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NSDroid: efficient multi-classification of android malware using
neighborhood signature in local function call graphs

Pengdfei Liu - Weiping Wang - Xi Luo -Haodong Wang - Chushu Liu

Abstract

With the rapid development of mobile Internet, Android applications are used more and more in people’s daily life. While
bringing convenience and making people’s life smarter, Android applications also face much serious security and privacy
issues, e.g., information leakage and monetary loss caused by malware. Detection and classification of malware have thus
attracted much research attention in recent years. Most current malware detection and classification approaches are based on
graph-based similarity analysis (e.g., subgraph isomorphism), which is well known to be time-consuming, especially for large
graphs. In this paper, we propose NSDroid, a time-efficient malware multi-classification approach based on neighborhood
signature in local function call graphs (FCGs). NSDroid uses a approach based on neighborhood signature to calculate
the similarity of different applications’ FCGs, which is significantly faster than traditional approaches based on subgraph
isomorphism. For each node in the FCGs, NSDroid uses a fixed-length neighborhood signature to capture the caller-callee
relationship between different functions and combines neighborhood signatures of all nodes to form a vector that characterizes
the function call relationship in the whole application. The generated signature vector is fed into a SVM-based classifier to
determine which family the malware belongs to. Experimental results on large-scale benchmarks show that, compared with
state-of-the-art solutions, NSDroid reduces average detection latency by nearly 20 x, and meanwhile improves many evaluation
index such as recall rate and others.

Keywords Android application - Neighborhood signature - Graph structure - Machine Learning

1 Introduction
1.1 Research status and motivation

Android has become the main operating system platform for
smartphones in recent years. While bringing convenience
to people’s daily life, Android also faces serious security
and privacy issues because of its openness. Tencent antivirus
laboratory [1] reported that more than 14.94 million mali-
cious Android Apps were detected in 2017. Many malicious
applications have homologous code, because they usually use
different variant of malicious code originating from the same
malicious library or written by the same author. Determin-
ing the homology of malicious applications is thus helpful
to track the organizational behavior of malicious applica-
tions, which has attracted much research attention in recent
years [2—4].

Existing malware detection and classification approaches
are usually based on graph similarity analysis [2-7]. They
rely on graph algorithms with high time complexity (e.g.,



Table 1 Application type in each malicious family

Category Family name APK name of

(total number) each family
(number)

A FakePlayer (6) 1

A Gone (9) 1

B ADRD (22) 14

B AnserverBot (187)

B Bgserv (9)

B BaseBridge (120) 31

C Asroot (8)

C BeanBot (8)

C DroidDream (16) 16

C DroidDreamLight (46) 46

subgraph isomorphism) to judge the similarity between the
graph structure of different applications’ code, which is time-
consuming. Different types of graphs are extracted from the
applications’ code and used for malware detection and classi-
fication, such as the API dependency graph [2-5], the control
flow graph [6], and the function call graph [7]. Subgraph sim-
ilarity approach [8] constructs frequent subgraph to represent
the common behaviors of malwares in the same family for
familial classification of Android malware. In these methods,
the code of an application is converted into a graph struc-
ture. Then the similarity among applications is determined
by the subgraph isomorphism [9,10]. However, the subgraph
isomorphism has been proved to be an NP-complete prob-
lem [11]. In practice, itis extremely time-consuming to match
the subgraph structure by using the subgraph isomorphism.
More time-efficient malware classification approach needs
to be developed.

1.2 Code similarity between malicious applications

It is believed that the malware families have a certain level
of homogeneity and thus the code of malicious applications
from the same family has high similarity [7,12,13]. We have
verified this hypothesis with a series of experiments. In the
experiment, we randomly select a number of malicious appli-
cations from 10 families and conduct the analysis in the
Malgenome Project sample [14]. As shown in Table 1, mul-
tiple malicious applications from the same family have the
same application name. For example, there are 187 applica-
tions in the malicious family named “AnserverBot,” but there
are only nine distinct application names. These applications
with the same application name possess a high-degree code
similarity.

To further study the difference in code similarity between
malicious applications from the same family and those
from different families, we divide the 10 families into three
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Fig. 1 Similarity of applications in different categories

categories: Category A contains families in which all the
applications have the same name, category B contains fami-
lies in which only a part of applications have the same name,
while category C contains families in which all applications
have different names. We use UltraCompare [15] to compare
the pairwise similarity between the smali code of different
applications in different categories.

We plot the cumulative distribution function (CDF) curve
of applications in different categories in Fig. 1. It clearly
shows that the applications in category A are highly similar
to each other, with an average similarity rate higher than 95%.
The applications in category B also have high similarity. In
category B, more than 95% of applications have a similar-
ity above 90%. Compared with category A and category B,
the similarity among applications in category C is slightly
low, but more than 70% of applications still have similarities
higher than 50%. We also plot CDF curve of code similarity
for applications from different families, marked with cate-
gory D in Fig. 1. Applications from different families have
a very low similarity: Only 10% of the applications have the
similarity rate higher than 30%. Apparently, the applications
from the same family are much more similar than those from
different families.

Based on the above analysis, we propose NSDroid, an effi-
cient malicious application multiple classification schemes.
NSDroid constructs the function call graph of the Android
application and leverages the function call local structure,
which is represented by the neighborhood signature [16],
to compare the similarity with the trained malicious appli-
cation families. An support vector machine (SVM) model
is used to complete the malicious application classification.
We compare the classification performance and the opera-
tion efficiency between NSDroid and FalDroid [8]. FalDroid
uses frequent subgraph similarity to classify Android fam-
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ilies. The results show that NSDroid significantly reduces
the running time by 20 times and improves the classification
accuracy and recall by 2.2% and 1.4%, respectively.

The rest of this paper is structured as follows. Section 2
describes the overall process of our detection method. Sec-
tion 3 introduces the experiments and results. Limitations
and related work are given in Sects. 4 and 5, respectively.
Finally, Sect. 6 concludes the paper.

2 Classification method: NSDroid
2.1 NSDroid overview

NSDroid extracts the subgraph of FCG for measuring the
similarity of applications. Different from the existing studies,
we use the neighborhood signature to represent the sub-
graph and calculate the similarity between different graphs.
The neighborhood signature of a node in the FCG contains
the call dependency between the node and its neighborhood
nodes (the direct caller and callee). We expect the neighbor-
hood signature to uniquely represent the characteristics of a
subgraph. Therefore, the signatures constructed from differ-
ent subgraph should be different. If two different subgraphs
obtain the same neighborhood signature, we denote it as a
collision. To satisfy the above requirements, neighborhood
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signatures need to meet the following conditions: (1) sim-
plicity in a calculation and (2) low collision probability.

Based on the similarity of the same family, the classifica-
tion is based on the proportion of neighborhood signatures
that are more similar for applications belonging to the same
malicious family. In NSDroid, the SVM model is adopted as
the classifier. All neighborhood signatures of function call
graph are taken as the input of a trained SVM classifier. The
SVM classifier is generated based on existing classification
dataset training, and classification is carried out by calculat-
ing similarity. NSDroid’s operation goes through three steps,
as depicted in Fig. 2: (1) FCG generation, and each node
is represented by a sensitive API vector, (2) generating a
corresponding neighborhood signature for each node in the
function call graph, and (3) the SVM model is used for clas-
sification.

In the rest of this section, we depicted each of these steps
in detail.

2.2 FCG and node bit vector generation

The first step in NSDroid is to extract the application’s
function call graph. We use a general tool of the Android
framework, androgexf [17], to extract the function call graph
in order to ensure the preservation of the call relationship.
The androgexf tool has been widely used to generate FCG



Table2 System APIs categories and their corresponding positions

API category Position API category Position
Location 1 Calendar 9
Network 2 Settings 10
Account 3 Browser 11

File 4 nfc 12
Bluetooth 5 Phone state 13
Database 6 Audio 14
Email 7 Contact 15
sms/mms 8

from APKSs [2,4,18,19], and it can recover precise function
call relationship at the bytecode level.

We use a tool named androgexf to generate the call graph,
in which the node and the edge represent the method and
the call relations between two methods, respectively. Partic-
ularly, the function call graph is a directed graph. As depicted
in Fig. 2, edge(A,B) indicates that A calls B in this program.
Taking the sensitive APIs called by these methods into con-
sideration, we use a label of 15 bit to mark these nodes based
on the 15 types of sensitive APIs in Table 2. In detail, when a
node calls a special type sensitive APIs, the bit corresponds
to that type is set as 1. Because the APIs in the same type
behave similarly, we consider two nodes with the same label
(e.g., in the same type) functions similarly.

As shown in Fig. 3, we give a tagging example of a node
with sensitive APIs categories. In Fig. 3, FCG corresponds to
a subgraph consisting of node A in a function call graph and
its nodes that have a direct call relationship with A. This sub-
graph indicates that C, D call A, and A calls B. To mark Node
A, we extract two sensitive API (marked in bold) from Node
A, respectively: Landroid/telephony/TelephonyManager and
Landroid/-database/sqlite/SQLiteStatement. The first API
belongs to the category of a database, which corresponds
to the 6th bit in the vector. The second API belongs to the
category of phone state, which corresponds to the 13th bit
in the vector. We tag the 6th bit and the 13th bit of the 15-
bit vector as 1 and the other bits as 0. So the corresponding
tagged value of node A in Fig. 3 is 000001000000100.

2.3 Neighbor signatures generation and analysis

Now we describe the details of generating the neighborhood
signatures for nodes in the FCG. The neighborhood signature
of a node is obtained by XORing its label with all its neigh-
borhoods’ labels. To better distinguish the relationships of
the caller from callee and avoid the collisions, we first adopt
the circular shift of these labels. In particular, the node itself
shift left a bit circularly. As for its neighborhoods, the node
that caller shift left two bits circularly while the nodes that
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Fig.3 Tagging example of a node with sensitive APIs categories

called shift left three bits circularly. The caller and callee of a
node are circularly shifted by different bits because this can
help distinguish different function invocation directions. On
the other hand, the method of circular shift will bring side
effects, but the impact is small. The details are described in
Sect. 2.3.2.

Now we have realized the structural representation of the
call relationship between nodes in the function call graph
through different circular shifts left. In order to map node
structure information directly connected to a node to that
node, we introduce XOR operation. The neighborhood sig-
nature value of the node is generated by XOR marking the
node and its directly connected node. We expect the neigh-
borhood signature to uniquely represent the characteristics
of a subgraph. Therefore, the neighborhood signatures con-
structed from different subgraphs should be different. If two
different subgraphs obtain the same neighborhood signature,
we denote it as a collision. To make a neighborhood signa-
ture uniquely represents a subgraph, the collision probability
should be small. The details are described in Sect. 2.3.3.

2.3.1 Neighbor signature generation
The generation of neighborhood signatures mainly consists

of two parts: circular shift left for the label of a node and
XOR with neighborhood node’s labels. The specific opera-
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tion process is as follows. The node itself shift left by one
bit circularly. As for its neighborhoods, the node invoking
the current node shift left two bits circularly, while the node
invoked by the current node shift left three bits circularly.
Once the circular shift left is completed, we do the bitwise
XOR on the resulting bit vectors, including the given node,
its predecessors and its successors. The generated XOR value
is the neighborhood signature of the specific node.

In the following, we use an example to illustrate the neigh-
borhood signature generation process. Given a function call
graph shown in Fig. 4, we calculate the neighborhood signa-
ture value of node A. For simplicity of description, we tag
the vector of the node in the function call graph as 5 bits.

As shown in Fig. 4, node A has its vector 10001. A’s
predecessors, C and D, have their vectors 11001 and 01101,
respectively. A’s successor, B, has its vector 01011. In the
circular shift shown in Fig. 4, node A circularly shifts 1 bit
to the left and gets 00011. Both C and D circularly shift 2
bits to the left and get 00111 and 10101, respectively. Node
B shifts 3 bits to the left and gets 01011. Once the circular
shift is completed, we apply XOR operation and obtain the
bit vector 01011 as the neighborhood signature for node A.

2.3.2 Explanation of circular shift left

In order to distinguish the same function but different call
relationship, we adopt the circular shift left. As shown in
Fig. 5, because of employing this method, neighborhood sig-
natures of the eight types of subgraph structures are different.

On the other hand, the method of circular shift and XOR
can be used to distinguish different call relations of the same
node. But we observe that it may bring side effects, which
will make some graphs with different structures generate the
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same neighbor signature. As shown in Fig. 6, although the
six kinds of graphs are different, because of the circular shift
operation, the neighbor signatures of the central node are all
the same, which is called “circular shift collision.”

In order to verify the possibility of the “circular shift colli-
sion,” we circularly shifted a function label to left and to right
1 or 2 bits. Then we observed the appearance of new labels
in real samples. We have made statistics on the node labels
in the 11038 APK in the dataset [20], and we have obtained
203 different node labels in the sample. We selected the top
30 node labels that appeared most frequently as the experi-
mental labels.

We respectively performed the four operations with the
selected experimental label by shifting to left 1 or 2 bits, or
shifting to right 1 or 2 bits circularly. Then we observed
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Table 3 The real situation of the experimental label after four opera-
tions

Number of real labels
after operation

Operation

Circular shift left 1 bit
Circular shift left 2 bit
Circular shift right 1 bit
Circular shift right 2 bit

(= =

whether the label that appeared after the operation really
existed. As shown in Table 3.

Table 3 shows the number of labels that actually exist after
the circular shift. Table 1 shows that the number of labels that
actually exist after the shifting is very small, especially the
experimental label which was shifted to left 1 bit or 2 bits did
not exist in the original sample. At the same time, even if the
label after the circular shift exists, it still needs to satisfy the
calling relationship to cause “circular shift collision.” There-
fore, although we cannot give a rigorous proof of probability,
we can conclude that the impact of this collision is small.

2.3.3 Analysis of the neighborhood Signature’s Collision

To guarantee the uniqueness of the neighborhood signatures,
we have analyzed the collision probability of the neighbor-
hood signature in this section.

We took 11038 APKSs from the dataset [20] as the exper-
imental samples. We extracted a total of 853,995 neighbor
signatures from the function call graphs generated in these
APKs. These neighbor signatures were divided into 297
different types. Table 4 shows the type of neighborhood sig-
natures and the collision data distribution we extracted from
the dataset.

As shown in Table 4, the column “NS” corresponds to
the neighbor signature represented by a 15-bit vector. The
column “Quantity of NS” indicates the number of times the
neighbor signature appears in the entire dataset. For exam-
ple, the first row of Quantity of NS is 3, which means that

Table 4 Collision distribution of neighborhood signature

D NS Quantity of NS Distribution of NS
1 100000000001001 3 Vv

2 001000000000010 5 (1,1,1,2)

3 000100000000001 3 Vv

4 000000000010001 94 (24,20,16,34)

5 000000000100000 233 (1,3,229)

6 000000000000100 591 (7,5,3,576)

7 000000000000111 90 (1,2,87)

8 000000010000010 7 VA

9 100000000000010 372 (5,2,3,362)

10 000100000000011 1 VA

11 100000000101010 1 VA

° [ ] ° [ ]

K ° n (n, n2,n3, ...ny)
° (] ° [ ]

295 000000110000001 1 J

296 000000000100001 5 (3,2)

297 000001000000000 919 (9,3,1,906)

ID: Serial number of neighborhood signature

NS: Neighborhood signature. e: Ellipsis

Quantity of NS: Total quantity of the NS

/: This kind of NS structure is all the same
Distribution of NS: Quantity of the same structure in NS

the neighbor signature with the value of 100000000001001
appears three times in the entire dataset. “Distribution of
NS” indicates that the neighbor signature corresponds to
the quantity distribution of different structures. “,/” indi-
cates that the corresponding substructures are all the same.
(n;, na, n3, ...ny) indicates that there are m different sub-
structures in the neighbor signature, and nm indicates the
number corresponding to the mth substructure. For example,
(1, 1, 1, 2) corresponding to the second line indicates that
the neighbor signature (001000000000010) has four differ-
ent substructures, and the numbers are 1, 1, 1, and 2.

Definition 1 We define the collision rate of neighbor signa-
tures (the neighbor signature values are the same but the
substructures are different) as P.

2 _ (2 2 2 (2
P = ZK C“’i (Cu'i.1+CWi,2+Cu’i,3+ +sz‘,m> x Wi
i=l1 C%’i Nrotal

As shown in Definition 1, because the ID of Tablel
is 297, the value of K is 297. The “Nroa” indicates
that the total number of extracted neighbor signature is
853,995, and the “w;” indicates the number contained
in each signature of 297 different neighbor signatures.
“wi 1, Wi, W;i3,... W, represents the number of dif-
ferent structures each neighbor signature contains. Take
the value in the 4th row as an example, the number of
NS(000000000010001) is 94, and the number of different
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substructures is 24, 20, 16, 34. Then ws = 94, w41 =
24, wsr = 20, w43 = 16, and wg 4 = 34. These values
are substituted into the above formula, and the probability
P of the collision of neighbor signatures in this data set is
calculated to be 7.072%. As follows:

21 CS)[—(Ci[l+C5)[2+C5)H+~~+C5,[m> w;
P Z 5 B I, o

5 *
C w; NTotal

i=1

_G-G s €2, — (C2 +C2y + Co + C2,)
Cc? 853995 2,
2 2 2 2 )
LM, GG LA G4 G
853995 o
Clo— (C3+C3+C3) 919
ooy oo (G5 G+ o) =7.072%

%
Cs, 853995

We also analyze whether the collision impacts the mal-
ware family classification or not. As depicted in Fig. 1 in
our manuscript, we found that the code similarity of the
same family was very high. Moreover, in different family
the similarity was much lower than that of the same family.
For example, the similarity of family A and B is between 90
and 95%. And the applications with their similarity threshold
value up to 50% accounts for 70% in family C As a conse-
quence, two applications of the same family are more likely
to have the same neighbor signature. In this case, we can
regard the collision probability of our datasets as noise. The
classification result will not be impacted by these collision
signatures as well.

2.4 Feature vector generation

In order to classify malicious codes by similarity, we use
neighborhood signatures to generate feature vectors cor-
responding to Android applications. The feature vector is
expressed as a vector of 215 — 32,768 dimensions. Each
dimension value represents the number of nodes corre-
sponding to the neighborhood signature of the function call
graph. Detailed description is illustrated in Fig. 7. The node

corresponding to a function call graph can represent the dis-
tribution of the number of substructures containing different
function calls graph.

Figure 7(1) shows the number of different neighbor sig-
nature corresponding to an APK, and Fig. 7(2) shows its
corresponding feature vector. The value of the ith dimension
of an APK eigenvector represents the times of occurrence of
a neighbor’s signature corresponding to the binary value of
i. For example in Fig. 7(2), the value of the third dimen-
sion is 6, and the binary value of the neighbor signature
(000000000000011) is converted to decimal 3, which cor-
responds to the third dimension. The value 6 indicates that
the neighbor signature (000000000000011) appears 6 times
in the APK.

Support vector machine (SVM) judges the similarity of
two malicious codes according to the similarity of this distri-
bution. We input 32,768 dimensions vectors into the SVM.
The SVM is trained by using the existing family datasets to
obtain an effective classifier. We use Weka, a tool that imple-
ments typical machine learning algorithms, to perform model
training and malware classification.

3 Evaluation

We evaluate the performance of NSDroid on five datasets as
listed in Table 5. To verify the effectiveness and efficiency of
NSDroid, we conduct the following four experiments:

(1) The efficiency of NSDroid. First, FalDroid uses frequent
subgraph similarity to classify Android families. There-
fore, we use the same dataset (DataSetl) to verify the
efficiency of NSDroid by comparing its execution time
with FalDroid (Sect. 3.2).

(2) Effectiveness of NSDroid. In the second experiment, we
verified the effectiveness of NSDroid on the same dataset
(DataSet1) by comparing with the classification results
of FalDroid.



Table 5 Datasets used in our

experiments ID Dataset source Number of APK Number of family
DataSetl Paper [8] 6547 30
DataSet2 Paper [14] 1169 19
DataSet3 Paper [21] 24,533 71
DataSet4 Paper [18] 4941 33
DataSet5 Merge datasets 32,190 121

(3) Generalization of NSDroid. In the third experiment,
we use five datasets to test the classification effect
of NSDroid and verify the generalization of NSDroid
(Sect. 3.4).

(4) Verification of classification algorithm. Finally, we use
DataSet?2 to verify the classification effect of NSDroid in
different classification algorithms and verify that SVM
classification algorithm is best (Sect. 3.5).

What we need to explain is that we chose FalDroid for
comparison because it has a good classification effect. We
also provided datasets and execution code.

3.1 Experimental dataset and environment

As shown in Table 5, we also obtained four multi-family
datasets provided by other literature. The detail of these
datasets is shown in Table 5. The DataSet5 dataset is a merged
dataset after merging the previous 4 datasets (DataSet 1,
DataSet 2, DataSet 3, DataSet 4). Repeating parts have been
removed. The dataset contains 32,190 malicious samples that
are divided into 121 families. Our experimental machine
features a dual-core CPU with frequency 3.2 GHz, 16GB
memory, and installs Ubuntu 14.04 (64 bit).

3.2 The efficiency of NSDroid

We perform the comparison test to compare the time effi-
ciency between NSDroid and FalDroid. The procedure is
designed as following three steps: (1) FCG generation; (2)
the feature vector generation from FCG; and (3) the feature
vector importation for classification. Since the first step is the
same for both classification methods, we only compare the
time consumption for step 2 and step 3.

(1) Generating feature vectors by FCG

‘We compare the time consumption of two methods to gen-
erate feature vectors from FCG. The same dataset (DataSet2)
and the same classifier (SVM) are used for both methods.

As shown in Fig. 8, the time consumption of FalDroid is
distributed between 0 and 20s (diamond symbol). The run-
time overhead of NSDroid is concentrated between 0 and 1's
(asterisk symbol), and 99% of runtime overhead is concen-
trated between 0 and 0.5s. By comparing these two curves,
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Fig.8 Runtime contrast between NSDroid and FalDroid

Table 6 Time comparison of different dimensions

Method Classifier Dataset Dimension Time (s)
NSDroid SVM DataSet1 32,768 11.71
FalDroid SVM DataSetl 1000 1.87

NSDroid has better efficiency of runtime overhead, speeding
up the classification process by nearly 20x.

(2) Importing feature vectors into the SVM model for clas-
sification

Since the dimensions of the feature vectors produced by
the two methods we compare are different, we verify the
effect of different dimensions on the time consumption of
classification. NSDroid generates a feature vector of 32,768
dimensions, while FalDroid generates a 1000-dimensional
feature vector. We put the feature vectors of two different
dimensions into the same SVM model.

As shown in Table 6, the number of dimensions by
NSDroid is 30 times more than that of FalDroid, while the
time consumption is only six times more in step 2. It can
be seen from the above analysis that the dimension has little
effect on time consumption for SVM. Table 7 shows the test
runtime of the two methods on DataSetl. As you can see
from the total time, although the NSDroid takes longer in
step 2, the total time is still much less than the FalDroid.



Table 7 Total time of two method

Method Step 1: total Step 2: total Total time
time (FCG — time (vector
vector) (s) — SVM) (s)
FalDroid 2448 1.87 2449.87
NSDroid 83.2 11.71 94.91

Next we explain why NSDroid is more efficient than Fal-
Droid. In NSDroid, the features of malware is captured by the
neighborhood signature, which is generated by only using
XOR operations. FalDroid, however, constructs frequent
subgraphs to represent the malware features. The construc-

Table 8 Performance comparison of two methods

tion of frequent subgraphs and the relevant graph matching
are computing-intensive and therefore consume more run-
ning time.

3.3 The effectiveness of NSDroid

In order to verify the effectiveness of NSDroid, we compare
the classification performance between NSDroid and Fal-
Droid on DataSet1. Because the metrics of FalDroid is TPR
(true positive rate), FPR (false positive rate), P (precision),
R (recall rate), F' (F value), AUC (area under the curve), the
metric of our classification is the same as above.

We use tenfold cross-validation to train and test DataSet1
with NSDroid. The experimental results are shown in Table 8.

MalFamily NSDroid method FalDroid method

TPR FPR P R F AUC TPR FPR P R F AUC
adwo 0.959 0.003 0.943 0.959 0.951 0.995 0.879 0.002 0.946 0.879 0911 0.938
airpush 0.813 0.001 0.924 0.813 0.865 0.973 0.600 0.001 0.833 0.600 0.698 0.799
basebridge 0.931 0.002 0.956 0.931 0.943 0.983 0.950 0.002 0.960 0.950 0.955 0.974
bogx 0.475 0.002 0.607 0.475 0.442 0.892 0.375 0.001 0.667 0.375 0.480 0.687
boxer 1 0 1 1 1 1 1 0 1 1 1 1
clicker 1 0 1 1 1 1 1 0 1 1 1 1
dowgin 0.960 0.002 0.974 0.960 0.967 0.991 0.908 0.006 0.933 0.908 0.921 0.951
droiddream 0.941 0.001 0.960 0.941 0.950 0.988 0.941 0.002 0.865 0.941 0.901 0.969
droidkungf 0.970 0.003 0.974 0.970 0.972 0.992 0.975 0.011 0.918 0.975 0.988 0.988
fakedoc 1 0 1 1 1 1 1 0 1 1 1 1
fakeinst 0.993 0 1 0.993 0.996 0.999 0.996 0.002 0.987 0.996 0.991 0.997
fakeplay 1 0 1 1 1 1 1 0.001 0.875 1 0.933 1
geinimi 0.990 0 1 0.990 0.995 0.994 1 0 1 1 1 1
gingermast 0.934 0.003 0.950 0.934 0.942 0.992 0.893 0.010 0.838 0.893 0.865 0.942
golddream 0.966 0.001 0.934 0.966 0.899 0.980 0.963 0 1 0.963 0.981 0.981
hongtoutou 1 0 1 1 1 1 1 0 1 1 1 1
iconosvs 1 0 1 1 1 1 0.980 0 1 0.980 0.990 0.990
imlog 1 0 1 1 1 1 1 0 1 1 1 1
kmin 0.996 0 0.996 0.996 0.996 1 0.976 0 1 0.976 0.988 0.988
kuguo 0.964 0.003 0.948 0.964 0.956 0.997 0.924 0.003 0.940 0.924 0.932 0.960
mobiletx 1 0 1 1 1 1 1 0 1 1 1 1
pjapps 0.971 0 0.987 0.951 0.971 0.996 0.963 0 1 0.963 0.981 0.981
plankton 0.989 0.001 0.995 0.989 0.992 0.999 0.981 0.002 0.986 0.981 0.983 0.990
smskev 0.991 0 0.991 0.991 0.991 0.995 0.972 0.001 0.946 0.972 0.959 0.986
smsreg 0.964 0 0.969 0.964 0.955 0.958 0.825 0.006 0.733 0.825 0.776 0.910
utchi 1 0 1 1 1 1 1 0 1 1 1 1
waps 0.973 0.003 0.968 0.973 0.970 0.996 0.959 0.005 0.950 0.959 0.955 0.977
youmi 0.858 0.003 0.843 0.858 0.851 0.983 0.711 0.003 0.794 0.711 0.750 0.854
yzhc 1 0 1 1 1 1 1 0 1 1 1 1
zitmo 1 0 1 1 1 1 1 0 0.909 1 0.952 1
Avg 0.959 0.002 0.966 0.959 0.961 0.993 0.945 0.004 0.944 0.945 0.944 0.971
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Table 8 shows the performance values of various classifi-
cation metrics of NSDroid and FalDroid on the same dataset.
Through the comparison of the two methods in various met-
rics, it is found that the TPR value of NSDroid is higher than
0.9 in most families. In addition, the TPR value of 11 families
even reaches 1, and the FPR value of FalDroid is as low as O
in 17 families.

Figure 9 shows the comparison of TPR indexes between
the two methods in 30 malicious families. As can be seen
from the figure, 27 of the 30 families are better than the anal-
ysis results of FalDroid. In conclusion, these show that the
NSDroid method has a good performance in classification.

3.4 The generalization of NSDroid

In order to verify the generalization of the NSDroid method,
we use five datasets (as shown in Table 5) to verify the classi-
fication effect of NSDroid. We use a tenfold cross-validation
method to train and test these five different datasets, and the
experimental results are shown in Fig. 10.

In Fig. 10, the NSDroid has achieved very good classi-
fication results in Datesetl, Dateset2, Dateset3, Dateset4,
Dateset5, and the classification metric is stable (concen-
trated at about 95.5%). To sum up, the classification effect
of NSDroid method on these five datasets shows that our
method is very generalized.
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Fig.11 Classification performance contrast of three different classifiers

3.5 Parameter selection of NSDroid

Three classifiers are considered in our testing progress:
Random Forest, Decision Tree, and SVM. We use the neigh-
borhood signature to classify the Dateset2. The results are
shown in Fig. 11. SVM has an excellent classification per-
formance in TPR, precision, recall, and F-values. Although
the performance of RandomForest on RocArea is the high-
est, SVM achieves the highest on PRCArea. It is noted that
PRCArea can better measure the classification capability
when the proportion of the positive samples to the negatives
is not balanced. In addition, Fig. 11 illustrates the average
FPR of the three classifiers. SVM clearly achieves the small-
est value, which suggests the most effective in classification.
Based on the above evidences, we select SVM as the classi-
fier of NSDriod.

4 Limitations

The experimental comparison shows the effectiveness of
NSDroid in multi-family classification of Android malicious
applications. Because NSDroid is implemented on the basis
of function call graph, our method has a strong dependence
on the function call graph. The function call graph generated
in this paper is implemented by using the currently common
function call graph generation tool (Androguard). Because
the tool is a static method to generate a function call graph,
NSDroid is also limited to the static function call graph. The
dynamic distribution mechanism is determined by different
parameters in the dynamic execution process. The calling
relation of this part cannot be obtained directly from static
code analysis, which is also the common limitation of static
analysis methods. This paper is based on static analysis, so
these limitations also exist.



5 Related work

At present, there are mainly two kinds of detection tech-
nologies for the research of Android malware detection: the
dynamic detection and the static detection.

The dynamic detection requires the actual running of the
application (or in the sandbox [22] to simulate the execu-
tion of malicious applications). Wang et al. [23] proposed
a dynamic detection system for malicious applications. By
monitoring the running process of the Android system, they
got the frequency of the application calls and the sequence
of the application calls. Finally, the system extracted 65 sys-
tem calls to generate a co-occurrence matrix and adopts
a machine learning method to determine malicious classi-
fication. Blédsing et al. [24] constructed a sandbox system
simulator in Android environment. The sandbox intercepted
and recorded all system call logs from the bottom of the
kernel. Then the system analyzed the malicious nature of
the software by using the log. Ruiz-Heras et al. [25] used
dynamic methods to obtain three characteristics of Android
malicious applications: interfaces usage, application-related
and communication-related features. This method used these
three types of features for malicious application detection.

Recent works [26-28] proposed a dynamic monitoring
system that automatically monitored the transmission and
storage of the data. When the data were considered to be used
in a dangerous way, the system automatically recorded the
content of the data and the program (using the data). Finally,
they used these contents to determine the malicious nature of
the application. Isohara et al. [29] proposed a detection sys-
tem with a logger and an analyzer. In this system, the logger
recorded the system calls used by the malware application.
The analyzer filtered the specific event behavior. The system
classified malicious applications by obtaining system calls
and event behaviors.

In summary, the using of dynamic technology to detect
Android malicious applications have the following short-
comings: (1) It consumes too many resources (Because you
need to install software to detect). (2) The execution of an
application often takes much time. (3) The dynamic detection
method [30,31] does not cover all the behaviors and activities
of the application.

Static detection is to understand the behavior of a pro-
gram by using the application code without executing the
program. For example, Kirubavathi et al. [19] proposed a
method to detect Android malicious applications that had
botnet types. This method used the botnet characteristics-
related unique patterns of requested permissions and used
features. Garg et al. [32] proposed a network-based detec-
tion model of Android malicious application. The method
detected Android malicious applications by analyzing differ-
ent network parameters of the Android application. Miao [33]
proposed a way to abstract stable behavioral features from

the original API. And used the SVM classifier to classify
malicious applications.

Zhang et al. [5] proposed a malicious application classi-
fication method -DroidSIFT. The method was based on the
API dependency graph. It classified malicious applications
by calculating the similarity among API dependency graphs.
There were many classification methods extracted the data
flow [34—-36] from applications. For example, Suarez et al. [6]
proposed a malicious application classification method based
on the control flow graph (the method named Dendroid).
And then it selected eight basic structures from the con-
trol flow graph. The method determined the maliciousness
of the application by comparing the similarity of the eight
structures. Zhou et al. [7] proposed an analytical approach
based on the function call graph. This method generated a
function call graph by sensitive permissions and API. By
calculating the similarity of the function call graph, they
determined the malicious nature of the application. Fan et
al. [8] proposed a method,FalDroid, based on the function
call graph. The method divided the function call graphs into
frequent subgraphs. And then it marked the frequent sub-
graphs that appeared in the various malicious families as
features. Finally, it used these features to classify malicious
applications.

6 Conclusion

In this paper, we propose a classification method of mali-
cious Android application, NSDroid, based on the function
call graph. This method uses the function call graph of the
application as the analysis object. It abstracts the subgraph
structure of Android application as the neighborhood signa-
ture of many nodes. By this method, the issue of similarity
between Android applications is transformed into a his-
togram problem. In the experiments, NSDroid has achieved a
good classification effect for most malicious families. Com-
pared with the FalDroid [8] method, NSDroid not only
enhances the classification performance, but also greatly
reduces the runtime.
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