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COMPARISION OF METHODS FOR DEVELOPING ESTIMATED 

PARAMETER  Χ  CONTROL CHARTS  PROPOSED BY  

NEDUMARAN & PIGNATIELLO,  ALBERS & KALLENBERG and TSAI ET 

AL. 

OZLEM TEMIZ 

ABSTRACT 

The subject of this thesis is the comparison of the development  method  used to 

determine the value of Χ  control chart limits when the underlying process parameters are 

unknown and must be estimated from data obtained from  a  Phase I “training” sample.   

      Historically it was accepted that estimates of process parameters using a training 

sample of 20-30 subgroups produced chart limits that were essentially as good as those 

that would be obtained using the actual distribution parameters themselves.   

      More recently Quesenberry has shown that control limits obtained from samples 

of this size produce SPC procedures with Run Length (RL) distributions significantly 

worse than would be expected.  A number of articles (Nedumaran & Pignatiello(2001), 

Tsai Et al (August 2005) and Albers & Kallenberg (December 2000,December 2003)) 

have since appeared, each proposing a different method of calculating chart control limits 

for Shewart Χ charts that will produce desirable in-control  RL characteristics while 

minimizing training sample size. The out-of-control performance for the above plans, 

however, was only addressed in one of the articles. In addition, the different authors 

employed differing performance measures. Among these are percentiles of the 

conditional RL distribution, percentiles of marginal RL distribution, and exceedance 
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probabilities. Because of these differences, Jensen et al. (2006) has suggested the 

comparison of these methods as an area of research.  

              I propose in the research for this thesis to compare these three proposed methods 

in detail comparing their performance by developing empirical probability of signal 

distributions for both in-control and out-of-control situations.  Generation of these 

distributions will be accomplished through discrete simulation.  The final result will 

consist of recommendations concerning the best of the methods to use in individual 

environments. 
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CHAPTER I 
 

INTRODUCTION 

 

The Χ  control chart, also referred to as Shewhart control chart, is a graphical tool 

to monitor the activity of an ongoing process. 

When the underlying process parameters are known, it is easy to set up the control 

limits of an Χ  control chart, the center line (CL) is set at µ, and the upper control limit 

(UCL) and the lower control limit (LCL) are set at; 

UCL= µ +k σ x  

                  LCL= µ - k σ x  

However, in practice, generally the parameters µ and σ of the underlying process 

are unknown. In this situation, a control chart is often developed in a two phase 

procedure, in which the phases are known as Phase I and Phase II.  In phase I, the 

parameters µ and σ are estimated from in-control historical reference samples and the 

results are used to estimate the control limits in phase II. 

In Phase I, data from m initial subgroups of size n are collected and  the mean  of 

each subgroup is calculated then the grand average of those is used to estimate the 

   σ x  = σ/√n, 
 Generally k=3-10 
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process mean (µ̂ = Χ ) and the average of the subgroup sample standard deviations  is 

used to estimate sigma (σ̂ = S) 

Then,  

UCL= Χ +3σ) x                           

 LCL= Χ - 3σ) x     

In Phase II, subgroups from the new data are collected periodically and the 

resulting   Χ  is plotted on a Χ   control chart constructed in Phase I. As long as the 

points plot within the control limits, the process is assumed to be in-control, and no 

action is necessary. If points fall outside of the control limits, the process is assumed to 

be out-of-control requiring corrective action.  

The effects of the number and sizes of subgroups in determining the Χ   control 

chart limits have been investigated. Early studies presented by Hillier-1964, Yang/Hillier-

1970, and Montgomery-1996.  proposed a classical formula for Phase I calculations that 

requires 20-30 data subgroups of size 5 or greater.  Quesenberry later showed that if the 

parameters µ and σ are estimated from such a small number of subgroups, there might be 

unexpected and undesirable effects in phase II. Control chart performance in phase II 

relies on the assumptions that are made in Phase I. 

Quesenberry used simulation to study the performance of the Χ   control charts 

developed using estimated parameters  for several values of m number of subgroups of 

sample size n=5.  His goal was find the minimum m for which such charts would perform 

as well as one developed with “true limits’’ (known parameters case). Quesenberry 

showed that m should be at least 100 when n=5 to accomplish that goal. He suggested 

σ) x = Sbar/ (c4√n), Where c4 is a constant that 

depends only on subgroup size n. Values of c4 can be 
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that for other values of n, m should be at least 400/ (n-1) based on the speculation that the 

minimum degrees of freedom of the variance estimator should always be the same. 

The problem with using the classical two phase approach is that the process is not 

being monitored during phase I. To minimize this problem, many approaches have been 

proposed including those of Nedumaran & Pignatiello (2001), Tsai et al. (2004, 2005) 

and Albers/Kallenberg (2004a, 2004b, 2004c). Descriptions of these authors’ methods 

can be found in the following sections of the Appendix: 

 Method proposed by  Nedumaran & Pignatiello - See appendix A-1 

 Method proposed by Albers and Kallenberg - See appendix A-2  

 Methods proposed by Tsai et al. - See appendix A-3  

By employing modified calculation schemes for Phase I, all three methods 

attempt to shorten this phase allowing earlier monitoring of the process in question.  Each 

author used Monte Carlo simulation to study his proposed method employing 

performance measure or measures to allow him to compare his results to those that would 

be expected from “known parameter” developed charts.   

Jensen et al. (2006) pointed out that there has not been a detailed comparison of 

the three methods to determine which one is better under different circumstances.  We 

have used Monte Carlo simulation to compare these methods under different conditions 

based on comparison of the resulting probability of signal distributions.   

1.1 Construction of Xbar Charts Via Estimators 

    In order to construct an Χ control chart when the parameters µ and σ are unknown, 

common practice is to estimate them  using data from Phase I reference samples  once 
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this done  and the process is determined to be in-control, control limits are calculated  for 

use in  phase II.  

When the process parameters are unknown, we have used the following equations 

to calculate control limits. 

 

 

 

 

Χ , the average of the subgroup means is an approximately normally distributed 

unbiased estimator of the parameter µ. ( Central Limit Theorem).  The estimate of sigma 

is calculated as  σ)  = S /c4 

where c4 is a function of the sample size n and  

         S =1/m(S1+S2+….+Sm) 

1.2. Evaluation Criteria Used in Literature 

What to use as the best methods of evaluation of control chart performance is a 

matter of frequent discussion in literature. Run length distributions are often offered as a 

candidate. The run length (RL) of a control chart is a random variable that represents the 

number of plotted statistics until a signal occurs.  

In the literature, proponents of the various methods generally fall into three 

groups. These are known as conditional RL distribution, marginal RL distributions and 

both conditional and marginal RL distributions. 
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The conditional distribution of RL is defined as a distribution which depends on 

the specific control limits developed in phase I. It is the probability mass function F (RLI 

LCU ˆ =ucl, LCL ˆ =lcl) where ucl and lcl  are respectively the realized values of the random 

variables ( LCU ˆ and LCL ˆ ) obtained during the phase I procedure. This distribution defines 

the RL probabilities of an individual chart, once LCU ˆ  and LCL ˆ  has been calculated. One 

would need the actual values of µ and σ to calculate the conditional distribution of a 

single chart. Jensen et al. (2006), however,  pointed out that Jones et al (2001) give a 

method by which standardized values of LCU ˆ  and LCL ˆ can be hypothesized and 

percentile points (e.g. 25 % and 75 %) of the conditional RL distribution can be found by 

calculation or estimation by simulation. The benefit of this method is that the control 

chart practitioner can look into both best and worst case performance for charts with a 

given methods. However, our main question is how we can use a RL distribution to 

compare Χ  control chart development methods. A particular method may produce a 

chart having superior characteristics at a given RL percentile but an inferior one at 

another percentile making the comparison only partially useful. 

The marginal RL distribution is that probability mass function obtained by 

averaging the conditional distribution over all possible values of LCU ˆ  and LCL ˆ . The 

main advantage of the marginal RL distribution from the conditional RL dist. is that the 

knowledge average of control chart performance does not require knowledge of the actual 

values of parameters σ and µ. Furthermore, Marginal analysis allows calculating or 

estimating the performance measures for an average control chart developed using a 

particular method. Although the practitioner will never have an average chart, the 
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marginal distribution approach allows a common basis to compare the result obtained by 

the various methods of developing control charts. 

When parameters are known RL is a geometrically distributed random variable. 

This is also the case for the RL of any single chart developed using estimated parameters 

i. e., when the RL distribution being considered is the conditional one. In both of these 

cases, there is a known fixed relationship between the average RL (ARL) and the 

standard deviation of the RL (SDRL) which can be expressed as  

SDRL= (ARL (ARL-1)) 1/2 

  If the parameters are estimated, the marginal RL distribution, however, is not 

geometric and thus the probability of a signal (1/ARL) does not have a meaningful 

interpretation. In this situation, RL and its measures must be interpreted carefully. The 

main measure performance for an RL distribution is the Average Run length (ARL) 

which is defined as an expected value of the random variable that indicates the sample 

number on which the first (false) out-of-control point appears for a process that is 

operating-in-control. ARL is the average over a large number of charts of single false 

alarm per chart, the first one that the chart produces. This indicates that a practitioner can 

expect to obtain a signal, on average, once in every 370 (in the known parameter case 

with 3 sigma limits) plotted statistics in-control situations when known parameters case.  

For an efficient control chart, one would like to have the in-control ARL to be large and 

the out-of-control A RL to be small. 

 In the literature, ARL is used as the most important performance measure of 

control chart. Since ARL is not geometric with estimated parameters in order to measure 
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performance of control charts, it is recommended to use ARL with standard deviation of 

run length (SDRL) if we want to use marginal RL distribution with estimated parameters. 
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CHAPTER II 

 TASKS METHODS AND ASSUMPTIONS USED 

 

2.1. Summary of Tasks 

 The thesis research described herein consists of the following:  

1)  Determination of an appropriate measure for comparing the relative merits of three 

literature proposed methods for developing  a Χ  control chart. 

2) Running of series of Monte Carlo simulation studies to estimate the values of the 

selected measures and presentation of the comparative results; 

3) Recommendations concerning the best of the three methods to employ under various 

situations. 

2.2. Criteria Used for Comparing Methods 

 One of the major concerns in literature is the selection of appropriate 

measures to evaluate the performance of an Χ  control chart. For the work in this thesis 

the measure of merit described below has been used.  If the mean and variance of the in-

control distribution for the quality characteristic of interest are known, they are used to 

calculate LCL and UCL.  In that case, assuming normality, the probability of a signal, 

i.e., an alarm, may be found by 
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               ( )( ) ( )( )]//[1 σµσµ −Φ−−Φ−= LCLUCLp  

Where Φ   is the cumulative standardized normal distribution.  In the case of an 

in-control process, p represents the type I error α.  For an out-of-control, process p 

represents the power of the test.   

In this thesis, we have run simulations creating charts from sample data 

estimating  σ and µ.  Each time we create a new chart in Phase I using different data from 

the same process we produce different values for LCL and UCL. They become random 

variables producing a different probability of alarm p when inserted in the above 

equation, i.e., p is a random variable with its own distribution.  Attempts to fit different 

distribution forms have shown that lognormal provides an excellent fit to our empirical 

data.  In what follows, we used the parameters and plotted cdf’s of these distributions to 

compare the merits of alternatives. 

2.3. Control Chart Development and Use Procedures 

 When the parameters µ and σ of the underlying process are unknown, some 

assumptions are made to construct an Xbar control chart whose performance is close to 

one developed with known parameters. As mentioned previously, the development 

usually is done in two phases designated Phase I and Phase II.  Control limits are 

calculated using parameter estimates from an in-control Phase I historical sample.  .In 

Phase II statistics based on new samples are compared with these limits monitoring to 

detect out-of-control situations.  

 When a process engineer wants to apply the classical two-phase procedure to the 

development of the estimated parameter  Χ control charts, proposed by Nedumaran & 

Pignatiello, Albers & Kallenberg and Tsai et al., he typically uses a similar approach.   
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 Let nq (nq = 400 / (ns – 1)) be the Quesenberry recommended number of 

rational samples of size ns needed to establish Χ control chart limits that will be 

(according to Quesenberry) similar in performance to limits calculated using known 

values of µ and σ.  Our three authors have each recommended their own method for 

establishing control chart limits that could allow use of a control chart before m < nq 

samples and recalculation of those limits at Integer((nq-m)/k) intervals, k samples in 

length, thereafter.  When nq samples have been obtained one final calculation is made 

using all of the data gathered to that point establishing the Quesenberry limits which are 

used thereafter. 

 In our work we have divided Phase I into the Phase Ia, Phase Ib1, Phase Ib2, Phase Ib3 

etc. From sample data, the sample average and sample standard deviation are calculated as 

estimates of the mean and standard deviation of the process respectively. X chart control limits 

are said herein to be developed using the “standard” method when they are calculated as 

 X +/- 3*S/(c4*ns^.5) where S is the “pooled” value of the sample standard deviations and 

where X  is the grand average of m samples of size ns.   At the end of Phase Ia, the control 

limits of the Χ  control chart are calculated.  The Phase I data used to generate the limits is 

then retrospectively checked against them.  When a chart showing the process to be in-control 

is found, process monitoring begins and continues until either an out-of-control alarm is 

generated or k new subgroups have been checked. We designate this portion of the procedure 

as Phase Ib-1. If no alarm has occurred by the end of Phase Ib-1 we enter Phase 1b-2 

 which continues until either an alarm is generated, or k additional samples have been 

processed, or the total number of samples including those in Phase I-a has exceeded the 
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Quesenberry requirement of m > 400/(ns-1).  In general, if the end of Phase I-bx is reached and 

the Quesenberry criterion has not, Phase-1b(x+1) is started.  At the end of each Phase I sub 

phase new calculations of the chart control limits are made using the total number of Phase I-a 

and b) subgroups processed up to that point.  When the total number of subgroups processed 

within Phase I reaches the Quesenberry criterion, Phase II begins. For example, if we start with 

m = 70, n = 5 and k = 10, seventy subgroups of size 5 are processed in Phase Ia before 

parameter estimates are made and control limits are first calculated.  At that point there 

remains 400/(5-1)-70 =  30 subgroups to be processed before the Quesenberry criterion is 

satisfied.  This means, barring an alarm, three Phase 1b sub phases each using 10 subgroups 

will be employed. 
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CHAPTER III 

RESEARCH QUESTIONS 

 

 

 A control chart designer’s goal is to economically and effectively monitor an 

ongoing process identifying unusual process performance. To do this a control chart must 

be able to distinguish between situations in which the process is operating as expected and 

when it is not operating as expected. To be effective a control chart needs to be usable as 

early as possible.  Charts requiring fewer Phase Ia subgroups (small values of m) are more 

effective in this regard. It needs also to be able to detect relatively small significant 

deviations in the process be monitored. Charts with higher power are more effective in this 

regard.  These requirements give rise to the following three research questions. 

The first question is: “For each author’s method and possible values of ns what are 

the minimum values of m used to develop the initial control limit calculations that will 

produce results similar to charts created with the standard method and m = nq?” For this 

work similarity means that the probability distributions of the generated charts’ Type I 

errors are similar to that of charts generated with the standard method and m = nq. 

Given the answer to question 1, a second question concerns the power of charts 

developed using the different authors’ methods.  To enable monitoring earlier than m = nq  
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the width of control limits employed by the different authors may be larger (larger values 

of UCL – LCL) than those of Quesenberry.  For this reason the probability of detecting an 

out-of-control situation on a particular check (i.e. the power of the test) may be reduced. A 

second research question then is “which of the methods produces the highest out-of-control 

probabilities of alarm (power} when developed using its particular value of minimum m 

found as an answer to the first question?” 

The third research question is “How many control limit recalculations should be made 

before reaching nq or, in other words, what is the optimum value of k?  The parameter k at 

maximum equals nq – m. Minimum k equals 1.”  One consideration is that recalculating the 

limits should allow tighter limits with (higher power) with each recalculation while still 

maintaining the same type I error.  This would be true since there is less uncertainty as the 

total number of data used for the control limit calculations increases.  These tighter limits 

may have the effect of increasing the power of the test.  There is also the possibility, 

however, that a process that goes out of control shortly after the first m subgroups might go 

undetected at first.  In such a case recalculating the limits before ns might cause the control 

limits to “adapt” to the out-of-control process increasing the time it takes to detect the 

problem.  Another issue is that the smaller the value of k the more effort recalculating 

control limits required to establish the final control chart.  .  The third question, therefore,   

is “What net effect does the value of k have on the power of the control scheme?” 
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CHAPTER IV 

SIMULATION METHOD AND DETAILS 

 

We used Monte Carlo simulation  to compare our three authors’ methods under 

different conditions.  

 An Arena simulation model has been constructed. This model has four control 

variables, i.e., ns, m, k, delta_mu.  Simulation begins by generating m rational samples of 

size ns from an in-control distribution N(0,1) and calculating from them an initial set of 

control limits for each of the three methods using the algorithms supplied by each author. 

(This completed Arena model is showed in appendix B) 

The supplying distribution is then changed to one that is out-of-control, i.e., 

N(delta_mu,1) (called hereafter the “second distribution”). delta_mu represents a shift in 

mean expressed in multiples of sigma.  If a simulation is being run to examine type I 

error rate delta_mu is set to zero.  If the run is to evaluate the power of the test, delta_mu 

is chosen to be non-zero.  

The initially calculated limits are then compared to the second distribution and the 

probability of an alarm is calculated for each of the three methods.  k additional rational 

subgroups are then generated after which the control limits are recalculated using all of 
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the data generated up to the last point.  These new limits are then compared to the second 

distribution and the probability of an alarm again calculated.  The process of generating k 

new subgroups, recalculating the limits every Integer((nq-m)/k) intervals, k subgroups in 

length, thereafter, and then calculating the probability of an alarm against the new limits 

is repeated until the generation of another k samples would cause the total number 

generated to exceed nq.  When this happens enough subgroups have been generated to 

bring the total number to nq at which point the final limits are calculated which become 

the Quesenberry limits.  The calculated values of the alarm probabilities for each author 

are then averaged over the run to calculate the average probability of an alarm for that run 

for each of the three plans’ operations. 

For a fixed set of simulation control variable values, the above program simulates 

generating many charts with different control limits.  These different control limits 

produce in turn different probabilities of an alarm when the same samples from a 

particular distribution are tested against them.   

Because of the random nature of the control limits, the probability of an alarm is 

itself a random variable with its own distribution.  If the actual σ and µ for a process were 

known exactly and used to calculate control limits, the probability of an alarm for a given 

delta_mu would be a single value.  For the estimated parameter case as m becomes 

smaller, the variance of the probability of alarm distribution becomes larger.  For an in-

control situation, the increase in the upper tail represents an increase in type I error.  For 

an out-of-control situation the larger lower tail represents a reduction in chart power.  For 

this reason comparing the results of the various simulations requires comparing both the 

average and variance of the probability of alarm distributions  
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A log-normal distribution (showed below) has been found to provide a good fit 

for the probability of alarm data generated by these simulations.  Observations of the 

fitted distribution behavior under changes in the controls have been used to generate 

answers and conclusions in regards to the above questions.   
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CHAPTER V 

 GENERATION AND EVALUATION OF RESULTS 

 

5.1 Overview 

In order to provide answers to the first question concerning minimum m, 

simulations were run for three common values of ns, i.e., ns=5, ns=7 and ns=10.  

delta_mu for these simulations was held at zero. That choice results in an in-control 

simulation with the resulting probability of alarm representing the type I error rate α.  

Runs were made using various values for.  The probability of an alarm was recorded for 

each method and each run.  The methods simulated were that of Tsai,  Nedumaran 

&Pignatiellio and  Albers &Kallenberg.  For reference purposes, simulations were also 

run with m=nq representing the distribution of probability of alarm for the standard 

method with Quesenberry’s recommendation for m (labeled Q standard).  For each set of  

control values1000 replications were made.  

5.2. Results from Question 1 Simulations 

 The simulation results for n=5, n=7 and n=10 and various values of m are  shown 

below in Figure1, 2, 3,4,5- Table I;  Figure 6, 7,8,9,10- Table II; Figure 11, 12,13, 14, 15-

table III respectively. For these runs The simulations were run with no interim 

recalculation of limits using  nq-m as the value for k in all cases.
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Authors m=45 m=50 m=60 m=70 m=80 
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Figure VIII 
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Authors m=30 m=35 m=45 m=55 m=60 
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Q standard 0.0011 0.0011 0.0011 0.0011 0.0011 

Albers & Kallenberg 0.0018 0.0017 0.0013 0.0012 0.0011 
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Authors m=10 m=25 m=30 m=35 m=40 
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Figure 14 
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Figures 1, 6, and 11  show a plots of the fitted cumulative distribution functions 

made with a relatively small value of m for methods except the Q standard method which 

is always run with m = nq = 400/(ns-1).  At this value of m it can be seen that all of the 

other methods are inferior to the Q standard method. This is true because they all exhibit 

larger variance which results a larger number of charts with higher in-control probability 

of alarm and therefore a higher Type I error rate .  This can be seen visually by inspection 

of the cumulative distribution curves.  To be equal or superior to the performance of the 

Q standard method the plot for another method would have to have all of its points on or 

above and to the left of those of the Q standard plot.  This is not the case in Figures 1, 6, 

and 11.  After the simulation runs that generated these charts, additional runs were made 

using increasing values of m and still holding k = nq-m while observing the performance 

of the various methods.  This process was continued for each value of  ns until the plots 

for all methods equaled or exceed the performance of the Q standard method.  All of the 

simulation results for question 1 can be found in Figures 1-15.  The minimum value of m 

at which a given method’s performance matches the Quesenberry method performance 

was then recorded in Table V as the minimum m for that method. 

     

  

 

 

 

 

Minimum m 
n 

Albers & Kallenberg Nedumaran & Pignatiello Tsai et al 

5 80 50 70 

7 55 45 45 

10 40 25 30 

Table IV 
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These results were than ranked 1 -3 with the highest rank for a particular value of 

ns given to the author whose method has the lowest minimum m.  The ranks were than 

averaged over ns to estimate the overall average rank for each author’s method which is 

shown table V.  

   Evaluation Table for Question 1 

n Albers &Kallenberg Nedumaran &Pignatiellio Tsai Et al. 

5 1 3 2 

7 1 2.5 2.5 

10 1 3 2 

score (1+1+1)/3=1 (3+2.5+3)/3=2.83 2+2.5+2=2.166 

         Table V 

5.3 Results from Question 2 Simulations 

To evaluate the power performance for each plan the following experimental 

design matrix was established.  Table VI shows the simulation parameter (ns, min m, k, 

delta_mu) values for each simulation study. As in question one simulations, no 

recalculation of limits was performed resulting in k = nq – m.  Again 1000 replications 

were run for each parameter combination.  In addition, lognormal distributions were 

fitted to the data and cumulative distribution plots formed.  The results of these runs are 

shown in Figures 16-24. 

Simulation Parameters for Question 2 

ALBERS NEDUMARAN TSAI 
n 

m k m k m k 
DELTA 

5 80 20 50 50 70 30 0.5, 0.75, 1.00, 1.25, 1.5, 2.00 

7 55 11 45 21 45 21 0.5, 0.75, 1.00, 1.25, 1.5, 2.00 

10 40 4 25 19 30 14 0.5, 0.75, 1.00, 1.25, 1.5, 2.00 

     Table VI 
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                                                                      Fig.5 

Figure 16 

Figure 17 

Figure 18 
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                                                                       Fig.7 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 21 

Figure 20 

Figure 19 
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Figure 22 

Figure 23 

Figure 24 
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For a given value of ns, each of the above graphs shows a cumulative distribution 

functions for the probability of alarm for the indicated author’s method.  Each plot on a 

graph shows the cdf for a certain value of delta_mu.  Of course, as would be expected, 

the larger the delta_mu (indicating the magnitude of the process out-of-control 

condition), the larger is the power.  Comparing the plots for the three authors for a given 

value of ns one can see which is superior in regards to power.  In an out-of-control 

process condition a high probability of signal/alarm is desirable.  If an author’s curve set, 

therefore, is to the right and under another author’s, his method is producing superior 

results.  Table VII displays the relative merits of the different methods in regards to 

question 2.  

Evaluation Table for Question 2 

n Albers &Kallenberg Nedumaran &Pignatiellio Tsai Et al. 

5 2 1 3 

7 3 1 2 

10 3 1 2 

Average Score  (2+3+3)/3=2.666 (1+1+1)/3=1 3+2+2=2.33 

     Table VII 

 

5.4 Results from Question 3 Simulations 

 All of the previous simulations were run with no recalculation of limits after the 

initial calculation after minimum m subgroups. This infers that there was only one 

portion of PhaseIb, i.e., Phase Ib-1 consisting of k = nq-m subgroups.  To address 

research question 3 a number of simulations have been run during which Phase Ib was 

divided into various numbers of subgroups with recalculation of control limits being done 

at the end of each one of the sub phases of Phase1b.  Because a different value for 
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minimum m was determined in the work on the previous questions, the value of nq-m, the 

length of Phase 1b, is also different.   Because of this the length of  Phase 1b and number 

of sub phases run differ by author’s method also.  Table VIII shows the simulation 

parameter design matrix.   Figures 25-33 and Tables IX-XVII  show the results of the 

simulations.   

 

 

Parameters for Question 3 Simulation Runs 
(Table Entries are Values of k) 

 
           TSAI NEDUMARAN 

        

ALBERS 

            

delta_mu 

 

Number 
of sub 
phases n=5 

m=70 
nq-m 

=30 

n=7 
m=35 
nq-m 
=31 

n=10 
m=30 
nq-m 
=14 

n=5 
m=50 
nq-m 
=50 

n=7 
m=45 
nq-m 
=21 

n=10 
m=25 
nq-m 
=19 

n=5 
m=80 
nq-m 

=20 

n=7 
m=55 
nq-m 
=11 

n=10 
m=40 
nq-m 
=4 

 

0.75 
1.00 

1 30 31 14 50 21 19 20 11 4 
1.25 
0.75 
1.00 

2 15 15 7 25 10 12 10 5 2 
1.25 
0.75 
1.00 

3 10 10 4 16 7 6 6 3 1 
1.25 
0.75 
1.00 

4 7 7 3 12 5 6 5 2  
1.25 
0.75 
1.00 

5  6  10 4  4 1  
1.25 

                Table VIII 
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Albers & Kallenberg =5 

Parameters Avg. Prob. 
of alarm 

Standard 
deviation 

k10_d0.75 0.0792 0.0246 
k10_d1.00 0.1871 0.0441 
k10_d1.25 0.3556 0.0602 
k4_d0.75 0.0719 0.0223 
k4_d1.00 0.1694 0.0404 
k4_d1.25 0.3247 0.0568 
k5_d0.75 0.0731 0.0226 
k5_d1.25 0.1723 0.0410 
k5_d1.25 0.3298 0.0573 
k6_d0.75 0.0740 0.0229 
k6_d1.00 0.1745 0.0414 
k6_d1.25 0.3334 0.0576 
k20_d0.75 0.0927 0.0290 
k20_d1.00 0.2199 0.0511 
k20_d1.25 0.4123 0.0666 

Nedumaran & Pignatiellio n=5 

Parameters Avg. Prob. 
of alarm 

Standard 
deviation 

k10_d0.75 0.0418 0.0163 
k10_d1.00 0.0967 0.0299 
k10_d1.25 0.1874 0.0446 
k12_d0.75 0.0435 0.0169 
k12_d1.25 0.1009 0.0310 
k12_d1.25 0.1953 0.0459 
k16_d0.75 0.0470 0.0183 
k16_d1.00 0.1097 0.0335 
k16_d1.25 0.2118 0.0487 
k25_d0.75 0.0560 0.0220 
k25_d1.00 0.1321 0.0399 
k25_d1.25 0.2538 0.0562 
k50_d0.75 0.0842 0.0340 
k50_d1.00 0.2033 0.0611 
k50_d1.25 0.3887 0.0817 

Tsai et al.n=5 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k10_d0.75 0.0654 0.0215 

k10_d1.00 0.1539 0.0391 

k10_d1.25 0.2959 0.0557 

k15_d0.75 0.0711 0.0233 

k15_d1.00 0.1680 0.0421 

k15_d1.25 0.3216 0.0587 

k30_d0.75 0.0904 0.0301 

k30_d1.00 0.2154 0.0533 

k30_d1.25 0.4062 0.0700 

k7_d0.75 0.0619 0.0204 

k7_d1.00 0.1454 0.0373 

k7_d1.25 0.2805 0.0537 
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Albers & Kallenberg n=7 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k11_d0.75 0.1538 0.0438 

k11_d1.00 0.3559 0.0679 

k11_d1.25 0.6110 0.0693 

k3_d0.75 0.1265 0.0366 

k3_d1.00 0.2988 0.0675 

k3_d1.25 0.5268 0.0680 

k5_d0.75 0.1325 0.0382 

k5_d1.00 0.3093 0.0617 

k5_d1.25 0.5454 0.0684 

Nedumaran & Pignatiellio n=7 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k10_d1.00 0.2570 0.0584 

k10_d1.25 0.4659 0.0694 

k10_d10.75 0.1081 0.0348 

k21_d0.75 0.1439 0.0459 

k21_d1.00 0.3395 0.0730 

k21_d1.25 0.5930 0.0766 

k5_d0.75 0.0945 0.0308 

k5_d1.00 0.2254 0.0532 

k5_d1.25 0.4168 0.0669 

k7_d0.75 0.1001 0.0325 

k7_d1.00 0.2384 0.0554 

k7_d1.25 0.4376 0.0682 

Tsai et al. n=7 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k10_d0.75 0.1108 0.0353 

k10_d1.00 0.2615 0.0588 

k10_d1.25 0.4718 0.0694 

k21_d0.75 0.1464 0.0464 

k21_d1.00 0.3434 0.0731 

k21_d1.25 0.5972 0.0762 

k5_1.00 0.2303 0.0538 

k5_1.25 0.4233 0.0670 

k5_d0.75 0.0973 0.0314 

k7_d0.75 0.1029 0.0331 

k7_d1.00 0.2434 0.0560 

k7_d1.25 0.4439 0.0682 
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Albers & Kallenberg n=10 
Parameters Avg. Prob. 

of alarm 
Standard 
deviation 

n10_m40_ 0.2447 0.0599 

k2_d1.00 0.5261 0.0747 

nk2_d1.25 0.7941 0.0530 

k4_d0.75 0.2619 0.0632 

k4_d1.00 0.5554 0.0757 

k4_d1.25 0.8202 0.0499 

Nedumaran & Pignatiellio n=10 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k19_d0.75 0.2408 0.0791 

k19_d1.00 0.5254 0.0992 

k19_d1.25 0.7972 0.0700 

k6_d0.75 0.1419 0.0521 

k6_d1.00 0.3242 0.0713 

k6_d1.25 0.5444 0.0725 

k9_d0.75 0.1621 0.0538 

k9_d1.00 0.3643 0.0761 

k9_d1.25 0.5753 0.0774 

Tsai et al. n=10 
Parameters Avg. Prob. 

of alarm 
Standard 
Deviation 

k14_d0.75 0.2476 0.0732 

k14_d1.00 0.5353 0.0903 

k14_d1.25 0.8051 0.0622 

k4_d0.75 0.1675 0.0509 

k4_d1.00 0.3798 0.0738 

k4_d1.25 0.6274 0.0698 

k7_d0.75 0.1902 0.0571 

k7_d1.00 0.4246 0.0787 
k7_d1.25 0.6810 0.0685 
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Table XV 
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Table XVII 
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 Inspection of the above plots shows that for all methods the power of the test for 

out-of-control conditions deteriorates as the number of sub phases in Phase Ib increases 

from one to some larger number.  Real time plots of the UCL and LCL made during 

simulations of an out-of-control showed in many cases that recalculation produced limits 

that adjusted to the out-of-control process without producing an alarm.  This effect 

evidently out weighs any positive benefit of recalculation.  These results would seem to 

lead to the conclusion that recalculation of limits between the original calculation and 

calculation of the Quesenberry limits at nq is detrimental and should not be done.  While 

this is true for both Albers’ and Nedumaran’s methods there is another consideration for 

Tsai’s.  While the first two methods allow the user of the chart to start checks of every 

new data point against calculated limits as soon as the limits are calculated at m 

minimum, Tsai’s method does not.  It requires waiting until the end of the current 

Phase1b sub phase and then transforming all of the data gathered in that sub phase 

simultaneously before checking any individual datum against control limits.  If only one 

Phase 1b-1 is used, this check would be made at the time Quesenberry limits were 

calculated which essentially prohibits any possibility of process monitoring before nq.  

For the reasons mentioned above we recommend as an answer to question 3 that only one 

Phase Ib sub phase be used for the methods of Albers and Nedumaran and that two be 

used for Tsai’s method.  We combine this recommendation with the results of Table VI   

to create the following Table XVIII Evaluation Table for “How soon can we start 

monitoring the process?” 
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Evaluation Table for “How soon can we start monitoring the process?” 

n Albers &Kallenberg Nedumaran &Pignatiellio Tsai Et al. 

5 2 3 1 

7 2 3 1 

10 2 3 1 

score (2+2+2)/3=2 (3+3+3)/3=3 (1+1+1)/3=1 

       Table XVIII 

 Because the power of a test is lower when two sub phases are used Tsai’s method 

being used with two sub phases will always have lower power than the other two 

methods.  Combining that fact with Table XIX we have developed the following 

Evaluation Table to answer the question “Which method has the greater power?” 

Evaluation Table for “Which Method has the Greater Power 

n Albers &Kallenberg Nedumaran &Pignatiellio Tsai Et al. 

5 3 2 1 

7 3 2 1 

10 3 2 1 

Average Score  3 2 1 

Table XIX 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 
 
6.1 General Considerations Concerning Application Environments 

 The answer to the question “Which one of these methods is best in practice?” we 

must consider another factor in addition to the data obtained in the above simulation 

studies.  That factor is the environments in which the chart will be developed and used.  

We have identified three such possible environments.  

First they are characterized by the level of technical knowledge of the control chart 

developer.  In the case of the Tsai et al. method the level of knowledge of the user of the 

chart is also important.  Second these environments are characterized by whether the 

chart development  and/or use is automated by application of a computer. These factors 

are important to varying degrees in evaluating the three author’s methods. 

We see these three possible environments.: 

1, Neither the developer of the chart or its user have a knowledge of statistics or 

computing resources available. 

2. The developer of the chart has the knowledge of statistics and computing resources 

available but the user does not. 

3. Both the developer and user have statistical knowledge and computing resources. 
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 In what follows we evaluate and make a separate recommendation in regards to 

which of the author’s methods is best for each of these three environments.  We do this 

using Pugh Matricies of the form shown in Table XX   

 

Pugh Matrix Format 

Table XX 
 

The first column lists four factors upon which our comparison judgments are to be 

made.  The second column contains a weighting factor indicating the importance of the 

first column factor in the environment being evaluated.  The weights are estimated on a 

scale of 0-10 with 10 being the most important.  The next columns contain ranks for the 

different methods for the row’s criteria.  The ranks range from 1-3 with three being the 

highest.  The score row contains the score calculated as the sum of the row values 

multiplied by the row weights.  The values in the first and second table rows are taken 

from Tables XIX    and XX.  The environment determines the values in the next two 

rows. The values in the weight column vary by environment. 

 

METHODS 
 CRITERIA WEIGHT 

Albers & Kallenberg 
Nedumaran & 
Pignatiellio Tsai et al. 

How soon we can 

monitor the process  
  2  3  1  

Power     3 2  1  

How easy is it to 

build a chart  
        

How easy is it to use 
a chart?” 
 

        

Score        
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6.2 Recommendation for Environment 1 

 Table XXI shows the Pugh matrix for environment 1.  In this environment the 

statistical knowledge of both chart developer and user is limited. Tsai’s method requires 

knowledge and computer resources in both Phases Ia and Ib.  Nedumaran’s method 

requires them in Phase Ia but not Ib.  The Pugh matrix for this environment is shown in 

Table XXI below. 

Pugh Matrix Environment 1 
(Fractional ranks represent ties) 

Table  XXI 
 

 Based on the contents of Table XXI Albers & Kallenberg’s  method is 

recommended for environment 1. 

6.3 Recommendation for Environment 2 

 In the second environment statistical knowledge and computing power is 

available during Phase Ia but not in Phase Ib.  Because of this “How easy is it to build  a 

chart” is weighted lower.  The Pugh matrix for this environment is shown in Table XXII 

below 

METHODS 
 CRITERIA WEIGHT 

Albers & Kallenberg 
Nedumaran & 
Pignatiellio Tsai et al. 

How soon we can 

monitor the process  5   2 3  1  

Power  5  3  2  1  

How easy is it to 

build a chart  
10  3  1.5  1.5 

How easy is it to use 
a chart?” 
 

10  2.5 2.5 
 1  

Score  80 65 35 
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Pugh Matrix Environment 2 
(Fractional ranks represent ties) 

Table XXII 
 

 The above analysis gives a tie between Albers and Nedumaran.  Albers has 

greater power and therefore higher probability of detecting smaller out-of-control 

process.  Nedumaran allows earlier monitoring of the process.  These differences are 

small so either could be chosen in this environment. 

6.4 Recommendation for Environment 3 

 In this environment statistical knowledge and computing resource is available for 

all of Phase I.  This might occur when development of a chart and its use are completely 

automated. In environment 3 the weights for the last two rows of the matrix are set at 

their lowest possible value indicating these factors are not important.  The Pugh Matrix 

for environment 3 is shown below in Table XXIII 

 
 
 
 
 
 

METHODS 
 CRITERIA WEIGHT 

Albers & Kallenberg 
Nedumaran & 
Pignatiellio Tsai et al. 

How soon we can 

monitor the process  5   2 3  1  

Power  5  3  2  1  

How easy is it to 

build a chart  
0 3  1.5  1.5 

How easy is it to use 
a chart?” 
 

10  2.5 2.5 
 1  

Score  50 50 20 
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Pugh Matrix Environment 3 
(Fractional ranks represent ties) 

Table XXIII 
 

 Again, in this environment Albers and Nedumaran is tie with Albers being 

superior in minimum m and Nedumaran in power. Again, either method is appropriate for 

this environment. 

6.5 Final Conclusions 

 The method of Tsai et al. is only able to actually check for the possibility of an 

out-of-control process after a number of subgroups (k) have been accumulated. Its 

competitors can check each new subgroup as data is received.  This fact delays decision 

making considerably unless small values of k are used producing short Phase Ib sub 

phases.  Small values of k, however, cause frequent recalculation of limits which in turn 

increases the probability that the recalculated limits will track the out-of-control process 

rather that create and alarm which means the power will be lower.  The above brings the 

conclusion that Tsai’s method is not as good as the others. 

METHODS 
 CRITERIA WEIGHT 

Albers & Kallenberg Nedumaran & Pignatiellio Tsai et al. 
How soon we can 

monitor the process?  5   2 3  1  

Power  5  3  2  1  

How easy is it to 

build a chart ? 
0 3  1.5  1.5 

How easy is it to use 
a chart? 
 

0 2.5 2.5 
 1  

Score  25 25 10 
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 Albers’ method requires the smallest amount of knowledge to create and use 

charts.  It is, therefore, the best for environment 1 where knowledge and computer 

resources are limited. 

 Nedumaran & Pignatiello’s method requires more knowledge in the chart 

development stage but otherwise has only small differences with Albers’. If that 

knowledge is available it is an good alternative to Albers’ in environment 2.  In any case 

it is a good alternative to Albers’ in environment 3. 
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APPENDIX A 
AUTHOR’S METHOD 

 
Appendix A-1 

n Objectives: Construct control limits of the     control charts  that match any specific 
percentile point of run length distribution of the true limits even when the limits are 
estimated using data from only a few subgroups.

n Method: This approach is constructed based on multivariate t-distribution. 
Prospective control limits are constructed from m initial subgroups number for a 
future subgroups number (k). Authors assumed there is equicorrelatedmultivariate 
normal distribution between all future subgroups. Control limitsare

n Simulation: Samples are considered as identically and normally distributed. 
m=initial subgroups=variable, n=sample size=3,5,7, k=future subgroups=variable, 
α=0.0027(for each k), γ= probability of signal within k subgroups, 

n Constructed future control limits from m initial subgroups (µ=0, σ2=1) for a future the 
number of subgroups.

n Repeat 10000 times to compare this result with the standard two phase approach 
based on the probability of signal within k subgroups.

NEDUMARAN&PIGNATIELLO (2001)
(1)

Χ

n Analysis: The authors showed that their proposed control limits perform similar to 
the true limits even for small m whereas the standard approachesissue relatively 
large number of false alarms after short runs based on simulation

n Comment: Their results are close true to those of limits of control chart. But 
nevertheless they use of the multivariate t distribution which is difficult and perhaps 
not possible for typical practice.

NEDUMARAN&PIGNATIELLO (2001)     
(2)
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Appendix A-2 

ALBERS&KALLENBERG (2004-5)            
(1)

n Objective: Reduce the number of Phase I samples required while maintaining the in-
control ARL to that of a known parameter chart. This is to be accomplished by 
increasing the width of UCL-LCL (e.g. +/-( up+c) σ hat) beyond that of a similar known-
parameter chart (e.g. +/- up σ hat). 

n Definitions: Random variable Error=(Pn-p)/P where:
q P is the probability of a false alarm using a certain chart constructed with known parameters 

(e.g., .=00135 if up=3.0). 
q Pn is the probability of a false alarm using the wider control limits calculated to match the 

above false alarm rate using an estimated parameter control chart. 

Chart Development –Bias Method
q Define Bias as (Expectation{Pn}-P)/P

qChoose c to force Bias to zero
qCalculate Control Chart Limits

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

ALBERS &KALLENBERG (2004-5)        
(2)

n Bias Approach:

n Exceedance 
Probability 
Approach

Chart Development –Exceedance Approach
q Specify and “unpleasant”value of Pn e.g., Pn >(1+e)P or error = ε
qSpecify the maximum proportion of future charts that should exceed this error = α
qChoose c to satisfy Probability(|(Pn-p)|/p>= ε)<α.  This probability is called by the 
authors the “exceedance”probability. 
qCalculate Control Limits

snuuxitControlLim p
p ×


















++±= 82

11
2

2
2

( ) sun
uuxitControlLim

p
p ×





−+±= 2

2
212 2

1 εα

ALBERS & KALLENBERG(2004 -5)
(3)

n Analysis: While the bias approach allows for n=40 during phase I it does not limit the 
worst case error that can be incurred for a single control chartdeveloped in that 
manner.  The diffidence probability approach is much more stringent  in that it places 
constraints on a remote percentile of the error distribution rather than some 
parameter averaged over all possible charts.  As the authors point out, this tight 
control of the in-control error rate is at the expense of the chart power for detecting 
out-of-control situations.  To what degree this power limitation reduces the usefulness 
of the method is to be determined.
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Appendix A-3 

TSAI ET AL.(2005)
(1)

n Objectives: Start  monitoring  process at the early stage before the numbersamples 
which is recommended by Quesenberry (m=400/(n-1)) 

n Method: This approach is constructed based on Student’s t-distribution to build control 
limits for any number of subgroups. 

n Control limits are calculated from m initial subgroups number with n size and k future 
subgroups. First     is calculated  from m subgroups and  U i=Xi-

n They did matrix  transform from correlated sequence to uncorrelated sequence ( W= ∑-1/2U)
n Center line is considered as 0.Control limits are;

Control limits=0 ±t α/2 (     ((m+1)/mn))1/2

n Simulation: Samples are considered as identically and normally distributed from m 
subgroups=10-75; samples sizes, n=3,5,7  and k future subgroups=5-25 from in-control 
process (µ=0,σ2=1). 

n α=0.0027, γ= probability of signal within k subgroups;     =1-(1-α)k

n Plot the W i at the control chart 
n Repeat this procedure 10.000
n Tsai et al. compare those results of their second approach with standard two phase 

approach and Nedumaran &Pignatiello’s approach based on the probability of signal within 
k subgroups.

Χ Χ

γ

∨

 
 

 

TSAI ET AL.(2005)
(2)

n Analysis: The authors showed that their proposed control limits perform similar to 

the true limits even for small m without dropping any a number of subgroups. In this 
approach we need a few initial subgroups,  student’s t distribution and we have do 
matrix transform  to plot individual points.

n Comment: The results of this method are close to the true limits (known 

parameters case) of control chart without dropping any a number of subgroups. 
However, in order to transform the correlated sequence to an uncorrelated sequence 
The quality practitioner has to know and use matrix algebra which takes long time or 
He/She has to use an advance math program. This is not useful for a typical quality 
practitioner.
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APPENDIX B 
ARENA MODEL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
Figure 1 Whole model 

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 

    Figure 2- Initialize subgroup 
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    Figure 3-Create subgroup 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure III-Create subgroup  
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