O V1
< MSL
=ik Cleveland State University

EngagedScholarship@CSU

ETD Archive

2008

Comparison of Methods for Developing Estimated ParameterX
Control Charts Propsed by Nedumaran & Pignatiello, Albers &
Kallenberg and Tsai Et Al.

Ozlem Temiz
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

b Part of the Engineering Commons
How does access to this work benefit you? Let us know!

Recommended Citation

Temiz, Ozlem, "Comparison of Methods for Developing Estimated ParameterX Control Charts Propsed by
Nedumaran & Pignatiello, Albers & Kallenberg and Tsai Et Al" (2008). ETD Archive. 536.
https://engagedscholarship.csuohio.edu/etdarchive/536

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.


https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/536?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

COMPARISION OF METHODS FOR DEVELOPING ESTIMATED PARAMETER
C CONTROL CHARTS
PROPOSED BY

NEDUMARAN & PIGNATIELLO, ALBERS & KALLENBERG and TSAI ET AL.

OZLEM TEMIZ

Bachelor of Sciencein M echanical Engineering
University Of Gaziantep, Turkey

January, 2002

Submitted in partial fulfillment of requirementsfrom the degree
MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING
at the
CLEVELAND STATE UNIVERSITY

May, 2008



COMPARISION OF THREE METHODS FOR ESTIMATED PARAMETER C

CONTROL CHARTS



COMPARISION OF METHODS FOR DEVELOPING ESTIMATED
PARAMETER C CONTROL CHARTS PROPOSED BY
NEDUMARAN & PIGNATIELLO, ALBERS & KALLENBERG and TSAI ET
AL.

OZLEM TEMIZ
ABSTRACT

The subject of thisthesisisthe comparison of the development method used to

determine the value of C control chart limits when the underlying process parameters are
unknown and must be estimated from data obtained from a Phase | “training” sample.
Historically it was accepted that estimates of process parameters using a training
sample of 20-30 subgroups produced chart limits that were essentially as good as those
that would be obtained using the actual distribution parameters themselves.

More recently Quesenberry has shown that control limits obtained from samples
of this size produce SPC procedures with Run Length (RL) distributions significantly
worse than would be expected. A number of articles (Nedumaran & Pignatiello(2001),
Tsal Et a (August 2005) and Albers & Kallenberg (December 2000,December 2003))

have since appeared, each proposing a different method of calculating chart control limits

for Shewart C charts that will produce desirable in-control RL characteristics while
minimizing training sample size. The out-of-control performance for the above plans,
however, was only addressed in one of the articles. In addition, the different authors
employed differing performance measures. Among these are percentiles of the

conditional RL distribution, percentiles of marginal RL distribution, and exceedance



probabilities. Because of these differences, Jensen et a. (2006) has suggested the
comparison of these methods as an area of research.

| propose in the research for this thesis to compare these three proposed methods
in detail comparing their performance by developing empirical probability of signal
distributions for both in-control and out-of-control situations. Generation of these
distributions will be accomplished through discrete simulation. The final result will
consist of recommendations concerning the best of the methods to use in individual

environments.
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CHAPTER |

INTRODUCTION

The C control chart, also referred to as Shewhart control chart, is agraphical tool
to monitor the activity of an ongoing process.

When the underlying process parameters are known, it is easy to set up the control

limits of an C control chart, the center line (CL) isset at u, and the upper control limit
(UCL) and the lower control limit (LCL) are set at;

L=p+kox
UCL=U +kox ox =o/n,

LCL=p-k o x Generally k=3-10

However, in practice, generally the parameters 1 and ¢ of the underlying process
are unknown. In this situation, a control chart is often developed in atwo phase
procedure, in which the phases are known as Phase | and Phasell. In phasel, the
parameters 1 and ¢ are estimated from in-control historical reference samples and the
results are used to estimate the control limitsin phase .

In Phase |, data from minitial subgroups of size n are collected and the mean of

each subgroup is calculated then the grand average of those is used to estimate the



process mean (ﬁ :E) and the average of the subgroup sample standard deviations is

used to estimatesigma(§ =9

Then,
UCL=C+3¢ ¢ ¢ x = Spar/ (c4Vn), Where c4 is a constant that
LCL=C-3¢ « depends only on subgroup size n. Values of ¢4 can be

In Phase |1, subgroups from the new data are collected periodically and the

resulting Cis plotted on a C control chart constructed in Phase |. As long asthe
points plot within the control limits, the process is assumed to be in-control, and no
action is necessary. If pointsfall outside of the control limits, the process is assumed to

be out-of-control requiring corrective action.

The effects of the number and sizes of subgroups in determining the C control
chart limits have been investigated. Early studies presented by Hillier-1964, Y ang/Hillier-
1970, and Montgomery-1996. proposed a classical formulafor Phase | calculations that
requires 20-30 data subgroups of size 5 or greater. Quesenberry later showed that if the
parameters 1 and o are estimated from such a small number of subgroups, there might be
unexpected and undesirable effectsin phase I1. Control chart performance in phase |1

relies on the assumptions that are made in Phase |.

Quesenberry used simulation to study the performance of the C control charts
developed using estimated parameters for several values of m number of subgroups of
sample size n=5. Hisgoal was find the minimum m for which such charts would perform
aswell as one developed with “true limits’ (known parameters case). Quesenberry

showed that m should be at least 100 when n=5 to accomplish that goal. He suggested



that for other values of n, m should be at least 400/ (n-1) based on the speculation that the
minimum degrees of freedom of the variance estimator should always be the same.

The problem with using the classical two phase approach is that the process is not
being monitored during phase |. To minimize this problem, many approaches have been
proposed including those of Nedumaran & Pignatiello (2001), Tsal et al. (2004, 2005)
and Albers/Kallenberg (2004a, 2004b, 2004c). Descriptions of these authors' methods
can be found in the following sections of the Appendix:

Method proposed by Nedumaran & Pignatiello - See appendix A-1
Method proposed by Albers and Kallenberg - See appendix A-2
Methods proposed by Tsal et al. - See appendix A-3

By employing modified calculation schemes for Phase I, al three methods
attempt to shorten this phase alowing earlier monitoring of the processin question. Each
author used Monte Carlo simulation to study his proposed method employing
performance measure or measures to allow him to compare his results to those that would
be expected from “known parameter” developed charts.

Jensen et a. (2006) pointed out that there has not been a detailed comparison of
the three methods to determine which one is better under different circumstances. We
have used Monte Carlo simulation to compare these methods under different conditions
based on comparison of the resulting probability of signal distributions.

1.1 Construction of Xbar ChartsVia Estimators

In order to construct an C control chart when the parameters 1 and ¢ are unknown,

common practice isto estimate them using data from Phase | reference samples once



thisdone and the process is determined to be in-control, control limits are calculated for
usein phasell.
When the process parameters are unknown, we have used the following equations

to calculate control limits.

where X =

C , the average of the subgroup meansis an approximately normally distributed

unbiased estimator of the parameter 1. ( Central Limit Theorem). The estimate of sigma

iscalculatedas ¢ = S/ca

where ¢4 is afunction of the sample size n and

S=Um(Si+S+....+Sn)

1.2. Evaluation Criteria Used in Literature

What to use as the best methods of evaluation of control chart performanceisa
matter of frequent discussion in literature. Run length distributions are often offered asa
candidate. The run length (RL) of a control chart isarandom variable that represents the
number of plotted statistics until asignal occurs.

In the literature, proponents of the various methods generally fall into three
groups. These are known as conditional RL distribution, marginal RL distributions and

both conditional and marginal RL distributions.



The conditional distribution of RL is defined as a distribution which depends on

the specific control limits developed in phase I. It is the probability mass function F (RLI
UCL =g, LCL =Icl) where ucl and Icl are respectively the realized values of the random
variables (UCL and LCL ) obtained during the phase | procedure. This distribution defines

the RL probabilities of an individual chart, once UCL and LCL has been calculated. One
would need the actual values of p and o to calculate the conditional distribution of a

single chart. Jensen et al. (2006), however, pointed out that Jones et al (2001) give a

method by which standardized values of UCL and LCL can be hypothesized and
percentile points (e.g. 25 % and 75 %) of the conditional RL distribution can be found by
calculation or estimation by simulation. The benefit of this method is that the control
chart practitioner can look into both best and worst case performance for charts with a

given methods. However, our main question is how we can use a RL distribution to

compare C control chart devel opment methods. A particular method may produce a
chart having superior characteristics at a given RL percentile but an inferior one at
another percentile making the comparison only partialy useful.

The marginal RL distribution is that probability mass function obtained by

averaging the conditional distribution over all possible values of UCL and LCL  The
main advantage of the marginal RL distribution from the conditional RL dist. isthat the
knowledge average of control chart performance does not require knowledge of the actual
values of parameters o and 1. Furthermore, Margina analysis allows calculating or
estimating the performance measures for an average control chart developed using a

particular method. Although the practitioner will never have an average chart, the



marginal distribution approach alows a common basis to compare the result obtained by
the various methods of developing control charts.

When parameters are known RL is a geometrically distributed random variable.
Thisis aso the case for the RL of any single chart developed using estimated parameters
i. e, when the RL distribution being considered is the conditional one. In both of these
cases, there is a known fixed relationship between the average RL (ARL) and the
standard deviation of the RL (SDRL) which can be expressed as

SDRL= (ARL (ARL-1)) ¥

If the parameters are estimated, the marginal RL distribution, however, is not
geometric and thus the probability of asignal (1/ARL) does not have a meaningful
interpretation. In this situation, RL and its measures must be interpreted carefully. The
main measure performance for an RL distribution is the Average Run length (ARL)
which is defined as an expected value of the random variable that indicates the sample
number on which the first (false) out-of-control point appears for a processthat is
operating-in-control. ARL isthe average over alarge number of charts of single false
alarm per chart, the first one that the chart produces. Thisindicates that a practitioner can
expect to obtain asignal, on average, once in every 370 (in the known parameter case
with 3 sigmalimits) plotted statistics in-control situations when known parameters case.
For an efficient control chart, one would like to have the in-control ARL to be large and
the out-of-control A RL to be small.

In the literature, ARL is used as the most important performance measure of

control chart. Since ARL is not geometric with estimated parameters in order to measure



performance of control charts, it isrecommended to use ARL with standard deviation of

run length (SDRL) if we want to use marginal RL distribution with estimated parameters.



CHAPTERII

TASKSMETHODSAND ASSUMPTIONSUSED

2.1. Summary of Tasks
The thesis research described herein consists of the following:

1) Determination of an appropriate measure for comparing the relative merits of three

literature proposed methods for developing a C control chart.

2) Running of series of Monte Carlo simulation studies to estimate the values of the
selected measures and presentation of the comparative results;

3) Recommendations concerning the best of the three methods to employ under various
situations.

2.2. Criteria Used for Comparing M ethods
One of the mgjor concernsin literature is the selection of appropriate

mesasures to eval uate the performance of an C control chart. For the work in thisthesis
the measure of merit described below has been used. If the mean and variance of the in-
control distribution for the quality characteristic of interest are known, they are used to
calculate LCL and UCL. In that case, assuming normality, the probability of asignal,

i.e., an alarm, may be found by



p=1- [F((UCL- m)/s )- F((LCL- m)/s )]

Where F isthe cumulative standardized normal distribution. In the case of an
in-control process, p representsthe type | error a. For an out-of-control, process p
represents the power of the test.

In thisthesis, we have run simulations creating charts from sample data
estimating ¢ and . Each time we create a new chart in Phase | using different data from
the same process we produce different values for LCL and UCL. They become random
variables producing a different probability of alarm p when inserted in the above
eguation, i.e., p isarandom variable with its own distribution. Attemptsto fit different
distribution forms have shown that lognormal provides an excellent fit to our empirical
data. Inwhat follows, we used the parameters and plotted cdf’ s of these distributions to
compare the merits of alternatives.

2.3. Control Chart Development and Use Procedures

When the parameters p and o of the underlying process are unknown, some
assumptions are made to construct an Xbar control chart whose performance is close to
one developed with known parameters. As mentioned previously, the development
usually is donein two phases designated Phase | and PhaseIl. Control limits are
calculated using parameter estimates from an in-control Phase | historical sample. In
Phase || statistics based on new samples are compared with these limits monitoring to
detect out-of-control situations.

When a process engineer wants to apply the classical two-phase procedure to the
development of the estimated parameter C control charts, proposed by Nedumaran &

Pignatiello, Albers & Kallenberg and Tsai et al., he typically uses a similar approach.



Let Ny (Ng=400/ (ns — 1)) be the Quesenberry recommended number of

rational samples of size Ns needed to establish C control chart limits that will be
(according to Quesenberry) similar in performance to limits calculated using known
values of p and 6. Our three authors have each recommended their own method for

establishing control chart limitsthat could allow use of a control chart before m < ng
samples and recalculation of those limits at Integer((ng-m)/K) intervals, K samplesin

length, thereafter. When ng samples have been obtained one final calculation is made

using all of the data gathered to that point establishing the Quesenberry limits which are
used theresfter.
In our work we have divided Phase | into the Phase |a, Phase I1bl, Phase |b2, Phase |b3
etc. From sample data, the sample average and sample standard deviation are calculated as
estimates of the mean and standard deviation of the process respectively. X chart control limits

are said herein to be developed using the “ standard” method when they are calculated as

X +- 3* S(c4* n.5) where Sisthe “pooled” value of the sample standard deviations and
where X isthe grand average of m samples of sizeng At the end of Phase |3, the control

limits of the C control chart are calculated. The Phase | data used to generate the limitsis
then retrospectively checked against them. When a chart showing the process to be in-control
is found, process monitoring begins and continues until either an out-of-control alarmis
generated or k new subgroups have been checked. We designate this portion of the procedure
as Phase Ib-1. If no alarm has occurred by the end of Phase Ib-1 we enter Phase 1b-2

which continues until either an alarm is generated, or k additional samples have been

processed, or the total number of samplesincluding those in Phase I-a has exceeded the

10



Quesenberry requirement of m > 400/(Ns-1). In generd, if the end of Phase I-bx is reached and

the Quesenberry criterion has not, Phase-1b(x+1) is started. At the end of each Phase | sub
phase new calculations of the chart control limits are made using the total number of Phase |-a
and b) subgroups processed up to that point. When the total number of subgroups processed
within Phase | reaches the Quesenberry criterion, Phase |1 begins. For example, if we start with
m =70, n =5 and k = 10, seventy subgroups of size 5 are processed in Phase |a before
parameter estimates are made and control limits are first calculated. At that point there
remains 400/(5-1)-70 = 30 subgroups to be processed before the Quesenberry criterion is
satisfied. This means, barring an alarm, three Phase 1b sub phases each using 10 subgroups

will be employed.

11



CHAPTER 111
RESEARCH QUESTIONS

A control chart designer’ s goal isto economically and effectively monitor an
ongoing process identifying unusual process performance. To do this a control chart must
be able to distinguish between situations in which the process is operating as expected and
when it is not operating as expected. To be effective a control chart needs to be usable as
early aspossible. Charts requiring fewer Phase la subgroups (small values of m) are more
effectivein thisregard. It needs aso to be able to detect relatively small significant
deviationsin the process be monitored. Charts with higher power are more effective in this

regard. These requirements give rise to the following three research questions.

Thefirst question is: “For each author’ s method and possible values of Ns what are
the minimum values of m used to develop the initial control limit calculations that will
produce results similar to charts created with the standard method and m = nNg?" For this
work similarity means that the probability distributions of the generated charts' Typell
errors are similar to that of charts generated with the standard method and m = ng

Given the answer to gquestion 1, a second question concerns the power of charts

developed using the different authors’ methods. To enable monitoring earlier than m = Ny

12



the width of control limits employed by the different authors may be larger (larger values
of UCL —LCL) than those of Quesenberry. For thisreason the probability of detecting an
out-of-control situation on a particular check (i.e. the power of the test) may be reduced. A
second research question then is “which of the methods produces the highest out-of-control
probabilities of alarm (power} when developed using its particular value of minimum m
found as an answer to the first question?’

The third research question is “How many control limit recal culations should be made
before reaching Ng or, in other words, what is the optimum value of k? The parameter k at

maximum equals ng —m. Minimum k equals 1.” One consideration is that recalculating the
[imits should allow tighter limits with (higher power) with each recal culation while still
maintaining the sametype | error. Thiswould be true since there is less uncertainty as the
total number of data used for the control limit calculations increases. These tighter limits
may have the effect of increasing the power of thetest. Thereisalso the possibility,
however, that a process that goes out of control shortly after the first m subgroups might go

undetected at first. 1n such a case recalculating the limits before N might cause the control

limits to “adapt” to the out-of-control process increasing the time it takes to detect the
problem. Another issueisthat the smaller the value of k the more effort recal culating
control limits required to establish the final control chart. . The third question, therefore,

is“What net effect does the value of k have on the power of the control scheme?’

13



CHAPTER IV

SIMULATION METHOD AND DETAILS

We used Monte Carlo simulation to compare our three authors' methods under
different conditions.
An Arena simulation model has been constructed. This model has four control
variables, i.e., ns, m, k, delta mu. Simulation begins by generating m rational samples of

size Ns from an in-control distribution N(0,1) and calculating from them an initial set of

control limits for each of the three methods using the algorithms supplied by each author.
(This completed Arenamodel is showed in appendix B)
The supplying distribution is then changed to one that is out-of-control, i.e.,
N(delta mu,l) (called hereafter the “second distribution”). delta_mu represents a shift in
mean expressed in multiples of sigma. If asimulation isbeing run to examine type |
error rate delta_mu is set to zero. If therunisto evaluate the power of the test, delta mu
is chosen to be non-zero.
Theinitially calculated limits are then compared to the second distribution and the
probability of an alarm is calculated for each of the three methods. k additional rational

subgroups are then generated after which the control limits are recalculated using all of

14



the data generated up to the last point. These new limits are then compared to the second
distribution and the probability of an alarm again calculated. The process of generating k
new subgroups, recal culating the limits every Integer((ng-m)/k) intervals, k subgroupsin
length, thereafter, and then cal culating the probability of an alarm against the new limits

is repeated until the generation of another k samples would cause the total number

generated to exceed Ng. When this happens enough subgroups have been generated to

bring the total number to Ngat which point the final limits are calculated which become

the Quesenberry limits. The calculated values of the alarm probabilities for each author
are then averaged over the run to calculate the average probability of an alarm for that run
for each of the three plans' operations.

For afixed set of ssimulation control variable values, the above program simulates
generating many charts with different control limits. These different control limits
produce in turn different probabilities of an alarm when the same samples from a
particular distribution are tested against them.

Because of the random nature of the control limits, the probability of an alarmis
itself arandom variable with its own distribution. If the actual o and p for a process were
known exactly and used to calculate control limits, the probability of an darm for agiven
delta_ mu would be asingle value. For the estimated parameter case as m becomes
smaller, the variance of the probability of alarm distribution becomes larger. For anin-
control situation, the increase in the upper tail represents an increase in type | error. For
an out-of-control situation the larger lower tail represents areduction in chart power. For
this reason comparing the results of the various simulations requires comparing both the

average and variance of the probability of alarm distributions

15



A log-normal distribution (showed below) has been found to provide a good fit
for the probability of alarm data generated by these simulations. Observations of the
fitted distribution behavior under changes in the controls have been used to generate

answers and conclusionsin regards to the above questions.

16



CHAPTER YV

GENERATION AND EVALUATION OF RESULTS

5.1 Overview

In order to provide answers to the first question concerning minimum m,
simulations were run for three common values of N, i.e., Ns=5, n=7 and Ns=10.

delta_mu for these ssmulations was held at zero. That choice resultsin an in-control
simulation with the resulting probability of alarm representing the type | error rate a.
Runs were made using various values for. The probability of an alarm was recorded for
each method and each run. The methods simulated were that of Tsai, Nedumaran
&Pignatiellio and Albers &Kallenberg. For reference purposes, simulations were also
run with m=ng representing the distribution of probability of alarm for the standard
method with Quesenberry’ s recommendation for m (labeled Q standard). For each set of
control values1000 replications were made.
5.2. Results from Question 1 Simulations

The simulation results for n=5, n=7 and n=10 and various values of m are shown
below in Figurel, 2, 3,4,5- Tablel; Figure6, 7,8,9,10- Tablell; Figure 11, 12,13, 14, 15-
table 111 respectively. For these runs The simulations were run with no interim

recalculation of limitsusing Ng-m as the value for k in all cases.
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All Author's Methods for n=5, m=45, k=55
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All Author's Methods for n=5, m=80, k=20
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All Author's Method for n=5, m=70, k=30
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All Author's Methods for n=7, m=30, k=36

Probability of alarm (Alpha)

Lognormal
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All Author's Methods for n=7, m=35, k=31
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All Author's Methods for n=7, m=45, k=21
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All Author's Methods for n=7, m=55, k=11
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All Author's Methods n=7, m=60, k=6
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All Author's Methods for n=10, m=10, k=34

Probability of alarm (Alpha)

Lognormal
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All Author's Methods for n=10, m=25, k=19
Lognormal
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All Author's Methods for n=10, m=30, k=14
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All Author's Methods for n=10, m=35, k=9

Lognormal
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All Author's Methods for n=10, m=40, k=4
Lognormal
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Figures 1, 6, and 11 show aplots of the fitted cumulative distribution functions

made with arelatively small value of m for methods except the Q standard method which
isaways run with m = Ny = 400/(Ns-1). At thisvalue of mit can be seen that all of the

other methods are inferior to the Q standard method. Thisis true because they all exhibit
larger variance which results a larger number of charts with higher in-control probability
of alarm and therefore ahigher Type | error rate. This can be seen visually by inspection
of the cumulative distribution curves. To be equal or superior to the performance of the
Q standard method the plot for another method would have to have al of its points on or
above and to the left of those of the Q standard plot. Thisisnot the casein Figures 1, 6,

and 11. After the ssmulation runsthat generated these charts, additional runs were made

using increasing values of m and still holding k = Ng-m while observing the performance

of the various methods. This process was continued for each value of Ng until the plots

for all methods equaled or exceed the performance of the Q standard method. All of the
simulation results for question 1 can be found in Figures 1-15. The minimum value of m
at which a given method’ s performance matches the Quesenberry method performance

was then recorded in Table V as the minimum m for that method.

Minimum m
n
Albers & Kallenberg Nedumaran & Pignatiello Tsai et d
5 80 50 70
7 55 45 45
10 40 25 30
Table IV
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These results were than ranked 1 -3 with the highest rank for a particular value of

Ns given to the author whose method has the lowest minimum m. The ranks were than

averaged over Ng to estimate the overall average rank for each author’s method which is

shown table V.

Evaluation Table for Question 1

n Albers &Kallenberg Nedumaran & Pignatiellio Tsai Etal.
5 1 3 2
7 1 25 25
10 1 3 2
score (1+1+1)/3=1 (3+2.5+3)/3=2.83 2+2.5+2=2.166
TableV

5.3 Resultsfrom Question 2 Simulations

To evaluate the power performance for each plan the following experimental
design matrix was established. Table VI shows the smulation parameter (Ns, min m, k,
delta_mu) values for each simulation study. Asin question one simulations, no
recalculation of limits was performed resulting in k = Ng—m. Again 1000 replications

were run for each parameter combination. In addition, lognormal distributions were
fitted to the data and cumulative distribution plots formed. The results of these runs are
shown in Figures 16-24.

Simulation Parameters for Question 2

ALBERS NEDUMARAN TSAI
n DELTA
m k m k m k
5 80 20 50 50 70 30 0.5, 0.75, 1.00, 1.25, 1.5, 2.00
7 55 11 45 21 45 21 0.5, 0.75, 1.00, 1.25, 1.5, 2.00
10 40 4 25 19 30 14 0.5, 0.75, 1.00, 1.25, 1.5, 2.00

Table VI
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Cumulative Distribution Function

Albers & Kallenberg various delta
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Albers & Kallenberg various delta
n=7, m=55 (minimum wvalue), k=11
Lognorm al
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Nedumaran & Pignatiello various delta
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Lognormal
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Albers & Kallenberg various delta
n=10, m=40 (minimum valuel)}, k=%

Lognormal
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For a given value of ns, each of the above graphs shows a cumulative distribution
functions for the probability of alarm for the indicated author’s method. Each plot on a
graph shows the cdf for a certain value of delta_mu. Of course, as would be expected,
the larger the delta_mu (indicating the magnitude of the process out-of-control
condition), the larger is the power. Comparing the plots for the three authors for agiven
value of ns one can see which is superior in regards to power. In an out-of-control
process condition a high probability of signal/alarm isdesirable. If an author’s curve set,
therefore, isto the right and under another author’s, his method is producing superior

results. Table VII displays the relative merits of the different methods in regardsto

guestion 2.
Evaluation Table for Question 2
n Albers & Kallenberg Nedumaran & Pignatiellio Tsai Et al.
5 2 1 3
7 3 1 2
10 3 1 2
Average Score (2+3+3)/3=2.666 (1+1+1)/3=1 3+2+2=2.33
Table VII

5.4 Resultsfrom Question 3 Simulations

All of the previous simulations were run with no recalculation of limits after the

initial calculation after minimum m subgroups. Thisinfers that there was only one
portion of Phaselb, i.e., Phase Ib-1 consisting of k = Ng-m subgroups. To address
research question 3 anumber of simulations have been run during which Phase Ib was
divided into various numbers of subgroups with recalculation of control limits being done

at the end of each one of the sub phases of Phaselb. Because a different value for
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minimum m was determined in the work on the previous questions, the value of Ng-m, the

length of Phase 1b, isalso different. Because of this the length of Phase 1b and number
of sub phases run differ by author’s method also. Table V111 shows the simulation

parameter design matrix. Figures 25-33 and Tables IX-XVII show the results of the

simulations.
Parameters for Question 3 Simulation Runs
(Table Entries are Vaues of k)
Number TSAI NEDUMARAN ALBERS delta_ mu
of sub
p h ases n=5 n=7 n=10 n=5 n=7 n=10 n=5 n=7 n=10
m=70 m=35 | m=30 m=50 | m=45 m=25 m=80 | m=55 m=40
Ng-m Ng-M | Ng=M | Nng-M | Nn¥=mM | Ng&-M | Ng-M | Ng@-M | Ng-M
=30 =31 =14 =50 =21 =19 =20 =11 =4
1 30 31 14 50 21 19 20 11 4 2(7)2
1.25
2 15 15 7 25 10 12 10 5 2 2(7)2
1.25
3 10 10 4 16 7 6 6 3 1 2(7)2
1.25
4 7 7 3 12 5 6 5 2 0.5
1.00
1.25
S 6 10 4 4 1 075
1.00
1.25
Table VIII
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Cumulative Distribution Function
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paametars | "SI | Gateton
k10 d0.75 0.0792 0.0246
k10 d1.00 0.1871 0.0441
k10 d1.25 0.3556 0.0602
k4 _d0.75 0.0719 0.0223
k4 _d1.00 0.1694 0.0404
k4 _d1.25 0.3247 0.0568
k5_d0.75 0.0731 0.0226
k5 d1.25 0.1723 0.0410
k5 d1.25 0.3298 0.0573
k6_d0.75 0.0740 0.0229
k6_d1.00 0.1745 0.0414
k6_d1.25 0.3334 0.0576
k20_d0.75 0.0927 0.0290
k20_d1.00 0.2199 0.0511
k20 _d1.25 0.4123 0.0666
Tahle X
Nedumaran & Pignatiellio n=5

Avg. Prob. Standard

Parameters ofgalarm deviation
k10 d0.75 0.0418 0.0163
k10 _d1.00 0.0967 0.0299
k10 d1.25 0.1874 0.0446
k12_d0.75 0.0435 0.0169
k12 d1.25 0.1009 0.0310
k12 _d1.25 0.1953 0.0459
k16_d0.75 0.0470 0.0183
k16_d1.00 0.1097 0.0335
k16_d1.25 0.2118 0.0487
k25_d0.75 0.0560 0.0220
k25_d1.00 0.1321 0.0399
k25 _d1.25 0.2538 0.0562
k50_d0.75 0.0842 0.0340
k50_d1.00 0.2033 0.0611
k50_d1.25 0.3887 0.0817

Table X
Tsa et al.n=5
Parameters A(;Ifgazrr?nb. [?e?/rilgtair;
k10_d0.75 0.0654 0.0215
k10_d1.00 0.1539 0.0391
k10_d1.25 0.2959 0.0557
k15_d0.75 0.0711 0.0233
k15_d1.00 0.1680 0.0421
k15_d1.25 0.3216 0.0587
k30_d0.75 0.0904 0.0301
k30_d1.00 0.2154 0.0533
k30_d1.25 0.4062 0.0700
k7_d0.75 0.0619 0.0204
k7_d1.00 0.1454 0.0373
k7_d1.25 0.2805 0.0537
Tahle X1




Cumulative Distribution Function

Albers & Kallenberg various k and delta
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Cumulative Distribution Function

Nedumaran & Pignatielio various k and delta
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Albers & Kallenberg n=7
Parameters A(;QQZ?nb. g;?;?g:l
k11_d0.75 0.1538 0.0438
k11_d1.00 0.3559 0.0679
k11_d1.25 0.6110 0.0693
k3_d0.75 0.1265 0.0366
k3_d1.00 0.2088 0.0675
k3_d1.25 0.5268 0.0680
k5_d0.75 0.1325 0.0382
k5_d1.00 0.3093 0.0617
k5_d1.25 0.5454 0.0684

Tahle X1
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Tsai Et Al. various k and delta
n=7, m=45 (minimum value)
Lognormal
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Parameters A(;?gélgfnb. g;?g?g:]
k10_d1.00 0.2570 0.0584
k10_d1.25 0.4659 0.0694
k10_d10.75 0.1081 0.0348
k21_d0.75 0.1439 0.0459
k21_d1.00 0.3395 0.0730
k21_d1.25 0.5930 0.0766
k5_d0.75 0.0945 0.0308
k5_d1.00 0.2254 0.0532
k5_d1.25 0.4168 0.0669
k7_d0.75 0.1001 0.0325
k7_d1.00 0.2384 0.0554
k7_d1.25 0.4376 0.0682
Table X111
Tsa et al. n=7
Parameters A(;QQZ?nb. St:/?;?g]
k10_d0.75 0.1108 0.0353
k10_d1.00 0.2615 0.0588
k10_d1.25 0.4718 0.0694
k21_d0.75 0.1464 0.0464
k21_d1.00 0.3434 0.0731
k21_d1.25 0.5972 0.0762
k5_1.00 0.2303 0.0538
k5_1.25 0.4233 0.0670
k5_d0.75 0.0973 0.0314
k7_d0.75 0.1029 0.0331
k7_d1.00 0.2434 0.0560
k7_d1.25 0.4439 0.0682
Tahle X1V




Albers & Kallenberg various k and delta
n=10, m=40 (minimum value)

Albers & Kallenberg n=10

Parameters A(\)Ifgél er?nb. ?;?:“a{;
n10_m40_ 0.2447 0.0599
k2_d1.00 0.5261 0.0747
nk2_d1.25 0.7941 0.0530
k4_d0.75 0.2619 0.0632
k4_d1.00 0.5554 0.0757
k4_d1.25 0.8202 0.0499
Tahle XV
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Nedumaran & Pignatiello various k and delta
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Lognormal
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Tsai Et Al. various k and delta
n=10, m=30 (minimum value)
Lognormal
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Parameters A(;Ifgélzrr?nb' g;?g?g:]
k19_d0.75 0.2408 0.0791
k19_d1.00 0.5254 0.0992
k19_d1.25 0.7972 0.0700
k6_d0.75 0.1419 0.0521
k6_d1.00 0.3242 0.0713
k6_d1.25 0.5444 0.0725
k9_d0.75 0.1621 0.0538
k9_d1.00 0.3643 0.0761
k9_d1.25 05753 0.0774
Tahle XVI
Tsa et al. n=10
Parameters A(;Ifgélzrr?nb' g;?g?g:]
k14_d0.75 0.2476 0.0732
k14_d1.00 05353 0.0903
k14_d1.25 0.8051 0.0622
k4_d0.75 0.1675 0.0509
k4_d1.00 0.3798 0.0738
k4_d1.25 0.6274 0.0698
k7_d0.75 0.1902 0.0571
k7_d1.00 0.4246 0.0787
k7_d1.25 0.6810 0.0685
Table XVII




Inspection of the above plots shows that for all methods the power of the test for
out-of-control conditions deteriorates as the number of sub phasesin Phase Ib increases
from one to some larger number. Real time plots of the UCL and LCL made during
simulations of an out-of-control showed in many cases that recal culation produced limits
that adjusted to the out-of-control process without producing an alarm. This effect
evidently out weighs any positive benefit of recalculation. These results would seem to
lead to the conclusion that recalculation of limits between the original calculation and
calculation of the Quesenberry limits at nq is detrimental and should not be done. While
thisistrue for both Albers and Nedumaran’s methods there is another consideration for
Tsai’s. Whilethe first two methods alow the user of the chart to start checks of every
new data point against calculated limits as soon as the limits are calculated at m
minimum, Tsai’s method does not. It requires waiting until the end of the current
Phaselb sub phase and then transforming all of the data gathered in that sub phase
simultaneously before checking any individual datum against control limits. If only one
Phase 1b-1 is used, this check would be made at the time Quesenberry limits were
calculated which essentially prohibits any possibility of process monitoring before ng.
For the reasons mentioned above we recommend as an answer to question 3 that only one
Phase I b sub phase be used for the methods of Albers and Nedumaran and that two be
used for Tsai’s method. We combine this recommendation with the results of Table VI
to create the following Table XVII1 Evaluation Table for “How soon can we start

monitoring the process?’



Evaluation Table for “How soon can we start monitoring the process?’

n Albers & Kallenberg Nedumaran & Pignatiellio Tsai Etal.
5 2 3 1
7 2 3 1
10 2 3 1
score (2+2+2)/3=2 (3+3+3)/3=3 (1+1+1)/3=1
Table XVI1II

Because the power of atest islower when two sub phases are used Tsai’ s method
being used with two sub phases will always have lower power than the other two
methods. Combining that fact with Table XIX we have developed the following
Evaluation Table to answer the question “Which method has the greater power?’

Evaluation Table for “Which Method has the Greater Power

n Albers & Kallenberg Nedumaran & Pignatiellio Tsai Et al.
5 3 2 1
7 3 2 1
10 3 2 1
Average Score 3 2 1
Table XIX
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CHAPTER VI

CONCLUSIONSAND RECOMMENDATIONS

6.1 General Considerations Concer ning Application Environments
The answer to the question “Which one of these methods is best in practice?’ we

must consider another factor in addition to the data obtained in the above simulation
studies. That factor isthe environmentsin which the chart will be developed and used.
We have identified three such possible environments.
First they are characterized by the level of technical knowledge of the control chart
developer. Inthe case of the Tsai et a. method the level of knowledge of the user of the
chart is aso important. Second these environments are characterized by whether the
chart development and/or use is automated by application of a computer. These factors
are important to varying degrees in evaluating the three author’ s methods.
We see these three possible environments.:

1, Neither the developer of the chart or its user have a knowledge of statistics or

computing resources available.

2. The developer of the chart has the knowledge of statistics and computing resources

available but the user does not.

3. Both the developer and user have statistical knowledge and computing resources.

36



In what follows we evaluate and make a separate recommendation in regards to
which of the author’ s methods is best for each of these three environments. We do this

using Pugh Matricies of the form shown in Table XX

Pugh Matrix Format

METHODS
CRITERIA WEIGHT
Nedumaran &
Albers & Kallenberg Pignatiellio Tsai et al.
How soon we can
. 2 3 1
monitor the process
Power 3 2 1
How easy isit to
build a chart
How easy isit to use
achart?”
Score
Table XX

Thefirst column lists four factors upon which our comparison judgments are to be
made. The second column contains a weighting factor indicating the importance of the
first column factor in the environment being evaluated. The weights are estimated on a
scale of 0-10 with 10 being the most important. The next columns contain ranks for the
different methods for the row’s criteria. The ranks range from 1-3 with three being the
highest. The score row contains the score calculated as the sum of the row values
multiplied by the row weights. The valuesin the first and second table rows are taken
from Tables XI1X and XX. The environment determines the valuesin the next two

rows. The valuesin the weight column vary by environment.
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6.2 Recommendation for Environment 1

Table XXI shows the Pugh matrix for environment 1. In this environment the
statistical knowledge of both chart developer and user is limited. Tsai’s method requires
knowledge and computer resources in both Phases laand Ib. Nedumaran's method

requires them in Phase la but not Ib. The Pugh matrix for this environment is shown in

Table XXI below.
Pugh Matrix Environment 1
(Fractional ranks represent ties)
METHODS
CRITERIA WEIGHT
Nedumaran &
Albers & Kallenberg Pignatiellio Tsai et al.
How soon we can
. 5 2 3 1
monitor the process
Power 5 3 2 1
How isit to
i 10 3 15 15
build a chart
How easy isit to use 25
achart?” 10 25 ' 1
Score 80 65 35
Table XXI

Based on the contents of Table XXI Albers & Kallenberg's method is

recommended for environment 1.

6.3 Recommendation for Environment 2

In the second environment statistical knowledge and computing power is

available during Phase la but not in Phase Ib. Because of this“How easy isit to build a
chart” isweighted lower. The Pugh matrix for this environment is shown in Table XXl

below
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Pugh Matrix Environment 2

(Fractional ranks represent ties)

METHODS
CRITERIA WEIGHT
Nedumaran &
Albers & Kallenberg Pignatiellio Tsai et al.
How soon we can
. 5 2 3 1
monitor the process
Power 5 3 2 1
How isit to
g 0 3 15 15
build a chart
How easy isit to use 25
achart?’ 10 25 ) 1
Score 50 50 20
Table XXII

The above analysis gives atie between Albers and Nedumaran. Albers has

greater power and therefore higher probability of detecting smaller out-of-control

process. Nedumaran allows earlier monitoring of the process. These differences are

small so either could be chosen in this environment.

6.4 Recommendation for Environment 3

In this environment statistical knowledge and computing resource is available for

al of Phasel. This might occur when development of achart and its use are completely
automated. In environment 3 the weights for the last two rows of the matrix are set at

their lowest possible value indicating these factors are not important. The Pugh Matrix

for environment 3 is shown below in Table XXI11
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Pugh Matrix Environment 3

(Fractional ranks represent ties)

METHODS
CRITERIA WEIGHT
Albers & Kallenberg Nedumaran & Pignatiellio Tsai et al.

How soon we can
monitor the process? 5 2 3 1
Power 5 3 2 1
How isit to

= 0 3 15 15
build a chart ?
How easy isit to use 25
achart? 0 25 ) 1
Score 25 25 10

Table XX111

Again, in this environment Albers and Nedumaran istie with Albers being

superior in minimum m and Nedumaran in power. Again, either method is appropriate for
this environment.

6.5 Final Conclusions

The method of Tsai et al. is only able to actually check for the possibility of an
out-of-control process after a number of subgroups (k) have been accumulated. Its
competitors can check each new subgroup as dataisreceived. Thisfact delays decision
making considerably unless small values of k are used producing short Phase b sub
phases. Small values of k, however, cause frequent recalculation of limitswhich in turn
increases the probability that the recalculated limits will track the out-of-control process
rather that create and alarm which means the power will be lower. The above brings the

conclusion that Tsai’s method is not as good as the others.
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Albers method requires the smallest amount of knowledge to create and use
charts. Itis, therefore, the best for environment 1 where knowledge and computer
resources are limited.

Nedumaran & Pignatiello’s method requires more knowledge in the chart
development stage but otherwise has only small differences with Albers'. If that
knowledge is availableit is an good alternative to Albers in environment 2. In any case

itisagood aternative to Albers’ in environment 3.
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APPENDIX A
AUTHOR'SMETHOD

Appendix A-1

NEDUMARAN&PIGNATIELLO (2001)
(1)

Objectives: Construct control limits of the @Gontrol charts that match any specific

percentile point of run length distribution of the true limits even when the limits are
estimated using data from only a few subgroups.

Method: This approach is constructed based on multivariate t-distribution.
Prospective control limits are constructed from m initial subgroups number for a
future subgroups number (k). Authors assumed there is equicorrelatedmultivariate
normal distribution between all future subgroups. Control limitsare

UL =TT+ _.,'\_m_l -“1.‘.-';.
.f.-'_-._?- = ? — . .|-'||I_.'.I. i

Simulation: Samples are considered as identically and normally distributed.
m=initial subgroups=variable, n=sample size=3,5,7, k=future subgroups=variable,
a=0.0027(for each k), y= probability of signal within k subgroups,

Constructed future control limits from m initial subgroups (u=0, o©2=1) for a future the
number of subgroups.

Repeat 10000 times to compare this result with the standard two phase approach
based on the probability of signal within k subgroups.

NEDUMARAN&PIGNATIELLO (2001)
(2)

Analysis: The authors showed that their proposed control limits perform similar to

the true limits even for small m whereas the standard approachesissue relatively
large number of false alarms after short runs based on simulation

Comment: Their results are close true to those of limits of control chart. But

nevertheless they use of the multivariate t distribution which is difficult and perhaps
not possible for typical practice.
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Appendix A-2

q

ALBERS&KALLENBERG (20045)
(1)

Objective: Reduce the number of Phase | samples required while maintaining the in-
control ARL to that of a known parameter chart. This is to be accomplished by
increasing the width of UCL-LCL (e.g. +/-( up+c) S ha) beyond that of a similar known-
parameter chart (e.g. +/- u,s hat)-

Definitions: Random variable Error=(Pn-p)/P where:

a P is the probability of a false alarm using a certain chart constructed with known parameters
(e.g., .=00135 if U,=3.0).

a Pn is the probability of a false alarm using the wider control limits calculated to match the
above false alarm rate using an estimated parameter control chart.

Chart Development —Bias Method
Define Bias as (Expectation{Pn}-P)/P
gChoose c to force Bias to zero
g Calculate Control Chart Limits

ALBERS &KALLENBERG (2004-5)

sChart Development —Exceedance Approach
g Specify and “unpleasant’value of Pn e.g., Pn >(1+e)P or error = e
q Specify the maximum proportion of future charts that should exceed this error = a
g Choose c to satisfy Probability(|(Pn-p)|/p>= e)<a. This probability is called by the
authors the “exceedance”probability.
q Calculate Control Limits

L ® ui, /6 /9
Bias Approach: ControlLim it :xtup/2§1+g}é+ 8 n;

Exceedance

. . _ & u e 0,
Probability ControlLim it = xiup/2§1+ 2 2" /Z is
Approach (Zn)]/ Up/2 g

ALBERS & KALLENBERG (2004 -5)
3)

Analysis: While the bias approach allows for n=40 during phase | it does not limit the
worst case error that can be incurred for a single control chartdeveloped in that
manner. The diffidence probability approach is much more stringent in that it places
constraints on a remote percentile of the error distribution rather than some
parameter averaged over all possible charts. As the authors point out, this tight
control of the in-control error rate is at the expense of the chart power for detecting
out-of-control situations. To what degree this power limitation reduces the usefulness
of the method is to be determined.
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Appendix A-3

TSAI ET AL.(2005)
(1)

Objectives: Start monitoring process at the early stage before the numbersamples
which is recommended by Quesenberry (m=400/(n-1))

Method: This approach is constructed based on Student’s t-distribution to build control
limits for any number of subgroups.

Control limits are calculated from m initial subgroups number with n size and k future
subgroups. First Cis calculated from m subgroups and U =X;- C

They did matrix transform from correlated sequence to uncorrelated sequence ( W= ¥-2U)
Center line is considered as 0.Control limits are;

Control limits=0 #t , (U ((m+1)/mn))¥2

Simulation: Samples are considered as identically and normally distributed from m
subgroups=10-75; samples sizes, n=3,5,7 and k future subgroups=5-25 from in-control
process (u=0,02=1).

a=0.0027, y= probability of signal within k subgroups; J=1-(1- a)«

Plot the W, at the control chart

Repeat this procedure 10.000

Tsai et al. compare those results of their second approach with standard two phase
approach and Nedumaran &Pignatiello’s approach based on the probability of signal within
k subgroups.

TSAI ET AL.(2005)
2)

Analysis: The authors showed that their proposed control limits perform similar to
the true limits even for small m without dropping any a number of subgroups. In this

approach we need a few initial subgroups, student’s t distribution and we have do
matrix transform to plot individual points.

Comment: The results of this method are close to the true limits (known
parameters case) of control chart without dropping any a number of subgroups.
However, in order to transform the correlated sequence to an uncorrelated sequence
The quality practitioner has to know and use matrix algebra which takes long time or
He/She has to use an advance math program. This is not useful for a typical quality
practitioner.
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APPENDIX B
ARENA MODEL
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