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COMPUTATIONAL ANALYSES FOR FLUID FLOW AND
HEAT TRANSFER IN DIFFERENT CURVED GEOMETRIES

CARLIN MILLER LUCENTE

ABSTRACT

Three-dimensional Computational Fluid Dynamics (CFD) models were developed
to simulate fluid flow and heat transfer in a variety of helical channel geometries: circular
and elliptical. Laminar flow was observed for Reynolds number between 200 and 1000.
Code validation was done for developing steady laminar flow in a circular curved
channel. The CFD results were compared to previous numerical results to verify that the
model was producing valid results.

The curve of the channel has a centrifugal effect on the fluid flow creating
secondary flow known as Dean cells. This secondary flow moves the location of the
maximum axial velocity towards the outer wall of the channel and alters the developing
temperature profiles as well. The helical models were designed to assess if the effect of
the curve increases the rate of heat transfer when a constant surface temperature is
applied to the wall of the channel. Different channel geometries were used to determine
the effects on fluid flow and heat transfer in a helical channel.

A channel with a 180° turn was also modeled in two different ways. One with a
rounded 180° curve and the other with three perpendicular channels joined together to

create a square 180° turn. The three combined channels are typically easier and less
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eXpensive to r[iahhfachife, Bu{ the ﬁuid ﬂow atid heat thafisfer properties hieed to be
éoﬁsi&efed before s‘ele'cﬁhg the design.

The helical models produce similar results. The Dean vortices produced in the
secondary flow within the fluid aids in the heat transfer properties of the fluid. Of all the
helical cases, a horizontal ellipse cross section achieved the highest outlet-inlet
temperature difference, especially for higher Reynolds numbers. Even though the
horizontal elliptical helix model produced the highest temperature difference, the circular
helix model produced the highest percent increase over its straight model. Using a figure
of merit to compare the Nusselt numbers and friction factors for each case, the circular
helix geometry proved to me the best design option. The three combined channels
produced better heat transfer results than the rounded channel for higher Reynolds
numbers, with higher mean outlet temperatures. At lower Reynolds numbers, the results

were very similar with only a 0.4% difference in results.
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CHAPTER 1
INTRODUCTION

1.1 Background

Fluid flow and heat transfer in curved and helical channels are of practical and
fundamental interest in engineering as well as other fields. Helical heat exchangers are
becoming more commonly used as a means to increase the amount of heat transfer in a
small space as a helical heat exchanger utilizes a fraction of the space compared to a
straight channel heat exchanger of equivalent length. Fluid flow through curved channels
has become of interest to the medical field as it applies to blood flow through the arteries
of the body. Siggers and Waters (2005) simulated blood flow through a curved artery to
determine the sites at which plaques develop.

The key parameter for that determines whether pipe flow is laminar or turbulent is
a dimensionless number known as Reynolds number (Re). Reynolds number is the ratio

of inertial forces to viscous forces on a fluid.

_ pVDy
U

Re

The Reynolds number is based on the density of the fluid (p), fluid velocity (V),

hydraulic diameter (Dy), and dynamic viscosity (i). The hydraulic diameter is as



where A, is the cross-sectional area of the pipe and Py, is the wetted perimeter of the pipe.
Flow through a curved channel develops secondary flow due to centrifugal effects
acting on the fluid. Dean (1928) showed that flow through a curved channel depends on

a non-dimensional parameter known as the Dean number.

De = ReV2§
The Dean number is based on Reynolds number for the axial velocity of the fluid and the
curvature ratio (8). The curvature ratio is based on the radius of the channel (a) and the

radius of curvature of the channel (R).

s=2

R

This secondary flow creates Dean vortices, which allow the fluid to circulate within the
primary flow. Zitny et al. (2004) utilized a bend in a pipe as a flow inverter to observe
the effect on heat transfer. The use of CFD software showed that the effects on the fluid
flowing through the bent pipe increased the heat transfer of the fluid. Nusselt number

(Nu) was calculated for the bent pipe as well as a straight pipe for comparison.

hDy,
==

The Nusselt number is based on the local heat transfer coefficient (h), hydraulic diameter
(D), and thermal conductivity of the fluid (k). The Nusselt number increases as the heat
transfer of the fluid increases. The friction factor is analyzed for design considerations of

the channel geometries.

AP

~
I
[EEN

2



The friction factor is based on the pressure drop (P), density (p), and velocity (V). An
increase 1n friction factor could contribute to an increase in operating costs of a system.

Typically in curved geometries, two symmetric vortices appear in the channel.
Both Yang and Keller (1986) and Nobari and Amani (2009) show that at higher Dean
numbers, above 522, the secondary flow becomes unstable, developing more than two
vortices within the fluid or even eliminating the vortices altogether. In the cases for this
thesis, the Dean number will remain below 522 for stability, the limit for stability given
by Nobari and Amani (2009).

One of the attributes of fluid flow through a helical coil is the critical Reynolds
number, the point at which laminar flow begins to transition to turbulent flow. The
critical Reynolds number for fluid flow through a straight channel is 2300. The critical
Reynolds number for a helical channel is higher than that of a straight channel, allowing
the flow to remain laminar at higher Reynolds numbers. Grundmann (1984) developed a

correlation for the critical Reynolds number of a helically coiled channel.

Re,, = 2300 [1 +86 (%)Ms]

This correlation allows for an increase in the critical Reynolds number allowing the flow

to stay in the laminar phase for a longer period of time.

1.2 Objectives of the Research

Heat exchangers are used in many aspects of the engineering industry. As curved
and helical heat exchangers become increasingly more popular, more research is needed
to study the effects of the curvature on the fluid flow and heat transfer.

The majority of the research for curved and helical heat exchangers has been done

on pipes with circular or rectangular cross sections. One aspect this thesis aims to

~
J



observe is the effect of the secondary flow on other geometric cross sections to see if the
heat transfer properties can be optimized by using a different cross sectional shape.
Specifically, a helical channel with an elliptical cross section will be studied to observe

the secondary flow and its effects.

1.3 Scope of Work

In this study, laminar flow models are created for a circular helical channel to
observe the effects of the curve of the helix on the fluid and compare it to existing
experimental and CFD data. A constant surface temperature is also applied to examine
the effects of the secondary flow on the temperature distribution within the fluid.

Two additional laminar models were created for helical channels with the same
cross sectional area, but with an elliptical shape, one in a horizontal position and one in a
vertical position. The curvature effects on the elliptical geometries were observed and
compared to the circular geometry. Models were created for all three cross sectional
geometries in a straight channel to compare the effects and benefits, if any, of the curve
of the helix.

Two laminar models were also created for a channel making a net 180° turn; the
first with a rounded curve and the second combining three perpendicular channels to
create a 180° turn. These models compared the effects of sharp 90° turns again a smooth
rounded turn and determined which model is a better design case for fluid flow and heat
transfer purposes.

A summary of all CFD models is shown in Table 1.1, each case was considered
for three different Reynolds numbers. A heat transfer analysis was also done for each

model by applying a constant surface temperature of 360 K.



Re 242, 492, 900
De 129.4, 263.0, 481.1
Circular Horizontal Ellipse Vertical Ellipse
Straight
Circular Horizontal Ellipse Vertical Ellipse
Geometry Helical :
Curved Square
180°
Turn \
Fluid Air
Inlet
Temperature 300K
Surface
Temperature 360K

Table 1.1: CFD Summary
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CHAPTER II
LITERATURE REVIEW

2.1 Review of Literature on Fluid Flow and Heat Transfer in Curved Channels
Nobari and Amani (2009) conducted a numerical analysis to study fluid flow and
heat transfer in a curved pipe for applications in heat exchangers and the cooling of gas
turbine blades. They defined the model using non-dimensional representations for the
continuity, momentum, and energy equations in toroidal coordinates. Data was
calculated for Prandtl numbers 0.5 and 1.0 and for Dean numbers between 76 and 522.
For the heat transfer analysis, two different thermal boundary conditions were used:
constant wall temperature and constant heat flux at the wall. Five different curvature
ratios were analyzed to encompass a range of loose and tightly curved pipes. They
demonstrate that due to centrifugal effects, the location of maximum axial velocity shifts
from the center of the pipe towards the outer wall along the entrance region. They note
that on the outer wall the thickness of axial flow boundary layer decreases while it
increases on the inner wall. Due to strengthening centrifugal forces, as the Dean number
increases, the location of axial maximum velocity moves closer to the outer wall. Their
evaluation of the relationship between hydrodynamic and thermal entrance length and the

Reynolds number in curved pipes in terms of curvature ratios show the difference for



smaller and larger ratios. The hydrodynamic entrance lengths increase as curvature ratios
decrease. This was shown for smaller ratios, less than 1/7. For larger curvature ratios the
entrance lengths is dependent only on the Reynolds number. They observed the same
trend for thermal entrance lengths. Because curvature ratio has minimal effect on
entrance lengths except for very small ratios, Dean number as a function of Reynolds
number is not significant when considering entrance length. Their results indicate that
the Nusselt number increases as the Dean number increases which is achieved with either
the increase of the Reynolds number or the curvature of the pipe. They conclude that
regardless of inlet profiles, maximum heat transfer rates occur in the entrance region.
Agrawal, et al. (1978) conducted an experimental investigation of the
development of steady laminar incompressible flow in the entry region of a curved pipe.
They used two semicircular pipes with curvature ratios of 1/20 and 1/7 and Dean number
ranges from 138 to 679. Using laser anemometry they measured the axial velocity and a
component of secondary velocity. Both curved pipes had the same internal diameter but
each had different curvature ratios. They took axial velocity measurements at five
horizontal planes perpendicular to the cross section for both pipes and secondary velocity
at six stations within the pipe of curvature ratio 1/7. Due to symmetry in the plane of the
pipe access, the researchers reported only the measurements taken in the lower half of the
pipe. The data was plotted to show the developing axial flow profile at each of the
planes. Results similar to Nobari and Amani (2009) are seen with the location of the

maximum axial velocity shifting towards the outer wall of the channel as the profile

develops.



2.2 Review of Papers on Fluid Flow and Heat Transfer in Helical Channels

Grundmann (1985) looked at critical Reynolds number and friction factor of a
helical pipe coil. Because of the secondary flow in curved pipes the critical Reynolds
number increases and depends on the curvature ratio. This critical Reynolds number of a
helical coil can be substantially greater than that of a straight pipe with the same
diameter. Grundmann developed a correlation of critical Reynolds number for laminar
and turbulent flow in smooth pipes with an equation based on the Reynolds number, pipe
diameter and curvature diameter. This correlation can be applied to create a correlation
for the friction factor, which can then be used to calculate the pressure drop across a
helical pipe.

Jayakumar et al. (2008) conducted both an experimental and numerical analysis
for heat transfer in a helical coil, using water as their fluid. For their experiment they
enclosed a helical coil in a vessel that was done to simulate the shell side of a heat
exchanger. The cold fluid flowed upward through a bottom connection. They measured
inlet and outlet temperatures using resistance temperature detector (RTD). They recorded
measurements after steady values for temperature were attained. The experiments were
conducted for five different flow rates and for three different temperatures at the inlet.
For the numerical analysis model they used the computational fluid dynamic (CFD)
FLUENT software. They considered the transport in thermal properties of the fluid to be
temperature dependent. They analyzed hea‘t!i transfer to the fluid flowing inside a helical
tube, heated by a constant surface temperature at the wall. The model consisted of hot
water entering the helical coil at the top. There, the boundary condition was the velocity

inlet boundary. Water exited at the bottom, which had a pressure outlet boundary



condition. They analyzed data for varying inlet conditions. Their results show maximum
velocity is located at the coil’s outer side. In their conclusions, a key observation cited is
that the use of constant values for thermal and transport properties of the fluid

inaccurately predicts heat transfer coefficients.



CHAPTER III
GOVERNING EQUATIONS

3.1 Governing Equations

The motion of a laminar, Newtonian fluid is governed by the Navier-Stokes
equations. These equations are fundamental partial differential equations that describe
incompressible fluid flow. Applying Newton’s Second Law, Cengel and Cimbala (2006)
supplies the momentum equations for incompressible flow through a straight circular

channel in cylindrical coordinates, they are as follows:
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P ze
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The Conservation of Mass law for a fluid with constant properties gives the continuity

equation in cylindrical coordinates as:

10ru, 10ug Ju,

o Traeta

The energy equation for incompressible flow through a straight circular channel in
cylindrical coordinates is

aT  aT 6T_<k)[1a(aT> 1027 OZT}

e gy T L lEm U A e T

Air at low speeds can be considered an incompressible fluid, so these equations are
applicable for this thesis.

When considering flow through a curved channel, the curvature ratio must be
taken into consideration. The curvature ratio () is the ratio of the radius of the channel

to the radius of the curve of the channel. The equation for the curvature ratio is

6_(1
"R
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Figure 3.1: Curved Channel Geometry

Flow through curved channels depends on the non-dimensional parameter known as the
Dean number. The Dean number is the ratio of viscous forces to the centrifugal forces

acting on the fluid. The Dean number is defined as

VD I ’
p 2_ ReD

Dean (1928) determined that the momentum and continuity equations for the steady
motion of incompressible fluid. The momentum equations are given below in cylindrical

coordinates.
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The continuity equation for flow in a curved channel is as follows:

du, u, dou,
o Wi =0
ar + T + dz

Germano (1982, 1989) takes Dean’s equations for flow in a curved channel and

applies them to a case for a helical channel with a circular cross section. The geometry

used by Germano is shown in Figure 3.2.

Figure 3.2: Helical Coordinate System

The governing momentum equations for symmetric helical channel are as follows:
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The continuity equation is shown below.
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Kays, Crawford and Weigard (2005) give the boundary conditions for a channel with

constant surface temperature as the following:

T=T5,atr=r;

aT
—=0,atr=20

ar

The equations in this chapter along with the given boundary conditions are necessary to

solve the given models correctly. For this thesis, the models were solved numerically

14



using the CFD software, FLUENT. FLUENT is a computer program used for modeling
fluid flow and heat transfer in complex geometries. The model geometry and meshes
were generated using GAMBIT software, a preprocessor for FLUENT. Boundary
conditions were also identified in the GAMBIT models, numerical values for the

boundaries were further defined in FLUENT.
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CHAPTER IV
CODE VALIDATION AND COMPUTATIONAL MODEL

4.1 Code Validation

Code validation is an important part of the modeling process. Validation
compares the computational model to reliable experimental or numerical data. The
accuracy of the model will be determined by how closely the model resembles the
existing data. For this thesis, a circular curved model will be compared to measured data
done by Adler (1934) and CFD data by Nobari and Amani (2009) for fully developed

laminar fluid flow. This comparison is to ensure that the model is providing accurate

data.

4.2 Computational Model

The circular curved channel geometry was defined in GAMBIT for input into the
FLUENT software. The cross section of the channel had a diameter of 25.4 mm and a
channel curvature of 88.9 mm, producing a curvature ratio of 1/7. Air was chosen as the
fluid because the existing data that the model will be compared to used Pr = 0.5 and 1.0,
and air has a Pr = 0.7. The constant fluid properties of air from the FLUENT software

were used (p = 1.204 kg/m’, k = 0.02514 W/m'K, p = 1.825E-5 kg/m's, and C, = 1.005

16



kJ/kg-K) for the CFD model. The channel was modeled with a velocity inlet and
pressure outlet. A uniform inlet flow velocity was given as 0.2985 m/s which
corresponded to a Reynolds number of 492 and a Dean number of 263 which were the
values from the existing data that the CFD model will be compared to. The helix spirals
downward with a pitch of 30 mm.

In order to compare the model to the existing data, it must be determined when
the flow is fully developed. Smaller geometries will reduce computational time, but it
must be certain the model will produce the necessary data. To observe the developing
flow field, helical models with the same cross section were created for 180°, 360°, and
720° turns. The mesh used for each model had the same element size. These models can

be seen in Figure 4.1. The inlet for each channel is shown in blue.

—

180° 360° 720°

Figure 4.1: Helical Models

The velocity profile was observed at 30° increments along each helical channel.
The axial velocity was taken at the horizontal mid-plane of the channel at each increment.
Figure 4.2 shows the layout of the cross sectional increments and the corresponding

horizontal mid-plane for the 360° channel.
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Figure 4.2: Helical Horizontal Mid-Plane Locations
The axial velocity profiles at each 30° increment are plotted against each other to
determine when the flow is fully developed. The developing flow profiles for each
model can be seen in Figure 4.3, Figure 4.4, and Figure 4.5. Both the axial velocity and
the radius are expressed in non-dimensional form. The outer wall of the channel for the

datais atr = -1.00 and the inner wall isatr = 1.00.
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Figure 4.3: Developing Axial Velocity for a 180° Circular Helix
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Figure 4.5: Developing Axial Velocity for a 720° Circular Helix
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Figure 4.4 shows that at one full turn (360°) the flow is fully developed as the

velocity profiles have begun to overlap one another. For further data collection, the 360°

helical model will be used to provide sufficient data.

4.3 Mesh Independence

The 360° helix model was evaluated further to ensure that the appropriate mesh
size was used so that the results are independent of the mesh size. It is important to
refine the mesh to get the most accurate results, but a model with an overly refined mesh
can greatly increase the computational time. The mesh for the 360° helix was refined
twice into a medium sized mesh and a fine mesh. The coarse mesh which was used to
determine fully developed flow has 335,580 elements. The medium mesh has 770,040

elements and the fine mesh has 2,542,248 elements. A cross-sectional view of the three

meshes is shown in Figure 4.6.
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Figure 4.6: Circular Mesh Cross Sections
To determine mesh independence the axial velocity profiles were again taken
along the horizontal mid-plane of the channel. The axial velocity profiles for each mesh
at the outlet of the channel are plotted against each other and shown in Figure 4.7. Both

the axial velocity and the radius have been non-dimensionalized.
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Figure 4.7: Outlet Axial Velocity Profiles for Mesh Refinement
All three meshes produce similar results, but if examined closely, the data for the coarse
mesh does not quite line up with the results of the medium and fine meshes. The minimal
difference between the medium and fine meshes indicates the data is independent of

mesh size. The medium sized mesh was used to save on computational time.

4.4 Fully Developed Fluid Flow

Since it has been determined that the axial velocity is fully developed and the data
is independent of the mesh size, the model can now be compared to the existing data by
Adler (1934) and Nobari and Amani (2009). Figure 4.8 shows the comparison of the data

from the computational model and the existing data.
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Figure 4.8: CFD Code Validation

The CFD model shows similar results to that of Adler’s measured results and Nobari and
Amani’s CFD data. All three sets of data show the location of the maximum axial
velocity shift towards the outer wall of the channel. The data shown in Figure 4.8

validates the code for the CFD model.
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CHAPTER V |
CIRCULAR HELICAL CHANNEL

5.1 Fluid Flow in a Helical Circular Channel

The 360° circular helix model used for the code validation is used again to
observe the effects on the fluid for different Reynolds numbers. Two additional laminar
flow situations were simulated for Reynolds numbers of 242 and 900. These Reynolds
numbers were selected as they were used for data in Nobari and Amani (2009). For
comparison, a straight circular channel model of equivalent length is created to observe
the difference be%ween the behaviors of the fluid flow through a straight channel and a

helical channel. The information for each of the models is shown in Table 5.1.



Model Circular Helix Model Circular Straight Model
Abbreviation CH CS
Diameter 25.4 mm 25.4 mm
Curvature Radius 88.9 mm N/A
Curvature Ratio 1/7 N/A
Pitch 30.0 mm N/A
Pt Vicdaoity O.I}I;;SS 0.13355 0.33561 0.113868 0.2113;35 O.j:;gl
Reynolds Number 242 492 900 242 492 900
Dean Number 1294 263 481.1 N/A N/A N/A
Inlet Temperature 300K
Tomperature 360K

Table 5.1: Circular Channel Summary

Figure 5.1, Figure 5.2, and Figure 5.3 show the developing axial velocity profiles
of the straight channel and the helical channel, as well as the axial velocity vectors of the
helical channel for each of the three Reynolds numbers. The cross sections are shown at
60° increments in the channel. The cross sections for the straight channel are at locations

the equivalent length of the 60° arc of the helical channel. The outer wall of the helical

channel is shown on the left of the figures.
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As expected, as the flow develops the locatioti of the Haximum axial velocity shifts
towards the outer wall of the channel for each of the three helical cases. In the straight
channel, the flow develops symmetrically about the center axis and the maximum axial
velocity is located at the center of the channel. The axial velocity profile appears to be
nearly symmetric about the horizontal mid-plane of the helical channels. As the
Reynolds number increases, increasing the inlet velocity, the location of the maximum
axial velocity shifts closer to the outer wall of the channel due to the increased centrifugal
force acting on the fluid.

The velocity vectors show the development of Dean vortices within the flow.
This secondary flow pushes the fluid flow from the inner wall through the middle of the
channel to the outer wall, when the flow then splits and comes back along the top and
bottom of the channel to the inner wall. The vortices are not symmetric about the
horizontal axis of the channel as they are typically in a flat curved channel. The vortices
are in the outer upper quadrant and the inner lower quadrant of the channel. This is most
likely due the helical shape of the channel and its downward pitch. The vortex in the
outer upper quadrant appears larger than the second vortex, almost double the size. This
could also be due to the downward pitch of the helix, causing the fluid to push down on

the bottom of channel.

5.2 Heat Transfer in a Helical Circular Channel

To observe the effects on the heat transfer characteristics of a fluid through a
helical channel, a constant surface temperature of 363 K was applied along the full length
of the channel. The fluid entering the channel has a uniform temperature of 300 K. The

same Reynolds numbers are used from the fluid flow models and a straight channel is
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modeled for comparison. For the heat transfer models, the properties of air are
temperature dependent because, as fluid is heated, the properties change. The
temperature dependent properties were calculated from the air properties table of Cengel
and Cimbala (2006). The data was plotted to create a best fit line. The equation from
this line was entered as a polynomial in the FLUENT software in order to apply the
appropriate properties for density, viscosity, and thermal conductivity.

Figure 5.4, Figure 5.6, and Figure 5.8 show the developing temperature profiles
at 60° increments for both a straight circular channel, shown on the left, and a helical
circular channel, shown on the right for each Reynolds number. The outer wall of the
helical channel is to the left of the channel. Figure 5.5, Figure 5.7, and Figure 5.9 plot the
mean temperature of the fluid as it flows through the each channel for each Reynolds

number.
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Sﬁnilar fo fhe dxial Velocify pfoﬁies, the temperature p’roﬁies of the straigh‘i Channel
develop symmetrically aboﬁt the center axis. The fluid in the sttaight channel is heated
from the outside in; the coolest part of the fluid is in the center of the channel. The
temperature profiles in the helical channel shift towards the outer wall, similar to the
axial velocity profiles. The secondary flow aids in the heat transfer within the fluid as it
pushes the cooler fluid, which would normally stay in the center of the straight channel,
towards the outer wall, where it comes into contact with the heat source at the wall
surface.

For all three Reynolds numbers, the helical model has a higher mean outlet
temperature for the helical model. The temperature profile for the outlet of the helical
channel for Re = 242 appears uniform and nearly equivalent to the surface temperature of
363 K. Figure 5.5 shows the temperature difference of the helical channel to be 61.76 K.
The temperature difference between the outlet and inlet of the straight channel is
approximately 58.48 K for Re = 242; this lower temperature difference is due to the
cooler fluid in the center of the channel. The helical channel produces a 5.6% increase in
the outlet-inlet temperature difference for Re =242. The other two helical models have
not reached a uniform temperature profile at the outlet, but do exhibit a higher mean
temperature across the outlet cross section than the outlets for their respective straight
circular channels. For Re = 492, the temperature difference from the outlet to the inlet of
the straight channel is only 50.14 K, whereas for the helical channel, the temperature
difference is 58.43 K, a difference of 16.5%. There is an even bigger temperature

difference for Re = 900; the straight channel reaches only increases 42.66 K and the

(98]
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helical channel increases 53.74 K from inlet to outlet, nearly a 12 degree difference

between the two cases, which is an increase of 26.0%.
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CHAPTER VI
ELLIPTICAL HELICAL CHANNEL

6.1 Elliptical Helix Model

Most of the research on curved and helical channels has been done for common
cross sectional geometries such as a circle or rectangle. That data has been well
documented, but much less is known about other cross-sectional geometries. For this
thesis, an elliptical cross-section was considered to see if the Dean vortices can optimize
the benefits of the secondary flow in the fluid. Two models were created with the same
cross-sectional area as the circular model, one with the major axis along the horizontal
axis and the other with the major axis along the vertical axis. The meshed cross sections

are shown in Figure 6.1.
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Figure 6.1: Elliptical Mesh Cross Sections

The selected length of the major axis is 16.1 mm and the corresponding length of the
minor axis is 10 mm. These dimensions were chosen so that the elliptical cross sections
would have the same area as the circular models. The same pitch of 30 mm and radius of
curvature of 88.9 mm was used so that the data could be compared to that of the circular

helix model. These models are shown in Figure 6.2. The inlet of the channel is shown in

blue.

Horizontal Ellipse Vertical Ellipse

Figure 6.2: Elliptical Helical Channels



For comparison, straight elliptical channels with the same geometric cross section of

equivalent length were created. The information for each model can be seen in Table 6.1

and Table 6.2.
Model Horizontal Elliptical Helix Horizontal Elliptical Straight
Model Model
Abbreviation HH HS
Major Axis 16.1 mm 16.1 mm
Minor Axis 10.0 mm 10.0 mm
Curvature Radius 88.9 mm N/A
Curvature Ratio /7 N/A
Pitch 30.0 mm N/A
Fulet Velogity 0.1134/1368 0.5355 0.33861 O.ILA}SS O.§3885 0.2;/1861
Reynolds Number 242 492 900 242 492 900
Dean Number 1294 263 481.1 N/A N/A N/A
Inlet Temperature 300K
TerSnI;)r:‘?acfure SIPLS

Table 6.1: Horizontal Elliptical Channel Summary




Vertical Elliptical Straight

Model Vertical Elliptical Helix Model Model
Abbreviation VH VS
Major Axis 16.1 mm 16.1 mm
Minor Axis 10.0 mm 10.0 mm
Curvature Radius 88.9 mm N/A
Curvature Ratio /7 N/A
Pitch 30.0 mm N/A
Filet Velacity O.Ilrj68 0.2985 0.5461 0.1468 0.2985 0.5461
s m/s m/s m/s m/s m/s
Reynolds Number 242 492 900 242 492 900
Dean Number 1294 263 481.1 N/A N/A N/A
Inlet Temperature 300 K
TerSnupf?::ure HO0

Table 6.2: Vertical Elliptical Channel Summary

6.2 Fluid Flow in a Helical Elliptical Channel

To observe the developing fluid flow through the elliptical channels, the same

Reynolds numbers as the circular helix model were used: Re = 242, 492, and 900. Using

the same Reynolds numbers will allow for easy comparison to the circular models. The

developing axial velocity profiles for both the straight and helical channel for the

horizontal helical model are shown for 60° increments in Figure 6.3, Figure 6.4, and

Figure 6.5. The axial velocity vectors for the corresponding cross section of the

horizontal elliptical helical model are shown as well.
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Figure 6.3: Developing Axial Velocity Profiles in a Horizontal
Elliptical Helical Channel (Re =242, De = 129.4)
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Figure 6.5: Developing Axial Velocity Profiles in a Horizontal
Elliptical Helical Channel (Re = 900, De = 481.1)
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The results are similar to those for the circular helical model. The straiéht mbdel has the
location of the maximum axial velocity along the center axis of the channel and the
profile is symmetric about the horizontal and vertical axes. In the helical model, the
location of the maximum axial velocity shifts towards the outer wall as the flow
develops. As the Reynolds number increases, the location of the maximum axial veiocity
shifts closer to the outer wall of the channel of the helical model. It does not appear that
the velocity has fully developed at the end of the helical models as it did in the circular
models.

Again, the development of two Dean vortices can be seen. The vortices appear
closer to the horizontal axis than the circular helical model, but still in the same relative
location in the outer upper quadrant and inner lower quadrant. The upper vortex again
appears to be larger than the lower vortex.

The axial velocity profiles for the vertical elliptical helical model are shown in
Figure 6.6, Figure 6.7, and Figure 6.8. Again, a straight channel with the same vertical
ellipse cross section is modeled for comparison. The axial velocity vectors for the helical

model are also shown.
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Figure 6.6: Developing Axial Velocity Profiles in a Vertical Elliptical
Helical Channel (Re =242, De = 129.4)
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Figure 6.7: Developing Axial Velocity Profiles in a Vertical Elliptical
Helical Channel (Re = 492, De = 263.0)
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Figure 6.8: Developing Axial Velocity Profiles in a Vertical Elliptical

Helical Channel (Re =900, De = 481.1)
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The data for the vertical elliptical channel are similar to the previous helical cases. The
location of the maximum axial velocity does shift towards the outer wall of the channel,
although it is less obvious because of the long thin cross section due to the geometry, and
as the Reynolds number increases, the location of the maximum velocity becomes closer
to the outer wall of the channel.

Two vortices develop in each case, with their centers pushed towards the upper
and lower walls of the channel. The vortices tend to shift toward the outer upper
quadrant and lower inner quadrant of the channel. For the vertical ellipse, the vortices

appear to be relatively the same size in comparison to the other cases.

6.3 Heat Transfer in a Helical Elliptical Channel

To see how the Dean vortices observed in the fluid flow results affect the heat
transfer capabilities of the fluid in the helical elliptical channels, a constant surface
temperature is applied to the wall of the channel. The air enters the channel with a
uniform temperature of 300 K and at a constant surface temperature of 363 K applied
along the entire length of the channel. The same temperature dependent air properties are
used from the circular models.

The developing temperature profiles for the horizontal elliptical channels are
shown in Figure 6.9, Figure 6.11, and Figure 6.13 The same conditions are applied to
the straight channel for comparison purposes. The outer wall of the helical channel is
shown to the left of the channel.

Figure 6.10, Figure 6.12, and Figure 6.14 show the mean temperature of the

developing temperature profile of the fluid.
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Figure 6.10: Mean Temperature in a Horizontal Elliptical Helical
Channel (Re =242, De =129.4)

47



60° 240°

300°

180° 360°

Figure 6.11: Developing Temperature Profiles in a Horizontal
Elliptical Helical Channel (Re = 492, De = 263.0)
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Figure 6.12: Mean Temperature in a Horizontal Elliptical Helical
Channel (Re = 492, De = 263.0)
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Figure 6.13: Developing Temperature Profiles in a Horizontal
Elliptical Helical Channel (Re = 900, De = 481.1)
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As seen in the circular heat transfer models, the temperature profiles develop similarly to
the axial velocity profiles. The temperature profiles of the straight model center around
the axis of the channel, where the coolest part of the fluid is in the middle. The helical
model forces the cooler fluid towards the outer wall allowing it to come in contact with
the heat source.

By the end of the helical channel for Re = 242, the fluid has a uniform
temperature almost equivalent to the wall surface temperature at 362 K; this was also the
case for the circular helical model for the same Reynolds number. With an outlet-inlet
temperature difference of 62.08 K, this is an increase of 4.4% over the straight model
which only rises 59.45 K from inlet to outlet for Re = 242. The models for Re =492 and
Re =900 do not reach a uniform temperature at the outlet of the helical channel, but do
reach higher mean temperatures than their straight model counterparts. There is a larger
gap between the outlet temperatures for Re = 492; the straight model rises 51.67 K and
the helical model rises 59.68 K, an increase of 15.5%. The largest temperature difference
is seen for Re = 900 with a difference of 11 degrees or 25.7% between the two models;
the straight model has a temperature difference of 44.08 K and the helical model has a
temperature difference of 55.40 K. These results are very similar to the circular helical
models.

The developing temperature profiles for the vertical elliptical channels are shown
in Figure 6.15, Figure 6.17, and Figure 6.19. The outer wall of the helical channel is
shown to the left of the channel. Figure 6.16, Figure 6.18, and Figure 6.20 show the

mean temperature of the fluid along the channel as the flow develops.
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Figure 6.15: Developing Temperature Profiles in a Vertical Elliptical
Helical Channel (Re =242, De =129.4)
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Figure 6.16: Mean Temperature in a Vertical Elliptical Helical
Channel (Re =242, De =129.4)
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Figure 6.17: Developing Temperature Profiles in a Vertical Elliptical
Helical Channel (Re =492, De = 263.0)
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Figure 6.18: Mean Temperature in a Vertical Elliptical Helical
Channel (Re =492, De = 263.0)
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Figure 6.19: Developing Temperature Profiles in Vertical Elliptical
Helical Channel (Re =900, De = 481.1)
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Figure 6.20: Mean Temperature in a Vertical Elliptical Helical
Channel (Re =900, De = 481.1)
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Similar to the previous models, the temperature profiles develop like the velocity profiles
for the channel. The straight channel profiles center around the axis of the channel as the
vertical elliptical helix model shifts the cooler fluid towards the outer wall of the channel
and into contact with the heat source.

For Re = 242 for the helical model, the fluid reached a uniform temperature of
nearly 362 K at the outlet of the channel. This was also the case for both the circular
helix and horizontal elliptical helix models for Re = 242. The straight channel for Re =
242 only has a temperature difference of 59.45, the same as the horizontal elliptical
straight model, which is again a 3.9% increase. For Re =492 and Re = 900, the mean
outlet temperature is the same as the horizontal elliptical model (351.67 K and 344.08 K,
respectively). This is to be expected as the two straight channels have the same amount
of surface area exposed to the heat source. The mean outlet temperatures for the Re =
492 and Re = 900 differ slightly from the horizontal elliptical helical models. The
vertical horizontal elliptical models has an outlet-inlet temperature difference of 58.32 K
for Re =492 and 53.29 K for Re = 900. This produces an increase in mean outlet

temperature of 12.9% for Re =492 and 20.9% for Re = 900.

6.4 Results Comparison

There are obvious differences between the straight and helical models for each
cross sectional geometry. This section will look at a comparison of the all the results.
The reason for elliptical cross section models was to evaluate how the development of
Dean vortices affects the heat transfer capabilities of the fluid. For comparison, the mean
outlet temperature for all of the models is plotted for each Reynolds number. Figure 6.21

shows the results for Re = 242.
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Figure 6.21: Mean Temperature Comparison for Re = 242, De = 129.4

The mean temperature develops in a similar fashion for all cases at Re = 242. All of the
helical models reach a mean outlet temperature of almost 362 K, only one degree lower
than the applied wall surface temperature. The temperature difference for the straight
channels is slightly lower, with a temperature of 59.45 K for both elliptical models; the
circular model is one degree lower at 58.48 K from inlet to outlet. To compare the heat
transfer capabilities of the fluid at Re = 242, the Nusselt number (Nu) is plotted for the

developing flow in Figure 6.22.
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Figure 6.22: Nusselt Number Comparison for Re =242, De = 129.4

There is a big change in Nusselt number at the beginning of the channel, but as the flow
develops, the Nusselt number approaches an asymptote as the flow becomes fully
developed for each case. For the helical cases, the Nusselt number jumps slightly at the
outlet, this is most likely due to a numerical issue with the pressure outlet definition at the
outlet plane of the channel. For a straight circular channel with fully developed laminar
flow with an applied uniform surface temperature, Nu = 3.66. For all three straight
channels, the Nusselt number approaches an asymptote close to this value. The helical
cases approach a higher Nusselt number between 6.0 and 7.0, the horizontal elliptical
helical model exhibits the highest Nusselt number of all the cases for Re =242. The
value from the outlet plane was not considered when determining the Nusselt due to the

possible numerical error.
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For Re = 492, the mean temperatures along the channels are shown in Figure 6.23
for the developing flow. The difference between the straight and helical channels is a bit
more prominent for Re = 492. There is a clear variation in the mean outlet temperature of
the straight and helical channels; all three helical channels reach a higher mean

temperature than the straight channels.

370 e —
360 - —~
2340 g CH
| 8 P
[ 8 i S ) . =
g0 2 HS
HH
5320 —f— — |
; = i =-_e=VS |
310 U G U S S e ) VH
300 - R
200 _AWk_,ﬁﬁ S < SR N
0 90 180 270 360

- v_])egrees

Figure 6.23: Mean Temperature Comparison for Re = 492, De = 263.0

Both the circular helix and vertical elliptical helix reach a temperature difference of
approximately 58 K, while the horizontal elliptical helix has an increase of temperature of
59.68 K. The Nusselt numbers for Re =492 are plotted against one another to observe the
differences in heat transfer capabilities in Figure 6.24. The straight channel cases level
off close to the value Nu =3.66, as expected. The Nusselt number value for the helical
channel cases is slightly higher than for Re = 242. The values are between 7.0 and 9.0,

with the horizontal elliptical helix model on the higher end of the range. This makes
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sense as the mean outlet temperature was the highest for the horizontal elliptical helix
model. The same numerical error is noted at the outlet plane with the Nusselt number

increasing at this plane, this plane was not included in the calculation of the Nusselt

number.
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Figure 6.24: Nusselt Number Comparison for Re =492, De = 263.0

The mean temperatures for all cases for Re = 900 are shown in Figure 6.25. The
straight elliptical channels both have an outlet-inlet temperature difference of 44.08 K,
while the straight circular channel only rises 42.66 K. The helical cases get to higher
values with the horizontal elliptical helical case being the highest with a temperature
difference of 55.40 K. The circular helix rises 53.74 K from inlet to outlet and the

smallest temperature difference of 53.29 K is the vertical elliptical channel.
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Figure 6.25: Mean Temperature Comparison for Re = 900, De = 481.1

The mean outlet temperatures for these cases do not reach as high of a temperature as
those for Re =242 or Re = 900. This is due to the higher velocity of the fluid, the fluid
flows faster through the channel, giving it less contact time with the heat source along the
channel wall. The Nusselt numbers are plotted in Figure 6.26 for Re = 900. The values
for the straight channels flatten out around the value of Nu = 3.66. The Nusselt numbers
are highest for the helical cases for Re = 900 with the values ranging from 10.0 to 12.0.
Again, a possible numerical error is noted at the outlet of the channel and this value is not
taken into consideration for the Nusselt number for the specified helical geometries. The
horizontal elliptical helix case has the highest Nusselt number, which is expected as it

had the highest temperature increase of all the geometries.
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Figure 6.26: Nusselt Number Comparison for Re = 900, De = 481.1

A summary of the outlet-inlet temperature differences in degrees Kelvin for all of
the straight and helical geometries is shown in Table 6.3. The percent increases of the

helical models over their straight model counterparts are shown below the temperature

difference values.

CS CH HS HH VS VH

5848 | 61.76 | 5945 | 62.08 | 59.45 | 61.80

Re =242
5.6% 4.4% 3.9%
50.14 | 58.43 51.67 | 59.60 | 51.67 | 58.32

Re =492
16.5% 15.5% 12.9%
42.66 | 53.74 | 44.08 | 5540 | 44.08 | 53.29

Re =900
26.0% 25.7% 20.9%

Table 6.3: Outlet-Inlet Temperature Difference (K) Summary
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The largest temperature differences are shown for the horizontal elliptical helix models
for each tested Reynolds numbers. Although, it should be noted that the circular helical
model had a higher percentage increase for the temperature difference compared to its

straight model. A summary of the Nusselt number for the cases is shown in Table 6.4.

CS CH HS HH VS VH

Re =242 3.49 6.26 3.70 6.60 3.70 5.92

Re =492 3.46 8.16 3.69 9.05 3.69 7.62

Re =900 3.74 10.71 3.99 11.49 3.99 9.87

Table 6.4: Nusselt Number Summary

The Nusselt number for a straight channel with an applied uniform surface temperature is
3.66. All of the straight models produced values close to this expect value, confirming
that the data is sufficient. The helical models produce higher Nusselt numbers than the
straight models with the value of the Nusselt number increasing as the Reynolds number
increases. The horizontal elliptical helix model had the highest Nusselt number, 11.49,
which is to be expected as it had the largest outlet-inlet temperature difference.

Another item to consider before selecting a design is the friction factor of the
model. The friction factor is based on the pressure drop through the channel. The

friction factor for each model is shown in Table 6.5.

61



CS CH HS HH VS VH

Re=242 | 0.176 | 0.216 | 0.198 | 0.233 | 0.195 | 0.232

Re=492 | 0.083 0.125 0.093 0.138 0.093 0.129

Re=900 | 0.044 | 0.080 | 0.050 | 0.089 | 0.050 | 0.081

Table 6.5: Friction Factor Summary

The friction factor decreases as the Reynolds number increases for all cases. The helical
cases do exhibit an increase in the friction factor, with the horizontal elliptical helix cases
having the largest friction factor for each Reynolds number. The helical models all had
higher Nusselt numbers than their corresponding straight models, so increase in heat
transfer comes with an increase in friction along the channel as well.

In order to determine which model produces the best heat transfer relative to its
friction factor, a figure of merit was produced to compare the models. The figure of
merit, Fy, is the ratio of the Nusselt number to the friction factor. The figure of merit is
shown in Figure 6.27. The figure of merit increases as the Reynolds number increases
for every case. The circular helix model produced the highest figure of merit due to a

large temperature difference through the channel and a low friction factor.
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CHAPTER VII
180° CIRCULAR CHANNEL

7.1 Computational Models

Straight pipe heat exchangers can take up a lot of space. To conserve space when
designing heat exchangers, turns are added in the pipes. Two models were created to
simulate a 180° degree turn in a channel with a circular cross-section. The first model is
a smooth curved 180° turn with a curvature radius of 88.9 mm. The second model is a
combination of three circular channels creating a more squared 180° degree turn in the
full channel. The two parallel channels of the combination channel are the same distance
apart as the straight portions of the curved channel, 177.8 mm. Both circular cross
sections have a diameter of 25.4 mm. The two models can be seen in Figure 7.1. The

inlet for each channel is shown in blue and the outlet is shown in red.
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Figure 7.1: 180° Circular Channel Models

Both geometries have their benefits when it comes to manufacturing. The smooth curve
would be easier to make for a standalone channel as it would only require the bending of
a pipe. The combination of the three channels would be easier to manufacture if the
pathway was within a solid part. These computational models will compare the
advantages and disadvantages of the two models. Information for each case is shown in

Table 7.1.
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Model Curved 180° Turn Squared 180° Turn
Abbreviation CT ST
Diameter 254 mm 254 mm
Curvature Radius 88.9 mm N/A
Curvature Ratio 1/7 N/A
Length 457.1 mm 381.0 mm
flot Velocity 0.1};;868 0.133585 0.33561 0.:{3868 0.2n3885 0.3:/!861
Reynolds Number 242 492 900 242 492 900
Dean Number 129.4 263 481.1 N/A N/A N/A
Inlet Temperature 300K
Temperati S

Table 7.1: 180° Circular Channel Summary

For these models, the mean temperature and the pressure are taken at the cross sections

shown in Figure 7.2. The mean temperature and pressure at the outlet is also considered.
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Figure 7.2: Cross Sectional Planes for (a) Curved Channel and (b)
Squared Channel
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Model Curved 180° Turn Squared 180° Turn
Abbreviation CE ST
Diameter 254 mm 254 mm
Curvature Radius 88.9 mm N/A
Curvature Ratio 1/7 N/A
Length 457.1 mm 381.0 mm
TnletVilocity 0.53568 0.133885 0.;4}861 O.ILL/1568 O2n3§5 0.33861
Reynolds Number 242 492 900 242 492 900
Dean Number 129.4 263 481.1 N/A N/A N/A
Inlet Temperature 300K
Tempersure Silie

Table 7.1: 180° Circular Channel Summary

For these models, the mean temperature and the pressure are taken at the cross sections

shown in Figure 7.2. The mean temperature and pressure at the outlet is also considered.
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Figure 7.2: Cross Sectional Planes for (a) Curved Channel and (b)
Squared Channel
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7.2 Fluid Flow Results

The same three Reynolds numbers are used for these channels, Re = 242, 492, and
900. The velocity profiles for the smooth curved channel should develop similarly to the
previous cases in this thesis. The sharp turns of the squared channel could cause some
turbulence within the fluid. The outer wall of the channel is always shown to the left in
the figures.

For Re = 242, the smoothly curved channel develops as expected as shown in
Figure 7.3. The location of the maximum axial velocity shifts towards the outer wall of
the channel and the profile is symmetric across the horizontal mid-plane. Two Dean
vortices develop in the upper and lower halves of the channel and these also appear
symmetric. There is definitely a difference in the flow development for the squared
‘curve. Entering the first 90° turn at plane 2, the location of the maximum axial velocity
shifts towards the inner wall of the channel. As the fluid comes out of the first 90° turn at
plane 3, the location of the maximum axial flow shifts back towards the center of the
channel and the velocity profile is not as smooth along the inner wall of the channel. At
plane 4, the velocity profile closely resembles that of the smooth curve with the location
of the maximum axial velocity shifting towards the outer wall of the channel. The
velocity profile at plane 5 looks similar to that at plane 2 with the location of the
maximum axial velocity moving back toward the inner wall of the channel. When the
fluid exits the second 90 turn at plane 6, it also resembles the prior turn at plane 3; the
location of the maximum shifts back towards the center of the channel. Plane 7 and the
outlet is similar to the profiles for the smooth curve, with the outlets appearing nearly

identical, but with a slightly higher maximum velocity value for the smooth channel.
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Dean vortices develop, but are not always present at each plane. In planes 2 and 5, where
the location of the maximum velocity has shifted towards the inner wall, the vortices
disappear and the velocity vectors actually change direction and go towards the inner
wall. By the time the fluid has reached the outlet of the channel, the vortices in both the
smooth and squared channel look alike.

For Re = 492, the results from the smooth curve resemble those from Re =242,
which can be seen in Figure 7.4. The location of the maximum velocity shifts forwards
the outer wall of the channel and is symmetric about the horizontal mid-plane of the
channel. Two Dean vortices develop in the upper and lower halves of the channel appear
to be symmetric. The flow in the squared curve develop similar to that for Re = 242. At
planes 2 and 5, the location of the maximum axial velocity shifts towards the inner wall
of the channel. There is disturbance along the inner wall as the location of the maximum
shifts back towards the middle at planes 3 and 6. At plane 4 and at the outlet the velocity
profiles are similar to that of a curved channel, with the maximum velocity shifting
towards the outer channel wall. There is a slight variance at plane 7 as the velocity
profile has created a pocket of slower axial velocity in the center of the channel. The
outlet profile of both channels is similar, but the smooth curve reaches a slightly higher
maximum axial velocity. Two Dean vortices develop in the flow, but at places 2 and 5,
the direction of flow reverses within the plane and the vortices disappear. By the outlet
of the squared channel, two identical symmetric vortices are shown and appear very
similar to those at the outlet of the smooth curved channel.

Figure 7.5 shows the flow development for the two channels for a Re = 900.

There appears to be more disturbances in the developing velocity profiles at the higher
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velbci&. ’fhe ﬂéw begms t‘o’" develop simiiar to tfle previous two caééé throﬁgii piane 3,
At plane 4, the velocity profile curls in on itself and the location of the maximum axial
velocity s in the outer upper quadrant of the channel and the profile is no longer
symmetric about the horizontal mid-plane. The maximum shifts back towards the inner
wall of the channel at plane 5, but the profile is not as smooth as the previous cases and it
is not quite symmetric. There is more disturbance coming out of the second turn at plane
6, the maximum begins to shift towards the center again although slightly above the
horizontal mid-plane. At plane 7 the axial velocity profile appears more symmetric, but
again, a pocket of slower axial velocity has developed in the center of the channel. The
axial velocity profile at the outlet transitions to more typical profile with the higher
velocity fluid in the middle of the channel. Like the two previous cases, two Dean
vortices develop within the flow. These vortices disappear and the axial velocity changes
direction in the planes 2 and 5 as was seen with the two other cases. There is a slight
change to the vortices at plane 4, the vortices shift towards the outer upper quadrant and
the inner lower quadrant and are no longer symmetric about the horizontal mid-plane.
The two vortices reappear as the fluid comes out of the second turn of the channel,
although they are still not quite symmetric about the mid-plane, but are more symmetric

across the diagonal from the outer upper quadrant to the inner lower quadrant.
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Figure 7.3: Developing Axial Velocity Profiles in 180° Channel (Re = 242)
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Figure 7.4: Developing Axial Velocity Profiles in 180° Channel (Re = 492)
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Figure 7.5: Developing Axial Velocity Profiles in 180° Channel (Re = 900)



7.3 Heat Transfer Results

Although the squared channel may be easier to manufacture for an internal
channel, its use must consider if this squared design can produce the same or better
results than the rounded curve. As these channels would most commonly be used in heat
exchanger applications, a constant surface temperature of 363 K is applied to each of the
channels for each of the three Reynolds numbers. The fluid enters the inlet at a uniform
temperature of 300 K. The developing temperature profiles are shown with the smooth
curved channel on the left and the squared channel on the right. The outer wall of the
channel is shown to the left for each cross section. The mean temperature at each cross
section is plotted by distance along the length of the channel. The distance along the
channel is non-dimensionalized for comparison; 0.00 being the inlet of each channel and
1.00 being the outlet.

For Re = 242, the temperature profile develops as expected, with the secondary
flow pushing the cooler fluid towards the outer wall allowing it to come into contact with
the heat source as seen in Figure 7.6. The location of the coolest fluid temperature
moves around in the squared channel as the fluid moves downstream. At plane 4 the
temperature profile looks as if the fluid was traveling through a typical straight channel.
The mean temperatures along the channel are shown in Figure 7.7. By the outlet, the
temperature profiles are nearly identical and both mean temperatures are the same at 360
K. Using the exact values, there is only a temperature difference of 0.4% in favor of the
curved channel.

The increased velocity for Re = 492 produces slightly different results for the

squared channel. The temperature profiles, shown in Figure 7.8, develop similarly to the
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associated velocity profiles for the smooth curved channel. The location of the coolest
fluid shifts around within the channel. At planes 4 and 7, the temperature profiles look
very similar to its smooth curve channel counterparts. There is some disturbance within
the fluid as it exits out of the two 90° turns at planes 3 and 6. This interruption in flow
causes the fluid to mix, which results in only a slight temperature increase across the
plane, but dispersing the heat across the fluid. In Figure 7.9, the mean fluid temperature
fluctuates as the fluid goes through the two 90° turns. Even with the temperature
fluctuation, the squared channel has a higher outlet-inlet temperature difference of 56.70
K, the smooth curve channel only rises 54.83 K by the outlet. This is an increase of
3.7%.

For Re = 900, the temperature profiles develop in a similar fashion to the cases
for Re = 492 as shown in Figure 7.10. The same disturbance is seen coming out of the
turns at planes 3 and 6. Due to the higher velocity of the fluid, this disturbance does not
have as large of an effect on the mean fluid temperature, as there is not as large of a
fluctuation as there was for Re =492. The mean temperatures are shown for both
channels in Figure 7.11. The outlet profiles for both channels are similar, but the squared
channel again has a higher temperature difference, 53.55 K, than the smooth curve

channel, 48.81 K which is an increase of 9.7%.
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Figure 7.6: Developing Temperature Profiles in a 180° Channel (Re = 242)

Temperature (K)

370

= CT242
=0=8T242

310 -
|
300 ]

290 : _
0.00 0.25 0.50 0.75 1.00

Distance

i

i

Figure 7.7: Mean Temperature in a 180° Channel (Re = 242)
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Figure 7.8: Developing Temperature Profiles in a 180° Channel (Re = 492)
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Figure 7.9: Mean Temperature in a 180° Channel (Re = 492)
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Figure 7.11: Mean Temperature in a 180° Channel (Re = 900)
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The temperature differences in Kelvin are summarized for both models in Table 7.2.

CT ST

59.96 59.71

Re =242
-0.4%
54.83 56.37

Re =492
3.0%
48.81 53.55

Re =900
9.7%

Table 7.2: Temperature Difference Summary for 180° Channel

For Re = 242, the temperature difference is nearly identical with the curved channel
producing a slightly higher difference, an increase of only 0.4% over the square channel.
At higher Reynolds numbers, the square channel produces a higher outlet-inlet

temperature difference with an increase of 3.0% for Re = 492 and 9.7% for Re = 900 over

their curved counterparts.
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CHAPTER VIII
CONCLUSIONS

8.1 Conclusions

Computational models were created for helical channels for two different
geometric cross sections: a circle and an ellipse with the same cross-sectional area. The
elliptical cross section was analyzed for the major axis of the ellipse in both the
horizontal and vertical positions. All the cases were studied for three different Reynolds
numbers (242, 492, and 900) and keeping the Dean number for each case below 522 for
stability purposes. A constant surface temperature of 360 K was applied along the entire
length of the channel to determine how the Dean vortices within the flow affect the heat
transfer properties of the fluid. Straight channels with the same geometric cross section
and of equivalent length were also modeled for comparison.

In each case, the helical models had a higher Nusselt number and outlet-inlet
temperature difference than their straight model counterpart, with percent increases
ranging from 3.9-26.0%. The higher percentage increases coincided with the higher
Reynolds numbers. The secondary flow within the fluid helps to distribute the heat
within the fluid allowing it to reach a higher temperature more quickly. The horizontal

elliptical helix model had the highest outlet-inlet temperature difference of all of the
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helical models for each Reynolds number. This large temperature difference also
resulted in the highest Nusselt number for each Reynolds number for this geometry.
Although the horizontal elliptical helix model had the highest temperature difference and
Nusselt number, it also produced the highest friction factor out of all the models for each
Reynolds number. The circular helical model actually produced the highest percentage
increase in temperature difference over its straight counterpart. The figure of merit which
compares the Nusselt number to the friction factor shows that the circular helical model
has the highest value for every Reynolds number. This makes this cross-sectional
geometry the best design choice out of these cases.

Two other computational models were studied for two channels each with a 180°
turn. The first was a smooth rounded curve and the second combined three channels with
perpendicular intersections. Both channels had the same circular cross section and were
analyzed for the same three Reynolds numbers as the helical cases. The same constant
surface temperature of 360 K was applied along the entire length of both channels. For
lower Reynolds numbers, the channels had approximately the same mean outlet
temperature. The curved channel had a slightly higher outlet-inlet temperature
difference, a 0.4% increase over the square channel. At the higher Reynolds numbers,
the squared channel achieved a higher outlet-inlet temperature difference due to the turns
of the channel causing a disturbance within the fluid. This disturbance allowed the fluid
to mix and distribute the heat across the fluid. The squared channel may be a more
efficient design as it produces a higher outlet-inlet temperature difference, but
manufacturing capabilities need to be considered before settling on the design. The

squared channel produced an increase of 3.4-9.7% to the temperature difference across
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the channel. At lower Reynoids numbers, the results are nearly identical, so either
channel design could be used, so whichever design has the lower manufacturing costs is
desirable. For higher Reynolds numbers, the square channel produces a higher
temperature difference across the channel. The manufacturing costs need to be
considered, but they increase in outlet-inlet temperature difference of the square channel

may lead this geometry to be a better design.

8.2 Future Work

All of the models had undeveloped flow profiles at the inlet with Dean numbers
below 522. Keeping the Dean number below 522 keeps the fluid in a stable state. It
would be interesting to look at other laminar flows with Dean numbers above 522 to see
how the secondary flow develops and affects the heat transfer. At Dean numbers above
522, it is possible for more than two Dean vortices develop; these additional vortices for
further aid in the heat transfer properties of the fluid. Other heat transfer cases such as a
surface temperature only applied at certain points of the channel, to take advantage of the
secondary flow at its strongest points. Also, a constant heat flux situation could be

observed to see the effects.

Turbulent flow was not considered in this thesis, but would be another topic for
research. The chaotic behavior associate with turbulent flow could further aid in the heat
transfer properties of the fluid. As was shown, the percent difference increased as the
Reynolds number increased, so it could be implied that the difference between helical and
straight models would further differentiate as the Reynolds number increased for laminar
flow models. It could be tested to see if this trend continues into the turbulent flow

regime. Most of the turbulent flow data that has been done has been for circular or
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rectangular channels, similar to the laminar flow data. It would be interesting to see how

the turbulent flow behaves in the elliptical channels.
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