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ABSTRACT With the rapid growth of wearable devices, more applications require direct communication
between wearable devices. To secure the communication between wearable devices, various pairing proto-
cols have been proposed to generate common keys for encrypting the communication. Since the wearable
devices are attached to the same body, the devices can generate common keys based on the same context by
utilizing onboard sensors to capture a common biometric signal such as body motion, gait, heartbeat, res-
piration, and EMG signals. The context-based pairing does not need prior information to generate common
keys. As context-based pairing does not need any human involvement in the pairing process, the pairing
also increase the usability of wearable devices. A wide range of context-based pairing approaches has been
proposed with different sensors and different biometric signals. Given the increasing popularity of wearable
devices and applications of wearable devices, we believe that it is necessary to have a comprehensive review
and comparison on the context-based pairing approaches for future research on the pairing. In this paper,
we compare context-based pairing approaches and review common techniques used in pairing based on
various biometric signals.

INDEX TERMS Authentication, biometrics, body area network, the Internet of Things, network security,
pairing, security, sensor, spontaneous pairing, wearable device.

I. INTRODUCTION
Smart wearable devices can collect a variety of information
about human activities and behaviors which makes them pop-
ular in clinical medicine and health care, health management,
workplace, education, and scientific research. The wearable
market is diversified with hundreds of products, including
smartwatches, smart wristbands, smart glasses, smart jewelry,
smart straps, smart clothes, smart belts, smart shoes, smart
gloves, skin patches, and even implanted medical devices
(IMD) [1], [2], [3], [4], [5], [6], [7], [8]. As Fig. 1 illustrates,
there are many diverse types of wearable devices for different
body parts that collect various physiological data and possibly
make intelligent decisions based on the collected physiologi-
cal data. Wearable devices are exploited in a wide range of
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applications [6]. For example, wearable devices can be used
as health monitoring systems and health treatment systems.
They can monitor vital signs like heart rate [9], [10], [11],
respiratory rate [12], [13], [14], [15], body temperature
[16], [17]. Others collect parameters like blood pressure [18],
blood oxygen [19], blood glucose [20], to detect disorders.
Some wearable devices also can help disabled patients to
recover certain physical functions [21], [22], [23]. Wearable
devices are applied beyond healthcare. For example, wearable
devices can be used to recognize daily physical activities
[24], [25], [26], [27], [28], [29], [30] or the activities that
are related to specific sports [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47].
Other applications areas for wearable devices include pay-
ment management [4], [48], unlocking vehicles [49], keep-
ing sensitive information (like passwords) [49], controlling
paired devices [50], subject tracking [51], [52], fall detec-
tion [53], [54], [55], [56], [57], drowsiness detection [58],
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[59], [60], environment monitoring [61], [62], virtual and
augmented reality [63], [64], and spying [48].

Based on their applications, the wearable devices collect,
analyze, and store the data. In some cases, the wearable
device (e.g., pacemaker) may be equipped with actuators,
which it may use to control important physiological func-
tions of the wearer. Often, they need to share data or com-
mands with the base station or other wearable devices.
Data/command shared between wearable devices are usually
sensitive, like stored credentials of the user or commands
to adjust an IMD. Therefore, the communication should be
protected by encryption, and the devices need to have a
common key for encryption to ensure that the process has not
been compromised by an attacker.

Many wearable devices use Bluetooth or Wi-Fi to connect
to other smartphones, other wearables, or the Internet. To be
able to send and receive data the new wearable device must
establish a connection with the other device; this process is
called pairing (also known as binding, coupling, bonding,
or association [3]). For example, the user initially needs to
pair a new smartwatch with their smartphone over Bluetooth
or NFC channel before use. Some wearable medical devices,
such as IMDs need to be paired to their external controllers
to receive updates.

Traditional pairing techniques often require user actions,
which can take various forms. A common approach is used
in Bluetooth pairing: the user selects a target device from
a list of available devices and then possibly uses a PIN for
additional authentication [65]. However, the approaches that
require an initial stage of network setup are not scalable as the
number of wearables increases [66]. PIN-based approaches
need interaction with the display, which may either be incon-
venient or even impossible in many wearables [66], [67].
Furthermore, PIN-based pairing is vulnerable to observation
attacks such as shoulder surfing [66]. Public key cryptog-
raphy (PKC), on the other hand, cannot be used to create a
secure key on wearable devices because it requires a public
key infrastructure (PKI) [68]. In addition, it requires expen-
sive computing methods that are not suitable for resource-
limited IoT devices. To mitigate these limitations, various
techniques have been proposed that take advantage of com-
mon features in different wearable devices. Pairing based on
biometric signals is a natural choice becausewearable devices
are attached to the same body. Both behavioral biometrics
(e.g., step counts) and physiological biometrics (e.g., heart
rate) are used for wearable device pairing and authentication.

In this article, we survey context-based techniques that
can be used to achieve automatic wearable pairing based on
them. In Section II, we review a selection of survey papers on
biometric-based approaches. Section III discusses the signals
used for pairing smart wearables. In Section IV, different
steps of a biometric-based pairing mechanism are surveyed.
In Section V, we explore the most common adversary mod-
els. Limitations and challenges are presented in Section VI.
Finally, Section VII concludes the paper.

II. RELATED STUDIES ON BIOMETRIC-BASED
APPROACHES
Biometric signals are widely used for device authentication.
A variety of context-based approaches are used in device
authentication to verify user identity [69] on a unique device.

There are several surveys that have investigated different
aspects of the security and authentication in the wireless
body area network (WBAN) [70], [71]. In Table 1, we sum-
marize the topics raised in surveys over the last ten years.
Security essentials and existing attacks against WBAN have
been addressed in Javadi and Razzaque [72]. They also dis-
cussed the significant constraints and challenges of security
mechanisms. A detailed review of authentication schemes is
conducted by Masdari and Ahmadzadeh [73]. The authors
provided a taxonomy for authentication modalities that clas-
sifies them into three categories: biometric-based, channel-
based, and cryptography-based. Mainanwal et al. [74] sum-
marized the pros and cons of several security and privacy
techniques and discussed the threats and challenges. Naik
and Samundiswary et al. [75] surveyed the views on security
and privacy essentials for WBAN. Keystroke dynamics are
addressed in [76] and [77]. Abuhamad et al. [78] investigated
the authentication protocols and OS-related security of smart-
phone users using behavioral biometrics.

The survey by Al-Janabi et al. [79] reviewed the major
security and privacy problems inWBAN for healthcare appli-
cations, along with their state-of-the-art security solutions.
The paper provides significant highlights on open issues
and future research directions in WBANs. Zou et al. [80]
explored the security problems of ubiquitous healthcare (U-
Healthcare) related work. The survey by Narwal and Mohap-
atra [81] focuses on the analysis of authentication schemes in
terms of main outcomes, strengths, and limitations. In addi-
tion to this, the authors discuss the architecture of WBAN,
security essentials, and security attacks are discussed in
detail. A taxonomy is proposed by Usman et al. [82] that
classifies entities involved in healthcare systems. Security
challenges at all WBAN tiers have been studied. The authors
also identified open issues and highlighted future research
directions. In another work, the cryptographic solutions have
been reviewed by Malik et al. [83]. They provided a general
survey on major security essentials and conceivable assaults
at different layers.

Considering the security view of the complete WBAN
system, Morales et al. [84] focused on various protocols
in the WBAN architecture and provided a detailed review
of security requirements such as confidentiality, integrity,
privacy, authentication, and authorization. Komapara and
Hölbl [85] reviewed the security and key agreement of
Intra-BAN communication. They classified the existing key
agreement schemes into traditional, physiological value-
based, secret key-based, and hybrid key-based schemes.
Furthermore, the authors provided a description of each class
and analyzed the security strength of BAN against attacks.
Nidhya and Karthik [86] emphasized the security attacks and
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FIGURE 1. Different types of wearable devices.

security models at the data collection, transmission, and stor-
age levels. Also, they assessed the privacy requirements and
reliability of healthcare systems. Joshi and Mohapatra [87]
investigated the design, functionalities, and workflow of the
existing authentication schemes. They described the structure
of authentication schemes and provided a detailed view on
communication standards and design issues in WBAN. The
paper also suggests methods to safeguard the key during key
management.

Surveying security and privacy issues in WBAN,
Chaudhary et al. [88] classified authentication schemes into
four categories: physiological value-based, channel-based,
proximity-based, and cryptographic-based. Furthermore,
they summarized various schemes from different categories
in a tabular form to highlight the features of each scheme
effectively. The survey by Hussain et al. [89] was conducted
to provide greater insight into authentication schemes. All in
all, the survey presented a detailed discussion on security
features, security attacks, strengths, limitations, and perfor-
mance of the authentication schemes. Roy et al. [90] reviewed
the major security and privacy issues in wireless sensor net-
works (WSNs) and WBANs. They conducted a comparative
analysis of both networks based on their features, archi-
tecture, applications, and threats. In another work, Narwal
and Mohapatra [91] explored the authentication schemes in
different categories.

All the aforementioned studies surveyed a variety of meth-
ods using sensory signals to assist Internet of Things (IoT)
device authentication. However, sensor data, especially bio-
metric signals, can be used for pairing wearable devices
as well. Indeed, biometric signals are the common point
between wearable device authentication and pairing, whereas
the goals and applications are different. This survey focuses
on sensor-based pairing in wearable devices to provide more
details about the challenges and limitations of sensors in such
devices.

III. SIGNALS USED FOR PAIRING
Various types of sensors collect a variety of information
from the human body and the environment. As Fig. 2 shows,
several signals are used for context-based pairing, includ-
ing motion, gait, electrocardiogram (ECG), photoplethysmo-
gram (PPG), electromyogram (EMG), and seismocardiogram
(SCG). Indeed, these sensors can provide auxiliary out-of-
band (OOB) channels [95] as a feasible option to facilitate
device pairing. We categorize and describe the signals used
for wearable device pairing in recent papers in this section.

A. MOTION AND POSITION
Magneto-Inertial Measurement Unit (MIMU) sensors,
including accelerometers, gyroscopes, and magnetometers,
are the most common sensors in today’s wearable devices.
These sensors detect the user’s motion and the heading of
the device with respect to the Earth’s magnetic north pole.
The accelerometer measures acceleration in three orthogonal
spatial dimensions, x, y, and z, where each axis denotes either
the vertical, forward-to-backward, or left-to-right dimensions
in meters per second squared [96]. The gyroscope measures
the angular rotation about each of these axes in radians per
second [97]. The magnetometer measures the strength of the
local magnetic field along three orthogonal axes [98]. The
user’s body movement can be modeled using the information
provided by these sensors. Hence, a variety of methods have
been proposed to use such sensory data for authentication and
pairing purposes.

For instance, in [99] and [100], the authors proposed to
shake the two mobile devices held in one hand; in this
way, the accelerometer reading could be used to generate
matched keys on either frequency domain [99] or time-
domain [100]. The authors demonstrate that the simultaneous
shaking motion of two devices generates unique accelerome-
ter readings that an adversary cannot easily mimic at a close
distance. Shen et al. [101] proposed a method in which, using
a similar motion pattern of handshaking, two devices on dif-
ferent bodies can be paired. Similarly, in [102], a handshake-
based pairing scheme between wrist-worn smart devices is
developed based on the observation that, by shaking hands,
both wrist-worn smart devices conduct similar movement
patterns. Hash functions and heuristic search trees were lever-
aged in [103] to propose a key exchange protocol based on
accelerometer data while the user shakes devices together.
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TABLE 1. Survey papers on the WBAN authentication - Content comparison.

In another work, Yüzugüzel et al. [104] propose to derive
a shared key based on finding a small set of effective fea-
tures from the shaking of two devices that are held together
in one hand. Groza et al. [105] investigated the pairing of
mobile devices based on shared accelerometer data under
various transportation environments. Using multiple sensors
(accelerometer and microphone), Cao et al. [106] presented
a device-to-device (D2D) communication in which the user
needs to hold two devices in one hand and randomly shake
them for a few seconds. Jin et al. [98] proposed a scheme to
pair smartphones at close distances by exploiting correlated
magnetometer readings.

Table 2 shows a summary of features of several papers in
the field of motion- and position-based device pairing.

B. GAIT
Gait recognition is the process of identifying an individual
based on how he or she walks based on wearable sensor
data, especially motion sensors (e.g., accelerometer and gyro-
scope) [109]. Due to the different properties of an individual’s
muscular-skeletal structure, gait patterns are fairly unique
among individuals [110]. Hence, it can be determined if two
devices are carried by the same person [111].

Various techniques exploit different features of gait to
generate a common key for pairing wearable devices. Sun
et al. [112] proposed a method to generate a symmetric key
based on the timing information of gait. The authors used the
Inter-Pulse-Interval (IPI) of consecutive gait as a common
feature between the two devices. Schürmann et al. [113]
presented a secure spontaneous authentication scheme that

exploits correlation in acceleration sequences from devices
worn or carried together by the same person to extract always-
fresh secure secrets. In their method, BANDANA, they uti-
lized instantaneous variations in gait sequences with respect
to the mean. Walkie-Talkie [114] is another shared secret
key generation scheme that allows two legitimate devices to
establish a common cryptographic key by exploiting users’
walking characteristics (gait). The authors exploit indepen-
dent component analysis (ICA) for blind source separa-
tion (BSS) to separate accelerometer signals from different
body movements such as arm swings and walking. In Gait-
Key [115] Xu et al. extended their method inWalkie-Talkie to
examine the effect of multi-level quantization on the pairing
success rate. In [116] the same authors also proposed using
spatial alignment instead of using BSS. A usability analy-
sis of four gait-based device pairing schemes [103], [112],
[113], [114] are presented in [117]. A summary of features of
several gait-based pairing papers is shown in Table 3.

C. ECG AND PPG
The heart-beat is a promising option for wireless body
area networks (WBANs) authentication and key generating
schemes because its properties are unique, and their features
differ from person to person [118]. Heart-beat signals can be
easily collected, and they are hard to copy by other people
in comparison to simple pin codes. It is more secure than
traditional methods because it requires a user to be avail-
able at the time of authentication and pairing process [119],
[120]. Heart-beat signals can usually be collected by ECG
and PPG sensors. ECG sensors collect the electrical activity

VOLUME 11, 2023 26073



J. Pourbemany et al.: Survey of Wearable Devices Pairing Based on Biometric Signals

FIGURE 2. Signals used for pairing.

of heart muscles through electrodes attached to the body.
PPG sensors which can be attached to different parts of the
body like the ear and finger, detect the blood level transforms
in the microvascular cot of tissue [121]. It illuminates the
body and measures transforms in light absorption as blood
circulates in the body. The heartbeat signal can also be
measured by a seismocardiogram (SCG), which is the chest
movement in response to the heartbeat. Accelerometers and
piezo vibration sensors in wearable devices canmeasure SCG
as well [122], [123], [124].

Various features extracted from heart-beat signals can be
used for authentication and key generating purpose. The
most important feature used in WBANs is heart rate vari-
ability (HRV) or R-R interval or inter-beat interval (IBI) or
Inter-pulse Interval (IPI) [125], [126], [127] indicates the
time interval between consecutive heart-beats [128]. Indeed,
the fluctuations of heart rate around an average rate are
shown by HRV [125]. As has been proven by several studies
[129], [130], [131], HRV is highly random and can be used
as a random source to generate keys. Since HRV is a unique
characteristic for each person, it can be used as an authenti-
cation method to pair devices on the same body.

Rostami and Juels [130] proposed an HRV-based pair-
ing method to authenticate external medical device con-
trollers and programmers to IMDs. The authors introduce

a touch-to-access policy using a time-varying physiolog-
ical value (PV) by ECG readings. They utilized the
statistical characterization of ECG for pairing wearable
devices. Another pairing system called H2B is presented by
Lin et al. [122], which utilizes piezo sensors to detect heart-
beat signals and generate a secret key.

D. RESPIRATION
The respiratory signal is employed for key generation
in [132]. The authors proposed Breathe-to-Pair (B2P) which
is a pairing protocol for wearable devices that uses the
wearer’s breathing activity to confirm that the devices are
in the same body-area network. The authors hypothesized
that the gadgets extract and process the respiration signal
using several types of sensors. They demonstrated B2P for
the instance of two devices that extract shared dynamics from
the wearer’s breathing activity using respiratory inductance
plethysmography (RIP) and accelerometer sensors. Accord-
ing to the authors, the B2P protocol can create a safe 256-bit
key every 2.85 seconds (about one breathing cycle) and is
resistant to impersonation attempts.

E. EMG
The EMGor electromyogram signals are the electrical signals
generated by contractions of human muscles. According to
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TABLE 2. Motion-based pairing papers and their features.

TABLE 3. Gait-based pairing papers and their features.

medical research [133], [134], the EMG signal is a quasi-
random process, i.e., the average value of the EMG is cor-
related to the generated force of the muscle, but it has a
random amplitude variation under a given force. In other
words, there are stochastic variations of EMG amplitude for
a unique gesture and force. Therefore, the EMG signals can
be used as a secure source to generate secret keys in physi-
cally close contact for some wearable devices like the Myo
armband [135], Athos gear [136], and Leo smart band [137].
Since detecting this kind of signal requires physical contact
in close proximity, it is extremely difficult for an adver-
sary to perform an eavesdropping attack. EMG-KEY is an
EMG-based method proposed by Yang et al. [138] that

leverages the EMG variation signal to generate a secret key
for pairing two wearable devices.

A summary of different signals and sensors used for wear-
able device pairing is shown in Table 4.

IV. BIOMETRIC-BASED PAIRING MECHANISM
As Fig. 3 shows, a sequence of signal processing is needed
to separate sources (signal and noise), detect and extract
features/events, quantize features/segments, correct errors,
amplify bit string, and create a shared key in the differ-
ent devices. We explain these sequences in the following
paragraphs.
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TABLE 4. Different types of signals and sensors used for pairing.
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FIGURE 3. Context based pairing steps.

A. DATA ACQUISITION AND PREPROCESSING
1) SAMPLING
Sampling is the basic stage in which raw data is collected
through various sensors, from the accelerometer to the ECG
sensor. The speed and quality of data acquisition can directly
affect key generation. Ambient noise and system noise cause
the bit currents of both devices tomismatch and lead to unsuc-
cessful pairing. On the other hand, the amount of sampling
affects the amount of entropy extracted from the sensors’
values. This is because the sampling rate determines the accu-
racy of the measurement: the higher the sampling rate, the
more accurate the measured signal, and the more noise [139].
Therefore, as the sampling rate increases, the measurements
will have more entropy.

2) SYNCHRONIZATION
Synchronization is required to ensure all legitimate devices
capture samples at the same time. Since devices are unsyn-
chronized by default, they must agree on a common starting
point. Time asynchrony would result in a high bit string
mismatch rate between devices after bit quantification, which
would decrease the probability of successful key distribution.
Since both smartphones are unsynchronized initially, they
need user interaction for synchronizing the starting points
of recording the shaking process. This task can be realized
through direct user input, such as pressing a button. Alter-
natively, synchronization can be done by using a coordinator
server [101], [140]. Hence, upon receiving the coordinator’s
synchronization signal, all the sensor nodes in the same net-
work will start recording data [112]. However, we cannot
ensure this kind of synchronization is always available for
users. The wireless communication technique can also be
exploited for synchronization purposes, e.g., a time-slotted
channel hopping-based (TSCH) communication leads to tem-
poral alignment between devices [141]. Synchronization can
be at a sample level, i.e., within less than half the sam-
ple width, or at the event level, i.e., based on the onset
of detected (explicit or implicit) events with the respective

device. Depending on the sensors used for pairing, different
events can be considered anchor points. For instance, the
event can be a heel-strike [115], bumping the devices or shak-
ing them together in one hand [104]. Although better syn-
chronization reduces the bit mismatches at the next stage, the
pairing protocol should support devices without a screen and
keyboard and not impose strict synchronization on pairing
devices when collecting ambient context information [138].

3) FILTERING AND NORMALIZATION
The sensor data must pass a filtering step to eliminate the rel-
ative effect of ambient and artificial noise and extract the
desired signal (motion, gait, PPG, ECG, EMG, etc.) from the
raw data. Depending on the signal type, the filtering stage
involves using a high-pass filter, a mid-pass filter, or a low-
pass filter. For best results, the cut-off frequency of these
filters should be in the range of the minimum and maxi-
mum frequency of the desired signal; for example, 3 Hz can
be a suitable cut-off frequency for a low-pass filter for a
gait signal because the normal step frequency lies between
1.6-2.8 Hz [116]. In fact, by filtering the raw signal, the
unwanted frequency components are removed. Since the
magnitude ranges of sensors are quite different, after filtering,
the signal is usually normalized to have a mean of zero and a
variance of one.

B. FEATURE EXTRACTION
Similar raw signals lead to similar feature signals. The feature
extraction process maintains the user’s desired characteris-
tics (for example, heartbeats IPI, respiration rate, gait, and
movement) and eliminates irrelevant noises [142]. Feature
extraction is one of the most important steps in a pairing
that significantly affects the bit-generation process and its
performance. In particular, selecting the appropriate features
plays a key role in pairing because authentication is done
by comparing the bits generated based on the extracted
features. Features can be selected from both time and fre-
quency domains [143]. Time domain features can be a wide
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variety of features including statistical characteristics [144],
[145], [146] such as mean; standard deviation; variance;
median; root mean square; maximum; minimum; Skew-
ness; kurtosis; crest factor; the number of peaks; Peak-to-
peak amplitude; zero crossing rate [147]; signal magnitude
area [148]; interquartile range [149], [150]. In the frequency
domain, we can select features like energy, entropy [151],
maximum frequency index, mean frequency, and fast Fourier
transform coefficients [152], to name but a few.

C. QUANTIZATION
Quantization represents a source’s output with a large (pos-
sibly infinite) alphabet with a small alphabet. It is a many-
to-one mapping and, therefore, irreversible. Quantization can
be performed on a sample-by-sample basis or on a group
of samples (by dividing the signal into segments). Quan-
tizer encodes each sample/segment by specifying the range
value at multiple levels. In this process, the raw signals or
features will be quantized into bit vectors. The quantizer
has a significant role in the security of the generated key.
By making a biased quantization, a brute-force attack would
become feasible. On the other hand, the quantizer can change
the length of the final key. The quantizer maps each sample
to a bit string whose length depends on the quantization
levels. A quantizer that has 2m quantizing levels canmap each
sample to m bits [139].

The bit representation can also affect security. The quan-
tizer can map samples to either binary code or Gray
code [153]. A Gray code encodes numbers so that adjacent
numbers have a single digit differing by one. Therefore,
in some cases, the Gray code can perform better in detect-
ing noise in two consecutive samples [130]. In the recent
pairing methods, various type of quantization approaches has
been exploited, including pairwise nearest neighbor (PNN)
quantization [100], standard decimal-to-binary quantizer
[98], [104], decimal-to-Gray-code quantizer [122], [130],
uniform quantizer [112], sigma-delta quantizer [105], and
exploiting multiple thresholds [99], [101], [102], [103],
[106], [107], [108], [113], [114], and [116].

D. ERROR CORRECTION
Due to the measured noise, there are usually mismatches in
the quantized bits between the bit vectors produced by the
two devices. Therefore, in the reconciliation stage, devices
exchange a certain amount of information to correct all mis-
matches and generate a bit-by-bit matching key. We describe
some of the most important error correction approaches used
in wearable device pairing in the following.

1) INDEX CHECKING
This technique exchanges the index of the valid bit posi-
tions to reach a mutual agreement on which bits will be
used in the final keys. For example, suppose the key gen-
erated by Alice’s devices is [110xx11x00], while the key
for Bob is [1100x11xx0], where x means the position where
no valid bit is presented. Then both Alice and Bob inform
each other of the positions of the valid bits, i.e., Alice sends

PAlice = {1, 2, 3, 6, 7, 9, 10}, and Bob sends PBob =

{1, 2, 3, 4, 6, 7, 10}. Upon receiving the positions, they
compare the received vector with the local one and agree
that only the bits that are valid according to both vec-
tors should be used. In this example, the agreed positions
should be {1, 2, 3, 6, 7, 10} so that the final symmetric
keys are [110110]. This error correction technique is utilized
in [101], [114], [116].

2) ERROR CORRECTION CODE (ECC)
Error correction code (ECC) is commonly used to control
data errors through unreliable or noisy communication chan-
nels [154]. The central idea is that the sender encodes themes-
sage with additional information in an ECC form. The redun-
dancy allows the receiver to detect a limited number of errors
that may occur anywhere in the message, and often to correct
these errors without retransmission [155]. Bose–Chaudhuri–
Hocquenghem (BCH) [156], Reed-Solomon (RS) [157],
Hamming [158], and binary Golay Codes [159] are some
of the most common ECC used in the recent pairing meth-
ods [106], [108], [112], [113], [115], [138]. BCH codes form
a class of cyclic error-correcting codes constructed using
polynomials over a finite field (also called a Galois field).
One of BCH codes’ key features is that there is precise control
over the number of symbol errors that can be corrected by the
code during code design. Specifically, it is possible to design
binary BCH codes can be designed that can correct multiple
bit errors [160]. Reed-Solomon codes are the subset of BCH
codes among the most powerful known classes of linear,
cyclic block codes. Reed Solomon describes a systematic
way of building codes that could detect and correct multiple
random symbol errors. By adding t check symbols to the
data, the RS code can detect any combination of up to t
erroneous symbols or correct up to t/2 symbols. In addition,
RS codes are suitable as multiple-burst bit-error correcting
codes because a sequence of b+ 1 consecutive bit errors can
affect up to two symbols of size b [161]. Hamming code is a
block code that can detect up to two simultaneous bit errors
and correct single-bit errors. Binary Golay code is another
linear error-correcting code in which a codeword is formed
by taking 12 information bits and appending 11 check bits.

3) FUZZY CRYPTOGRAPHY
The fuzzy cryptographic scheme enables the compatibility
of a certain amount of tolerable noise between the keys
extracted from different devices by changing the error correc-
tion parameters and the length of the samples used. ‘‘Fuzzy,’’
in this context, refers to the fact that the fixed values required
for cryptography will be extracted from values that are close
to but not identical to the original key, without compro-
mising the security required [162], [163]. Jiang et al. [102]
used this technique for error-correcting in their pairing algo-
rithm. In [112], Sun et al. exploited fuzzy cryptography and
BCH to provide the superior performance of false acceptance
rate (FAR).
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4) COMPRESSIVE SENSING
Compressed sensing theory has shown that sparse signals
can be reconstructed exactly from remarkably few measure-
ments [164]. Hence, it can be exploited as an error correction
method [165], [166]. Compressed sensing is a technique
where a signal x is multiplied by anM×N (M < N ) sampling
matrix to be sampled and compressed in a single operation.
The signal x is recovered by finding the l1 norm of the sparse
version of x, represented by the received samples y. In other
words, out of the infinite signals that could have been used
to create the received y, the sparsest one is recovered as the
original signal. As long as x is ‘‘sparse enough,’’ it can be
recovered exactly using this technique. Lin et al. used this
method in their error correction method [122].

E. KEY AMPLIFICATION
In the reconciliation phase, the devices may send some
information to each other through a public wireless channel.
Besides, some slightly different samples/segments may have
the same bit string due to error correction. Thus, an adver-
sary can infer some private information about the secret
sequence. The privacy amplification process solves this issue.
Key amplification helps to increase the final key’s random-
ness to eliminate information leakage and increase entropy.
Typically, two methods are used to combine keys gener-
ated from different segments and eliminate the correlation
between them: the bitwise XOR function [114], [115], [116]
and the hash function MD5 and SHA-256 [99], [100], [106],
[107], [113], [130].

F. PERFORMANCE METRICS
The ultimate objective of pairing is to generate the same
key on different devices independently. On the other hand,
due to wearable devices’ hardware limitations, all the oper-
ations in such devices are expected to use as little memory
and computational power as possible and communicate the
smallest amount of data with the fewest number of messages
to achieve the lowest overall energy consumption. There
are several evaluation metrics for evaluating pairing system
performance, of which we have provided a brief description
in the lines below [78], [167], and [85].

• Bit generation rate:
The number of bits generated from the sensor readings
per second.

• Key generation rate:
The major performance metric for symmetric key gener-
ation is the success rate, or the probability that two keys
generated by Alice and Bob can completely agree with
each other (The probability of 100%matching). In other
words, it is the percentage of identical keys generated by
two devices in one second.

• Bit agreement rate:
Bit Agreement Rate denotes the percentage of the
matching bits of the two cryptographic keys generated
by two devices

• Computational cost:
The next important performance indicator is compu-
tational cost. It is important for schemes to be as
computationally efficient as possible, because sensor
nodes do not pose much processing power and because
more computing uses up more of the very limited
energy supply. The most common method to ana-
lyze computation costs is by measuring the amount
of time it takes for the necessary operations to finish
processing.

• Energy consumption:
Energy consumptionwasmeasured by howmuch energy
is spent on every bit of information produced.

• Communication cost:
Measuring communication costs is very important
because it is the most energy-consuming operation of
them all. The most common ways of determining the
communication cost are by the size of the sent data

• False positive ratio:
The false positive ratio (FPR), also known as the false
accept rate (FAR), is defined as the percentage of pairing
attempts that incorrectly generate common keys among
all the expected unsuccessful attempts. The metric indi-
cates the likelihood of the adversary successfully pairing
with a legitimate device by the adversary. The FPR can
be computed as:FPR =

FP
EN , where FP is the number

of incorrectly generated keys, and EN is the expected
number of unsuccessful attempts.

• False negative ratio:
The false negative ratio (FNR), also known as the
false reject rate (FRR), is defined as the percentage
of incorrectly unsuccessful pairing attempts among all
the expected successful pairing attempts. It indicates
the probability that two legitimate devices attached to the
same body can not pair successfully. FNR is computed
as FNR =

FN
EP , where FN is the number of incorrectly

missed keys, and EP is the number of expected success-
ful attempts.

• Equal/crossover error rate (EER/CER):
Equal or crossover error rate (EER/CER) is the rate at
which both acceptance and rejection errors are equal.
The value of the EER can be easily obtained from the
intersection point between the FAR and the FRR curves.
Equal Error Rate (EER) measures the trade-off between
FAR and FRR and it is the value of FAR or FRR when
the two false rates are equal.

• Entropy:
Another important security metric in the pairing
schemes is the entropy estimation. Entropy is the mea-
sure of uncertainty or randomness in the bit string
generated from the measured signals. Higher entropy
means more randomness in the generated bit string, or,
in other words, fewer dependencies between the bits.
Some papers use the NIST test suite [168] to estimate
the entropy.
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TABLE 5. Processes and techniques utilized in wearable device pairing studies.
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A list of various processes and techniques used in wearable
device pairing techniques is shown in the Table 5.

V. ADVERSARY MODEL/WWWWW/ATTACK SCENARIOS
Wearable device pairing can face various attacks, largely due
to the broadcast nature of wireless communication between
wearable devices. We must consider the presence of a strong
attacker during key generation. Eve is fully aware of the sys-
tem and control of the communication channel, meaning that
she may monitor, jam, and modify messages at will. Various
attacks on wearable device pairing can be categorized into
passive and active attacks [91], [169], [170]. In this section,
we provided a brief description of these attacks and discussed
some common countermeasures.

A. PASSIVE ATTACKS
A passive attacker monitors the network for information but
does not affect the target network. Passive attacks are per-
formed as a preliminary act for the active attack [171]. Data
Sniffing/Eavesdropping: Data Sniffing or Snooping attack is
an old security issue. Sniffing is an incursion that involves a
weak connection between the WBAN node and the server.
The attacker passively accesses the data traffic (important
health data, routing updates, node ID numbers, etc.) for later
analysis by sitting between the unsecured network paths.
Detecting a passive attack is exceedingly difficult and impos-
sible in many cases because it does not involve any changes.
However, protective measures can be implemented to stop
it, including: Avoid posting sensitive information publicly,
using random key distribution and strong encryption tech-
niques to scramble messages, making them unreadable for
any unintended recipients.

B. ACTIVE ATTACKS
An active attack involves using information gathered during
a passive attack to compromise a user or network. Active
attackers can cause devastation to the system as they attempt
to intercept the wireless communication to change the infor-
mation present on the target or en route to the target. There are
several types of active attacks. In an impersonation/spoofing
attack, an attacker pretends to be another user to access the
system’s restricted area. In a replay attack, the intruder steals
a packet from the network and forwards that packet to a ser-
vice or application as if the intruder were the user who origi-
nally sent the packet. Denial-of-service (DoS) and distributed
denial-of-service (DDoS) attacks are also examples of active
attacks, both of which work by preventing authorized users
from accessing a specific resource on a network or the internet
(for example, flooding a device with more traffic than it can
handle).

Unlike a passive attack, an active attack is more likely to be
discovered quickly by the target upon execution. For instance,
we can stop the attacker from impersonating the nodes by
using authentication mechanisms and intrusion detection.
To defend against reply attacks, nonces and time tokens can
be used to introduce fresh data [172]. Authentication and

anti-replay protection are the solutions suggested for avoiding
denial of service [173], [174].

VI. LIMITATIONS AND CHALLENGES
The wearable device pairing methods should be lightweight,
with fast computation, low storage, and low transmission
overhead. Otherwise, the power and storage space of the
body sensors could be quickly drained. There are different
limitations and challenges when trying to pair devices using
sensors’ data. The main limitations of the current approaches
are that they require the user to do a specific action (e.g.,
walking, handshake, gesture), and some devices should be
placed on a certain part of the body (e.g., wrist, arm, head) to
collect the desired signal. Also, some techniques need special
sensors like ECG and EMG sensors, which are not used
in common wearable devices. These requirements can limit
the usability of the proposed techniques. On the other hand,
some other challenges can affect the accuracy of the proposed
methods; the user’s motion artifact and health condition can
challenge the pairing’s success rate. In some pairing methods,
users must remain static during the data collection phase.
Furthermore, a recent study [117] revealed that gait-based
pairing approaches are vulnerable to video attacks.

VII. CONCLUSION
Various context-based pairing protocols have been proposed
in recent years. In this paper, we review the pairing research
by classifying the pairing protocols according to biometric
signal types, comparing pairing approaches, and reviewing
common techniques used in context-based pairing. We also
compare adversary models and countermeasures to common
attacks on context-based pairing. We end the survey with a
discussion on current challenges and limitations in context-
based pairing. This survey is expected to be helpful for further
research on context-based pairing.
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