
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering & Computer Science
Faculty Publications

Electrical Engineering & Computer Science
Department

7-2018

An Optimization of Virtual Machine Selection and Placement by An Optimization of Virtual Machine Selection and Placement by

Using Memory Content Similarity for Server Consolidation in Using Memory Content Similarity for Server Consolidation in

Cloud Cloud

Huixi Li
Central South University

Wenjun Li
Changsha University of Science and Technology

Haodong Wang
Cleveland State University, H.WANG96@csuohio.edu

Jianxin Wang
Central South University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Repository Citation Repository Citation
Li, Huixi; Li, Wenjun; Wang, Haodong; and Wang, Jianxin, "An Optimization of Virtual Machine Selection
and Placement by Using Memory Content Similarity for Server Consolidation in Cloud" (2018). Electrical
Engineering & Computer Science Faculty Publications. 445.
https://engagedscholarship.csuohio.edu/enece_facpub/445

This Article is brought to you for free and open access by the Electrical Engineering & Computer Science
Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer
Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/445?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

An optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloudHuixi Lia, Wenjun Lib, Haodong Wangc, Jianxin Wanga’*
a School of Information Science and Engineering, Central South University, ChangSha, PR China
b Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, PR China
c Department of Electrical Engineering and Computer Science, Cleveland State University, OH 44115, USA

1. Introduction

Nowadays, more and more large scale cloud data centers (CDC)
are coming into service while lots of small and middle scale CDCs
are expanding all over the world. In Amazon EC2, for instance,
a myriad number of new physical resources, which can support
hundreds of thousands of virtual machines (VMs), are integrated
into the CDCs in each month [1], By server consolidation, cloud
computing can manage these physical IT resources in high ef-
ficiency, which makes them turning into the fundamental ser-
vices of the Internet applications. In server consolidation, the CDC
packs a number of VMs on a fewer number of physical machines
(PM), and thus adjusts the usage of physical resources, with the

goal to achieve the elasticity and autoscaling of the cloud, and
to reduce the potential energy consumption [2,3]. VM migration
is indispensable for this process. Current CDCs are usually with
sophisticated network [4], which makes the smooth transmission
of VMs a hard task in VM migration.

We are facing many challenges in optimizing the VM migration.
There are four main problems in the VM migration [5,6]: (1) to
determine which PMs are overloaded (overloading PM detection);
(2) to determine which PMs are underloaded (underloading PM
detection); (3) which VMs should be selected from the overloaded
PMs to be migrated (migrating VM selection), and (4) VM place­
ment. For an underloaded PM, all VMs on it should be migrated
away, and then it is switched into the energy-save model. If a PM is
not in the underloaded or overloaded state, it is in normal state and
none of its VMs should be migrated. In the following of this paper,
we call the normal and underloaded state as non-overloaded state.
Generally, VM selection problem and VM placement problem are

Fig. 1. An example of memory sharing-aware VM migrations.

solved in a sequence. The CDC firstly selects which VMs should be
migrated, and then to select the PMs that meet given optimization
objectives to house these VMs. Regarding the energy consumption
and Service Level Agreement (SLA) violations, the experiment re-
sults [6] show that migrating the VMs which have the minimum
amount of memory data outperforms other VM selection policies.
This finding indicates that the reduction of the transferred VM
memory data in the VM migration can help saving the energy
consumption of the CDC to some extent. Although various kinds of
VM memory migration technologies, such as pre-copy [7] and post-
copy [8], have been proposed to shorten the service downtime of
the live VM migration, the total amount of transferred memory
data are still hard to be reduced. At this time, if the network
is in heavy traffic, the transmission performance of the live VM
migration will become worse [9].

There exists a high memory content similarity among multiple
VMs [10-13], Such similarity was exploited to reduce the physical
memory used by running VMs a decade ago [14,15]. Recently,
several technologies and prototypes [12,16-18] , which also use
this feature of VMs, have been proposed to decrease the amount
of transferred memory data during the VM migration. In Memory
Buddies [12], for example, when a batch of VMs are migrated to
a PM at the same time, the memory pages, which have the same
content, can be transferred only once. We use following instance
to illustrate the mechanism. There are three VMs, VM1, VM2 and
VM3, running on PM1, PM2 and PM3, respectively, as shown in
Fig. 1. The memory pages contained in VM1 are {A,B,B}, the mem-
ory pages that contained in VM2 are {B,C,D}, and the memory pages
that contained in VM3 are {C,D,D}. Now the VM 1 and VM2 are being
migrated to PM3. Firstly VM1 is migrated. After memory pages A
and B are delivered, the second memory page B does not need to
be transferred because B is already on PM3. Then VM2 is migrated
and the CDC does not need to transfer any memory page because
all memory pages of VM2 can be fetched from VM1 and VM3. After
two VMs have been migrated, merely two memory pages {A,B} are
transferred to PM3. By taking this kind of methods, the transferring
of a large mount of VM memory pages is avoided. Therefore the
migration time, the pressure of network usage and the Service
Level Agreement violations (SLAV) are reduced.

In this paper, we solve the VM selection problem and the VM
placement problem at the same time by leveraging the similarity
among the memories of the VMs. The main contributions of this
paper are following:

(A) VM selection problem and VM placement problem are rede-
fined as a content-based VM selection and placement problem to
minimize the total amount of transferred VM memory pages, and
its NP-hardness is proved.

(B) An approximation algorithm is proposed to solve the
content-based VM selection and placement problem with one
overloaded PM and one destination PM when the overloaded
threshold is fixed.

(C) Two heuristic algorithms are proposed to select and place
VMs from multiple overloaded PMs to multiple destination PMs to
minimize the total amount of transferred VM memory pages when
the overloaded thresholds are fixed and dynamic respectively.

(D) A real workload trace-driven simulation is conducted to
evaluate the performance of the algorithms.

The rest of this paper is organized as follows. Section 2 describes
the related work. Section 3 solves the content-based VM select­
ing and placement problem with fixed overloaded thresholds.
Section 4 solves the content-based VM selection and placement
problem with dynamic overloaded thresholds. Section 5 shows our
simulation results for the effectiveness, and Section 6 concludes
the paper.

2. Related work

Regarding the above mentioned four problems of the server
consolidation and the VM migration, prior work mainly focused
on the VM placement/packing problem [2,3,19]. To solve the VM
placement/packing problem by using the memory content similar-
ity of the VMs, many prototypes [12,16,17] and algorithms [18,20-
22] are proposed. To speed up VM provisioning by using image
content similarities, Greedy-MVFD [23] is proposed.

Recently, some researchers focused on the VM selection prob-
lem. Given a fixed PM overload threshold, three VM selection
policies are given [5], (1) The minimization of migration policy
(MM): selecting the minimum number of VMs to migrate from a
host to lower the CPU utilization; (2) The highest potential growth
policy (HPG): selecting VMs that have the lowest usage of the
CPU resource to minimize the potential increase of the host’s CPU
utilization; (3) The random choice policy (RC): randomly selecting
VMs to migrate until the host’s CPU utilization is below the over-
loaded threshold. Then, Beloglazov et al. [6] improved the fixed
PM overload threshold by proposing five dynamic host overloading
detection algorithms, and they also presented three VM selection
algorithms based on these dynamic PM overload thresholds. (1)
The minimum migration time policy (MMT): selecting the VMs
that have the minimum migration time to migrate, and the mi-
gration time is estimated as the amount of RAM utilized by the
VMs divided by the available network bandwidth; (2) The random
selection policy (RS); (3) The maximum correlation policy (MC):
selecting the VMs, that have the highest correlations between the
CPU utilizations of VMs, to migrate, and the method of correlation
estimation is proposed by Verma et al. [24], After the migrating
VMs are determined, a modified one-dimension best fit decreasing
bin packing algorithm, called Power Aware Best Fit Decreasing
(PABFD), is applied to place these VMs to the PMs.

To solve the VM selection problem, a minimum utilization pol-
icy (MU), which selects the VM with the minimum CPU utilization
to migrate in each process of the iteration, and an improved MC
policy had been proposed [25] . A maximum utilization policy
(MaxU) [26], which chooses the VM with the maximum CPU uti-
lization to migrate, is proposed.

MP [27] can reduce the energy consumption and the SLA vio-
lations. The VMs on an overload PM are sorted in the descending
order by the utilization of the CPU as vmList. If the CPU utilization of
the first VM in vmList is no smaller than the difference between the
host’s current CPU utilization and the overload threshold, the VM
is selected to be migrated and the host’s current CPU utilization
is updated. This selection is repeated until the host is no longer
overloaded. After this, a minimum correlation coefficient policy
(MMC) [27] is proposed to place these VMs to the PMs. A VM that
has the minimum correlation to other VMs is selected and placed
on a given PM. The estimation of correlation coefficient is similar
to the method used in MC policy.

MRB policy [28] is a PM overload detection algorithm. It chooses
the VM that has the maximum requested bandwidth to migrate it.

To reduce the energy consumption, Shidik et al. [29] proposed a
VM selection policy by leveraging the Markov Normal algorithm.

The above mentioned works, which select the VMs to be mi­
grated, are mainly based on the CPU utilization. Beloglazov at a/. [6]
have already found out that the selection of migrating VMs should
be based on the size of memory of VMs. MMT [6] outperforms other
VM selection polices because it spends the smallest time to transfer
the memory of VMs. By exploiting the content similarity, the time
of memory transmission can be further reduced. Moreover, we
solve the VM selection and VM placement problem at same time in
this paper rather than consider them as two separated problems.

3. Content-based VM selecting and placement problem with
fixed thresholds

To minimize the amount of transferred memory data, our re­
search is based on Memory Buddies [12], a memory sharing-aware
placement system for virtual machine. It leverages the content
similarity of the VMs, by sharing the same pages or sub-pages,
to migrate a batch of VMs at the same time. To estimate the
page sharing potential between VMs, we use the content similarity
checking method presented in [12], and the time complexity of
such operation is 0(1) [12].

There are a set PMO of m overloaded PMs, pmo1, pmo2,...,
prnom and a set PMN of s non-overloaded PMs, pmn1, pmn2,...,
pmns, which are the candidate hosts of the VM migration. All
PMs set PM in the CDC consists of PMO and PMN. For any PM
pm ϵ PM, there are currently npm VMs running on it, and they
are Vpm = {vm1, vm2,, vmnpm }. The VMs on all overloaded
PMs are denoted as a set V. The CPU overloaded threshold of a
pm ϵ PM is Tpm. vmi,pm, pm g PM and i ϵ [1, npm], is denoted
as a running VM in the CDC. Its memory pages are denoted as a set
p(vmi,pm), and the capacity of requested CPU resource is denoted
as c(vm,iPm). Let Kpm = 52^c(umijPm), and apparently Kpm > Tpm.
The set of VM memory pages of any non-overloaded PM pmnl,
l ϵ[1, s], are denoted as p1. The used amount of CPU resource is
Cpm. The available capacity of CPU in idle state is CApm. xl refers to
that whether a pmnl is used to house the migrated VMs. After VM
migration, if a pmnl is used to house any migrated VM, xl = 1;
otherwise xl = 0.

Definition 3.1 (Content-based VM Selecting and Placement (CVSP)
Problem with Fixed Thresholds). Find s subsets Vm1|, ..., Vml, ...,
Vms of V to be migrated and placed on s non-overloaded PMs such
that after the migration:

(1) ELilXi' U„mevm,P(l 2 3 4’m)\Pil is minimized;
(2) VM_migratei = 0 if = 0; Vmtj Cl Vmt2 = 0, for any U / t2

and t1, t2 ϵ [1, s];
(3) Ewrlgy,„„c(vm) < Tpm for Vpm g PMO;
(4) C, + EvmeVm,c(vm) ≤ for V/ ϵ [1, s] and Vpm g PMN.

Condition (1) is the objective of CVSP problem. Condition (2)
guarantees that a VM can only be migrated to one PM. Conditions
(3) and (4) guarantees that all the CPU utilizations of all PMs cannot
exceed their overloaded thresholds after the VM migrations.

Particularly, following simple case of CVSP problem is called
l to l CVSP problem: there are only one overloaded PM (m = 1)
and one non-overloaded PM (s = 1). At this time, p1 is the set of
VM memory pages on pmn1.

Theorem 3.1. The CVSP problem is NP-hard.

Proof. Firstly, it can be assumed that every VM in V uses 1 unit
of CPU resource, that is for Vi ϵ [1, npm] and pm ϵ PM there is
c(vmi,pm) = 1. For a pmoj, there are at least KpmOj — Tpmoj + 1 VMs
needed to be migrated, and hence there are at least Ejl/^pmo,- —

Fig. 2. An example of reduction from SpES problem to CVSP problem (k = 2).

TpmOj. + 1) VMs in Vm. Now l to l CVSP problem can be considered:
find a subset Vm, which has at least Kpmol — Tpmol + 1 VMs, of
V such that ||J1JmeV,mp(vm) \ p1 | is minimized. Let VMs be the
hyperedges of a hypergraph and the memory pages be the vertices,
then the special case of CVSP problem can be reduced from the
following problem: given a hypergraph and a positive integer
Kpmo1 — Tpmo1 + 1, find a subset of vertices with minimum size
such that the number of inducing hyperedges is at least Kpmo1 —
Tpmo1 + 1. Now let us consider the Smallest p—Edge Subgraph
(SpES) problem [30]. Given an undirected graph G = (V, E) and
an integer p, the goal of SpES problem is to find a subset V' C V
of minimum size so that the subgraph induced by V' has at least
p edges. The undirected graph G is also a 2-uniform hypergraph
(every edge of the 2-uniform hypergraph connects 2 vertices). We
can create an instance (G = (V, E), k) of CVSP problem in which
every VM has two memory pages. Actually, the number of memory
pages of a VM is far larger than two. Apparently, SpES problem is a
special case of CVSP problem. An example is shown in Fig. 2. A 2-
uniform hypergraph G has four vertices a, b, c and d and three edges
A = {a, b}, B = {b, c} and C = {c, d}. The three edges correspond
to three VMs: A, B and C. The vertices that contained in certain edge
are the memory pages of corresponding VMs. Since SpES problem
is NP-hard [30], CVSP problem is also NP-hard.

It should be noted that 1 unit of CPU resource is merely used
to proof Theorem 3.1. Furthermore, although SpES problem can be
leveraged to proof the theorem, we barely meet this kind of VMs
in real cases.

In the following, we first investigate l to l CVSP problem, and
then study CVSP problem with multiple source PMs and multiple
destination PMs (MtoM CVSP problem).

3.1. ltol CVSP problem with fixed threshold

To solve CVSP problem, we first consider ltol CVSP problem. In
the proof of Theorem 3.1, it is clarified that ltol CVSP problem is
NP-hard.

Theorem 3.2. ltol CVSP problem with fixed threshold cannot be
approximated in polynomial time.

Proof. Considering a scenario of ltol CVSP problem and convert-
ing each VM’s CPU utilization into a positive integer. There are n
VMs running on the overloaded PM whose used CPU resource is
K. The used CPU resource of the non-overloaded PM is K — 2t. The

threshold is K — t. In this case, certain VMs should be selected from
the n VMs such that the memory pages of them is minimum and the
sum of CPU utilizations of them is t. Then this problem is equivalent
to the subset sum problem: given a set S of n positive integers and
a target integer t, to decide if there is a subset of S that sums up
to t [31]. Since the subset sum problem is NP-hard [31], we cannot
in polynomial time to found certain VMs to be migrated such that
their CPU utilization is f. Hence, ltol CVSP problem cannot be
approximated in polynomial time.

According to Theorem 3.2, it is obvious that CVSP problem also
cannot be approximated in polynomial time. Here we assume that
the non-overloaded PM have sufficient resource to accommodate
the VMs needed to be migrated from the overloaded PM for ltol
CVSP problem. This kind of ltol CVSP problem is denoted as
ltol CVSP* problem. In the following, we present an algorithm, as
shown in Algorithm 1, to solve ltol CVSP* problem.

Algorithm 1 An algorithm for ltol CVSP* problem with the fixed thresh-
old__
Input: All parameters presented in the first paragraph of Section 3,

where m = 1 and s = 1, let K = Kpmo1 and T = Tpmo1.
Output: a subset Vm of V.
Stepl: i = 0, Vm' = 0;

for any vm ϵ V, there is pi(vm)=p(vm) \ p1;
Step2: ai = max{0,K — T — Σ c(vm)}:

vmϵVm1
if there is ai = 0, then Vm = Vmi-1, stop;

Step3: selecting a VM vm’ ϵ V \ Vmi
such that . ;lis minimum;

Step4: Vm,+1 = Vmi U {vmi};
for any vm e V, there is
pi+1(vm)=pl(vm)\p'(vmi);
i++; goto Step2.

Since Algorithm 1 exploits the memory content similarity
among migrated VMs, the actual number of transferred memory
pages of a VM, in general, is less than the total number of memory
pages that it has. To minimize the migrated memory pages, the
VM selection in each round of iteration must have the minimum
number of actual transferred memory pages. On the other hand,
with the concern of the energy consumption, Algorithm 1 also
considers the VMs’ demand for CPU resources. Step 1 of Algorithm
1 initializes the variables. Step 2 gives the termination condition,
when the available CPU resources are exhausted. Step 3 selects
the candidate VM that has the minimum ratio of the number of
transferred memory pages to its CPU resource demand. It should
be noted that ai ≤ c(vm) may be established only in the last
round of iteration. To achieve a better approximation ratio, we
use pi+1(vm) = pi(vm)\pi(vmi) in step 4 to revise the number of
transferred memory pages of the VMs: after vmi is selected in the
ith round of iteration, the transferred memory pages of every rest
candidate VM in the i+ 1th round of iteration should be updated by
taking away the pages that are in vmi. For example, supposing that
there are three VMs in the ith round of iteration: VM1, VM2, VM3.
The memory pages of them are {A, B, C}, {B, C, D} and {C, D, E},
respectively. If VM1 is selected, the memory pages of VM2 and
VM3 in the i + 1th round of iteration are revised as {D} and {D, E},
respectively.

Algorithm 1 is an approximation with polynomial-time com-
plexity and its approximation ratio is

1 1
X • H(K - T) = X • (1 + - + • ■ ■ +--------).

v) k 2 K-T1

The detailed proof of this is given in Appendix.

Algorithm 2 An algorithm for MtoM CVSP problem with fixed thresholds
(CVSP-Fixed)
Input: All parameters presented in the first paragraph of Section 3
Output: t subsets Vml of V, t ϵ [1, s]
Stepl: Sorting all non-overloaded PMs pmn1........pmns in

descending order by CApm—Cpm, pm e PMN, as a list PM_List;
if a PM is in idle state, then move it to the end of the list;
t = 0, Vm0 = Ø;

Step2: i = 0; t = t + 1; Vm‘t = Ø; the first PM in PM_List is
denoted as PM1; the set of local VM memory pages of PM1 is
P1; the VMs on PM1 are denoted as VM; PM1’s overloaded
threshold is denoted as T and the used capacity of CPU is
denoted as C;

Step3: forVvme V, let p'(vm)=p(vm) \ Pj;

Step4: aipm = max{0, Kpm - Tpm - Σ c(vm)};
t-1

vmeVjn((J VmgUVm[)
<7=1

if there is aipm =0 for Vpm ϵPMO, then Vmt = Vmi_1, stop;
Step5:if C+ Σ c(vm) > T

vmeVm't
then Vmt = Vm]-1; deleting PM 1 and goto Step2;

Step6: if aipm = 0,pm ϵ PMO, V = V \ Vpm;Vpm = Ø;

t—1 s
Step7: selecting a VM vm* i e Vpm \([Vmq1 U Vm] U [J Vmq2)

91 = 1 92=t+l

for Vpm ϵ PMO, such that —, is minimum;

the overloaded PM that houses vm' is denoted as pmoq;
Step8: VM = VM Cl vm1; Vq = Vq\ vmi; Vm]+1 = Vm] U {vmi};

Vm]+1 = Vmj U {vmi};
for any vm ϵ V, let pi+1(vm)=pi(vm)\pi(vmi);
i++; goto Step4.

3.2. MtoM CVSP problem with fixed thresholds

Based on the VM selection and placement policy proposed in
Section 3.1, we design a heuristic algorithm, shown in Algorithm
2, for CVSP problem with multiple overloaded PMs and non-
overloaded PMs. All VMs in V are considered as a whole. By this
idea, the migrating VMs may be from different overloaded PMs if
they have a very high memory content similarity. Before the VM
selection, all non-overloaded PMs, which are not in idle state, are
sorted in descending order by the amount of available CPU. If none
of these PMs can house the VMs, idle PMs will be used. With the
goal to reduce the total number of transferred memory pages, our
VM selection favors the VMs that match the most memory content
that can be housed together. When the CPU utilization of a certain
destination PM reaches the overloaded threshold, the next non-
overloaded PM is chosen to host the migrated VMs. If an overloaded
PM’s CPU utilization reduces to a level that is below the overload
threshold after a VM is migrated away, all the VMs waiting to be
migrated in this PM should be removed from V. Algorithm 2 is
briefly described as follows. Step 1 sorts all PMs as PM_List. Step
2 chooses the first PM, which is denoted as PM1, in PM_List to
host the VMs. Since some memory pages may already have been
stored on PM1, Step 3 revises the amount of transferred memory
pages of the VMs. Step 4 gives the termination condition of the
algorithm. Step 5 determines whether PM 1 is overloaded. If PM 1
is overloaded, it will be deleted from PM_List, and another PM will
be selected as the destination host. Steps 6-8 select the VMs to be
migrated for PM 1. Because the VM selections are implemented on
multiple non-overloaded PMs, the time complexity of Algorithm 2
is O(s ■ | V |2), where s is the number of destination PMs.

4. Content-based VM selecting and placement problem with
dynamic thresholds

Although several commercial cloud operating systems, such as
VMware vSphere [32], use fixed PM overload threshold, a fixed
threshold is not very suitable for power management in a dynamic
cloud systems [6], Many dynamic PM overload detection methods
have been proposed by leveraging statistical analysis of historical
data, such as MAD, IQR, LR, LRR [6,25], Given a non-overloaded
PM, vm1 vm2,vmn, denoted as VM, are the VMs on it, and
its overload threshold T can be defined as T(V, P). T(V, P) is a
function that describes certain relationship between the threshold
and the usages of CPU of the VMs running on the PM, and P is
a given parameter. There are many kinds of statistical methods.
Thus we generally define that PM is overloaded if T(V, P) = 1,
otherwise it is non-overloaded if T(V, P) = 0. For instance, if the
value of LR threshold function [25] is greater than 1, then the PM
is overloaded; otherwise it is not overloaded. Under our definition,
the LR threshold function can be redefined as:

In the following we give the definition of CVSP problem with
dynamic thresholds. There are a set PMO of m overloaded PMs,
pmo1, pmo2,... .pmom and a set PMN of s non-overloaded PMs,
pmn1, pmn2,.... pmns, which are the candidate hosts of the VM
migration. All PMs set PM in the CDC consists of PMO and PMN. For
any PM pm ϵ PM, there are currently npm VMs running on it, and
they are Vpm = {vm1, vm2,, vmnpm}.The VMs on all overloaded
PMs are denoted as a set V. The CPU overloaded threshold of a
pm ϵ PM is T(Vpm,P). vmi,pm, pm ϵ PM and i ϵ [1, npm], is
denoted as a running VM in the CDC. Its memory pages are denoted
as a set p(vmi,pm), and the capacity of requested CPU resource is
denoted as c(vmi,pm). Let Kpm = £2'1='Jc(rmi.pm), and apparently
Kptn > Tpm. The set of VM memory pages of any non-overloaded PM
pmnl, l ϵ [1, s], are denoted as pl. The used amount of CPU resource
is Cpm. The available capacity of CPU in idle state is CApm. refers
to that whether a pmnl is used to house the migrated VMs. After
VM migration, if a pmnl is used to house any migrated VM, xl = 1;
otherwise xl = 0.

Definition 4.1 (CVSP Problem with Dynamic Thresholds'). Find s
subsets Vm1,..., Vml,..., Vms of V to be migrated and place them
on s non-overloaded PMs such that after the migration:

(!) ELilXf' U,>mevmiP(rm)\P/l is minimized;
(2) Vml = Ø if Xl = 0; Vmtl Cl Vmt2 = 0, any t1 / t2 and

t1, t2 ϵ [l, s];
(3) for Vpm ϵ PMO there is T(Vpm, P) 1;
(4) for Vpm e PMN there is T(Vpm, P) / 1.

If T(V, P) is defined as:

the dynamic overload threshold can be converted into the fixed
threshold. Hence CVSP problem with fixed thresholds is a special
case of CVSP problem with dynamic thresholds, and apparently the
latter one is also NP-hard.

The value of a dynamic threshold dynamically changes with the
VMs running on it. Adding a VM or migrating away a VM may
change the value. Therefore, Algorithm 2, which is designed for
the fixed threshold, is not suitable for the problem with dynamic

Algorithm 3 An algorithm for CVSP problem with dynamic thresholds
(CVSP-Dynamic)
Input: All parameters presented in the first paragraph of Section 3
Output: t subsets Vml of V, t ϵ [1, s]
Stepl: Sorting all non-overloaded PMs pmn1........ pmns in

descending order by CApm—Cpm, pm ϵ PMN, as a list PM_List;
if a PM is in idle state, then move it to the end of the list;
t = 0, Vm0 = Ø;

Step2: i = 0; t = t + 1; Vm't = 0; the first PM in PM_List is
denoted as PM1; the set of local VM memory pages of PM1 is
P1; the VMs on PM1 are denoted as VM; PM1’s overloaded
threshold is denoted as T(VM, P) and the used capacity of
CPU is denoted as C;

Step3: for any vm ϵ V, let pi (vm)=p(vm) \ P1;
Step4: if T(Vpm,P) / l for any pm ϵ PMO, then Vmt = Vm]“1, stop;
Step5: if T(VM,P) / l

then Vmt = Vm]-1; deleting PM 1 and goto Step2;
Step6: if T(Vpm. P) 1, pm ϵ PMO

V = V\Vpm;Vpm = 0;
t—1 s

Step7: selecting a VM vmi ϵ Vpm \([J Vmt(| U Vm] U [J VmQ2)
91 = 1 q2=t+1

for Vpm ϵ PMO, such that is minimum;r c(yml)
the overloaded PM that houses vm‘ is denoted as pmnq;

Step8: VM = VM C vm1; Vq = Vq\ vm'; Vm]+1 = Vm] U {urn1};
for any rmeV, letp'+1(rm)=pI(rm)\p'(rm');
i++; goto Step4;

Table 1
An example record of the PlanetLab workload trace.

Host ID VM ID CPU utilization CPU demand Time frame no.

2 3 0.055 0.1628 2

threshold. Hence the method of determining whether a PM is
overloaded should be modified. The heuristic algorithm for CVSP
problem with dynamic thresholds is presented in Algorithm 3. Step
1 sorts all PMs as PM_List. Step 2 chooses the first PM, which is
denoted as PM1, in PM_List to host the VMs. Since some memory
pages may already have been stored on PM1, Step 3 revises the
amount of transferred memory pages of the VMs. Step 4 gives the
termination condition of the algorithm. Step 5 determines whether
PM1 is overloaded. If PM1 is overloaded, it will be deleted from
PM_List, and another PM will be selected as the destination host.
Step 6-8 select the VMs to be migrated for PM1.

The time complexity of Algorithm 3 is O(s • | V |2), where s is the
number of destination PMs.

5. Performance evaluation

5.1. Experiment setup

In this section, we conduct the simulations to evaluate the
performance of our proposed heuristic algorithms using real VM
utilization trace from PlanetLab [33], The trace records the work­
load of about 100 PMs and nearly 4000 running VM instances in
a day. The trace is recorded in every 5 min (there are totally 288
time frames), and the content includes the CPU utilizations (in
percentage of the CPU’s capacity of its host) in all time frames and
the total CPU capacity demand (in percentage of the CPU’s capacity
of its host) of every VM. An example record is presented in Table 1.
This record illustrates that VM3 uses 5.5% CPU capacity of PM2
at time frame 2 and this VM totally requests for about 16% CPU
capacity of the PM.

In this workload trace, we replace the zero CPU utilization by
a random number in (0, 0.01]. Additionally, almost all PMs in the
workload trace are initially in overloaded state (there are nearly
4000 VMs running on about 100 PMs). In order to let the CDC
have enough resource to house the VMs, we build another 300
PMs in idle state. The workload trace does not record the memory
content of the VMs, and hence we simulate a memory page pool for
these 4000 VMs based on the content similarity rate analysis given
by [34], Each VM contains about 5000(±1500) different memory
pages. We assume that every PM can transfer 5000 memory pages
per second.

5.2. Performance metrics

We use following metrics to measure the performance of the
algorithms.
(A) The number of transferred VM memory pages (TVMMP) in the
migration process.
(B) Energy consumption (EC),

EC = 2^ / (fc • /’,mox + (! - k) • p™x' u,(t))dt,
i=i

where N is the number of PMs, k = 0.7 is the fraction of power
consumed by an idle server, P™x = 250 W is the maximum power
of a host in the running state, and ui(t) is the CPU utilization at
time t [35]. This metric measures the total energy consumption of
the CDC.
(C) SLA violations (SLAV). SLAV is related to (1) the SLA violation
time per active host (SLATAH): the percentage of time, during
which active hosts have occupied the CPU utilization of 100% [6];
(2) the performance degradation due to the migration (PDM).

1 A Tst
SLATAH = — >

N T" i=l la<

where N is the number of PMs, TSj is the SLA violation time on PM
pmi, and Taj is the active time of PM pmi [6].

1 M rpDM = ly
M % CT

where M is the number of VMs, and Cdj. is the estimation of per-
formance degradation (can be estimated by an extra 10% of CPU
utilization [36]) of the VM vmj caused by the migrations, Crj. is the
total CPU capacity demanded by vmj [6],

SLAV = SLATAH ■ PDM.

Using the workload data described in Section 5.1, we simulate
all combinations of five host overload detection algorithms (fixed
threshold (FT), IQR, MAD, LR, LRR), three VM selection policies (RS,
MC, MTT), and one VM placement algorithm (PABFD) presented
in [6] to compare with our proposed heuristic CVSP algorithms.
For FT, the threshold value is set as 0.81*the total CPU capacity of
the PM, which is used by the VMware distributed power manage­
ment system [32], IQR is based on a statistical method named the
interquartile range, MAD is based on a statistical method named
the median absolute deviation, LR is based on the local regression,
and LRR is based on the robust local regression [6]. Given the
CPU utilizations of the PM’s running VMs, a threshold value can
be calculated by using one of the dynamic threshold methods.
The parameters of IQR, MAD, LR and LRR are set as the values

Fig. 3. Comparing TVMMP metric of the algorithms.

Fig. 4. Comparing EC metric of the algorithms.

Fig. 5. Comparing SLAV metric of the algorithms.

given in [6], respectively. In this paper, we do not consider the
VM migration that is triggered by underload PM detection. The
results produced by the selected algorithms are shown in Figs. 3-6,
respectively.

In these figures, FT, IQR, MAD, LR and LRR on the horizontal axis
indicate the four threshold methods, and the values on ordinates

Fig. 6. Comparing MIG metric of the algorithms.

are the results of, based on certain threshold method, implement­
ing the VM selection policy and the VM placement policy. In Fig. 3,
for instance, RS-PABFD on FT shows the number of transferred
memory pages of implementing VM selection policy, RS, and VM
placement policy, PABFD, with threshold method FT.

CVSP outperforms PABFD regarding the total number of trans­
ferred VM memory pages, energy consumption and SLAV in all
combinations, as shown in Figs. 3-5. LRR-CVSP performs the best
and LR-CVSP is very close to it. Moreover, the combinations of
all kinds of VM selection policies and VM placement policies also
perform very well with LR and LRR, and the performances of them
with FT is the worst. Transferring less amount of VM memory pages
means using less time to complete the VM migration, and hence
the energy consumption produced by CVSP in the VM migrations
is correspondingly less than that of PABFD.

FT-CVSP has similar number of transferred memory pages with
MAD-CVSP, as shown in Fig. 3, but it has a larger amount of VM
migrations, as shown in Fig. 6. Triggering some unnecessary VM
migrations is one of the disadvantages of the fixed threshold [6],
Hence more active PMs should be used to host the migrated VMs,
which causes more energy consumption, as shown in Fig. 4. More­
over, this is also the reason of why FT-CVSP causes more SLAV than
MAD-CVSP. On the other hand, the phenomenon of FT-CVSP and
MAD-CVSP having a similar number of transferred memory pages
but the different numbers of VM migrations expose a defect of our
CVSP algorithm. CVSP algorithm can exploit the content similarity
of VMs to reduce the number of transferred of memory pages, but
it cannot always find the best solution.

According to Fig. 6, CVSP has almost the same performance with
RS-PABFD with all types of threshold regarding the number of VM
migration. Comparing to MMT-PABFD, CVSP partly takes the VMs’
CPU utilization into consideration when selecting a VM to migrate,
and hence it produces less number of VM migrations than that of
MMT-PABFD.

6. Conclusion

in this paper, we aim to minimize the transferred VM memory
data in VM migrations of server consolidation. With this opti­
mization objective, we redefine the VM selection problem and
VM placement problem into one problem. The selection of mi­
grating VMs and the destination of these migrated VMs are de­
termined at the same time. Given a fixed host overload threshold,
an approximation algorithm for this problem is proposed with
one overloaded host and one destination host. Then in the case
of multiple overloaded hosts and destination hosts, two heuristic

algorithms are presented based on the approximation algorithm
with fixed and dynamic host overloading thresholds, respectively.
We conduct a real workload trace based simulation to evaluate the
performance of our proposed algorithms. The results show that our
algorithm produces less amount of transferred VM memory pages
and consume less energy PABFD combining with RS, MC and MMT.

In the future, we will design the approximation algorithms for
MtoM CVSP problem with fixed threshold and dynamic threshold
hold, respectively, by using other novel parameterized and approx-
imation methods [37-39], Moreover, to further reduce the energy
consumption and SLAV, we will convert CVSP in to a bi-objective
problem, and then solve it by adopting the multi-objective opti-
mization approaches [40].

Acknowledgments

This work is supported by the National Natural Science Foun­
dation of China (Grant No. 61420106009, No. 61672536 and No.
61572530) and the Projects of Hunan Province Science and Tech­
nology Plan in China (Grant No. 2016JC2009).

Appendix

Because the memory pages which belong to p1 do not need to
be transferred, they have no impact on the solution and therefore
do not need to be considered. We denote the total number of
iterations in Algorithm 1 by i° and the output by Vm1 +1 = Vm. We
denote the optimization solution by Vmopt and the corresponding
memory pages by pop[= [J vme p(vm). We denote the minimumVmOp[
CPU resource used by the VMs by cmin = min{c(«m) : vm e V}.
Considering that Z2„meymc(urn) <K — T and cmin is the minimum
value of the CPU utilization of all VMs on the PM, we have cmin •
(|Vm| - 1) < £ c(vm) <K — T. We obtain

itm'eVm
K-T

|Vm| < L--------J + 1 = A.
Cmin

Fori e [1, i° — 1], we denote Ac' = c(nm') as the CPU utilization
of the VM selected in the ith round of iteration. For i = i°, we let a
positive integer Ac' < c(vm') such that Ac' = I(— T, and
hence Ac‘° = K — T — ^-j’cjum1) = afi- According to Algorithm
1, we have

Ac1 = c(vm') = a, — a,+i < af, i e [1, i° — 1];
o (A.1)

Ac = ap;al=K.

Lemma A.1. |p‘(um')| < • A • |poptl/or Vi e [1, i°].

Proof. There are two cases.

Case 1: Bum e Vmopt \ Vm', such that c(vm) > a,. At this time we
obtain |p'(vm1)| < |popt |. There are two sub-cases to be discussed.

1. For Vi e [1, i° — 1], we have

Given vm e Vmopt and c(»m) > a,, we have

Given Lemma A.l, we obtain

i0
|Vm| = y^p^vm1)

i=1

i°
Ac'

< >------ X • Vmopt
tra-

<A-H(K-T)-Vmopt.

References

[1] H. Liu, Amazon data center size, 2012, https://huanliu.wordpress.com/2012/
03/13/amazon- data- center- size/.

[2] A. Varasteh, M. Goudarzi, Server consolidation techniques in virtualized data
centers: a survey, IEEE Syst. J. 99 (2015) 1-12.

[3] M.F. Gholami, F. Daneshgar, G. Low, G. Beydoun, Cloud migration processa
survey, evaluation framework, and open challenges, J. Syst. Softw. 120 (2016)
31-69.

[4] C. Ruan, J. Wang, W. Jiang, J. Huang, G. Min, Y. Pan, FSQCN: Fast and simple
quantized congestion notification in data center ethernet, J. Netw. Comput.
Appl. 83(2017)53-62.

[5] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing, Future
Gener. Comput. Syst. 28 (5) (2012) 755-768.

[6] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper. 24 (13)
(2012)1397-1420.

[7] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,
Live migration of virtual machines, in: Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation, vo. 2, USENIX
Association, 2005, pp. 273-286.

[8] H. Liu, H. Jin, X. Liao, C. Yu, C.-Z. Xu, Live virtual machine migration via asyn-
chronous replication and state synchronization, IEEE Trans. Parallel Distrib.
Syst. 22 (12) (2011) 1986-1999.

[9] T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, G. Min, Tuning the aggressive
TCP behavior for highly concurrent HTTP connections in intra-datacenter,
IEEE/ACM Trans. Netw. 25 (6) (2017) 3808-3822.

[10] S.K. Barker, T. Wood, P.J. Shenoy, R.K. Sitaraman, An empirical study of memory
sharing in virtual machines, in: USENIX Annual Technical Conference, 2012,
pp. 273-284.

[11] G. Milos, D.G. Murray, S. Hand, M.A. Fetterman, Satori: Enlightened page
sharing, in: Proceedings of the 2009 Conference on USENIX Annual Technical
Conference, 2009, pp. 1-1.

[12] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M.D. Corner,
Memory buddies: exploiting page sharing for smart colocation in virtualized
data centers, in: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ACM, 2009, pp. 31-40.

[13] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M. Voelker,
A. Vahdat, Difference engine: harnessing memory redundancy in virtual ma-
chines, Commun. ACM 53 (10) (2010) 85-93.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A. Warfield, Xen and the art of virtualization, in: ACM SIGOPS Operating
Systems Review, vol. 37, ACM, 2003, pp. 164-177.

[15] C.A. Waldspurger, Memory resource management in VMware ESX server,
Oper. Syst. Rev. 36 (SI) (2002) 181-194.

[16] P. Riteau, C. Morin, T. Priol, Shrinker: Improving live migration of virtual
clusters over wans with distributed data deduplication and content-based
addressing, in: Euro-Par 2011 Parallel Processing, 2011, pp. 431-442.

[17] U. Deshpande, U. Kulkarni, K. Gopalan, Inter-rack live migration of multiple
virtual machines, in: Proceedings of the 6th International Workshop on Virtu­
alization Technologies in Distributed Computing Date, ACM, 2012, pp. 19-26.

[18] M. Sindelar, R.K. Sitaraman, P. Shenoy, Sharing-aware algorithms for virtual
machine colocation, in: Proceedings of the Twenty-Third Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, ACM, 2011, pp. 367-378.

[19] R.W. Ahmad, A. Gani, S.H.A. Hamid, M. Shiraz, F. Xia, S.A. Madani, Virtual
machine migration in cloud data centers: a review, taxonomy, and open
research issues, J. Supercomput. 71 (7) (2015) 2473-2515.

[20] S. Rampersaud, D. Grosu, A sharing-aware greedy algorithm for virtual ma-
chine maximization, in: 2014 IEEE 13th International Symposium on Network
Computing and Applications, NCA, IEEE, 2014, pp. 113-120.

[21] S. Rampersaud, D. Grosu, A multi-resource sharing-aware approximation al­
gorithm for virtual machine maximization, in: 2015 IEEE International Con­
ference on Cloud Engineering, IC2E, IEEE, 2015, pp. 266-274.

[22] S. Rampersaud, D. Grosu, Sharing-aware online algorithms for virtual machine
packing in cloud environments, in: Cloud Computing, CLOUD, 2015 IEEE 8th
International Conference on, IEEE, 2015, pp. 718-725.

[23] H. Li, W. Li, Q. Feng, S. Zhang, H. Wang, J. Wang, Leveraging content similarity
among VMI files to allocate virtual machines in cloud, Future Gener. Comput.
Syst. 79 (2018) 528-542.

[24] A. Verma, G. Dasgupta, T.K. Nayak, P. De, R. Kothari, Server workload analysis
for power minimization using consolidation, in: Proceedings of the 2009 Con-
ference on USENIX Annual Technical Conference, USENIX Association, 2009 pp.
28-28.

[25] Z. Cao, S. Dong, Dynamic VM consolidation for energy-aware and SLA violation
reduction in cloud Computing, in: Parallel and Distributed Computing, Appli-
cations and Technologies, PDCAT, 2012 13th International Conference on, IEEE,
2012, pp. 363-369.

[26] S.S. Masoumzadeh, H. Hlavacs, Dynamic virtual machine consolidation: A
multi agent learning approach, in: Autonomic Computing, ICAC, 2015 IEEE
International Conference on, IEEE, 2015, pp. 161-162.

[27] X. Fu, C. Zhou, Virtual machine selection and placement for dynamic consoli­
dation in cloud computing environment, Front. Comput. Sci. 9 (2) (2015) 322-
330.

[28] D.A. Alboaneen, B. Pranggono, H. Tianfield, Energy-aware virtual machine
consolidation for cloud data centers, in: Utility and Cloud Computing, UCC,
2014 IEEE/ACM 7th International Conference on, IEEE, 2014, pp. 1010-1015.

[29] G.F. Shidik, A. Azhari, K. Mustofa, Improvement of energy efficiency at cloud
data center based on fuzzy Markov normal algorithm VM selection in dynamic
VM consolidation, Int. Rev. Comput. Softw. 11 (6) (2016) 511-520.

[30] E. Chlamtac, M. Dinitz, C. Konrad, G. Kortsarz, G. Rabanca, The densest k-
subhypergraph problem, 2016, arXiv preprint arXiv: 1605.04284.

[31] K. Koiliaris, C. Xu, A faster pseudopolynomial time algorithm for subset sum,
in: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SIAM, 2017, pp. 1062-1072.

[32] VMware, VMware distributed power management: Concepts and usage,
2013. URL https://www.vmware.com/techpapers/2008/vmware-distributed-
power-management-concepts-and-1080.html. (Last Accessed 29 July 2017).

[33] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation
of virtual machines in cloud data centers under quality of service constraints,
IEEE Trans. Parallel Distrib. Syst. 24 (7) (2013) 1366-1379.

[34] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, H. Lei, An empirical analysis of
similarity in virtual machine images, in: Proceedings of the Middleware 2011
Industry Track Workshop, Middleware ’11,2011, pp. 30-36.

[35] A. Beloglazov, R. Buyya, Adaptive threshold-based approach for energy-
efficient consolidation of virtual machines in cloud data centers, in: MGC@
Middleware, 2010, p. 4.

[36] Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, Multi-tiered on-demand resource
scheduling for VM-based data center, in: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, IEEE Computer
Society, 2009, pp. 148-155.

[37] J. Chen, C. Xu, J. Wang, Dealing with 4-variables by resolution: An improved
MaxSAT algorithm, Theoret. Comput. Sci. 670 (2017) 33-44.

[38] W. Li, Y. Cao, J. Chen, J. Wang, Deeper local search for parameterized and
approximation algorithms for maximum internal spanning tree, Inform, and
Comput. 252 (2017) 187-200.

[39] J. You, J. Wang, Y. Cao, Approximate association via dissociation, Discrete Appl.
Math. 219 (2017) 202-209.

[40] X. Zhu, J. Qiu, M. Xie, J. Wang, A multi-objective biclustering algorithm based
on fuzzy mathematics, Neurocomputing 253 (2017) 177-182.

Huixi Li received his M.Sc. in Computer Science from
Yunnan University in 2013. He is currently a Ph.D. can­
didate in School of Information Science and Engineering,
Central South University, Changsha, Hunan, P.R. China.
His research interests include distributed computing and
cloud computing.

Wenjun Li received his M.Sc. and Ph.D. degree in Com-
puter Science from Central South University, China, in
2010 and 2014, respectively. He was a visiting scholar at
the Department of Computing at Texas A&M University,
USA, from October 2011 to October 2012. His research
interests include algorithm analysis and optimization, pa-
rameterized algorithm.

https://huanliu.wordpress.com/2012/
https://www.vmware.com/techpapers/2008/vmware-distributed-power-management-concepts-and-1080.html
https://www.vmware.com/techpapers/2008/vmware-distributed-power-management-concepts-and-1080.html

Haodong Wang received the Ph.D. degree in computer sci­
ence from the College of William and Mary, Williamsburg,
VA, USA, in 2009. He is currently an Associate Professor
with the Department of Electrical Engineering and Com­
puter Science, Cleveland State University. His research
interests include security and privacy, parallel comput­
ing, cloud computing, wireless networks, sensor networks,
pervasive computing systems, and software defined radio.
He is a member of the ACM.

Jianxin Wang received his B.S. and M.S. degree in Com­
puter Science from Central South University of Technol­
ogy, P.R. China, and his Ph.D. degree in Computer Science
from Central South University. Currently, he is the vice
dean and a professor in School of Information Science and
Engineering, Central South University, Changsha, Hunan,
P.R. China. He is currently serving as the executive editor
of International Journal of Bioinformatics Research and
Applications and serving in the editorial board of Inter­
national Journal of Data Mining and Bioinformatics. He
has also served as the program committee member for

many international conferences. His current research interests include algorithm
analysis and optimization, parameterized algorithm, bioinformatics and computer
network. He has published more than 200 papers in various International journals
and refereed conferences. He is a senior member of the IEEE.

Post-print standardized by MSL Academic Endeavors, the imprint of the
Michael Schwartz Library at Cleveland State University, 2018

	An Optimization of Virtual Machine Selection and Placement by Using Memory Content Similarity for Server Consolidation in Cloud
	Repository Citation

	An optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloud

