanaerobacter were bacterial 
Digestion for Treating Municipal genera and grew well in shifted-up temperatures, implying heat-resistant characteristics. 
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1. Introduction 

Water resources and environmental protection policies worldwide have mandated 
thorough treatment of wastewater prior to discharge into water bodies [1]. Activated 
sludge treatment is a common wastewater treatment method [2]. However, the main issue 
regarding this type of treatment is sludge generated from primary sedimentation (PS) 
and activated sludge (AS). Sludge produced from wastewater treatment plants (WWTP) 
is produced in large volumes worldwide with up to 8910, 6510, 2960, 650, 580, 550, and 
370 thousand metric tons of dry sludge produced annually by EU countries, the United 
States, China, Iran, Turkey, Canada, and Brazil, respectively [3]. Considering the substantial 
volumes of waste production, it is not surprising that WWTP sludge management and 
disposal have become an area of signifcant concern globally [4]. As a result of its high water 
content, low dewaterability, and rigorous regulations for sludge reuse and disposal, sludge 
management is a demanding and complicated issue in wastewater treatment plants [5]. 

In some countries, landfll is the most favorable disposal method [6]. However, due to 
the volume of sludge produced and the availability of the land area, attention has shifted 
to the development of other potential usable products. Currently, the wastewater treatment 
paradigm has shifted to an environmentally friendly process to reduce the volume of 
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sludge disposed and convert it into a bioenergy source. The dry bulk of WWTP sludge 
contains organic components that can be utilized to generate a signifcant quantity of 
biomass energy [7]. Anaerobic digestion (AD) is one of the most reliable and promising 
technologies [8], with several biological wastewater treatment plants applying it as an 
end-treatment for sewage sludge, primary sludge, and waste-activated sludge [9–11]. In 
Japan, especially in Ube wastewater treatment plants, sludge generated in PS and AS is 
dewatered and delivered to an anaerobic digester. 

AD has several benefts compared to other biological processes, such as effortless 
operation, potentially creating an organic by-product that may be utilized in agriculture 
and managed to provide an appropriate treatment process [12,13]. During anaerobic 
digestion, organic compounds are hydrolyzed into soluble fermentable substrates, which 
are subsequently fermented to acetate, carbon dioxide (CO2), and hydrogen gas (H2) by 
acetogenic and acidogenic bacteria. These products are then consumed by methanogens 
to generate methane (CH4) [9]. Silva et al. [14] investigated the CH4 and biohydrogen 
production from a mixture of food waste, anaerobic sewage sludge, and glycerol. The 
maximum yield of CH4 and biohydrogen obtained from the mixture was 342.0 mL CH4·g−1 

vs. and 179.3 mL H2·g−1 VS, respectively. Without any substrate addition, anaerobic sludge 
was also capable of generating biogas at 230 ± 29 mL·L−1·d−1 with CH4 production of 
153 mL·L−1·d−1 [15]. 

There are several temperature conditions where anaerobic digestion frequently occurs 
at psychrophilic (<30 ◦C), mesophilic (30–40 ◦C), and thermophilic (50–60 ◦C) [16]. Recent 
studies have attempted to investigate the potential of biogas production from anaerobic 
sludge at various temperatures. Mirmasoumi et al. [17] investigated the biogas production 
of anaerobic sludge under two different conditions: mesophilic condition (37 ◦C) and 
thermophilic condition (55 ◦C). Under mesophilic conditions, the maximum CH4 produced 
was 0.246 m3 CH4·m−3 per digester per day. Meanwhile, a greater CH4 productivity 
was obtained under thermophilic conditions, up to 0.64 m3 CH4/m3 per digester per day. 
Kasinski [18] also found higher CH4 yields under thermophilic conditions than under 

−1 −1mesophilic conditions (0.56 L CH4·g vs. −0.70 L CH4·g−1 VS and 0.25 L CH4·g 
vs. −0.32 L CH4·g−1 vs., respectively). These fndings suggest that biogas production 
using anaerobic digestion generally favors high temperatures. However, in a large-scale 
WWTP, maintaining thermophilic conditions in the reactor during anaerobic digestion will 
require signifcant energy, which will lead to higher operational expenses, especially in 
four-seasoned countries. In some cases, fermentation failure can occur owing to transient 
temperature increases caused by power outages, mechanical faults, or human errors during 
the fermentation process [19]. This motivates further extensive studies of thermotolerant 
microorganisms for the anaerobic digestion process. 

Thermotolerant microorganisms are microbial consortia that are robustly adapted to 
harsh conditions during industrial applications [20]. Thermotolerant microorganisms are 
mostly mesophilic, with optimum growth temperatures of 35–45 ◦C, which are 5–10 ◦C 
higher than typical mesophilic strains of the same genus [21–24]. These strains cannot 
be classifed as thermophilic microorganisms, which are characterized by an optimum 
growth temperature greater than 50 ◦C [19]. Few studies have examined the potential of 
thermotolerant microorganisms during anaerobic digestion. Suksong et al. [25] studied the 
gas production potential of thermotolerant microorganisms from the anaerobic digestion 
of oil palm empty fruit bunches. The maximum CH4 yields identifed for Clostridiaceae 
and Lachnospiraceae with prehydrolysis empty fruit bunches were 252 mL CH4·g−1 vs. and 
349 mL CH4·g−1 VS, respectively. Su et al. [20] discovered the potential of a thermotolerant 
methanotrophic consortium for producing methanol from biogas. To date, there have been 
no reports on the potential of thermotolerant microorganisms to produce biogas from the 
anaerobic digestion of anaerobic sludge. 

Notably, investigation of biogas production and genomic analysis from the anaerobic 
digestion process under shifted-up temperatures has not been performed to date. Therefore, 
there is an urgent need to expand our understanding of this feld. Owing to the heat-
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resistant characteristics and possible benefts of AD in WWTP-scale applications, further 
research regarding thermotolerant microorganisms needs to be performed, especially to 
investigate their potential for biogas production. Therefore, the objectives of this study 
were to investigate the potential of biogas production (especially CH4) and to identify the 
most biogas-producing microorganisms among the cultures after being shifted to several 
temperature levels. 

2. Materials and Methods 
2.1. Inoculum and Substrates 

The inoculum (I) originated from anaerobically digested sludge obtained from a mu-
nicipal sewage treatment plant located in Ube City, Yamaguchi Prefecture, Japan. The 
inoculum characteristics are listed in Table 1. The inoculum samples were then mixed with 
the substrate (S) solution before being placed in an incubator and exposed to gradually 
elevated temperature conditions. The substrate used for biogas production in this re-
search was a glucose-based synthetic wastewater consisting of 1.5 g·L−1 glucose, 2 mg·L−1 

NaHCO3, 2 mg·L−1 K2HPO4, 1 g·L−1 yeast extract, 0.7 g·L−1 (NH4)2HPO4, 0.75 g·L−1 

KCl, 0.85 g·L−1 NH4Cl, 0.42 g·L−1 FeCl3·6H2O, 0.82 g·L−1 MgCl2·6H2O, 0.25 g·L−1 

MgSO4·7H2O, 0.018 g·L−1 CoCl2·6H2O, and 0.15 g·L−1 CaCl2·2H2O. Glucose was chosen 
as the ideal carbon source for microbial metabolic transformations in the fermentation 
process, and is also a readily biodegradable substance abundantly found in municipal 
wastewater [26,27]. To obtain the maximum CH4 potential, the appropriate ratio between 
the microorganisms and substrate must be determined [28]. The CH4 yield, in theory, is 
independent of the inoculum to substrate ratio (I·S−1), and the I·S−1 ratio should infuence 
only the kinetics of CH4 production [29]. 

Table 1. Characteristics of anaerobic sludge as inoculum. 

Parameters Anaerobic Sludge Units 

pH 
Total Solid (TS) 

Volatile Solid (VS) 
Fixed Solid (FS) 

VS/TS ratio 

7.09 
8000 
3000 
5000 
0.37 

pH = −log10[a(H+)] 
mg/L 
mg/L 
mg/L 

-

In contrast, previous studies have demonstrated that the I·S−1 ratio can impact both 
the CH4 yield and production rate, as signifcant evidence suggested that the ratio directly 
infuences the microorganism growth pattern [30–32]. Referring to the German Standard 
VDI4630, the I·S−1 ratio should be adjusted to more than two [33]. Other studies have 
discovered that a higher I·S−1 ratio generates more biogas on a consistent basis during 
the AD process, while a lower I·S−1 ratio produces less biogas due to the lower pH and 
accumulation of volatile fatty acids (VFAs) [34,35]. In this study, the I·S−1 ratio maintained 
at approximately 3.0, which indicates that 1 mL of substrate was added for every 3 mL 
of inoculum. 

2.2. Experimental Procedures 

Laboratory-scale anaerobic digester containers were later defned as vials. A total 
volume of 160 mL was prepared. To ensure obligate anaerobic conditions, the vial was 
flled with pure nitrogen gas to fush the remaining oxygen. Subsequently, the vials were 
capped with butyl rubber stoppers and aluminum caps. Since the laboratory-scale vials 
were used as the reactor in this research, there were some potential risks that may emerge, 
such as lower capacity to contain total biogas production, low sample provision to perform 
several monitoring parameters, and possibility that the sensitivities and instabilities in 
the laboratory scale reactors do not represent that in the full-scale digesters [36]. This 
research was divided into two categories: temperature shifted-up (shift-up) and controlled 
temperature condition. For the shift-up research, in phase 1, batch experiments were 
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performed by adding 110 mL of sludge as inoculum to a vial mixed with 40 mL of substrate. 
The mixture was then incubated at 42 ◦C with shaking at 50 rpm for the frst two weeks. This 
action was intended to enhance the growth of microorganisms and ensure the availability 
of nutrients during acclimatization. 

After the frst two weeks, phase 2 was initiated. Every time gas production declined 
sharply, up to 2 mL of substrate with a chemical oxygen demand (COD) of 2000 mg·L−1 

was injected into the vial. This treatment altered the reactor system from a batch reactor 
to a fed-batch reactor system. The incubation was continued for 70 days of incubation 
period in the fed-batch reactor system. Every 70 days, the temperature was increased by 
3 ◦C for the shift-up research until it reached 45 ◦C and 48 ◦C. Meanwhile, the controlled 
temperature research was carried out at 45 ◦C and 48 ◦C from the beginning of incubation 
without any temperature shifts. This study was intended to compare the biogas production 
and microbial communities among the shifted condition and stabilized condition. During 
the fermentation period, the total gas volume and composition were measured daily using 
gas chromatography. 

A glass syringe was used to measure the volume of the biogas produced. The gas 
composition of the samples, such as H2, N2, CH4, and CO2, was determined using gas 
chromatography (GC-8APT/TCD; Shimadzu Co., Kyoto, Japan) with 60/80 activated 
charcoal mesh column (1.5 m × 3.0 mm internal diameter) and argon gas as the carrier gas. 
During operation, the temperatures of the injector, column, and detector were adjusted to 
50 ◦C, 60 ◦C, and 50 ◦C, respectively. 

2.3. Deoxyribonucleic Acid (DNA) Extraction and Sequencing 

DNA was extracted according to the NucleoSpin® soil manual. Sludge samples were 
prepared using an MN Bead Tube Type A (MACHEREY-NAGEL GmbH & Co., Düren, 
Germany). KG was mixed with lysis buffer SL1 and lysed using Enhancer SX. Contaminants 
were precipitated using lysis buffer SL3, and the lysate was fltered using a NucleoSpin® 

Inhibitor Removal Column. Subsequently, the binding conditions were adjusted using 
Binding Buffer SB. DNA was bound by loading 550 µL sample on the NucleoSpin® Soil 
Column. After the binding phase, the silica membrane was washed with binding buffer SB, 
wash buffer SW1, and SW2. Finally, the DNA was eluted using SE elution buffer. DNA 
samples were then delivered to the Faculty of Medicine, Yamaguchi University, Japan, for 
next-generation sequencing. 

Next generation sequencing (NGS) was performed to acquire a broad range of genes 
or gene regions from phylum to genus using the 16 s ribosomal ribonucleic acid (RNA) 
gene amplicons for the Illumina MiSeq System, wherein DNA or RNA are sequenced 
using hybrid capture or amplicon-based approaches (previously transcribed into comple-
mentary DNA). Using these approaches, the genome (all 3 billion base pairs), all coding 
genes (exome; 1% of the genome or 30 million base pairs—that is 20,000 genes made of 
180,000 exons), all RNA produced from genes (transcriptome), and any subset of these can 
be sequenced [37]. 

2.4. Microbial Diversity Analysis 

Diversity index analysis was conducted to determine possible changes in the microbial 
communities during the anaerobic digestion process. A diversity index is a numerical 
measure of how many distinct types (such as species) are present in a dataset (a community), 
as well as the evolutionary relationships among individuals dispersed throughout those 
types, such as richness, divergence, and evenness [38]. In this study, Simpson’s diversity 
index, Shannon’s diversity index, and Shannon’s equitability index were utilized. 

3. Results 
3.1. Biogas Production under Shifted-Up Temperature 

The fuctuation in daily CH4 production and cumulative CH4 production during the 
frst incubation at 42 ◦C is shown in Figure 1. During the batch anaerobic digestion period, 
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biogas production increased gradually with the cumulative volume of biogas generated 
being up to 316.5 mL on day 14, with cumulative CH4 production being up to 120.76 mL 
CH4. The CH4 content in the biogas increased rapidly in the frst 8 days, reaching 69% on 
the 8th day, and 64.7% on average until day 13. Cumulative CH4 production increased 
gradually in the frst 3 days, and then showed a substantial increase on day 7 (66.59 mL 
CH4). On the fnal day of the batch period, the cumulative methane production reached 
120.76 mL CH4 which was equal to 1.43 L·g−1 COD feed. Theoretically, the energy recovery 
(expressed as CH4 production) from digested wastewater sludge through anaerobic process 
was 0.38 L·g−1 COD [39]. From this study, it took approximately four days of anaerobic 
digestion to exceed the theoretical CH4 production with the aforementioned inoculum and 
substrates, with an I·S−1 ratio of 2.75. 

However, on the 14th day, methane production sharply decreased to 0 mL. Declining 
CH4 production indicates a dead phase of methanogenic activity [40]. This drawdown 
in CH4 production may also be linked to a decrease in pH caused by the interaction of 
VFAs with other fragmented precursors during oxidative processes [41]. To maintain 
CH4 production, 2 mL of the substrate was injected into the vial when CH4 production 
started diminishing due to the scarcity of nutrients. As illustrated in Figure 1a, substrate 
injection led to a spike in CH4 production as the activity of methanogenic microorganisms 
increased due to the availability of glucose as a carbon source and other nutrients that 
expedited microbial growth. Consequently, as shown in Figure 1a*, the cumulative volume 
of methane produced increased signifcantly after substrate addition. At the end of the 
incubation period at 42 ◦C, the cumulative CH4 production was observed to increase to 
454.5 mL CH4, with a yield of 4.55 L·g−1 COD feed. 

After incubation for 70 days at 42 ◦C, the incubation temperature was shifted to 45 ◦C 
with the same treatment conditions and hydraulic retention times. Even though the same 
sample was utilized, the cumulative CH4 calculation was restarted from 0 mL CH4. As 
presented in Figure 1b, the daily CH4 production peaked at 17.2 mL CH4 which was 
obtained on day 60 after receiving the 4th feed. From the Figure 1b*, the cumulative CH4 
produced and yield after 70 days of incubation was 152.2 mL CH4 and 1.52 L·g−1 COD 
feed, respectively. This was less than the volume of CH4 produced during incubation 
at 42 ◦C by a factor of three. There was also a signifcant difference in CH4 production 
behavior after the temperature was increased to 45 ◦C, e.g., a shorter period required to 
shift from peak days to trough days, which denotes faster methanogenesis and death phase 
for methanogenic bacteria. This shorter methanogenesis phase can be attributed to the 
higher concentration of CO2 produced during the incubation period. 

As shown in Figure 1c, CH4 production decreased further when the temperature was 
increased to 48 ◦C. After 70 days of incubation, only 86.57 mL of CH4 was produced, with a 
CH4 yield of 0.94 L·g−1 COD feed. The CH4 production trend after the 3rd feed at shifted-
up 45 ◦C is a good illustration of the potential inhibition of methanogenic bacterial activity 
by the presence of high CO2 levels (Figure 2). The high CO2 levels indicated the occurrence 
of acetoclastic methanogenesis in the AD process, which later led to the abundant presence 
of VFAs, particularly acetic acid [42]. The decrease in CH4 was also parallel to the decrease 
in overall biogas production consisting of H2, N2, CH4 and CO2, which is illustrated in 
Figure 3a. The total biogas production decreased from 1161.93 mL (11.61 L·g−1 COD feed) 
at 42 ◦C to 672 mL (6.7 L·g−1 COD feed) and then to 505 mL (5.49 L·g−1 COD feed) after the 
temperature was shifted to 45 ◦C and 48 ◦C, respectively. The decreasing CH4 production 
volume after being shifted-up to the higher temperature at 45 ◦C and 48 ◦C was followed 
by the decline in CH4 content in biogas compositions as seen in Figure 3b–d. 

At the end of incubation period, the concentration of COD, total suspended solids 
(TSS), volatile suspended solids (VSS), and pH were measured for each temperature condi-
tion. As seen in Table 2, the concentration of COD was increasing up to 3-fold, in contrast 
to TSS and VSS that signifcantly decreased every temperature shift. This fnding indicates 
that the number of microbial communities (represented by VSS) declined every upshifted 
thermal condition and subsequently causing a depletion on microbial activity, which even-
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tually resulted in the lower organic matter consumed by microorganisms in the reactor. 
The pH is another parameter that affects digestion process. The pH increased substantially 
from 7.64 at 42 ◦C to 8.20 and 8.33 when the temperature was shifted-up to 45 ◦C and 48 ◦C, 
respectively. Subsequently, the biogas production decreased along with the rising pH. This 
fnding supports a research study from Kouzi et al. [43] who discovered that the optimum 
pH range for sewage sludge AD was 7.0, while the biogas production was considerably 
lower in the reactors with higher pH of 8.0, 9.0, and 10.0. 
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led to a spike in CH4 production as the activity of methanogenic microorganisms in-

creased due to the availability of glucose as a carbon source and other nutrients that ex-

pedited microbial growth. Consequently, as shown in Figure 1a*, the cumulative volume 

of methane produced increased significantly after substrate addition. At the end of the 

incubation period at 42 °C, the cumulative CH4 production was observed to increase to 

454.5 mL CH4, with a yield of 4.55 L·g−1 COD feed. 

After incubation for 70 days at 42 °C, the incubation temperature was shifted to 45 
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feed, respectively. This was less than the volume of CH4 produced during incubation at 

42 °C by a factor of three. There was also a significant difference in CH4 production be-

havior after the temperature was increased to 45 °C, e.g., a shorter period required to shift 

from peak days to trough days, which denotes faster methanogenesis and death phase for 

methanogenic bacteria. This shorter methanogenesis phase can be attributed to the higher 

concentration of CO2 produced during the incubation period. 

As shown in Figure 1c, CH4 production decreased further when the temperature was 

increased to 48 °C. After 70 days of incubation, only 86.57 mL of CH4 was produced, with 

a CH4 yield of 0.94 L·g−1 COD feed. The CH4 production trend after the 3rd feed at shifted-

up 45 °C is a good illustration of the potential inhibition of methanogenic bacterial activity 

by the presence of high CO2 levels (Figure 2). The high CO2 levels indicated the occurrence 

of acetoclastic methanogenesis in the AD process, which later led to the abundant pres-

ence of VFAs, particularly acetic acid [42]. The decrease in CH4 was also parallel to the 

decrease in overall biogas production consisting of H2, N2, CH4 and CO2, which is illus-

trated in Figure 3a. The total biogas production decreased from 1161.93 mL (11.61 L·g−1 

COD feed) at 42 °C to 672 mL (6.7 L·g−1 COD feed) and then to 505 mL (5.49 L·g−1 COD 

feed) after the temperature was shifted to 45 °C and 48 °C, respectively. The decreasing 

CH4 production volume after being shifted-up to the higher temperature at 45 °C and 48 

Figure 1. Daily (without *) and cumulative (with *) methane production of anaerobic sludge at 
(a,a*) 42 ◦C, (b,b*) shifted-up to 45 ◦C, and (c,c*) shifted-up to 48 ◦C. 
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Table 2. Effuent quality in each temperature condition after incubation period. 

Temperature 
(◦C) pH 

Total Suspended 
Solids (TSS) 
in mg·L−1 

Volatile Suspended 
Solids (VSS) 

in mg·L−1 
VSS.TSS−1 

Chemical Oxygen 
Demand (COD) 

in mg·L−1 

42 ◦C 7.64 7300 4675 0.64 498.72 
45 ◦C 8.20 6860 4105 0.60 1911.76 
48 ◦C 8.33 6880 3465 0.50 3690.52 
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3.2. Alpha Diversity Analysis 

To study the changes in microbial diversity at the upshift temperature, samples from 
the reactor were used for DNA isolation for bioinformatic analysis using NGS. For compar-
ison, several samples from other fed-batch reactors with controlled temperatures of 42 ◦C, 
45 ◦C, and 48 ◦C were examined for their microbial diversity. This action was intended to 
elucidate the differences among microbial communities and compositions that matured 
under controlled and shifted-up temperatures. The Shannon diversity index (SDI) and 
Simpson index were used to measure and compare the richness of the microbiota at a cer-
tain temperature, while the Shannon equitability index (SEI) was assigned to approximate 
the evenness of the microbiota diversity. 

As illustrated by Figure 4a,b, the index value for both richness and evenness of the 
microbiota communities spread within the range 3.2–3.7 and 0.46–0.54, respectively. The 
Simpson index, as seen in Figure 4c, ranged from 0.89 to 0.96, indicating high diversity for all 
sample conditions. The deviation of the diversity index between the shifted-up temperature 
conditions and controlled temperature conditions was not signifcantly discerned, which 
signifes that each reactor has a close similarity of microbiota abundance and species to 
each other. However, compared to the controlled temperature conditions, the shifted-up 
temperature conditions showed a signifcant drop in microbiota diversity, with an increase 
in temperature. The diversity index value declined from 3.72 at 42 ◦C to 3.22 at 48 ◦C. 
This indicated that several bacteria communities were vanished during the temperature 
shift. This was also confrmed by the decrease in the equitability index value; however, 
since the equitability values were greater than 0.1, some microorganism colonies managed 
to acclimatize to this chaotic condition and experienced massive growth while the other 
colonies became extinct. The effects of temperature on diversity were confrmed using 
analysis of variance (ANOVA), with signifcance of p < 0.05. The probability value (p-value) 
for all diversity indices (SDI, SEI, and Simpson index) was p < 0.001, which signifed that 
there were statistically signifcant differences in relative abundances and diversity indices 
between several temperature conditions. 
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3.3. Microbial Community Structure 

Overall, the number of methanogens decreased sharply when the temperature was 
shifted from 42 ◦C to 45 ◦C, as shown in Figure 5. Methanosaeta was the most dominant 
methanogenic archaea that existed during incubation at 42 ◦C, shifted up to 45 ◦C, subse-
quently shifted up to 48 ◦C, and also abundant during incubation atcontrolled temperatures 
of 45 ◦C and 48 ◦C. This result implied that Methanosaeta is a thermotolerant methanogen. 
The relative abundances of methanogens at the order level at various temperatures are 
shown in Figure 6a. The composition of methanogens in both shifted-up temperature 
and controlled temperature conditions was dominated by the orders Methanobacteriales, 
Methanomicrobiales, and Methanosarcinales. Among the three methanogens, Methanosarcinales 
was the most abundant (86.89% at 42 ◦C, 88.84% at shifted-up 45 ◦C, 59.14% at shifted-up 
48 ◦C, 85.56% at controlled 45 ◦C, and 78.54% at controlled 48 ◦C). 

At the family level, as illustrated in Figure 6b, the methanogen communities were 
composed of Methanosaetaceae, Methanomicrobiaceae, Methanoregulaceae, Methanobacteriaceae, 
Methanosarcinaceae, and Methanospirillaceae. The Methanosaetaceae family was abundant, with 
relative abundances of 85.01% at 42 ◦C, 88.05% at shifted-up 45 ◦C, 56.52% at shifted-up 
48 ◦C, 84.76% at controlled 45 ◦C, and 51.14% at controlled 48 ◦C. In this study, Methanosaeta 
was the only descendant of the Methanosaetaceae family. At the genus level, Methanoculleus, 
Methanolinea, Methanobacterium, Methanobrevibacter, Methanosarcina, Methanothermobacter, 
Methanofollis, Methanosalsum, Methanogenium, and Methanolobus were detected at all temper-
atures (Figure 6c). However, during the incubation at a controlled temperature of 48 ◦C, the 
dominance of Methanosaeta was lower than under shifted-up temperature (84% of the total 
methanogens at shifted-up 48 ◦C and 51% at controlled 48 ◦C) while Methanosarcina genes 
were detected up to 27% of the total methanogens. These fndings confrmed the results of 
Figeac et al. [44] who discovered that the family Methanosarcinaceae was the most abundant 
acetotrophic archaea in the initial thermophilic inoculum, whereas the Methanosaetaceae 
family was mostly found in the initial mesophilic inoculum. Therefore, the population of 
Methanosaeta with an initial temperature of 48 ◦C was considerably lower than that in the 
upshift condition that was initially acclimatized under mesophilic conditions (at 42 ◦C). 
Apart from acetotrophic methanogens, hydrogenotrophic methanogens, such as members 
of genera Methanobacterium, Methanobrevibacter, and Methanothermobacter, started to grow 
signifcantly after the reactor temperature was shifted up to 48 ◦C. Hydrogenotrophic 
methanogens favor thermophilic conditions, whereas acetotrophic methanogens cannot 
resist high temperatures [45]. 
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Figure 5. Methanogens total number of genes hit by NGS during anaerobic digestion process in 
several temperature conditions. Note: (*) signs the shifted-up temperature. 
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Figure 6. Methanogens distribution in shifted-up temperature (*) and controlled temperature: 
(a) order level; (b) family level; and (c) genus level. 

Methanobacterium communities grew from 2.5% to 7.4% of the total methanogen popula-
tion, and Methanobrevibacter population ranged from 0.76% to 1.64% at a shifted-up tempera-
ture of 42–48 ◦C. This fnding contradicts previous research reporting that Methanobacterium 
genera were mostly found at lower mesophilic temperature (24–35% at 35 ◦C and 32–45% at 
37 ◦C) and eradicated with increasing the temperature to 55 ◦C [44,46]. Methanobrevibacter 
genera were also found to be the dominant methanogens at 24 ◦C and 35 ◦C and vanished 
at 55 ◦C [44]. However, the researchers did not examine the existence of Methanobrevibacter 
genera at higher mesophilic temperatures (42–48 ◦C). Judging from the results of previous 
studies that showed Methanobacterium and Methanobrevibacter were abundant in the lower 
mesophilic conditions, our research reported a signifcant spike in the population of those 
methanogens after shifting up temperatures to higher mesophilic conditions, signifying 
that Methanobacterium and Methanobrevibacter genera potentially have heat-resistant charac-
teristics that allow them to compromise the staggering increase in temperature conditions. 
Lastly, Methanothermobacter population increased from 0.17% to 0.24% relative abundance at 
42–48 ◦C. This is not surprising as Methanothermobacter genera is a thermophilic methanogen 
that dominated methanogenesis at temperatures of 50 ◦C and higher [47–50]. 

The distribution of non-methanogenic bacteria is also an important factor for deter-
mining the infuence of several bacteria on CH4 production. As seen in Figure 7a, Clostridia 
and Synergistia were the most abundant bacteria at the order level, with respective relative 
abundances of 31.11% and 18.50% at 42 ◦C, 42.98% and 20.88% at shifted-up 45 ◦C, 24.38% 
and 34.83% at shifted-up 48 ◦C, 23.43% and 30.49% at 45 ◦C, and 27.88% and 28.17% at 48 ◦C. 
Clostridia was found to be dominant at both mesophilic (this research) and thermophilic 
temperatures (at 52 ◦C) [51], indicating that the Clostridia order belongs to thermotolerant 
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bacteria. According to the experimental results, Synergistia were found at higher mesophilic 
temperatures, but in some cases, were also found abundantly at low temperatures of 
20 ◦C [52]. This suggested that Synergistia was resistant to both low-and high-temperature 
environments, leading to the conclusion that temperature had a responsive connection with 
the microbial community structure. At the family level, Anaerobaculaceae, Clostridiaceae, and 
Thermoanaerobacterceae dominated the microbial communities, as shown in Figure 7b. At the 
genus level (see Figure 7c), Anaerobaculum, Fervidobacterium, Tepidanaerobacter, Clostridium, 
Moorella, Aminiphilus, Carboxydocella, and Methanosaeta are some microorganism genera that 
exhibited noteworthy growth during the temperature shift. Anaerobaculum and Tepidanaer-
obacter from the Thermoanaerobacterales family are syntrophic bacteria that have an essential 
role in converting short-chain fatty acids to methanogenic components such as acetate, H2, 
and formate [53]. Moorella has been identifed as an acidogenic bacterium [54], whereas 
Clostridium is a hydrogen-producing bacterium that plays a key role in the hydrolysis 
process [46]. 
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Compared to the other types of microorganisms, methanogenic archaea were shown 
to have the least portion of the population among the microbial communities. The decrease 
in the methanogen population accelerated faster in shifted-up temperature conditions than 
in controlled temperature conditions. However, the number of methanogen populations 
is unlikely to affect CH4 production. The cumulative CH4 production decreased along 
with the decline in the methanogen:total population (M·TP−1) ratio during the shifted-up 
temperature period. This result contradicts the outcome of the controlled temperature, in 
which the cumulative CH4 production increased conspicuously despite the fuctuation in 



Int. J. Environ. Res. Public Health 2022, 19, 5728 12 of 18 

the M·TP−1 ratio (Figure 8a). To date, no particular ratio has been found to be effective in 
understanding the infuence of the microbial ratio (the existence of a particular microorgan-
ism) on biogas production. The closest ratio was that of sulphate-reducing bacteria (SRB) to 
methanogens (SRB·M−1). Previous research has stated that the existence of SRBs in the AD 
process may inhibit CH4 production as it would compete with methanogens for convenient 
H2, acetate, propionate, and butyrate [55]. From the shifted-up temperature experiment, 
the SRB·M−1 ratio showed harmony with the statement of previous research. The higher 
the SRB·M−1 ratio, the lower the CH4 production as the SRB emulated the methanogens in 
consuming available H2 (Figure 8b). 
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Figure 8. Comparison between cumulative CH4 production and M·TP−1 ratio (a) and sulphate-
reducing bacteria (SRB) to methanogen ratio (b). Note: (*) signs the shifted-up temperature. 

Nevertheless, the results from the controlled temperature experiments showed that 
the SRB·M−1 ratio was also ineffective in determining the relationship between the ratio 
and CH4 production. At controlled 48 ◦C, the maximum CH4 volume production was 
observed despite the low M·TP−1 ratio and high SRB·M−1 ratio. Under these conditions, 
the populations of Methanosarcina and Methanoculleus genera were the most abundant. 
Methanosarcina genera are known to be the major contributors to CH4 production [56] 
and manage to perform all methanogenesis pathways (hydrogenotrophic, acetoclastic, 
and methylotrophic) that help them survive in food competition [57]. In contrast to other 
methanogens, Methanosarcina was capable of growing signifcantly under high concentra-
tions of VFAs and ammonia, which are the foremost inhibitors in biogas production [58]. 
Methanoculleus, in contrast, has been reported to increase in abundance along with elevated 
sulfate concentration [59]. Thus, both Methanosarcina and Methanoculleus acclimatized well 
and were attributed to high CH4 production under high inhibitor concentrations. 

These fndings may explain the phenomenon of increasing CH4 production at a 
controlled temperature of 48 ◦C. The infuence of Methanosarcina and Methanoculleus on CH4 
production was demonstrated by considering the decreasing volume of CH4 production 
parallel to the decrease in Methanosarcina and Methanoculleus abundance during shifts in 
temperature. Methanosarcina abundances decreased from 2% to 0.75% and 0.59%, parallel 
to the Methanoculleus population that declined from 6.52% to 4.96% and 3.81% during the 
incubation at temperature of 42 ◦C, shifted up to 45 ◦C, and shifted up to 48 ◦C, respectively. 

4. Discussion 

In AD processes, temperature has a signifcant infuence on biogas production and 
microbial ecology [60,61]. There has been a number of research that examined the effects of 
temperature in mesophilic and thermophilic conditions [18,62,63]. However, to the best 
of our knowledge, the assessment of biogas production (especially CH4) and microbial 
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community adaptation under multiple rising temperature conditions in a fed-batch reactor 
has not been widely studied. We expected instability in microbial communities (especially 
methanogens) and decreased CH4 production, along with the temperature shift process ow-
ing to perturbations caused by sudden temperature changes. Among the three temperature 
conditions, there was a noticeable decrease in CH4 production when the temperature was 
increased. The cumulative CH4 production decreased from 454 mL at 42 ◦C to 152 mL after 
increasing the temperature to 45 ◦C and to 86.57 mL after increasing the temperature to 
48 ◦C. This result is consistent with previous fndings for the shifted-up temperature [51,64]. 
Each temperature shift was conducted after 70-day incubation periods in order to allow 
a period of acclimatization for methanogens and other bacteria. The total methanogen 
abundance in shifted-up 45 ◦C and 48 ◦C were close to that in controlled 45 ◦C and 48 ◦C 
after 70 days operation. Previous studies showed potential steadier operation condition in 
term of CH4 production after acclimatization for 100–140 days, yet the risks of instability 
still exists [51,65]. 

Beale et al. [64] investigated the effect of upshift temperature shock from 37 ◦C to 42 ◦C 
on the biogas production volume of anaerobically digested sludge. Similarly, the biogas 
generated after the temperature was increased to 42 ◦C was persistently lower than that 
from the controlled digester at 37 ◦C during the frst 32 days of operation. Identical results 
were also reported by Ziembinska-Buczynska et al. [66] who found a signifcant decrease 
in the biogas production rate from 70.5 L·day−1 to 28.6 L·day−1 along with an increase in 
temperature from 38 ◦C to 55 ◦C. Researchers also discovered that there was a decrease 
in microbiota diversity as the temperature of the digester infuenced the evolution from 
mesophilic to thermophilic conditions. Some methanogens cannot survive at higher tem-
peratures (heat unresistant), e.g., Methanobrevibacter (37–39 ◦C), Methanogenium (20–25 ◦C), 
or Methanobacterium (37–45 ◦C) [67]. However, our research contradicts the fndings of 
Bouskova et al. [68] who discovered higher CH4 production after the temperature was 
shifted from 42 ◦C to 47 ◦C, 51 ◦C, and 55 ◦C. A possible reason for the observed discrep-
ancies was the characteristics and ratio of the inoculum and substrates. The researchers 
used an inoculum with TS of 31.24 g·L−1 and vs. of 14.48 g·L−1. Meanwhile in our study, 
the inoculum consisted of 8 g·L−1 TS and 3 g·L−1 VS. Previous researchers also utilized a 
mixture of primary sludge and waste activated sludge as substrates which also contained 
seeds of microorganisms that maintained the longevity of biogas production. 

We also found that the presence of excessive CO2 in the reactor may have led to 
lower methane production. Methanogenic bacteria require CO2 and H2 to produce CH4, 
which indicates that if the CO2 volume was greater than CH4 after substrate feeding, 
this signifes the failure of these bacteria to consume suffcient quantities of CO2 and H2, 
which consequently would lead to the accumulation of VFAs, lower CH4 yield, and low 
pH [69,70]. Low pH is a serious concern as it inhibits methanogenic bacteria due to the 
increase in the concentration of free acid molecules, which is harmful for microorganisms 
and impacts enzymatic activity [71]. It has been suggested that microbiota composition 
and methanogenic pathways are altered when encountering an immediate low pH and 
high acetate crisis (pH 5.5–6.5, completely hindered at pH 5.0) [72]. 

Temperature shifts also affected the microbial communities in the reactor, especially 
the methanogens. The number of methanogens decreased signifcantly after the temper-
ature was shifted from 42 ◦C to 45 ◦C and then stabilized at 48 ◦C, as shown in Figure 4. 
This instability supported the study by Westerholm et al. [51] who found that immense 
perturbation occurred in the interval of 40–44 ◦C, signifying that the 40–44 ◦C temperature 
range had a signifcant impact on both mesophilic and thermophilic microbial populations. 
The only conceivable interpretation for this phenomenon is that the temperature range 
may be greater than the upper threshold for the growth of mesophiles but not suffciently 
high for the growth of thermophiles [73]. Because our reactor was initially developed 
using mesophilic anaerobic sludge, this potentially limits the abundance of thermophilic 
microorganisms. Tian et al. [74] omitted the 40–44 ◦C area and still found a transitory 
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decrease in total methanogen concentration after the temperature was shifted (37–55 ◦C), 
but then recovered quickly on day 11. 

Among all the methanogens, Methanosaeta (Methanosaetaceae family) was the most 
abundant under all temperature conditions in this study. This fnding contradicts the fnd-
ings of Kim et al. [75] who reported that the Methanosaetaceae family started to dominate 
the microbial structure only at temperatures above 45 ◦C. A plausible explanation for this 
difference is that the researchers started cultivation at 35 ◦C, which was more favorable to 
the growth of Methanomicrobiales order than Methanosarcinales (the ancestor of Methanosae-
taceae). The instability of methanogen populations in anaerobic digestion also led to an 
increase in some types of bacteria that contributed to H2 and VFAs consumption, such as 
SRBs. As illustrated in Figure 7b, our research shows that the increasing SRB/methanogen 
ratio has a considerable infuence on the decrease in CH4 production under the shifted-up 
temperature conditions. This result supports the idea from previous studies that reported 
that sulfde generation by SRBs inhibits methanogenesis, with the latter being the leading 
rival of methanogens for electron donors and substrates [65,76]. In addition, Beale et al. [64] 
emphasized that even a small amount of SRBs was enough to inhibit biogas production, as 
methanogens were vulnerable to the toxicity caused by metabolic products of SRBs. 

Although this study characterized the behavior of some microorganisms and their 
infuence on CH4 production during the shifted-up temperature, there are still several 
unidentifed factors that can potentially affect the outcome of the AD process. Further stud-
ies are needed to determine and characterize the mechanism by which shifted temperature 
may affect the abundance of microorganisms, especially methanogenesis-related microbiota 
(e.g., methanogens, SRB, methanotrophs, hydrogenotrophs, acetotrophs, nitrogen-fxing 
bacteria, and sulfate-oxidizing bacteria) and the infuence on CH4 production. Other micro-
bial communities with syntrophic and fermentative behaviors, as well as their metabolic 
networks, merit study. Minimizing the number of unknown microorganisms may also 
provide a clearer insight into the relationship between the abundance of microorganisms 
and CH4 production, as in this study, we detected a large number of unknown bacteria. 

5. Conclusions 

Treating wastewater sludge using anaerobic digestion does not eliminate the risk 
of temperature instability. Consequently, the effects of shifting the temperature during 
anaerobic digestion of anaerobic sludge were investigated in this study. The results showed 
a considerable reduction in the CH4 cumulative gas production, from 454 mL (4.55 L·g−1 

COD) to 152 mL (1.52 L·g−1 COD) then to 86.57 mL (0.94 L·g−1 COD) when the temperature 
of the reactor was increased from 42 ◦C to 45 ◦C and subsequently to 48 ◦C, respectively. 
Several factors have been attributed to the decrease in CH4 production under the shifted-up 
temperature, such as the decreasing methanogen population (expressed as the M·TP−1 

ratio) due to intense food competition, increasing SRB populations over methanogens, 
and low abundance of major CH4 producers (e.g., Methanosarcina and Methanoculleus). 
Methanosaeta was the most dominant methanogen in this study, while Anaerobaculum and 
Tepidanaerobacter were the most abundant syntrophic bacteria, and Clostridium which are 
known as hydrogen-producing bacteria. Overall, the diversity of the anaerobic microbial 
consortium observed in this study altered slightly during the shift in the thermal condi-
tions. This indicated that the majority of the communities belonged to thermotolerant 
microorganisms. 
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