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ABSTRACT

The unusual cobalt(II) diphenylazodioxide complex salts [Co(az)4](PF6)2 and [Co(bpy)(az)2](PF6)2 have been 
shown to catalyze the allylic amination/C-C double bond transposition reaction of 2-methyl-2-pentene with 
PhNHOH, with a turnover number of about 4. The mechanism is proposed to involve a nitroso-ene-like transfer 
of a PhNO moiety from the azodioxide ligand to the alkene,followed by reduction of the organic product to yield a 
cobalt(III) intermediate, which is itself reduced back to cobalt(II) by PhNHOH, regenerating PhNO. Hetero-Diels- 
Alder trapping experiments suggest that an “off-metal” mechanism, in which PhNO is released from the cobalt 
complexes and reacts with the alkenes, is operative, in contrast to an “on-metal” mechanism observed by Nich­
olas and coworkers for [Fe(az)3](FeCl4)2.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The addition of nitrogen-containing functional groups to unsatu­
rated organic molecules is an important step in complex molecule syn­
thesis, and can consist either of hydroamination across a double or triple 
bond, or an overall oxidative process. Transition metal complexes have 
been used to catalyze both types of reaction [1]. An important subtype 
of these oxidative processes is those in which allylic alkenes are 
aminated, yielding products in which the C—C bond has migrated 
from its position in the starting material. A variety of intramolecular al­
lylic aminations, resulting in cyclic products, have been shown to be me­
diated or catalyzed by Pd(II) species: Hegedus and coworkers [2,3] 
rendered these reactions catalytic with benzoquinone as the stoichio­
metric oxidant [3], while Andersson and coworkers [4], Larock and co­
workers [5], and Stahl and coworkers [6] all used O2 as the 
stoichiometric oxidant.

An alternative type of allylic amination reaction involves the re­
action of a nitroso compound with an alkene bearing allylic hydro­
gens, in a variant of the well-known Alder ene reaction [7] with the 
nitroso compound acting as enophile. These reactions yield allylic 
hydroxylamine products [8,9], and an example nitroso-ene reaction 
on a simple trisubstituted alkene with a nitrosoarene enophile 
(ArNO) is shown in Fig. 1 below. The major product of such reactions 

usually results from hydrogen abstraction from the carbon labeled 
twix, as opposed to the twin or lone carbons; this preference has 
been theorized to arise from a mechanism involving diradical inter­
mediates [10], though it has been proposed that some nitroso-ene 
reactions are concerted [11].

Nitroso-ene and related reactions need not be metal-mediated or 
metal-catalyzed, as many nitroso compounds will react directly with al­
kenes bearing allylic hydrogens. Transition metal complexes have, how­
ever, been shown to enable nitroso-ene-like reactions whose organic 
product is an allylic secondary amine, as opposed to a hydroxylamine. 
These reactions often involve metal complexes of nitrosoarenes as cata­
lysts or intermediates; such complexes have been extensively reviewed 
[12-14]. Sharpless, Ibers, and coworkers showed that Mo(VI) com­
plexes of η2-ArNO ligands could stoichiometrically transfer an ArN moi­
ety to the allylic position of an alkene with concomitant C—C double 
bond transposition, with the ArNO oxygen atom becoming an oxido li­
gand on Mo [15]. Nicholas and coworkers demonstrated that this allylic 
amination/C-C double bond transposition reaction could be performed 
with an alkene and phenylhydroxylamine (PhNHOH) as reactants, cat­
alyzed by the Mo(VI) complex Mo(O)2(dipic)(HMPA), where dipic = 
pyridine-2,6-dicarboxylate and HMPA = hexamethylphosphoramide. 
This reaction was proposed to initially generate an allylic hydroxyl­
amine and an Mo(IV) complex, with oxo transfer from this hydroxyl­
amine to Mo(IV) yielding the final organic product and regenerating 
the Mo(VI) catalyst. Mechanistic experiments suggested the intermedi­
acy of free nitrosobenzene (PhNO), generated in situ by oxidation of 
PhNHOH [16].
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Fig. 1. Regioselectivity of the nitroso-ene reaction.
Metal-catalyzed nitroso-ene-type reactions can be mechanistically 

classified based on whether they are, in the terminology of Johannsen 
and Jorgensen [17], “off-metal,” with a free nitroso compound gener­
ated as an intermediate, or “on-metal,” with the nitroso compound 
bound to a transition metal when it reacts with the alkene substrate. 
Off-metal reactions tend to be more common, but which class of mech­
anism applies can vary substantially based on the ligands present: an 
off-metal mechanism was proposed for allylic amine formation cata­
lyzed by Fe(phthalocyanine) [18], as for allylic amine formation cata­
lyzed by CuCl2-2H2O [19]. Srivastava and coworkers, however, 
obtained experimental support for an on-metal mechanism for allylic 
amine formation with [Cu(NCMe)4]PF6 as the catalyst. In particular, 
when these reactions were run in the presence of 2,3-dimethyl-1,3-bu- 
tadiene, the hetero-Diels-Alder adduct of this diene and PhNO was not 
formed, indicating that free PhNO was not an intermediate [20-22].

An unusual instance of an on-metal allylic amination/double bond 
transposition reaction was discovered by Nicholas and coworkers, 
who studied amination of alkenes by PhNHOH with FeCl2 as precatalyst. 
They isolated the Fe(ll)/Fe(lll) complex salt [Fe(az)3](FeCl4)2, where 
az = the azodioxide cis-Ph(O)NN(O)Ph, the dimer of PhNO, from the 
amination reaction mixtures, and showed that it was a competent cata­
lyst itself for the amination reactions [23,24]. They proposed that the tri­
gonal prismatic Fe(ll) cation [Fe(az)3]2+ was the active aminating 
agent, with no free PhNO generated, based on the lack of a Diels-Alder 
product found when the reaction was carried out in the presence of 
2,3-dimethyl-1,3-butadiene. lnstead, they proposed that the nitroso- 
ene-like reaction step occurs between a PhNO moiety from a κ1- 
azodioxide ligand (with one oxygen atom unbound) and the alkene, co­
ordinated to Fe in an η2 fashion, as shown in Fig. 2. The allylic hydroxyl­
amine product initially formed is deoxygenated by Fe(ll) species, which 
are oxidized to Fe(lll) in the process and then later reduced back to Fe 
(II) by the PhNHOH reactant [24].

Azodioxide complexes such as [Fe(az)3](FeCl4)2 are exceedingly 
rare, perhaps because of the tendency of PhNO to exist as cis-Ph(O)NN

Fig. 2. Proposed intermediate from which a nitroso-ene-like reaction occurs in Nicholas and coworkers' Fe-catalyzed amination.

(O)Ph in the solid state, but as monomeric PhNO in solution [25,26]. 
Thus far, only five azodioxide complexes have been structurally charac­
terized: [Fe(az)3](FeCl4)2 [23,24], the main-group, Ca(ll) complex salt 
[Ca(az)(H2O)2(THF)3]l2, prepared by Hanusa and coworkers [27], the 
d0, Sc(lll) complex [Sc(az')(H2O)2(OTf)3], where az' = cis-(2- 
MeOC6H4)(O)NN(O)(2-MeOC6H4) and Tf = F3CSO2, prepared by Whit­
ing and coworkers [28], and the d7, Co(ll) complex salts [Co(az)4](PF6)2 
and [Co(bpy)(az)2](PF6)2, where bpy = 2,2'-bipyridyl, recently re­
ported by our group [29,30], whose structures are shown in Fig. 3 below.

While the reactivity of [Ca(az)(H2O)2(THF)3]l2 with organic sub­
strates has not, to the best of our knowledge, been explored, Whiting 
and coworkers demonstrated [28] that 1,3-cyclohexadiene reacts with 
[Sc(az')(H2O)2(OTf)3] to form its hetero-Diels-Alder adduct with (2- 
MeOC6H4)NO. lnterestingly, this reaction is no faster than that of 1,3- 
cyclohexadiene and (2-MeOC6H4)NO in the absence of any metal, indi­
cating an off-metal process in which reversible dissociation of 
azodioxide from [Sc(az')(H2O)2(OTf)3], and equilibrium between the 
azodioxide and the nitrosoarene monomer, is responsible for the 
dienophilic reactivity.

The unusual coordination geometry of [Co(az)4](PF6)2 and [Co(bpy) 
(az)2](PF6)2, namely tetragonal for [Co(az)4]2+ and trigonal prismatic 
for [Co(bpy)(az)2]2+, combined with their pro-apoptotic activity to­
ward SK-HEP-1 liver cancer cells, demonstrated in collaboration with 
Zhou and coworkers [31], prompted us to test their ability to catalyze al­
lylic amination/double bond transposition reactions of the sort cata­
lyzed by [Fe(az)3](FeCl4)2. We here demonstrate that both complexes 
are able to catalyze the reaction of 2-methyl-2-pentene with PhNHOH. 
However, trapping experiments indicate that, in contrast to [Fe(az)3] 
(FeCl4)2-catalyzed aminations, an off-metal mechanism is operative, 
with free PhNO generated as an intermediate.

2. Experimental

2.1. General experimental considerations

Catalytic reactions were set up under anaerobic and anhydrous con­
ditions (a dry nitrogen atmosphere) in an MBraun Labstar Pro glovebox. 
Glassware was dried in an oven at 160 °C before use. NMR spectra were 
acquired using a Bruker Avance III 400 MHz spectrometer. Reaction sol­
vents were deoxygenated by sparging with dry nitrogen, and then dried 
via passage through activated alumina in an MBraun MB-SPS solvent 
purification system and stored in the glovebox. Column chromatogra­
phy was performed under air in a fume hood. The cobalt azodioxide 
complexes [Co(az)4](PF6)2 and [Co(bpy)(az)2](PF6)2 were prepared as 
previously described by our group [29]. Other reagents were obtained 
from commercial suppliers (Sigma-Aldrich, Fisher). Liquid reagents 
were degassed via the freeze-pump-thaw method and dried over acti­
vated 4 Å molecular sieves [32]. GC-MS analysis of reaction mixtures 
were performed on an Agilent GC-MS with a nonpolar column.

22. Allylic amination/C—C double bond transposition reactions

ln the glovebox, 0.073 mmol cobalt catalyst (10 mol% based on the 
limiting reagent, PhNHOH) was dissolved in 2.5 mL acetonitrile and 
added to a Schlenk tube equipped with a magnetic stir bar. To this solu­
tion was added 1.6 mmol alkene (2-methyl-2-pentene or 2-methyl-2- 
hexene), then 0.73 mmol phenylhydroxylamine dissolved in 5 mL ace­
tonitrile, for a total volume of 7.5 mL. The Schlenk tube was tightly 
sealed with a Teflon stopcock, removed from the glovebox, and heated 
in an oil bath at 75 °C for 72 h. The Schlenk tube was then allowed to 
cool to room temperature, after which the solvent was removed under 
reduced pressure, yielding a brown solid, which was extracted into 
diethyl ether.

GC-MS analysis was performed on a small sample of this diethyl 
ether solution after passing it through a miniature column consisting 
of about 5 cm silica gel above a cotton ball in a Pasteur pipet, in order
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Fig. 3. Structures of cobalt azodioxide complexes.
to remove nonvolatile metal-containing species. Preparative column 
chromatography was performed using a silica column using a petro­
leum ether/diethyl ether gradient, and the fractions containing the al­
lylic amine product were identified by thin layer chromatography and 
UV light (254 nm). The product-containing fractions were combined 
and the solvent removed under reduced pressure to yield the allylic 
amine as a yellow oil. Identity and purity of the allylic amines were con­
firmed by 1H NMR spectroscopy in CDCl3 and comparison with litera­
ture spectral data [24].

2.3. Diels-Alder trapping experiment to determine presence of 
nitrosobenzene

The procedure for allylic amination/C-C double bond transposi­
tion reactions described above was followed, but with no 
phenylhydroxylamine present and 2,3-dimethyl-1,3-butadiene in 
place of 2-methyl-2-pentene or 2-methyl-2-hexene. GC-MS analysis 
was performed on a diethyl ether extract of the crude reaction prod­
uct, but preparative column chromatography was not performed.

3. Results and discussion

The allylic amination/C—C double-bond transposition reaction is 
shown below in Fig. 4, with yields for both alkenes and catalysts exam­
ined. While the analogous reaction performed by Nicholas and coworkers, 
using [Fe(az)3](FeCl4)2 as catalyst, used 1,4-dioxane as solvent [23,24], we 
found that better yields were obtained using acetonitrile.

The above results show that both Co complexes are effective cata­
lysts for the amination of 2-methyl-2-pentene, each giving about 4 turn­
overs, but are much less effective for the amination of 2-methyl-2- 
hexene, with turnover numbers between 1 and 2. Nicholas and co­
workers' work with [Fe(az)3](FeCl4)2 as catalyst yielded about 8.8 turn­
overs with 2-methyl-2-pentene as reactant, though this was based on a 
yield obtained from GC analysis, not an isolated yield. While Nicholas 
and coworkers did not report a yield for the amination of 2-methyl-2- 
hexene catalyzed by [Fe(az)3](FeCl4)2 directly, they did obtain about 5 
turnovers for that reaction when a 9:1 mixture of FeCl2 and FeCl3 
were used as precatalyst, presumably generating [Fe(az)3]2+ in situ 
[24].

We propose that one factor limiting catalytic efficiency may be the 
deoxygenation of PhNO or its azodioxide dimer. GC-MS analysis of a 
diethyl ether extract of the reaction mixtures showed both azobenzene, 
PhNNPh (m/z 182) and azoxybenzene, PhNN(O)Ph (m/z 198), which 
may be formed by oxygenation of the Co catalysts to yield catalytically 
inactive species. Nicholas and coworkers also observed the formation 
of azobenzene and azoxybenzene in their reaction mixtures [24], and 
this side reaction may be more significant in our cobalt-catalyzed 
reactions.

To determine whether an on-metal or an off-metal mechanism was 
operative, we performed trapping experiments in which [Co(az)4](PF6) 
2 or [Co(bpy)(az)2](PF6)2 was treated with 2,3-dimethyl-1,3-butadiene 
(DMB) in place of a monoalkene, in the absence of PhNHOH. As shown 
in Fig. 5 below, these reactions yielded no allylic amination product of 
DMB, but did produce the Diels-Alder cycloadduct of DMB and PhNO

Fig. 4. Cobalt-catalyzed allylic amination/C—C double-bond transposition.

Fig. 5. Diels-Alder trapping experiments with 2,3-dimethyl-1,3-butadiene.
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Fig. 6. Proposed partial mechanism for cobalt(II) azodioxide complex-catalyzed amination.
(m/z 189), as observed by GC-MS analysis of a diethyl ether extract of 
the reaction mixture.

The formation of the DMB/PhNO cycloadduct suggests the formation 
of free PhNO as the active aminating agent in the catalytic reactions. This 
result indicates that the reactions proceed by an off-metal process that 
contrasts strongly with the on-metal process observed by Nicholas 
and coworkers for reactions catalyzed by [Fe(az)3](FeCl4)2 [24], but 
which is reminiscent of the generation of free (2-MeOC6H4)NO ob­
served by Whiting and coworkers with their Sc(III) complex [28]. We 
propose the partial mechanism shown in Fig. 6 below, in which free 
PhNO, generated from a dissociated azodioxide ligand, reacts with al­
kene to form a hydroxylamine, which is then converted to an amine 
with formation of a bimetallic Co(III) complex with a bridging oxido li­
gand. Finally, PhNHOH is dehydrogenated by this oxido complex, yield­
ing water and regenerating PhNO. Such redox chemistry would not be 
plausible with azodioxide complexes containing redox-inactive metal 
centers such as Sc(III) [28] or Ca(II) [27], but is possible for Fe and Co 
complexes, as both the +2 and +3 oxidation states are readily accessi­
ble for each of these metals.

4. Conclusion

The cobalt(II) azodioxide complexes [Co(az)4](PF6)2 and [Co(bpy) 
(az)2](PF6)2 have been shown to catalyze the allylic amination/C-C 
double bond transposition reaction of 2-methyl-2-pentene with 
phenylhydroxylamine, with the analogous reaction with 2-methyl-2- 
hexene proceeding with substantially lower efficiency. Diels-Alder trap­
ping experiments suggest an “off-metal” mechanism involving the 

generation of free nitrosobenzene. Such a mechanism is significantly 
different from the “on-metal” mechanism proposed by Nicholas and co­
workers for allylic amination/C—C double bond transposition catalyzed 
by the iron(II) azodioxide complex salt [Fe(az)3](FeCl4)2 [24], and it in­
dicates that “off-metal” mechanistic behavior is possible with the 
redox-active Co(II) center, as well as with the redox-inactive Sc(III) cen­
ter in the complex of Whiting and coworkers [28]. Future work will 
focus on the preparation of modified cobalt catalysts to improve the 
yield and scope of this reaction, as well as to allow for the transient gen­
eration of unstable nitroso species such as acylnitroso compounds 
[33-35]. Additionally, we will explore the application of this amination 
technique to the synthesis of bioactive molecules.
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