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1. Introduction

Nowadays, more and more large scale cloud data centers (CDC) 
are coming into service while lots of small and middle scale CDCs 
are expanding all over the world. In Amazon EC2, for instance, 
a myriad number of new physical resources, which can support 
hundreds of thousands of virtual machines (VMs), are integrated 
into the CDCs in each month [1], By server consolidation, cloud 
computing can manage these physical IT resources in high ef- 
ficiency, which makes them turning into the fundamental ser- 
vices of the Internet applications. In server consolidation, the CDC 
packs a number of VMs on a fewer number of physical machines 
(PM), and thus adjusts the usage of physical resources, with the

goal to achieve the elasticity and autoscaling of the cloud, and 
to reduce the potential energy consumption [2,3]. VM migration 
is indispensable for this process. Current CDCs are usually with 
sophisticated network [4], which makes the smooth transmission 
of VMs a hard task in VM migration.

We are facing many challenges in optimizing the VM migration. 
There are four main problems in the VM migration [5,6]: (1) to 
determine which PMs are overloaded (overloading PM detection);
(2) to determine which PMs are underloaded (underloading PM 
detection); (3) which VMs should be selected from the overloaded 
PMs to be migrated (migrating VM selection), and (4) VM place
ment. For an underloaded PM, all VMs on it should be migrated 
away, and then it is switched into the energy-save model. If a PM is 
not in the underloaded or overloaded state, it is in normal state and 
none of its VMs should be migrated. In the following of this paper, 
we call the normal and underloaded state as non-overloaded state. 
Generally, VM selection problem and VM placement problem are



Fig. 1. An example of memory sharing-aware VM migrations.

solved in a sequence. The CDC firstly selects which VMs should be 
migrated, and then to select the PMs that meet given optimization 
objectives to house these VMs. Regarding the energy consumption 
and Service Level Agreement (SLA) violations, the experiment re- 
sults [6] show that migrating the VMs which have the minimum 
amount of memory data outperforms other VM selection policies. 
This finding indicates that the reduction of the transferred VM 
memory data in the VM migration can help saving the energy 
consumption of the CDC to some extent. Although various kinds of 
VM memory migration technologies, such as pre-copy [7] and post- 
copy [8], have been proposed to shorten the service downtime of 
the live VM migration, the total amount of transferred memory 
data are still hard to be reduced. At this time, if the network 
is in heavy traffic, the transmission performance of the live VM 
migration will become worse [9].

There exists a high memory content similarity among multiple 
VMs [10-13], Such similarity was exploited to reduce the physical 
memory used by running VMs a decade ago [14,15]. Recently, 
several technologies and prototypes [12,16-18] , which also use 
this feature of VMs, have been proposed to decrease the amount 
of transferred memory data during the VM migration. In Memory 
Buddies [12], for example, when a batch of VMs are migrated to 
a PM at the same time, the memory pages, which have the same 
content, can be transferred only once. We use following instance 
to illustrate the mechanism. There are three VMs, VM1, VM2 and 
VM3, running on PM1, PM2 and PM3, respectively, as shown in 
Fig. 1. The memory pages contained in VM1 are {A,B,B}, the mem- 
ory pages that contained in VM2 are {B,C,D}, and the memory pages 
that contained in VM3 are {C,D,D}. Now the VM 1 and VM2 are being 
migrated to PM3. Firstly VM1 is migrated. After memory pages A 
and B are delivered, the second memory page B does not need to 
be transferred because B is already on PM3. Then VM2 is migrated 
and the CDC does not need to transfer any memory page because 
all memory pages of VM2 can be fetched from VM1 and VM3. After 
two VMs have been migrated, merely two memory pages {A,B} are 
transferred to PM3. By taking this kind of methods, the transferring 
of a large mount of VM memory pages is avoided. Therefore the 
migration time, the pressure of network usage and the Service 
Level Agreement violations (SLAV) are reduced.

In this paper, we solve the VM selection problem and the VM 
placement problem at the same time by leveraging the similarity 
among the memories of the VMs. The main contributions of this 
paper are following:

(A) VM selection problem and VM placement problem are rede- 
fined as a content-based VM selection and placement problem to 
minimize the total amount of transferred VM memory pages, and 
its NP-hardness is proved.

(B) An approximation algorithm is proposed to solve the 
content-based VM selection and placement problem with one 
overloaded PM and one destination PM when the overloaded 
threshold is fixed.

(C) Two heuristic algorithms are proposed to select and place 
VMs from multiple overloaded PMs to multiple destination PMs to 
minimize the total amount of transferred VM memory pages when 
the overloaded thresholds are fixed and dynamic respectively.

(D) A real workload trace-driven simulation is conducted to 
evaluate the performance of the algorithms.

The rest of this paper is organized as follows. Section 2 describes 
the related work. Section 3 solves the content-based VM select
ing and placement problem with fixed overloaded thresholds. 
Section 4 solves the content-based VM selection and placement 
problem with dynamic overloaded thresholds. Section 5 shows our 
simulation results for the effectiveness, and Section 6 concludes 
the paper.

2. Related work

Regarding the above mentioned four problems of the server 
consolidation and the VM migration, prior work mainly focused 
on the VM placement/packing problem [2,3,19]. To solve the VM 
placement/packing problem by using the memory content similar- 
ity of the VMs, many prototypes [12,16,17] and algorithms [18,20- 
22] are proposed. To speed up VM provisioning by using image 
content similarities, Greedy-MVFD [23] is proposed.

Recently, some researchers focused on the VM selection prob- 
lem. Given a fixed PM overload threshold, three VM selection 
policies are given [5], (1) The minimization of migration policy 
(MM): selecting the minimum number of VMs to migrate from a 
host to lower the CPU utilization; (2) The highest potential growth 
policy (HPG): selecting VMs that have the lowest usage of the 
CPU resource to minimize the potential increase of the host’s CPU 
utilization; (3) The random choice policy (RC): randomly selecting 
VMs to migrate until the host’s CPU utilization is below the over- 
loaded threshold. Then, Beloglazov et al. [6] improved the fixed 
PM overload threshold by proposing five dynamic host overloading 
detection algorithms, and they also presented three VM selection 
algorithms based on these dynamic PM overload thresholds. (1) 
The minimum migration time policy (MMT): selecting the VMs 
that have the minimum migration time to migrate, and the mi- 
gration time is estimated as the amount of RAM utilized by the 
VMs divided by the available network bandwidth; (2) The random 
selection policy (RS); (3) The maximum correlation policy (MC): 
selecting the VMs, that have the highest correlations between the 
CPU utilizations of VMs, to migrate, and the method of correlation 
estimation is proposed by Verma et al. [24], After the migrating 
VMs are determined, a modified one-dimension best fit decreasing 
bin packing algorithm, called Power Aware Best Fit Decreasing 
(PABFD), is applied to place these VMs to the PMs.

To solve the VM selection problem, a minimum utilization pol- 
icy (MU), which selects the VM with the minimum CPU utilization 
to migrate in each process of the iteration, and an improved MC 
policy had been proposed [25] . A maximum utilization policy 
(MaxU) [26], which chooses the VM with the maximum CPU uti- 
lization to migrate, is proposed.

MP [27] can reduce the energy consumption and the SLA vio- 
lations. The VMs on an overload PM are sorted in the descending 
order by the utilization of the CPU as vmList. If the CPU utilization of 
the first VM in vmList is no smaller than the difference between the 
host’s current CPU utilization and the overload threshold, the VM 
is selected to be migrated and the host’s current CPU utilization 
is updated. This selection is repeated until the host is no longer 
overloaded. After this, a minimum correlation coefficient policy 
(MMC) [27] is proposed to place these VMs to the PMs. A VM that 
has the minimum correlation to other VMs is selected and placed 
on a given PM. The estimation of correlation coefficient is similar 
to the method used in MC policy.

MRB policy [28] is a PM overload detection algorithm. It chooses 
the VM that has the maximum requested bandwidth to migrate it.



To reduce the energy consumption, Shidik et al. [29] proposed a 
VM selection policy by leveraging the Markov Normal algorithm.

The above mentioned works, which select the VMs to be mi
grated, are mainly based on the CPU utilization. Beloglazov at a/. [6] 
have already found out that the selection of migrating VMs should 
be based on the size of memory of VMs. MMT [6] outperforms other 
VM selection polices because it spends the smallest time to transfer 
the memory of VMs. By exploiting the content similarity, the time 
of memory transmission can be further reduced. Moreover, we 
solve the VM selection and VM placement problem at same time in 
this paper rather than consider them as two separated problems.

3. Content-based VM selecting and placement problem with 
fixed thresholds

To minimize the amount of transferred memory data, our re
search is based on Memory Buddies [12], a memory sharing-aware 
placement system for virtual machine. It leverages the content 
similarity of the VMs, by sharing the same pages or sub-pages, 
to migrate a batch of VMs at the same time. To estimate the 
page sharing potential between VMs, we use the content similarity 
checking method presented in [12], and the time complexity of 
such operation is 0(1) [12].

There are a set PMO of m overloaded PMs, pmo1, pmo2,..., 
prnom and a set PMN of s non-overloaded PMs, pmn1, pmn2,..., 
pmns, which are the candidate hosts of the VM migration. All 
PMs set PM in the CDC consists of PMO and PMN. For any PM 
pm ϵ PM, there are currently npm VMs running on it, and they 
are Vpm = {vm1, vm2,, vmnpm }. The VMs on all overloaded 
PMs are denoted as a set V. The CPU overloaded threshold of a 
pm ϵ PM is Tpm. vmi,pm, pm g PM and i ϵ [1, npm], is denoted 
as a running VM in the CDC. Its memory pages are denoted as a set 
p(vmi,pm), and the capacity of requested CPU resource is denoted 
as c(vm,iPm). Let Kpm = 52^c(umijPm), and apparently Kpm > Tpm. 
The set of VM memory pages of any non-overloaded PM pmnl, 
l ϵ[1, s], are denoted as p1. The used amount of CPU resource is 
Cpm. The available capacity of CPU in idle state is CApm. xl refers to 
that whether a pmnl is used to house the migrated VMs. After VM 
migration, if a pmnl is used to house any migrated VM, xl = 1; 
otherwise xl = 0.

Definition 3.1 (Content-based VM Selecting and Placement (CVSP) 
Problem with Fixed Thresholds). Find s subsets Vm1|, ..., Vml, ..., 
Vms of V to be migrated and placed on s non-overloaded PMs such 
that after the migration:

(1) ELilXi' U„mevm,P(l 2 3 4’m)\Pil is minimized;
(2) VM_migratei = 0 if = 0; Vmtj Cl Vmt2 = 0, for any U / t2 

and t1, t2 ϵ [1, s];
(3) Ewrlgy,„„c(vm) < Tpm for Vpm g PMO;
(4) C, + EvmeVm,c(vm) ≤ for V/ ϵ [1, s] and Vpm g PMN.

Condition (1) is the objective of CVSP problem. Condition (2) 
guarantees that a VM can only be migrated to one PM. Conditions
(3) and (4) guarantees that all the CPU utilizations of all PMs cannot 
exceed their overloaded thresholds after the VM migrations.

Particularly, following simple case of CVSP problem is called 
l to l CVSP problem: there are only one overloaded PM (m = 1) 
and one non-overloaded PM (s = 1). At this time, p1 is the set of 
VM memory pages on pmn1.

Theorem 3.1. The CVSP problem is NP-hard.

Proof. Firstly, it can be assumed that every VM in V uses 1 unit 
of CPU resource, that is for Vi ϵ [1, npm] and pm ϵ PM there is 
c(vmi,pm) = 1. For a pmoj, there are at least KpmOj — Tpmoj + 1 VMs 
needed to be migrated, and hence there are at least Ejl/^pmo,- —

Fig. 2. An example of reduction from SpES problem to CVSP problem (k = 2).

TpmOj. + 1) VMs in Vm. Now l to l CVSP problem can be considered: 
find a subset Vm, which has at least Kpmol — Tpmol + 1 VMs, of 
V such that ||J1JmeV,mp(vm) \ p1 | is minimized. Let VMs be the 
hyperedges of a hypergraph and the memory pages be the vertices, 
then the special case of CVSP problem can be reduced from the 
following problem: given a hypergraph and a positive integer 
Kpmo1 — Tpmo1 + 1, find a subset of vertices with minimum size 
such that the number of inducing hyperedges is at least Kpmo1 — 
Tpmo1 + 1. Now let us consider the Smallest p—Edge Subgraph 
(SpES) problem [30]. Given an undirected graph G = (V, E) and 
an integer p, the goal of SpES problem is to find a subset V' C V 
of minimum size so that the subgraph induced by V' has at least 
p edges. The undirected graph G is also a 2-uniform hypergraph 
(every edge of the 2-uniform hypergraph connects 2 vertices). We 
can create an instance (G = (V, E), k) of CVSP problem in which 
every VM has two memory pages. Actually, the number of memory 
pages of a VM is far larger than two. Apparently, SpES problem is a 
special case of CVSP problem. An example is shown in Fig. 2. A 2- 
uniform hypergraph G has four vertices a, b, c and d and three edges 
A = {a, b}, B = {b, c} and C = {c, d}. The three edges correspond 
to three VMs: A, B and C. The vertices that contained in certain edge 
are the memory pages of corresponding VMs. Since SpES problem 
is NP-hard [30], CVSP problem is also NP-hard.

It should be noted that 1 unit of CPU resource is merely used 
to proof Theorem 3.1. Furthermore, although SpES problem can be 
leveraged to proof the theorem, we barely meet this kind of VMs 
in real cases.

In the following, we first investigate l to l CVSP problem, and 
then study CVSP problem with multiple source PMs and multiple 
destination PMs (MtoM CVSP problem).

3.1. ltol CVSP problem with fixed threshold

To solve CVSP problem, we first consider ltol CVSP problem. In 
the proof of Theorem 3.1, it is clarified that ltol CVSP problem is 
NP-hard.

Theorem 3.2. ltol CVSP problem with fixed threshold cannot be 
approximated in polynomial time.

Proof. Considering a scenario of ltol CVSP problem and convert- 
ing each VM’s CPU utilization into a positive integer. There are n 
VMs running on the overloaded PM whose used CPU resource is 
K. The used CPU resource of the non-overloaded PM is K — 2t. The



threshold is K — t. In this case, certain VMs should be selected from 
the n VMs such that the memory pages of them is minimum and the 
sum of CPU utilizations of them is t. Then this problem is equivalent 
to the subset sum problem: given a set S of n positive integers and 
a target integer t, to decide if there is a subset of S that sums up 
to t [31]. Since the subset sum problem is NP-hard [31], we cannot 
in polynomial time to found certain VMs to be migrated such that 
their CPU utilization is f. Hence, ltol CVSP problem cannot be 
approximated in polynomial time.

According to Theorem 3.2, it is obvious that CVSP problem also 
cannot be approximated in polynomial time. Here we assume that 
the non-overloaded PM have sufficient resource to accommodate 
the VMs needed to be migrated from the overloaded PM for ltol 
CVSP problem. This kind of ltol CVSP problem is denoted as 
ltol CVSP* problem. In the following, we present an algorithm, as 
shown in Algorithm 1, to solve ltol CVSP* problem.

Algorithm 1 An algorithm for ltol CVSP* problem with the fixed thresh- 
old____________________________________________________________
Input: All parameters presented in the first paragraph of Section 3, 

where m = 1 and s = 1, let K = Kpmo1 and T = Tpmo1.
Output: a subset Vm of V.
Stepl: i = 0, Vm' = 0;

for any vm ϵ V, there is pi(vm)=p(vm) \ p1;
Step2: ai = max{0,K — T — Σ c(vm)}: 

vmϵVm1
if there is ai = 0, then Vm = Vmi-1, stop;

Step3: selecting a VM vm’ ϵ V \ Vmi
such that . ;lis minimum;

Step4: Vm,+1 = Vmi U {vmi}; 
for any vm e V, there is 
pi+1(vm)=pl(vm)\p'(vmi); 
i++; goto Step2.

Since Algorithm 1 exploits the memory content similarity 
among migrated VMs, the actual number of transferred memory 
pages of a VM, in general, is less than the total number of memory 
pages that it has. To minimize the migrated memory pages, the 
VM selection in each round of iteration must have the minimum 
number of actual transferred memory pages. On the other hand, 
with the concern of the energy consumption, Algorithm 1 also 
considers the VMs’ demand for CPU resources. Step 1 of Algorithm
1 initializes the variables. Step 2 gives the termination condition, 
when the available CPU resources are exhausted. Step 3 selects 
the candidate VM that has the minimum ratio of the number of 
transferred memory pages to its CPU resource demand. It should 
be noted that ai ≤ c(vm) may be established only in the last 
round of iteration. To achieve a better approximation ratio, we 
use pi+1(vm) = pi(vm)\pi(vmi) in step 4 to revise the number of 
transferred memory pages of the VMs: after vmi is selected in the 
ith round of iteration, the transferred memory pages of every rest 
candidate VM in the i+ 1th round of iteration should be updated by 
taking away the pages that are in vmi. For example, supposing that 
there are three VMs in the ith round of iteration: VM1, VM2, VM3. 
The memory pages of them are {A, B, C}, {B, C, D} and {C, D, E}, 
respectively. If VM1 is selected, the memory pages of VM2 and 
VM3 in the i + 1th round of iteration are revised as {D} and {D, E}, 
respectively.

Algorithm 1 is an approximation with polynomial-time com- 
plexity and its approximation ratio is

1 1
X • H(K - T) = X • (1 + - + • ■ ■ +--------).

v ) k 2 K-T1

The detailed proof of this is given in Appendix.

Algorithm 2 An algorithm for MtoM CVSP problem with fixed thresholds 
(CVSP-Fixed)
Input: All parameters presented in the first paragraph of Section 3 
Output: t subsets Vml of V, t ϵ [1, s]
Stepl: Sorting all non-overloaded PMs pmn1........pmns in

descending order by CApm—Cpm, pm e PMN, as a list PM_List; 
if a PM is in idle state, then move it to the end of the list; 
t = 0, Vm0 = Ø;

Step2: i = 0; t = t + 1; Vm‘t = Ø; the first PM in PM_List is
denoted as PM1; the set of local VM memory pages of PM1 is 
P1; the VMs on PM1 are denoted as VM; PM1’s overloaded 
threshold is denoted as T and the used capacity of CPU is 
denoted as C;

Step3: forVvme V, let p'(vm)=p(vm) \ Pj;

Step4: aipm = max{0, Kpm - Tpm - Σ c(vm)};
t-1

vmeVjn( (J VmgUVm[)
<7=1

if there is aipm =0 for Vpm ϵPMO, then Vmt = Vmi_1, stop;
Step5:if C+ Σ c(vm) > T

vmeVm't
then Vmt = Vm]-1; deleting PM 1 and goto Step2;

Step6: if aipm = 0,pm ϵ PMO, V = V \ Vpm;Vpm = Ø;

t—1 s
Step7: selecting a VM vm* i e Vpm \( [Vmq1 U Vm] U [J Vmq2) 

91 = 1 92=t+l

for Vpm ϵ PMO, such that —, is minimum;

the overloaded PM that houses vm' is denoted as pmoq;
Step8: VM = VM Cl vm1; Vq = Vq\ vmi; Vm]+1 = Vm] U {vmi}; 

Vm]+1 = Vmj U {vmi};
for any vm ϵ V, let pi+1(vm)=pi(vm)\pi(vmi); 
i++; goto Step4.

3.2. MtoM CVSP problem with fixed thresholds

Based on the VM selection and placement policy proposed in 
Section 3.1, we design a heuristic algorithm, shown in Algorithm 
2, for CVSP problem with multiple overloaded PMs and non- 
overloaded PMs. All VMs in V are considered as a whole. By this 
idea, the migrating VMs may be from different overloaded PMs if 
they have a very high memory content similarity. Before the VM 
selection, all non-overloaded PMs, which are not in idle state, are 
sorted in descending order by the amount of available CPU. If none 
of these PMs can house the VMs, idle PMs will be used. With the 
goal to reduce the total number of transferred memory pages, our 
VM selection favors the VMs that match the most memory content 
that can be housed together. When the CPU utilization of a certain 
destination PM reaches the overloaded threshold, the next non- 
overloaded PM is chosen to host the migrated VMs. If an overloaded 
PM’s CPU utilization reduces to a level that is below the overload 
threshold after a VM is migrated away, all the VMs waiting to be 
migrated in this PM should be removed from V. Algorithm 2 is 
briefly described as follows. Step 1 sorts all PMs as PM_List. Step 
2 chooses the first PM, which is denoted as PM1, in PM_List to 
host the VMs. Since some memory pages may already have been 
stored on PM1, Step 3 revises the amount of transferred memory 
pages of the VMs. Step 4 gives the termination condition of the 
algorithm. Step 5 determines whether PM 1 is overloaded. If PM 1 
is overloaded, it will be deleted from PM_List, and another PM will 
be selected as the destination host. Steps 6-8 select the VMs to be 
migrated for PM 1. Because the VM selections are implemented on 
multiple non-overloaded PMs, the time complexity of Algorithm 2 
is O(s ■ | V |2), where s is the number of destination PMs.



4. Content-based VM selecting and placement problem with 
dynamic thresholds

Although several commercial cloud operating systems, such as 
VMware vSphere [32], use fixed PM overload threshold, a fixed 
threshold is not very suitable for power management in a dynamic 
cloud systems [6], Many dynamic PM overload detection methods 
have been proposed by leveraging statistical analysis of historical 
data, such as MAD, IQR, LR, LRR [6,25], Given a non-overloaded 
PM, vm1 vm2,vmn, denoted as VM, are the VMs on it, and 
its overload threshold T can be defined as T(V, P). T(V, P) is a 
function that describes certain relationship between the threshold 
and the usages of CPU of the VMs running on the PM, and P is 
a given parameter. There are many kinds of statistical methods. 
Thus we generally define that PM is overloaded if T(V, P) = 1, 
otherwise it is non-overloaded if T(V, P) = 0. For instance, if the 
value of LR threshold function [25] is greater than 1, then the PM 
is overloaded; otherwise it is not overloaded. Under our definition, 
the LR threshold function can be redefined as:

In the following we give the definition of CVSP problem with 
dynamic thresholds. There are a set PMO of m overloaded PMs, 
pmo1, pmo2,... .pmom and a set PMN of s non-overloaded PMs, 
pmn1, pmn2,.... pmns, which are the candidate hosts of the VM 
migration. All PMs set PM in the CDC consists of PMO and PMN. For 
any PM pm ϵ PM, there are currently npm VMs running on it, and 
they are Vpm = {vm1, vm2,, vmnpm}.The VMs on all overloaded 
PMs are denoted as a set V. The CPU overloaded threshold of a 
pm ϵ PM is T(Vpm,P). vmi,pm, pm ϵ PM and i ϵ [1, npm], is 
denoted as a running VM in the CDC. Its memory pages are denoted 
as a set p(vmi,pm), and the capacity of requested CPU resource is 
denoted as c(vmi,pm). Let Kpm = £2'1='Jc(rmi.pm), and apparently 
Kptn > Tpm. The set of VM memory pages of any non-overloaded PM 
pmnl, l ϵ [1, s], are denoted as pl. The used amount of CPU resource 
is Cpm. The available capacity of CPU in idle state is CApm. refers 
to that whether a pmnl is used to house the migrated VMs. After 
VM migration, if a pmnl  is used to house any migrated VM, xl = 1; 
otherwise xl = 0.

Definition 4.1 (CVSP Problem with Dynamic Thresholds'). Find s 
subsets Vm1,..., Vml,..., Vms of V to be migrated and place them 
on s non-overloaded PMs such that after the migration:

(!) ELilXf' U,>mevmiP(rm)\P/l is minimized;
(2) Vml = Ø if Xl = 0; Vmtl Cl Vmt2 = 0, any t1 / t2 and 

t1, t2 ϵ [l, s];
(3) for Vpm ϵ PMO there is T(Vpm, P) 1;
(4) for Vpm e PMN there is T(Vpm, P) / 1.

If T(V, P) is defined as:

the dynamic overload threshold can be converted into the fixed 
threshold. Hence CVSP problem with fixed thresholds is a special 
case of CVSP problem with dynamic thresholds, and apparently the 
latter one is also NP-hard.

The value of a dynamic threshold dynamically changes with the 
VMs running on it. Adding a VM or migrating away a VM may 
change the value. Therefore, Algorithm 2, which is designed for 
the fixed threshold, is not suitable for the problem with dynamic

Algorithm 3 An algorithm for CVSP problem with dynamic thresholds 
(CVSP-Dynamic)
Input: All parameters presented in the first paragraph of Section 3 
Output: t subsets Vml of V, t ϵ [1, s]
Stepl: Sorting all non-overloaded PMs pmn1........ pmns in

descending order by CApm—Cpm, pm ϵ PMN, as a list PM_List; 
if a PM is in idle state, then move it to the end of the list; 
t = 0, Vm0 = Ø;

Step2: i = 0; t = t + 1; Vm't = 0; the first PM in PM_List is
denoted as PM1; the set of local VM memory pages of PM1 is 
P1; the VMs on PM1 are denoted as VM; PM1’s overloaded 
threshold is denoted as T(VM, P) and the used capacity of 
CPU is denoted as C;

Step3: for any vm ϵ V, let pi (vm)=p(vm) \ P1;
Step4: if T(Vpm,P) / l for any pm ϵ PMO, then Vmt = Vm]“1, stop; 
Step5: if T(VM,P) / l

then Vmt = Vm]-1; deleting PM 1 and goto Step2;
Step6: if T(Vpm. P) 1, pm ϵ PMO 

V = V\Vpm;Vpm = 0;
t—1 s

Step7: selecting a VM vmi ϵ Vpm \( [J Vmt(| U Vm] U [J VmQ2) 
91 = 1 q2=t+1

for Vpm ϵ PMO, such that is minimum;r c(yml)
the overloaded PM that houses vm‘ is denoted as pmnq;

Step8: VM = VM C vm1; Vq = Vq\ vm'; Vm]+1 = Vm] U {urn1}; 
for any rmeV, letp'+1(rm)=pI(rm)\p'(rm'); 
i++; goto Step4;

Table 1
An example record of the PlanetLab workload trace.

Host ID VM ID CPU utilization CPU demand Time frame no.

2 3 0.055 0.1628 2

threshold. Hence the method of determining whether a PM is 
overloaded should be modified. The heuristic algorithm for CVSP 
problem with dynamic thresholds is presented in Algorithm 3. Step 
1 sorts all PMs as PM_List. Step 2 chooses the first PM, which is 
denoted as PM1, in PM_List to host the VMs. Since some memory 
pages may already have been stored on PM1, Step 3 revises the 
amount of transferred memory pages of the VMs. Step 4 gives the 
termination condition of the algorithm. Step 5 determines whether 
PM1 is overloaded. If PM1 is overloaded, it will be deleted from 
PM_List, and another PM will be selected as the destination host. 
Step 6-8 select the VMs to be migrated for PM1.

The time complexity of Algorithm 3 is O(s • | V |2), where s is the 
number of destination PMs.

5. Performance evaluation

5.1. Experiment setup

In this section, we conduct the simulations to evaluate the 
performance of our proposed heuristic algorithms using real VM 
utilization trace from PlanetLab [33], The trace records the work
load of about 100 PMs and nearly 4000 running VM instances in 
a day. The trace is recorded in every 5 min (there are totally 288 
time frames), and the content includes the CPU utilizations (in 
percentage of the CPU’s capacity of its host) in all time frames and 
the total CPU capacity demand (in percentage of the CPU’s capacity 
of its host) of every VM. An example record is presented in Table 1. 
This record illustrates that VM3 uses 5.5% CPU capacity of PM2 
at time frame 2 and this VM totally requests for about 16% CPU 
capacity of the PM.



In this workload trace, we replace the zero CPU utilization by 
a random number in (0, 0.01]. Additionally, almost all PMs in the 
workload trace are initially in overloaded state (there are nearly 
4000 VMs running on about 100 PMs). In order to let the CDC 
have enough resource to house the VMs, we build another 300 
PMs in idle state. The workload trace does not record the memory 
content of the VMs, and hence we simulate a memory page pool for 
these 4000 VMs based on the content similarity rate analysis given 
by [34], Each VM contains about 5000(±1500) different memory 
pages. We assume that every PM can transfer 5000 memory pages 
per second.

5.2. Performance metrics

We use following metrics to measure the performance of the 
algorithms.
(A) The number of transferred VM memory pages (TVMMP) in the 
migration process.
(B) Energy consumption (EC),

EC = 2^ / (fc • /’,mox + (! - k) • p™x' u,(t))dt, 
i=i

where N is the number of PMs, k = 0.7 is the fraction of power 
consumed by an idle server, P™x = 250 W is the maximum power 
of a host in the running state, and ui(t) is the CPU utilization at 
time t [35]. This metric measures the total energy consumption of 
the CDC.
(C) SLA violations (SLAV). SLAV is related to (1) the SLA violation 
time per active host (SLATAH): the percentage of time, during 
which active hosts have occupied the CPU utilization of 100% [6]; 
(2) the performance degradation due to the migration (PDM).

1 A Tst 
SLATAH = — >

N T" i=l la<

where N is the number of PMs, TSj is the SLA violation time on PM 
pmi, and Taj is the active time of PM pmi [6].

1 M rpDM = ly
M % CT

where M is the number of VMs, and Cdj. is the estimation of per- 
formance degradation (can be estimated by an extra 10% of CPU 
utilization [36]) of the VM vmj caused by the migrations, Crj. is the 
total CPU capacity demanded by vmj [6],

SLAV = SLATAH ■ PDM.

Using the workload data described in Section 5.1, we simulate 
all combinations of five host overload detection algorithms (fixed 
threshold (FT), IQR, MAD, LR, LRR), three VM selection policies (RS, 
MC, MTT), and one VM placement algorithm (PABFD) presented 
in [6] to compare with our proposed heuristic CVSP algorithms. 
For FT, the threshold value is set as 0.81*the total CPU capacity of 
the PM, which is used by the VMware distributed power manage
ment system [32], IQR is based on a statistical method named the 
interquartile range, MAD is based on a statistical method named 
the median absolute deviation, LR is based on the local regression, 
and LRR is based on the robust local regression [6]. Given the 
CPU utilizations of the PM’s running VMs, a threshold value can 
be calculated by using one of the dynamic threshold methods. 
The parameters of IQR, MAD, LR and LRR are set as the values

Fig. 3. Comparing TVMMP metric of the algorithms.

Fig. 4. Comparing EC metric of the algorithms.

Fig. 5. Comparing SLAV metric of the algorithms.

given in [6], respectively. In this paper, we do not consider the 
VM migration that is triggered by underload PM detection. The 
results produced by the selected algorithms are shown in Figs. 3-6, 
respectively.

In these figures, FT, IQR, MAD, LR and LRR on the horizontal axis 
indicate the four threshold methods, and the values on ordinates



Fig. 6. Comparing MIG metric of the algorithms.

are the results of, based on certain threshold method, implement
ing the VM selection policy and the VM placement policy. In Fig. 3, 
for instance, RS-PABFD on FT shows the number of transferred 
memory pages of implementing VM selection policy, RS, and VM 
placement policy, PABFD, with threshold method FT.

CVSP outperforms PABFD regarding the total number of trans
ferred VM memory pages, energy consumption and SLAV in all 
combinations, as shown in Figs. 3-5. LRR-CVSP performs the best 
and LR-CVSP is very close to it. Moreover, the combinations of 
all kinds of VM selection policies and VM placement policies also 
perform very well with LR and LRR, and the performances of them 
with FT is the worst. Transferring less amount of VM memory pages 
means using less time to complete the VM migration, and hence 
the energy consumption produced by CVSP in the VM migrations 
is correspondingly less than that of PABFD.

FT-CVSP has similar number of transferred memory pages with 
MAD-CVSP, as shown in Fig. 3, but it has a larger amount of VM 
migrations, as shown in Fig. 6. Triggering some unnecessary VM 
migrations is one of the disadvantages of the fixed threshold [6], 
Hence more active PMs should be used to host the migrated VMs, 
which causes more energy consumption, as shown in Fig. 4. More
over, this is also the reason of why FT-CVSP causes more SLAV than 
MAD-CVSP. On the other hand, the phenomenon of FT-CVSP and 
MAD-CVSP having a similar number of transferred memory pages 
but the different numbers of VM migrations expose a defect of our 
CVSP algorithm. CVSP algorithm can exploit the content similarity 
of VMs to reduce the number of transferred of memory pages, but 
it cannot always find the best solution.

According to Fig. 6, CVSP has almost the same performance with 
RS-PABFD with all types of threshold regarding the number of VM 
migration. Comparing to MMT-PABFD, CVSP partly takes the VMs’ 
CPU utilization into consideration when selecting a VM to migrate, 
and hence it produces less number of VM migrations than that of 
MMT-PABFD.

6. Conclusion

in this paper, we aim to minimize the transferred VM memory 
data in VM migrations of server consolidation. With this opti
mization objective, we redefine the VM selection problem and 
VM placement problem into one problem. The selection of mi
grating VMs and the destination of these migrated VMs are de
termined at the same time. Given a fixed host overload threshold, 
an approximation algorithm for this problem is proposed with 
one overloaded host and one destination host. Then in the case 
of multiple overloaded hosts and destination hosts, two heuristic

algorithms are presented based on the approximation algorithm 
with fixed and dynamic host overloading thresholds, respectively. 
We conduct a real workload trace based simulation to evaluate the 
performance of our proposed algorithms. The results show that our 
algorithm produces less amount of transferred VM memory pages 
and consume less energy PABFD combining with RS, MC and MMT. 

In the future, we will design the approximation algorithms for
MtoM CVSP problem with fixed threshold and dynamic threshold 
hold, respectively, by using other novel parameterized and approx- 
imation methods [37-39], Moreover, to further reduce the energy 
consumption and SLAV, we will convert CVSP in to a bi-objective 
problem, and then solve it by adopting the multi-objective opti- 
mization approaches [40].
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Appendix

Because the memory pages which belong to p1 do not need to 
be transferred, they have no impact on the solution and therefore 
do not need to be considered. We denote the total number of 
iterations in Algorithm 1 by i° and the output by Vm1 +1 = Vm. We 
denote the optimization solution by Vmopt and the corresponding 
memory pages by pop[ = [J vme p(vm). We denote the minimumVmOp[
CPU resource used by the VMs by cmin = min{c(«m) : vm e V}. 
Considering that Z2„meymc(urn) <K — T and cmin is the minimum 
value of the CPU utilization of all VMs on the PM, we have cmin • 
(|Vm| - 1) < £ c(vm) <K — T. We obtain

itm'eVm
K-T

|Vm| < L--------J + 1 = A.
Cmin

Fori e [1, i° — 1], we denote Ac' = c(nm') as the CPU utilization 
of the VM selected in the ith round of iteration. For i = i°, we let a 
positive integer Ac' < c(vm' ) such that Ac' = I( — T, and 
hence Ac‘° = K — T — ^-j’cjum1) = afi- According to Algorithm 
1, we have

Ac1 = c(vm') = a, — a,+i < af, i e [1, i° — 1]; 
o (A.1)

Ac = ap;al=K.

Lemma A.1. |p‘(um')| < • A • |poptl/or Vi e [1, i°].

Proof. There are two cases.

Case 1: Bum e Vmopt \ Vm', such that c(vm) > a,. At this time we 
obtain |p'(vm1 )| < |popt |. There are two sub-cases to be discussed.

1. For Vi e [1, i° — 1], we have



Given vm e Vmopt and c(»m) > a,, we have



Given Lemma A.l, we obtain

i0
|Vm| = y^p^vm1) 

i=1 

i°
Ac'

< >------ X • Vmopt
tra-

<A-H(K-T)-Vmopt.
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