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Experiences with implementing parallel discrete-event
simulation on GPU

Janche Sang · Che-Rung Lee ·
Vernon Rego · Chung-Ta King

Abstract Modern graphics processing units (GPUs) offer much more computational 
power than recent CPUs by providing a vast number of simple, data-parallel, mul-
tithreaded cores. In this study, we focus on the use of a GPU to perform parallel 
discrete-event simulation. Our approach is to use a modified service time distribution 
function to allow more independent events to be processed in parallel. The 
implemen-tation issues and alternative strategies will be discussed in detail. We 
describe and compare our experience and results in using Thrust and CUB, two 
open-source paral-lel algorithms libraries which resemble the C++ Standard 
Template Library, to build our tool. The experimental results show that our 
implementation can be two orders of magnitude faster than the sequential simulation 
for large-scale simulation models.

Keywords Parallel simulation · Discrete-event simulation · GPU · CUDA · 
Thrust/CUB

1 Introduction

Discrete-event simulation (DES) is a widely used technique that allows an analyst to 
study the dynamic behavior of a complex system [3]. DES exploits a computer to model 
a system stochastically at discrete points in simulated time. A simulation program 
operates on a model’s state variables during each of a sequence of time-ordered events

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2254-4&domain=pdf
http://orcid.org/0000-0001-7974-1765


and schedules future events during such processing. However, simulation is usually
computationally intensive and time-consuming. Typical simulation applications often
execute for hours or even days. Therefore, exploiting the availability and the power of
multiprocessors to speed up the simulation execution is of considerable interest.

Parallel discrete-event simulation (PDES) attempts to speed up a simulation’s exe-
cution by partitioning the simulation model into several distinct simulation objects,
each of which has its own event set and is executed by a Logical Process (LP) on a
different processor. That is, the traditional PDES is usually executed using themultiple-
instruction, multiple-data (MIMD) style on a cluster of workstations or on a multicore
machine. To guarantee the distributed events will be executed in an appropriate order,
two main types of synchronization mechanisms among LPs have been proposed: con-
servative and optimistic [4]. Conservative mechanisms do not allow an LP to process
an event until it is certain that causality violation will not occur. This means that an
LP will not receive an event with a smaller timestamp than its current clock from
another LP. However, An LP may wait for events that never arrive. Therefore, LPs
may send null messages to other LPs to avoid deadlocks [2]. Optimistic mechanisms
ignore inter-process synchronization issues, but make compensations by performing
rollbacks to a checkpointed consistent state when a causality error occurs [7]. This
requires periodic state saving of the simulator.

With the advance of graphics hardware technology, programming and executing
general applications on GPUs is more feasible [8]. In recent years, the GPU with
hundreds or even thousands of processing cores has been used for improving the per-
formance of various computational intensive applications [9,12,18]. Figure 1 shows
an overview of the modern GPU architecture [14]. It consists of a scalable number
of streaming multiprocessors (SMs) and each SM contains a group of streaming pro-
cessors (SPs). The kernel function, which is executed on the device, is composed of a
grid of threads to be executed on the SPs. More precisely, a grid is divided into a set
of blocks and each block contains multiple warps of threads. Blocks are distributed
evenly to different SMs to run. Thewarp is the scheduling unit, and there are 32 threads
in a warp. These 32 threads are executed using the single-instruction, multiple-data
(SIMD) style. The GPU device has its own off-chip device memory (i.e., global mem-
ory). Therefore, data need to be transferred from the host CPU before executing the
kernel function. Furthermore, shared memory and registers in a SM are on-chip mem-
ory which can be accessed much faster than the global memory. They are per-block
resources and will be released when all the threads in the block finish execution.

In this paper, we focus on the use of a GPU to perform parallel discrete-event
simulation. To meet the SIMD processing style on GPU, we restructure the sequential
simulation implementation. That is, instead of using a priority queue to maintain the
order of events, we use the parallel reduction to find the smallest event timestamp
min_t imestamp. To allow more events to be processed in parallel, our approach is
to use a modified service time distribution function with a predefined interval d. This
guarantees that the eventswith the timestamp less than or equal tomin_t imestamp+d
are independent of each other. These events can be extracted by using the parallel
selection method and then be processed simultaneously without any causality errors.
In other words, our method can be treated as a conservative approach from certain
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viewpoint. Furthermore, the event handling routines also need to be modified so the 
events can be processed in the SIMD style.

Our implementations are realized by using the Thrust [6] and the CUB [13] packages 
on the NVIDIA Compute Unified Device Architecture (CUDA) platform. Thrust and 
CUB are CUDA libraries of parallel algorithms with user-friendly interfaces resem-
bling the C++ Standard Template Library (STL). They hide the details of low-level 
CUDA function calls and provides highly optimized implementation of standard algo-
rithms, such as searching, sorting, reduction and compaction, which greatly enhances 
developer productivity. Therefore, using Thrust/CUB, an application that runs on a 
GPU can be more readable and concise. Furthermore, CUB utilizes the warp shuffle 
intrinsics [5] and the atomic operations [10] to make the execution of the library rou-
tines much faster. In this paper, we describe our experience using Thrust and CUB and 
compare their performance in our implementations. So other researchers can benefit 
from our experience for improving the performance of PDES with GPUs.

The organization of this paper is as follows. Section 2 describes the related work 
in parallel simulation and the old simulation algorithm on GPU. Section 3 presents 
our improved implementation strategies. In Sect. 4, the experiments and the results 
for performance evaluation are presented. We give a short conclusion in Sect. 5.



2 Related work

In the area of practical parallel simulation, two apparently orthogonal streams of effort
have developed over the past decades. The replication-based effort entails the natural
parallelism of statistical sampling by executing several replications of a sequential
simulation on different processors independently. The EcliPSe toolkit described in
[20,23] has proved to be a very successful system for replication-based simulations.
The distribution-based effort emphasizes functional decomposition of a model across
processors. Examples of systems supporting distributed simulation include ModSim
[24], Sim++ [1], ParaSi [21] and ParaSol [11]. An inherent difference between
the two approaches is that replication exploits statistical sampling to speed up the
generation of multiple (typically, but not necessarily independent) sample paths, while
distribution exploits model partitioning to speed up the generation of a single sample
path. In this paper, we focus on the distribution-based approach.

Because of its massively data-parallel computing power, GPU has been used by
more and more researchers for simulating large-scale models over the past few years.
For example, a discrete-event simulation of heat diffusion performed on GPU can be
found in [17]. The algorithm selects the minimum among all update times and uses
it as a timestep to perform a synchronous update of state across all elements in the
grid. Another work reported in [27] focuses on a high-fidelity network modeling and
uses the GPU as a coprocessor to distribute computation-intensive workloads. Our
approach is similar to the work in [15,16] which develop an event clustering and
execution scheme based on the concept of approximation time. In these two papers,
the former illustrates practical implementation strategies, while the latter presents an
analysis of the approximation error in their algorithm. Our algorithm borrows some
ideas from their algorithm for updating service facilities.

Note that the work in [15,16] introduced a time-synchronous/event algorithm using
a time interval instead of a precise time. Figure 2 shows the pseudo-code of the old
algorithm in [15]. To achieve a higher degree of parallel processing, their algorithm
clusters events within a time interval. That is, the simulation time is divided into many
fixed-sized time slots which is similar to the time-based simulation, a methodology
usually used for continuous physics/dynamics simulation [25]. However, unlike the
pure time-based simulation which advances the time slot by slot, the old algorithm
directly moves the clock to the slot which contains the event with the minimum times-

while ( current_time < simulation_time ) {
min_timestamp = find_min(future_event_set);
current_step = the smallest multiple of time interval greater than or

equal to min_timestamp;
parallel for each event e in future_event_set

if (the timestamp of e <= current_step) {
extract e from future_event_set;
process e and generate new events into future_event_set;

}
end parallel for

}

Fig. 2 Pseudo-code of the old algorithm in [15]
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tamp in the future event set. This could reduce the execution time if a slot doesn’t have 
any events to be processed. Therefore, as shown in Fig. 2, all events with timestamps 
less than or equal to the time slot boundary (i.e., the smallest multiple of time interval 
greater than or equal to the minimum timestamp) can be extracted from the future 
event set and then be executed.

However, the old algorithm cannot be directly used in the precise-time PDES. Note 
that the PDES should handle the events in a causal consistent way exactly as the 
sequential DES does. Let us use the simulation of a torus queueing network as an 
example. As shown in Fig. 3, a torus consists of service facilities arranged in a two-
dimensional mesh. Each facility has four outgoing and four incoming channels. When 
a token arrives at a service facility, it gets the service for some random amount of time 
if the server is idle. Otherwise, the token has to wait in the server’s waiting queue. After 
being served, the token moves to one of the four neighbors. For simplicity, we assume 
that the probabilities of a token leaving a facility on any given outgoing channel are 
equal (i.e., 0.25).

Assume that there are three tokens X, Y and Z in the torus network (see Fig. 3). The 
token X and the token Y enter the service facility[0,0] at time 0.6 and 0.7, respectively. 
The token Z will arrive at the facility[0,1] at time 0.9. Also assume that the service time 
for the token X being served at the facility[0,0] is 0.2. Using the old algorithm with the 
time interval d = 0.5, all of these three events can be processed in parallel at the time 
1.0 (i.e., the smallest multiple of d which is greater than 0.6). The scenario is depicted 
in Fig. 4a. Note that an event E in Fig. 4 represents a combined departure/arrival event.

Since both X and Y enter the facility[0,0], the old algorithm uses the original times-
tamps to keep the causal order. That is, the token X will get the service immediately, 
while the token Y will stay in the waiting queue. However, if we use the original 
timestamp for the token X to calculate its departure/arrival time, the token X should 
enter the facility[0,1] at time 0.8. As shown in Fig. 4b, a causality error occurs because
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Table 1 Number of causality errors with varying the number of facilities

Number of facilities 64×64 128×128 256×256 512×512 1024×1024

d = 0.25 363 1122 3665 12,101 36, 466

d = 0.5 1177 3738 11, 450 36,184 124, 951

the token Z, with the arrival time at 0.9, has been served in the facility[0,1] already.
Therefore, the old algorithm cannot process the events exactly as the causal order in
the sequential DES. We also conducted an experiment to verify this. We recorded the
last arrival time for each service facility. If the timestamp of a new arrival is smaller
than the last arrival time, a causality error is detected. Table 1 shows that the larger
the interval, the more causality errors occurred in the simulation.

3 The improved implementations

Our algorithm for PDES is based on the exact timestamp order, not on the approxima-
tion time as in [15,16]. The first issue we need to deal with is preventing the potential
causality error occurred as discussed in the previous section. To solve the problem, we
let the service time for each token contain the constant time interval d and subtract the
constant d from the mean service time in the invocation of the service time distribution
function. More precisely, if the service time is exponentially distributed, we change
the expression of calling exponential distribution function from



expon(M)

to

expon(M− d) + d

where M is the mean service time. Note that in the modified formula, the mean service 
time is still M, but the service time for any token is always greater than d. Therefore, 
the aforementioned causality error will not occur. For example, the timestamp of the 
new departure/arrival event for the token X in Fig. 4 will be at least 0.6 + d = 1.1 
which is after the token Z enters the facility[0,1].

Another advantage of using the modified formula for the service time is that the 
full time interval can be used to cluster events for parallel processing. Our algorithm 
extracts any event which has the timestamp less than or equal to

minimum_timestamp+ d

and hence will include more events than the old algorithm. The more the parallel 
events be executed, the faster the program runs. For example, assume that d = 0.5 and 
the minimum timestamp in the future event set is 1.42, the events with the timestamp 
between 1.42 and 1.50 (i.e., the smallest multiple of 0.5 which is greater than 1.42) 
can be processed concurrently in the old algorithm. The effective range size is only 
0.08. Using our algorithm, the range is between 1.42 and 1.92. In general, giving the 
same interval d, the average effective range size of the old algorithm is half of the 
range size in our algorithm. However, our method still has its disadvantage. The biased 
distribution function will yield a small difference as compared with the result of using 
the original distribution function. The empirical evaluation of the difference will be 
reported in the next section.

Figure 5 shows our implementation on the host using the Thrust library. As men-
tioned before, Thrust is a CUDA library of parallel algorithms with an interface 
resembling the C++ Standard Template Library (STL). One of the reasons we use 
Thrust is that it abstracts away the details of low-level CUDA function calls, such 
as cudaMalloc, cudaMemcpy and kernel launch. For example, it provides the device 
pointer which allows programmers access the device memory without calling cud-
aMemcpy explicitly. The *mptr in Fig. 5 is such a case. For interoperability with C, 
the device pointer can be converted into a raw pointer, and then, the users can use it 
as a parameter to launch a CUDA C kernel.

As shown in Fig. 5, the host launches five kernel calls on GPU: sim_init, Thrust 
min_element, thrust copy_if, process_departure and 
process_arrival. That is, after initialization of the simulation environment, it 
starts simulation by finding the event with the minimum timestamp. Then, it advances 
the clock and selects the parallel events within the interval d based on the minimum 
timestamp. Next, it will process the selected departure events and then the arrival 
events. This procedure will be repeated until the simulated clock reaches the limit. 
Note that our implementations are motivated by the support of the fancy functions, 
such as the warp shuffle, warp voting and atomic operations, from the newer 
NVIDIA



thrust::device_ptr<FACTYPE> all_fac = thrust::device_malloc<FACTYPE>(N*N);
FACTYPE *facp = thrust::raw_pointer_cast(all_fac);

thrust::device_ptr<TOKENTYPE> all_tkn = thrust::device_malloc<TOKENTYPE>(1);
TOKENTYPE *tknp = thrust::raw_pointer_cast(all_tkn);

thrust::device_ptr<int> key = thrust::device_malloc<int>(N*N);
int *kp = thrust::raw_pointer_cast(key);

thrust::device_ptr<float> events = thrust::device_malloc<float>(N*N);
float *evp = thrust::raw_pointer_cast(events);

thrust::device_ptr<int> chsn = thrust::device_malloc<int>(N*N);
int *chp = thrust::raw_pointer_cast(chsn);

...

int gridSize = (N*N + blocksize-1) / blocksize;
// initialize facilities, tokens, events, and let key[i]=i used in copy_if
sim_init<<<gridSize,blocksize>>> (facp,tknp,ep,kp);

while (clock < SIMTIME ) {

// find the event with the minimum timestamp
thrust::device_ptr<float> mptr=thrust::min_element(events, events+N*N);

clock = *mptr + d;

// select the parallel events with the timestamp <= clock
thrust::device_ptr<int> chsn_last=thrust::copy_if(key, key+N*N, events,

chsn,leq(clock));
int chsn_num = chsn_last - chsn; // number of chosen events

gridSize = (chsn_num+blocksize-1)/blocksize;

// process the departure events
process_departure<<<gridSize,blocksize>>> (facp,tknp,evp,chp,chsn_num);

// process the arrival events
process_arrival<<<gridSize,blocksize>>> (facp,tknp,evp,chp,chsn_num);

}

Fig. 5 Implementation using the Thrust library

architectures since Kepler.More detailed implementation issues about the kernel func-
tions on GPU are discussed below.

3.1 Finding the minimum timestamp

Note that we used the Thrust library in our first implementation because it provides the
functionswe needed. Sowe did not need towrite our own, and hence, the programming
effort could be saved greatly. Furthermore, these functions have been tuned particularly
for the NVIDIA GPU architecture. For example, the code used in the old algorithm
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Fig. 6 Parallel reduction steps using a interleaved addressing and b sequential addressing

[15] to find the minimum element based on the parallel reduction method is out of date 
and inefficient. The general ideas of how the parallel reduction steps are performed 
in the old algorithm and in the Thrust library are shown in Fig. 6a, b, respectively. 
The former uses the interleaved addressing approach, in which the distance between 
the two elements to be compared in the array is doubled for each reduction step. The 
latter adopts the sequential addressing approach, in which the distance is reduced half 
in every step. In theory, there is no difference between these two methods because 
both need O(log n) steps to find the minimum value among n elements. In practice, 
the latter is bank conflict-free and takes advantage of the CUDA memory coalescing 
within a warp to improve performance [8].

Recently, we found that the NVIDIA CUB library also provides a function which can 
find the minimum value in an array. Note that CUB is similar to the Thrust library, but its 
abstractions are slightly lower level than Thrust. That is, unlike Thrust which supports 
several device backends such as CUDA, TBB and OpenMP, CUB is specific to CUDA 
C++ and its interfaces explicitly accommodate CUDA-specific features. Furthermore, 
CUB utilizes the fancy warp shuffle functions to perform parallel reductions. For 
example, the function __shfl_up(int v, int d) will let the lane k thread read the variable 
v held by the lane (k − d) thread. Note that the lane is the thread’s index within a 
warp, ranging from 0 to 31. For another example, a thread which invokes the function 
__shfl(int v, int srcLane) will get the value of the variable v held by the thread with the 
lane ID srcLane. That is, if every thread in the warp copies from the same source lane, 
it behaves the same as broadcasting. These shuffle functions enable threads within 
the same warp to exchange variables (i.e., registers) without using shared memory, so 
the performance can be improved. Therefore, our revised implementation adopts the 
Min() function in CUB to find the smallest event timestamp.

3.2 Selection of the parallel events

Another important implementation issue is how to extract the aggregated events from 
the future event set. It is straightforward that the comparison of each event’s timestamp 
with the interval’s upper bound can be done in parallel on each thread. The issue here 
is the management of the chosen events to run after the comparison. The way how 
this is implemented is not discussed in [15]. The simplest approach is to let the thread
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discontinue to run if the selection criteria is not met, while the threadwhich gets TRUE
in the comparisonwill continue to execute the event, i.e., handling the departure/arrival,
updating the facility and generating new events. However, based on our experience,
only a small portion of events will be selected in a large-scale simulation. Hence, this
approach will cause many threads idle and only two or three threads in a warp can run.

The better approach is to use two phases of kernel launches. In the first phase, the
parallel events are collected into an array which stores the identifiers of the selected
events. Therefore, the number of the chosen events can be known and then we can
run that many of threads to execute the events in the second phase. For collecting the
chosen events into an array, each thread needs to figure out the correct position to be
stored in the array. There are two implementation methods for this. One method is
that we can use an index counter which will be incremented by one for each newly
selected event. Since the index counter will be shared and accessed by many threads,
the addition has to be an atomic operation. This can be done by using the CUDA
atomicInc() function. However, due to the high degree of the competition for the
mutex lock, this method cannot guarantee the input–output ordering will be preserved
for the selected elements. Another method, which is used in the Thrust copy_if
function, adopts the list ranking algorithm with the parallel prefix sum operation [26]
to obtain the position of each selected event. As shown in Fig. 7, the selected elements
keep the same relative order as in the input.

Note that there is a hybrid approachwhich utilizes both of the atomic and the parallel
prefix sum operations [19] to perform selection on GPUs. This approach divides the
input elements into many 1024-element groups and each group will be further divided
into 32 subgroups. Each group will be processed by a warp using three steps, as shown
in Fig. 8. In the first step, it uses the intra-warp voting functions such as __ballot()
and __popc() to get the number of selected elements for each subgroup. Note that the
__ballot(int p) function returns a 32-bit integer in which bit n is set if and only if the
predicate p provided by the thread with lane ID n is nonzero. Namely, the __ballot()
intrinsic collects the predicates from all threads in a warp into a 32-bit integer and
returns this integer to every thread. The __popc(int v) function performs the population
count operation by returning the number of bits which are set to 1 in the 32-bit integer
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v, where v is the returned value from the __ballot(). Therefore, using both __ballot() 
and __popc() functions, each thread in a warp can cast a one-bit vote and count the 
votes quickly. Next, the hybrid method adopts the warp shuffle function __shfl_up() 
to obtain the offset for each subgroup and the total of selected elements in a group. So 
in the second step, the group total can be added to the global counter via atomicAdd() 
to get the group offset. In the third step, the group offset can be broadcasted to all of 
the threads in a warp by using the __shfl() function. Furthermore, the intra-subgroup 
offset for a wanted element can be obtained by using bit masking and __popc(). So 
a thread can find the chosen element’s location in the destination array by adding the 
group, the subgroup and the intra-subgroup offsets together. Because this hybrid will 
invoke atomicAdd() at most once for each 1024-element group, the execution time 
depends on the input number of elements, not on the number of selected elements. 
Furthermore, the use of intra-warp voting, atomic operation and warp shuffle functions 
makes this approach very efficient.

3.3 Processing departure and arrival events

Figure 9 shows the pseudo-code of event execution. When a token leaves a facility, 
the first token, if any, in the waiting will get its service and a departure event will be 
scheduled for it. For the leaving token, an uniform random variable will be generated to 
determine its destination and its token identifier and timestamp will be put into the next 
service facility’s incoming port. For processing the arrivals at a facility, we append all 
of the incoming tokens to the waiting queue if the service facility is busy. Otherwise, 
the newly arrived token with the smallest timestamp can start the service, while the rest 
of incoming tokens will be put in the waiting queue based on their timestamp order. 
Note that processing the departures and the arrivals should be launched from the kernel, 
respectively. This is because we have to wait until all of the threads finishes the process 
of departures and then start the process of arrivals. Otherwise, the incoming port data



__global__ void process_departure(facp,tknp,evp,chp,chsn_num)
{

calculate the statistics;
If the facility’s waiting queue is empty {

set the state of the facility to be idle;
} else {

remove the front token from the waiting queue and put it in service;
schedule a departure event for the token;

}
determine destination for the leaving token;

}

__global__ void process_arrival(facp,tknp,evp,chp,chsn_num)
{

sort the incoming tokens (at most 4) by their timestamps;
if the state of the facility is idle {

let the first incoming token get the service and schedule a departure
event for it;

put the rest of incoming tokens into the waiting queue;
} else

append the incoming tokens to the waiting queue;
}

Fig. 9 Pseudo-code for event processing

will not be consistent. Furthermore, the CUDA function__syncthreads() cannot
be used here because it can only synchronize the threads within a warp, not all of the
threads.

4 Experimental results

In this section, we compare our PDES implementation on the GPU with a sequential
heap-based DES on the CPU. The experimental platform, supported by Ohio Super-
computingCenter, has oneDell PowerEdgeR730with two IntelXeonE5-2680 version
4 processors (2.40GHz, 128GB memory) running 64-bit Linux OS. The GPU used
in the experiments is a cutting-edge NVIDIA Tesla P100 (Pascal), which contains 56
multiprocessors (3584 CUDA cores in total) and 16GB GDDR5 memory. The device
programs use CUDA compiler driver 8.0, Thrust version 1.8.3 and CUB version 1.6.4.
The parallel algorithm runs on the host and the device, while the sequential algorithm
runs on the host. The torus queueing network model mentioned in the earlier section
was used for the simulation.

In the first experiment, we compared the selection performance of using Thrust
copy_if, atomicInc and the hybrid selection algorithm proposed in [22]. We
conducted a simple measurement by choosing a certain percentage, say p, of 16-
million randomnumberswhich are uniformly distributed between [0.0, 1.0) and stored
in an array. That is, given a p, the numbers which are less than or equal to p will be
selected and their corresponding array indices will stored in the output array. Figure 10
shows the kernel execution times, excluding the array transfer time, for these three
methods by varying the percentages. It can be found that the selection times using
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Fig. 10 Selection performance comparison of using atomicInc and Thrust copy_if

Thrust copy_if are unchanged even when the percentage increases. This is because 
Thrust copy_if uses the list ranking algorithm with the parallel prefix sum operation. 
Hence, its execution time depends on the input data size, not on the size of the selected 
output data. On the contrary, the execution time of using atomicInc grows linearly 
and proportional to the size of the selected random numbers. The reason is that any 
selected random number has to call the atomicInc function to find its position in 
the output array. The atomicInc function becomes the bottleneck. Note that the 
intersection of the two lines in Fig. 10 is the trade-off size of the selected numbers 
between atomicInc and Thrust copy_if. In other words, it is preferred using 
atomicInc if the size of the selected output is small, while using Thrust copy_if 
when the output size is large. Note that as mentioned before, the running times of the 
hybrid approach are also not dependent on the percentage p, because each group will 
issue only one invocation of atomicAdd(). Furthermore, it can be seen that the hybrid 
approach performs the best due to using the efficient intra-warp voting, warp shuffle 
functions and atomic operations.

As reported in [13], the function of finding the minimum in an array which is sup-
ported by the NVIDIA CUB library runs faster than the one in Thrust. So we replaced 
the Thrust copy_if with the CUB Min() function in our revised implementation. 
Table 2 shows the difference of the breakdown time for simulating a 2048 × 2048 
torus network. In the simulation model, the mean service time (i.e., the parameter M 
in calling the function expon()) of the service facility is set to 10 and the simula-
tion runs until the simulated clock reaches 50,000. It can be observed that our revised 
implementation using CUB Min and the hybrid selection method runs faster that our 
previous version which uses Thrust min_element() and copy_if() functions. 
Furthermore, the execution times of processing the departure and the arrival events



Table 2 Comparison of breakdown time (in seconds) using Thrust min, Thrust copy_if, CUB min and
Hybrid Select (number of facilities: 2048×2048)

Find min Selection Departure Arrival Total

d = 0.25 Thrust min 129 Thrust copy_if 163 92 59 444

CUB min 11 Hybrid Select 22 98 64 195

d = 0.5 Thrust min 65 Thrust copy_if 82 95 59 301

CUB min 6 Hybrid Select 11 94 60 171

d = 1.0 Thrust min 32 Thrust copy_if 41 86 54 213

CUB min 3 Hybrid Select 6 87 53 149

d = 2.0 Thrust min 17 Thrust copy_if 21 80 49 167

CUB min 1 Hybrid Select 3 81 49 134
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Fig. 11 Percentage of total execution time (d = 1.0)

are decreased when the interval d increases. This is because more independent events
can be processed in parallel for a larger d.

In the next experiment, we measured the breakdown percentage of the total exe-
cution time of our revised implementation for the interval d = 1.0 by varying the
number of facilities. Figure 11 shows that the percentages of the total execution time
for processing the departure events and the arrival events increase when the number
of facilities increases. The larger number of facilities, the more events needed to be
processed.

We then measured the simulation execution times of our revised implementation by
varying the number of facilities and the interval sizes. Figure 12 shows the performance
improvement in the GPU experiments compared to the sequential simulation on the
CPU. The speedups grow when the number of facilities increases. In particular, our
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Fig. 13 Average number of parallel events

PDES implementation outperforms the sequential DES by more than 200× speedup 
for 2048 × 2048 facilities with d = 2.0. The curve increases as the data size increases 
which implies that the speedup could be increased further for simulating a larger-scale 
torus network. Figure 12 shows that the larger the interval value d, the larger the 
speedup obtained. This is because a larger interval allows more parallel events to run. 
To verify this, we also measured the average number of parallel events for different 
number of facilities and different interval sizes. The result is shown in Fig. 13.
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Fig. 15 System waiting time with different time interval d

In another experiments, we evaluated the accuracy in simulation summary statistics
due to the use of the modified service time distribution function. Figure 14 shows
the difference in the facility server utilization for varied intervals. The simulation
with smaller time interval behaves closer to running the simulation with the original
service distribution function, i.e., utilization rate is %50. As the interval d increases,
the utilization also increases because the service time is at least large as d. Figure 15



shows similar effect on the system waiting time, which is the average time of a token
staying in a service facility, including the service time and the waiting time in the
queue. For the purpose of comparison, we used two mean service times 10 and 20,
and the expected system waiting time will be 20 and 40, respectively, if the original
service distribution function is used. Unlike utilization, the system waiting time drops
as interval increases. For the same interval d , the larger mean service time has smaller
difference in utilization and system waiting time because the interval d occupies a
smaller portion in the service time.

5 Conclusion

We presented fast implementations of PDES on GPU by using the productivity-
oriented Thrust andCUB libraries. Our scheme exploits amodified service distribution
function to allow clustered events to be processed in parallel, while preserving times-
tamp ordering and causal relationships of events. CUB, which provides a collection
of optimized data-parallel primitives such as reduce, stream compaction and prefix
sums, makes our implementation much more efficient. The experimental results are
encouraging. We were able to achieve 240× speedup using our implementation at
the expense of accuracy in the results. This indicates that our implementation utilizes
the massively data-parallel processing power of GPU and is suitable for large-scale
simulation models.
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