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A COMPARATIVE STUDY ON FAULT DETECTION AND SELF-

RECONFIGURATION 

NING GE 

ABSTRACT 

 

     Extended State Observer (ESO) and the α β γ− −  Tracker are introduced and 

compared. In comparison, the ESO is found to be more noise resistant. The extended 

state used for the estimation of the general system dynamics in real time makes it suitable 

for fault detection. Four control schemes are proposed for self-reconfiguration upon fault 

detection.  These schemes are Active Disturbance Rejection Control, Tracker-based 

Feedback Control, Fuzzy Logic Control and Tracker-based PID Control. To compare 

their control performance, these schemes are applied to three different applications 

namely Active Engine Vibration Isolation System, Three-Tank Dynamic System and 

MEMS Gyroscope System.  The advantages and disadvantages of using the control 

schemes for each application are presented. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

 

     State observers are classified as model-based and model free. The objective of this 

thesis is to perform a comparative study in the context of fault detection and 

reconfiguration, when the noise is assumed to be unemployed and employed. The rate of 

convergence and estimation accuracy will be investigated. 

     Practically speaking, any dynamic system is subject to faults. In general, there are 

three kinds of faults: actuator faults, sensor faults and process faults. There have been 

many studies on the first two kinds of faults, but very few on the last kind of faults. This 

thesis focuses on the process faults that greatly affect the system dynamics. 

     The ideas of diagnostic observers probably originated from Beard [1] and Jones [2] 

with fault detection for linear systems and Clark et.al. [3] for detecting instrument 

malfunction in control systems. In this thesis, a relatively new observer called Extended 

State Observer (ESO) and an optimal design of α β γ− −  filter, also known as α β γ− −  



 

2 

 

Tracker, which is developed by Tenne and Singh [4], will be introduced for the purpose 

of fault detection. 

     Fault detection has two classes of designs. One is model-based, which relies on the 

mathematical system models, the other is model free or partially model-based, which 

does not need the system models or needs to know part of the system information. By 

means of the two observers mentioned in this thesis, many researchers have done the 

similar work. Lin and Singh [5] diagnosed the nonlinear dynamic system with multiple 

faults by means of a real-time tracker, which is model free. Ye, Lin and Gao [6] 

investigated the application of fault diagnosis using Extended State Observer (ESO), 

which only requires to tune one system parameter, the observer bandwidth. Radke [7] 

also conducted the fault detection by using ESO and applied on a three-tank system, and 

gave the comparisons of the effects of disturbance estimation between ESO and 

conventional filters and observers. Later, Ye [8] also used ESO to detect the road surface 

condition in his thesis. 

     It is desirable for a dynamic system to self-reconfigure upon detecting a fault. This can 

be accomplished by using effective control schemes. This thesis conducted a comparative 

study on control performance among four control schemes with three applications. 

     The thesis is organized as follows: Chapter I gives the general introduction. Chapter II 

presents the observers used for fault detection. Chapter III discusses the issue of tracking 

speeds and tracking accuracy, and makes comparisons between the given observers. 

Chapter IV presents four control schemes for self-reconfiguration, which are conpared in 
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three applications shown in Chapter V. Finally, observations and conclusions are given in 

Chapter VI. 
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CHAPTER II 

EXTENDED STATE OBSERVER (ESO) AND α β γ− −  TRACKER 

 

 

     In this chapter, two fault detection techniques using Extended State Observer (ESO) 

and α β γ− −  tracker are introduced. They are both state observers, but with different 

characteristics. The ESO observes states and also filters noise, but requires some basic 

knowledge of the system dynamics, such as the order. The α β γ− −  tracker, on the other 

hand, relies only on the system output, and does not require any knowledge of the system 

model. It is essentially a model free state estimator. However, it does not filter noise by 

itself. 

 

2.1 Extended State Observer (ESO) 

     State observer is used to estimate the internal states of the system using its input and 

output. In control history, state observer has always played an important role, which 

could be generally divided into two kinds. The first kind is based on a known model and 
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the other kind is based on unknown or partially known model. With an accurate system 

model, the state observer could obtain accurate estimates. However, most dynamic 

systems cannot be accurately modeled. In reality, disturbances, noise and many other 

factors play a role in system model uncertainty. Extended State Observer (ESO), which 

belongs to the second kind of observers, is introduced below. 

2.1.1 ESO Formulation 

     The concept of Extended State Observer (ESO) was originally proposed by Han [9]. 

By tuning several parameters in the system, ESO could offer relatively accurate estimates 

of system outputs and dynamics. Later, Gao [10] enhanced the tuning by simplifying the 

number of tuning parameters to one.  

     Consider a general second-order system 

 1 2y a y a y D bu= + + +�� �
       (2.1)

 

where y, D, u are respectively output, external disturbance and input of the system, and a1, 

a2 and b are usually unknown. 

 1 2 0 0 0( )y a y a y D b b u b u f b u= + + + − + = +�� �
     (2.2)

 

where 1 2 0( )f a y a y D b b u= + + + −�  is called generalized disturbance, or simply 

disturbance. The f contains unknown internal states 1 2 0( )a y a y b b u+ + −� and external 

disturbance D. 

     ESO provides a mean of estimating f  and y  in real time. To build the observer, the 

plant can be expressed as 
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1 2

2 3 0

3

1

x x

x x b u

x f

y x

=
 = +


=
 =

�

�

��
        (2.3) 

where 3x  is referred to as Extended State. 

     Rewriting the equations in state space form, gives 

x Ax Bu Ef

y Cx

 = + +


=

��
        (2.4) 

where 

0 1 0

0 0 1

0 0 0

A

 
 =  
  

, 0

0

0

B b

 
 =  
  

, [ ]1 0 0C = ,

0

0

1

E

 
 =  
  

 

     The state space observer, denoted as extended state observer (ESO), is constructed as 

ˆ( )

ˆ

z Az Bu L y y

y Cz

= + + −


=

�

   

       (2.5) 

where ŷ  is the estimation of the system output y, and L is the observer gain vector which 

can be obtained by employing a pole placement technique. L can be expressed as 

[ ]1 2 3L β β β=         (2.6)

 

     The three parameters 1β , 2β , 3β  need to be tuned in the observer. As the order of the 

plant and observer increases, the number of parameters that need to be tuned also 

increases. Gao [10] developed o
ω -parameterization technique to simplify the observer 
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tuning. This parameterization assigns all observer eigenvalues at o
ω− , and makes all 

parameters of an observer a function of o
ω . Here o

ω  is the bandwidth of the observer.  

( )
33 2

1 2 3
( )

o
s s s s sλ β β β ω= + + + = +      (2.7)

 

where 1 3
o

β ω= , 
2

2 3 oβ ω= , and
3

3 oβ ω= . The parameterization method can be extended 

to a nth-order plant, and the only parameter to tune is the bandwidth o
ω . 

2.1.2 Fault Detection by Means of the ESO 

     Most fault detection techniques rely only on the change of system outputs. More 

specifically, a fault is considered detected when the abrupt change of the systems’ outputs 

exceed the predetermined threshold values. With ESO, an augmented/extended state is 

used to estimate the general system dynamics, which provides a foundation for detecting 

process faults in real time because the faults greatly affect the system dynamics. On using 

the ESO, the fault is considered detected when the abrupt change of the system dynamics 

exceeds the pre-determined threshold value. 

2.2 Introduction to α β γ− −  Tracker 

     The α β γ− −  tracker can be used without the knowledge of the system model. It is a 

one-step-ahead position and velocity predictor. It has been assumed that the jerk (i.e. time 

derivative) is negligible or the time interval ( t∆ ) is very small, so it could be used for 

third-order systems or orders lower than that. When the jerk or time interval is not small, 

a higher-order tracker, called the α β γ δ− − −  tracker denoted by Wu, et.al. [11] could 

be applied. 
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2.2.1 Tracker Formulations 

     The tracker formulations are given below: 

21
( 1) ( ) ( ) ( )

2
p s s sx k x k tv k t a k+ = + ∆ + ∆       (2.8)

 

( 1) ( ) ( )
p s s

v k v k ta k+ = + ∆         (2.9) 

where ( )
s

x k , ( )
s

v k  and ( )
s

a k  are the smoothed position, velocity and acceleration at the 

step k , respectively. 

     The smoothing equations are as follows: 

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( 1) ( ) ( )
2

s p o p

s p o p

s s o p

x k x k x k x k

v k v k x k x k
t

a k a k x k x k
t

α

β

γ


 = + −  




 = + −  ∆


 = − + −  ∆

      (2.10)

 

where o
x , s

x and p
x are the observed (measured), smoothed and predicted positions 

respectively; o
v , s

v  and p
v  are the observed (measured), smoothed and predicted 

velocities respectively; s
a  is the smoothed acceleration, t∆  is the time interval and α , 

β  and γ  are smoothing parameters. 

     Applying the z-transform to (2.8) to (2.10) and solving for the ratio /
p o

x x  leads to the 

prediction transfer function in z-domain, which is: 
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2

3 2

1 1
( ) ( 2 )

4 4( )
1 1

( 3) ( 2 3) 1
4 4

p

o

z z x
G z

x
z z z

α β γ α β γ α

α β γ α β γ α

+ + + − − + +
= =

+ + + − + − − + + + −
  (2.11)

 

Jury’s Stability Test 

     The roots of the characteristic polynomial, the denominator of the transfer function, 

are required to lie within the unit circle of stability. Because of the differences in the Z 

and S domains, the Routh-Hurwitz (RH) criteria cannot be used directly with digital 

systems. This is because digital systems and continuous-time systems have different 

regions of stability. However, two methods: Bilinear transform and Jury’s Stability Test 

can be used to analyze the stability of digital systems. Jury’s test is a procedure similar to 

the RH test, except it has been modified to analyzed to analyze digital systems in the Z 

domain directly. In short, Jury’s stability test is a stability criterion for discrete-time 

system. Jury’s stability test [12] results the constraints on the three parameters as: 

0 2α< <           (2.12a) 

0 4 2β α< < −          (2.12b) 

4
0

2

αβ
γ

α
< <

−
          (2.12c) 

     Unlike the popular Kalman or the Extended Kalman filter, the tracker does not require 

large computations or matrix inversion.  

     To start the tracking process, three initial positions are needed. 

(1) (1); (2) (2); (3) (3)
p o p o p o

x x x x x x= = =
      (2.13a)

 



 

10 

 

2

(3) (2) (3) 2 (2) (1)
(3) ; (3)o o o o o

s s

x x x x x
v a

t t

− − +
= =

∆ ∆
    (2.13b)

 

21
(4) (3) (3) (3)

2

(4) (3) (3)

p p s s

p p s

x x v t a t

v v a t


= + ∆ + ∆


 = + ∆

      (2.13c)

 

     Accelerations are used to help estimate the positions and velocities. In essence, only 

the positions and velocities can be tracked by means of this tracker. 

2.2.2 Example of α β γ− −  Tracking 

     Assume that the target position is described by equation (2.14) and with no noise. 

3( ) log( 5 1)x t t t= − +         (2.14) 

where x is in mm and t is in sec. Figure 1 shows the path for the first 100 seconds. 
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Figure 1 Actual target position 

     Figures 2 and 3 show the comparison between actual target position and the position 

predicted by the tracker with three different values of coefficients: 

0.6α = , 0.3β =  and 0.08γ =  (tracker I) 

1α = , 0.5β =  and 0.3γ =  (tracker II) 

1α = , 1β =  and 1γ =  (tracker III) 

     The selectedα , β  and γ  values all satisfy the Jury’s stability test as stated in 

equation (2.12). 
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(a) Tracking comparison 

 

(b) Close look of initial tracking 

Figure 2 Comparison between actual and predicted target position when 0.1t s∆ =  

     Time interval affects the tracking accuracy. When the chosen time interval is 0.1s, the 

maximum tracking error for Tracker III is around 10%. The maximum tracking error 

occurs at the beginning, but quickly decreases. The error approaches zero after about 20 
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sec; when the time interval is changed to 0.01s, the maximum tracking error for Tracker 

III is around 1%. The error approaches zero after about 10 sec. 

 

 

(a) Tracking comparison 

 

(b) Close look of initial tracking 

Figure 3 Comparison between actual and predicted target position when 0.01t s∆ =  
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     In conclusion, regardless of the selected α , β  and γ  values, the tracker will soon 

accurately track the target, as long as the three coefficient values satisfy the Jury’s 

stability test. 

     Since the α β γ− −  tracker does not have the extended state to track the system 

dynamics, the fault detection, in this case, is limited to monitoring the change of the 

system outputs. However, in some special cases, the change of the system outputs is not 

obvious enough for fault detection. By monitoring the change of the derivatives of the 

system outputs (i.e. velocity), this tracker could still be used for fault detection. 
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CHAPTER III 

COMPARISON BETWEEN ESO AND α β γ− −  TRACKER 

 

 

     In this chapter, the Extended State Observer (ESO) and the α β γ− −  tracker are 

compared in terms of tracking accuracy and tracking speed. A three-tank dynamic system 

is chosen for a case study. 

 

3.1 Three-Tank Dynamic System Design 

     A nonlinear three-tank dynamic system [13-15] is shown in Figure 4, which consists 

of two pumps and three cylindrical tanks that are connected by cylindrical small pipes. In 

this multiple-input-multiple-output (MIMO) system, the inputs are the flow rate of each 

pump, and the outputs are the water levels of the three tanks. The pipe blockage is in 

terms of degree of fault between 0 and 1, where 0 and 1 correspond to complete blockage 

and no blockage respectively.  
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Figure 4 Three-Tank System Schematics 

     The following few assumptions are made for this system: 

1) The two inputs (the pump rates) are controllable, and three outputs (the water 

levels of three tanks) are measurable 

2) Single or multiple faults will not occur until the system reaches its steady state 

3) Multiple faults do not occur simultaneously. 

     Furthermore, the exact system model is assumed unknown. However, since measured 

data are available, it is necessary to use the exact system model that can be derived from 

using the Torricelli’s law in order to compare the tracking speed and tracking accuracy. 

The three dynamic equations are: 
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1
1 13 1 3 1 3 1

2
3 32 3 2 3 2 2 20 2 2

3
1 13 1 3 1 3 3 32 3 2 3 2

( ) 2

( ) 2 2

( ) 2 ( ) 2

dy
A a s sign y y g y y Q

dt

dy
A a s sign y y g y y a s gy Q

dt

dy
A a s sign y y g y y a s sign y y g y y

dt


= − − − +




= − − − − +



= − − − − −


  (3.1)

 

where 

A : the circular cross-section area of each tank (same for all); 

g : gravitational acceleration (9.81 m/sec2); 

sign: sign function, “1” if >0 and “-1” if <0; 

1 2 3, ,a a a : the circular cross-section area of each pipe; 

1 2,Q Q : the pump flow reates; 

1 2 3, ,y y y : the water level of each tank 

13 32 20, ,s s s : the pipe blockage 

     In using the ESO, the equations for this first-order system can be stated as: 

0y f b u= +�           (3.2) 

where 0b  is a constant and u  is the system input, and the f  is known as general system 

dynamics which is shown below: 
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( )

( )

( ) ( )

1 1 13 1 3 1 3

2 3 32 3 2 3 2 2 20 2

3 1 13 1 3 1 3 3 32 3 2 3 2

2 /

2 2 /

2 2 /

f a s sign y y g y y A

f a s sign y y g y y a s gy A

f a s sign y y g y y a s sign y y g y y A

  = − − −
 

  = − − −  


  = − − − − −
 

 (3.3)

 

where 1 2,f f  and 3f  are the general system dynamics of tank 1, tank 2 and tank 3, 

respectively. 

3.2 Comparisons without noise 

     The tracking speed and tracking accuracy are compared between the α β γ− −  tracker 

and the ESO. The comparisons are made when the system is fault free and when a single 

fault ( 13 0.6s = ) occurs after reaching its steady state. For the ESO, o
ω  was chosen as 2. 

For the α β γ− −  tracker, the three values ,α β  and γ  are 1, 1.5 and 2, respectively. 

Figure 5 shows the difference of water levels between the ESO and the exact values. 
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Figure 5 Output Comparison between ESO and Exact Values (Fault Free) 

     Figure 6 shows the difference of water levels between the α β γ− −  tracker and the 

exact values. 

 

Figure 6 Output Comparison between Tracker and Exact Values (Fault Free) 
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     Figures 5 and 6 show that the α β γ− −  tracker tracks the system much quicker than 

the ESO. Table I lists detailed output comparison between the two methods with 0.01 sec 

sampling time. Fault free was assumed during the given time period. 

Table I Comparisons of data from measured, ESO and the tracker 

Time (sec) Method 
Water Level (mm) 

Tank1 Tank2 Tank3 

t = 0.1 

Exact 0.97 0.45 0.43 

ESO 1.23 0.78 0.07 

Tracker 0.97 0.45 0.43 

t = 0.2 

Exact 1.77 0.87 0.89 

ESO 2.33 1.44 0.28 

Tracker 1.77 0.87 0.89 

t = 0.3 

Exact 2.48 1.26 1.33 

ESO 3.29 1.99 0.60 

Tracker 2.48 1.26 1.33 

t = 0.4 

Exact 3.13 1.62 1.77 

ESO 4.13 2.45 0.97 

Tracker 3.13 2.00 2.12 

t = 0.5 

Exact 3.73 1.97 2.20 

ESO 4.87 2.86 1.40 

Tracker 4.56 2.19 2.41 

t = 0.6 
Exact 4.29 2.29 2.61 

ESO 5.52 3.21 1.85 
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Tracker 4.7 2.43 2.74 

t = 0.7 

Exact 4.82 2.60 3.02 

ESO 6.09 3.52 2.31 

Tracker 5.00 2.69 3.09 

t = 0.8 

Exact 5.33 2.90 3.40 

ESO 6.60 3.80 2.77 

Tracker 5.44 2.95 3.45 

t = 0.9 

Exact 5.82 3.19 3.78 

ESO 7.07 4.05 3.22 

Tracker 5.88 3.22 3.81 

t = 1.0 

Exact 6.28 3.46 4.14 

ESO 7.50 4.28 3.67 

Tracker 6.32 3.48 4.16 

t = 1.1 

Exact 6.73 3.73 4.49 

ESO 7.89 4.50 4.10 

Tracker 6.75 3.74 4.50 

t = 1.2 

Exact 7.15 3.98 4.83 

ESO 8.26 4.71 4.52 

Tracker 7.17 3.99 4.84 

t = 1.3 

Exact 7.57 4.22 5.16 

ESO 8.61 4.90 4.92 

Tracker 7.57 4.23 5.17 

t = 1.4 
Exact 7.96 4.46 5.48 

ESO 8.95 5.09 5.30 
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Tracker 7.97 4.46 5.49 

t = 1.5 

Exact 8.35 4.69 5.80 

ESO 9.27 5.27 5.67 

Tracker 8.35 4.69 5.80 

t = 1.6 

Exact 8.72 4.91 6.10 

ESO 9.58 5.45 6.02 

Tracker 8.72 4.91 6.10 

t = 1.7 

Exact 9.08 5.13 6.39 

ESO 9.88 5.62 6.35 

Tracker 9.08 5.13 6.39 

t = 1.8 

Exact 9.43 5.33 6.67 

ESO 10.17 5.79 6.67 

Tracker 9.43 5.33 6.67 

t = 1.9 

Exact 9.77 5.53 6.95 

ESO 10.45 5.96 6.98 

Tracker 9.77 5.53 6.95 

t = 2.0 

Exact 10.10 5.73 7.22 

ESO 10.73 6.12 7.28 

Tracker 10.10 5.73 7.22 

 

The average error and root mean square (RMS) error from Table I are listed in Table II: 
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Table II Comparison on Average Error and RMS Error (Fault Free) 

 

     For better filtering the noise, the ESO chose a relatively small bandwidth, which 

caused the fact that in this simulation, the tracker significantly outperformed the ESO in 

terms of average error and RMS error. With the ESO, the RMS errors are fairly close to 

the average errors, which mean that the estimations were scattered more evenly around 

the target values within a range. Table I and Table II indicate that the α β γ− −  tracker 

outperforms the ESO in terms of average estimation error and RMS estimation error. 

     Among the three tanks, the estimation error for tank 3 is the smallest when using both 

methods. This is perhaps due to the fact that pumps (inputs) are directly connected only 

to tanks 1 and 2. 

     The rate of convergence and estimation accuracy are further compared when a fault 

occurring at 40t s= . Figures 7 and 8 show comparisons. 

Condition: Fault Free 

Time Duration: 2 sec. 

Unit: mm 

Via ESO Via α β γ− −  Tracker 

Tank1 Tank2 Tank3 Tank1 Tank2 Tank3 

Average Error 0.9470 0.6735 0.3945 0.0885 0.0480 0.0450 

RMS Error 0.9849 0.6987 0.4845 0.2224 0.1060 0.0981 
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Figure 7 Output Comparison between ESO and Exact Values (Fault at t=40s) 

 

Figure 8 Output Comparison between Tracker and Exact Values (Fault at t=40s) 

     Table III lists the detailed comparison. 
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Table III Comparisons of data from measured, ESO and the tracker 

Time (sec) Method 
Water Level (10

-3
m) 

Tank1 Tank2 Tank3 

t = 40.1 

Exact 25.16 14.32 19.07 

ESO 24.77 14.35 19.43 

Tracker 25.16 14.32 19.07 

t = 40.2 

Exact 25.58 14.26 18.72 

ESO 24.99 14.33 19.24 

Tracker 25.58 14.26 18.72 

t = 40.3 

Exact 25.95 14.16 18.45 

ESO 25.29 14.29 18.99 

Tracker 25.95 14.16 18.45 

t = 40.4 

Exact 26.28 14.06 18.21 

ESO 25.63 14.21 18.73 

Tracker 26.30 14.06 18.24 

t = 40.5 

Exact 26.59 13.95 18.07 

ESO 25.97 14.14 18.47 

Tracker 26.59 13.95 18.07 

t = 40.6 

Exact 26.87 13.85 17.93 

ESO 26.33 14.04 18.23 

Tracker 26.87 13.85 17.93 

t = 40.7 
Exact 27.13 13.75 17.81 

ESO 26.67 13.93 18.03 
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Tracker 27.13 13.75 17.81 

t = 40.8 

Exact 27.37 13.65 17.72 

ESO 26.99 13.82 17.84 

Tracker 27.37 13.65 17.72 

t = 40.9 

Exact 27.59 13.57 17.64 

ESO 27.30 13.72 17.69 

Tracker 27.59 13.57 17.64 

t = 41.0 

Exact 27.80 13.49 17.58 

ESO 27.59 13.61 17.56 

Tracker 27.80 13.49 17.58 

t = 41.1 

Exact 27.99 13.41 17.52 

ESO 27.85 13.51 17.46 

Tracker 27.99 13.41 17.52 

t = 41.2 

Exact 28.17 13.35 17.48 

ESO 28.09 13.42 17.38 

Tracker 28.17 13.35 17.48 

t = 41.3 

Exact 28.34 13.30 17.44 

ESO 28.31 13.34 17.31 

Tracker 28.34 13.30 17.44 

t = 41.4 

Exact 28.50 13.25 17.40 

ESO 28.52 13.26 17.26 

Tracker 28.50 13.25 17.40 

t = 41.5 
Exact 28.65 13.20 17.39 

ESO 28.71 13.20 17.22 
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Tracker 28.65 13.20 17.39 

t = 41.6 

Exact 28.79 13.17 17.37 

ESO 28.88 13.14 17.20 

Tracker 28.79 13.17 17.37 

t = 41.7 

Exact 28.92 13.14 17.36 

ESO 29.03 13.09 17.18 

Tracker 28.92 13.14 17.36 

t = 41.8 

Exact 29.05 13.11 17.36 

ESO 29.18 13.05 17.18 

Tracker 29.05 13.11 17.36 

t = 41.9 

Exact 29.17 13.09 17.35 

ESO 29.31 13.02 17.17 

Tracker 29.17 13.09 17.35 

t = 42.0 

Exact 29.29 13.07 17.35 

ESO 29.44 12.99 17.18 

Tracker 29.29 13.07 17.35 
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Table IV Comparison on Average Error and RMS Error (Single Fault) 

 

     Once again, using the ESO with the chosen bandwidth, the α β γ− −  tracker 

outperforms the ESO in the case of single fault occurrence. Based on the aforementioned 

data comparisons with fault free and single fault occurrence, and with the chosen 

bandwidth of ESO and three parameters of the tracker, it can be concluded that the 

α β γ− −  tracker is better than the ESO in terms of estimation accuracy. The ESO’s 

estimation errors primarily result from its slower rate of convergence. 

     In this simulation, the tracker generally takes less than half a second or equivalent to 

less than 50 time steps, to completely track the system, while the ESO takes a few 

seconds to achieve the same. Once the tracker tracks the system, the tracking becomes 

stabilized even with a sudden output change such as due to a fault. In contrast, the ESO 

slowly responds to the system's sudden change. 

     After comparing the rate of convergence and estimation accuracy between the ESO 

and the α β γ− −  tracker, it is desired to study their control performance. Four control 

schemes are to be compared in Chapter IV. 

Condition: Fault at 40s 

Time Duration: 2 sec. 

Unit: mm 

Via ESO Via α β γ− −  Tracker 

Tank1 Tank2 Tank3 Tank1 Tank2 Tank3 

Average Error 0.2879 0.0945 0.2265 0.0010 0 0.0015 

Root Mean Square of Error 0.3629 0.1119 0.2749 0.0045 0 0.0067 
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3.3 Comparisons with noise 

     In the real world, noise and disturbance are unavoidable. In this section, 5% white 

noise will be added to the system output, then Figures 9, 10, 11 and 12 show the rate of 

convergence and estimation accuracy of the ESO and the Tracker. 

 

Figure 9 Output Comparison between ESO and Exact values (Fault Free) 
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Figure 10 Output Comparison between Tracker and Exact Values (Fault Free) 

 

Figure 11 Output Comparison between ESO and Exact values (Fault at t=40s) 
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Figure 12 Output Comparison between Tracker and Exact Values (Fault at t=40s) 

     With the noise, the ESO could still estimate the system output while the tracker was 

not available to filter the noise which caused the disaster of estimation. 

3.4 Fault Detection of ESO and α β γ− −  Tracker 

Without Noise 

     When using the ESO, a fault is considered detected if the abrupt change of general 

system dynamics ( i
f∆ , 1, 2,3i = ) exceeds the predetermined value. Figure 13 clearly 

shows the abrupt change of each tank’s water level when a fault occurred at 40t s= . 
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Figure 13 System dynamics from ESO of three-tank system for fault detection 

     When using the tracker, however, fault detection scheme is different because there is 

no “ f∆ ” in its formulation. In this case, a fault is considered detected if the change of the 

water levels ( i
y∆ , 1, 2,3i = ) exceeds the predetermined value. Figure 14 shows the 

detected faults based on observing the i
y∆ . 

 

2
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f∆  
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Figure 14 Water levels from tracker of three-tank system for fault detection 

     Although in the simulation, the tracker has a better rate of convergence and estimation 

accuracy, the i
y∆  are not as profound as the i

f∆ . Besides, the tracker is very sensitive to 

the measurement noise, thus it is not recommended as a method for fault detection. The 

self-reconfiguration is to quickly adjust the system inputs by means of an effective 

control scheme as soon as a fault is detected. The control goal is to restore the water level 

of each tank to its original state if possible. 

With Noise 

     When 5% white noise has been added to the system, Figures 15 and 16 will give the 

plots for fault detection. 

2
y∆  

3
y∆  

1
y∆  
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Figure 15 System dynamics from ESO of three-tank system for fault detection 

 

Figure 16 Water levels from tracker of three-tank system for fault detection 
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     Figures 15 and 16 show the fault detection of the ESO and the Tracker while there is 

noise existed. It could be clearly seen that the Tracker would be harder to used for fault 

detection with such noise, however, the ESO has the ability to filter the noise, which 

rarely influenced the fault detection of the ESO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 

 

 

 

 

 

CHAPTER IV 

CONTROL DESIGN METHODS 

 

 

     It is desirable to perform control for self-reconfiguration as soon as a fault or faults is 

detected. In this chapter, the following four control schemes are proposed and their 

performances are compared. 

Scheme 1: Active Disturbance Rejection Control (ADRC) 

Scheme 2: Tracker-based Feedback Control 

Scheme 3: Fuzzy Logic Control 

Scheme 4: Tracker-based PID Control 
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4.1 Active Disturbance Rejection Control (ADRC) 

     Active Disturbance Rejection Control, known as ADRC, was originally proposed by 

Han in [9,16-17] for nonlinear control. Later, Gao [10] simplified the control law and the 

number of tuning parameters to tune. The ADRC is a relatively new design methodology 

that uses a very simple model, an integrator or a double integrator for a first-order or 

second-order system. For this kind of controller design, any nonlinear or time-varying 

part is treated as disturbance and rejected after an estimation being made. The result is a 

high performance control system that is tuned only with two parameters: the control loop 

bandwidth and the observer bandwidth. In essence, only one parameter (observer 

bandwidth) needs to be tuned because the control loop bandwidth can be related to the 

observer bandwidth. 

     The ADRC is built by using the feedback states that can be observed by the ESO. For 

a general second-order system, the dynamic equation can be written as  

 
0( , , , )y f y y w t b u= +�� �         (4.1)

 

where f  is the general system dynamics containing disturbance and uncertainty. The 

basic idea is to find an estimation of f , called f̂ , and use it in the control law as 

00 /)ˆ( bfuu −=         (4.2)
 

     Substituting equation (18) into (17), gives an integral system 

 
00)ˆ( uuffy ≈+−=��         (4.3) 
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which can be easily controlled by a Proportional-Derivative (PD) controller as 

 
ykyrku dp
�̂)ˆ(0 −−=         (4.4)

 

where p
K  and d

K  are the proportional gain and derivative gain, respectively. r  is 

referenced output value, ŷ  is the estimated output via the ESO and ŷ�  is estimated time 

derivative of the estimated output. With the observer being properly designed, the control 

law can be expressed as  

0

321

0

)(ˆˆ)ˆ(

b

zzkzrk

b

fykyrk
u

dpdp −−−
=

−−−
=

�
    (4.5)

 

where the states z1, z2, and z3 represent the estimated system output ŷ , its derivative y�̂ , 

and estimated system dynamics f̂ . The proportional gain and derivative gain can be 

selected as 
2

p ck ω= , and 2
d c

k ξω= , where c
ω  and ξ  are the control loop bandwidth and 

damping ratio. Critical damping (i.e. ξ  = 1) is chosen to avoid system oscillations. The 

c
ω  is usually chosen as 

5

1
 to 

3

1
 of o

ω . 

     By relating c
ω  to o

ω , the controller can be easily designed when the observer 

bandwidth o
ω  is properly tuned. An nth-order plant with unknown dynamics and external 

disturbance can be written as 

buwuuuyyytfy
nnn += −− ),,,,,,,,( )1()1()(

����      (4.6) 
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Rewriting the plant to the state space model form 
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     The ESO can be constructed as 
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     The observer bandwidth, oω  can be designed by using a parameterization method by 

placing all the observer poles at oω− , which can be written as [10] 

( )1

1 1 0

nn n

n n
s s s sβ β β ω−

−+ + + + = +�      (4.10) 

 

     The parameters in L can then be determined from Equation (4.10). In the case of n=3,

1 3 oβ ω= , 
2

2 3 oβ ω= , 
3

3 oβ ω= . In the case of n=2, 1 2 oβ ω= , 
2

2 oβ ω= . In the case of n=1, 

1 oβ ω= . 

     With the observer proper designed, the ADRC control law for a nth-order plant can be 

designed as 
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where the controller gains are determined by setting the poles at cω− ,  

( )n

cpd

n

d

n
sksksks

n
ω+=++++ −

− 11

1
�

      (4.12)
 

 

where cω  is also chosen as 
5

1
 to 

3

1
 of oω . 
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The following content of stability analysis is quoted from [18]. The state observer is 

ˆ( )

ˆ

z Az Bu L y y

y Cz

= + + −

=

�
        (4.13) 

The control law is  

3 0( ) /u z u b= − +          (4.14) 

0 1 2( )
p d

u k r z k z= − −         (4.15) 

where r  is the set point, the controller tuning is further simplified with 2d ck ω=  and 

2

p c
k ω= , where cω  is the closed-loop bandwidth [10]. 

Stability Analysis 

     Gao [18] performed the ADRC’s stability analysis. It is repeated below. Assuming the 

system dynamics ( , , , )f y y w t�  is completely unknown, and e x z= − , where x  is the 

system output, is the tracking error in the observer. So we get 

ee A e d= +�           (4.16) 

with 

1

2

3

1 0

0 1

0 0

e
A A LC

β

β

β

− 
 = − = − 
 − 

, and d Eh= . Assuming the observer gain in (4.13) is 

chosen so that eA  is Hurwitz, the observer error, e , for the ESO is bounded for any 

bounded h . When the above lemma is generalized to the dynamic system described by 
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    ( )M gη η η= +� ,         (4.17) 

where 
nη ∈ℜ  and nxnM ∈ℜ , the state η  in (4.17) is bounded if M  is Hurwitz and ( )g η  

is bounded. The above combining lemmas give that the ADRC design of (4.13), (4.14) 

and (4.15) yields a BIBO stable closed-loop system if the observer (4.13) itself and the 

state feedback control law (4.15) for the double integrator are stable, respectively. 

4.2 Tracker-based Feedback Control 

     The α β γ− −  tracker presented in Chapter III showed its superiority of rate of 

convergence and estimation accuracy over the ESO. To take advantage of that, a new 

control scheme called "Tracker-based Feedback Control" is proposed. In this scheme, the 

system output y is measured and tracked, and the general system  dynamics f  is 

calculated with the exact system equations by means of the tracker. The control law is the 

same as the ADRC. 

4.3 Fuzzy Logic Control 

     Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory, which was 

proposed by Lotfi Zadeh in 1965, to deal with approximate reasonings. Fuzzy logic then 

had been introduced to processing industry, traffic control and house hold applications in 

the 1970’s. In fuzzy logic, membership functions are used to represent fuzzy sets. 

Fuzzy Sets 

     Fuzzy sets contain elements that have degrees of membership. A fuzzy set is a set 

without a crisp, clearly defined boundary. In fuzzy logic, a fuzzy set could explain the 

degree to which it belongs to the set, that is unlike the conventional set. The characteristic 
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function can be denoted as any value from 0 to 1. For example, if X is a collection of 

objects denoted generically by x, then a fuzzy set A in X is defined as a set of ordered 

pairs: { }XxxxA A ∈= |))(,( µ        (4.18) 

where ( )A xµ  is called the membership function (MF for short) for the fuzzy set A.  

Membership Functions 

     As the equation (4.18) showed, the membership function maps each element of X to a 

membership value between 0 and 1. It represents the degree of truth as an extension of 

valuation and associates a weighting with each of the inputs that are processed, define 

functional overlap between inputs, and ultimately determines an output response. Once 

the functions are inferred, scaled, and combined, they are defuzzified into a crisp output 

which drives the system. There are many types of membership functions, Figure 17 

shows eleven types of membership functions that are most commonly used in the fuzzy 

logic system design. The triangular membership function has been used in this thesis. 
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Figure 17 Commonly used membership functions 

     When triangular membership function is defined, three parameters need to be 

determined. The mathematical expression for triangular membership function specified 

parameters a, b, and c can be expressed as Equation. 
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     The input and output each has its own membership function. 

 

Logical Operations 

     Logical operations are operations using fuzzy operators. These operations are 

generalization of crisp set operations. The basic three operations are NOT (fuzzy 
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complements), AND (fuzzy intersections), and OR (fuzzy unions), as Equations showed 

below, respectively. 

 )(1)( xx AA
µµ −=         (4.20) 

 )](),(min[)( xxx BABA µµµ =∩       (4.21) 

 )](),(max[)( xxx BABA µµµ =∪       (4.22) 

Fuzzy If-Then Rules 

     Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. The if-then 

rules are used to formulate the conditional statements that comprise fuzzy logic. A single 

fuzzy if-then rule assumes the form  

 If X=A Then Y=B 

where A and B are linguistic values defined by fuzzy sets on the ranges (universes of 

discourse) X and Y. The ‘If’ part is called the antecedent or premise, while the ‘Then’ 

part is called the consequence or conclusion. 

     In short, fuzzy logic control is accomplished by fuzzifying the input variables, 

executing the fuzzy if-then rules, and defuzzifying its output variables to crisp values to 

used as control signals. 

4.4 Tracker-based PID Control 

     To compare control performance, another control scheme called "Tracker-based PID 

Control" is presented. The Proportional-Integral-Derivative (PID) controller is most 

widely used in industry. Over 85% of all dynamic controllers are of the PID variety. The 



 

46 

 

PID controller calculates an error as the difference between the reference value and the 

measured one, and attempts to minimize the error by adjusting the process control inputs. 

     The PID control configuration is shown in Figure 18. 

 

Figure 18 Schematics of PID controlled system 

     As shown, the control signal flowing into “process” is the sum of three terms. Each 

term is a function of the tracking error. The term P represents the proportional error, the 

term I represents the integral error, and the term D represents the derivative error. Each of 

these three works independently. 

     Although the PID control is widely used, tuning the three gains is laborious. Some 

tuning methods have been created for this and some tuning software were designed for 

the PID control. This study uses Ziegler-Nichols Rule, which is the conventional PID 

tuning method. The control applications are to be presented in the next chapter. 
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CHAPTER V 

APPLICATIONS 

 

 

     In this chapter, three control applications are given. They are (1) active engine 

vibration isolation system, (2) three-tank system, and (3) MEMS gyroscope. The 

following four control schemes are employed and compared with the given applications. 

(1)  Fuzzy logic control, ADRC and PID control are applied to the active engine 

vibration isolation system. 

(2) Fuzzy logic control, ADRC, Tracker-based Feedback Control and Tracker-based 

PID are applied to the three-tank system. The response time and noise filtering are 

also compared. 

(3) ADRC and Tracker-based Feedback Control are applied to the MEMS gyroscope.  

In addition, response time and noise filtering are investigated on the MIMO three-

tank system. 
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5.1 Control for Active Engine Vibration Isolation System 

 

Figure 19 Engine Vibration Isolation System 

     The mobile active engine vibration isolation system uses a piezoelectric actuator and 

the passive engine mount to reduce the engine vibration [19]. Figure 19 showed the 

system schematics. The actuator can displace 45 mµ±  with applied voltage 300± volt and 

force of 1100N. The length-voltage function is given as 

33

a

F
L d n V

K
∆ = ⋅ ⋅ +          (5.1) 

where aK  is the stiffness of the actuator, F  is the engine force. When aK  is large 

enough, equation (5.1) could be rewritten as 
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33L d n V∆ = ⋅ ⋅
          (5.2)

 

where L∆  is the actuator displacement,  33d  is the voltage-length constant, n is the 

number of the actuator, and V is the voltage, which is also the actual control signal. The 

system equations are 

1 1

1 1 2

( ) ( )

( ) ( )

f f f c f c

c c f c f c c

m x k x x L c x x L F

m x k x x L c x x L k x

= − − − − − − +

= − − + − − −

��� � �

��� � �
      (5.3) 

where f
m  is the engine mass, cm  is the vehicle body mass, 1k  is the stiffness coefficient 

of the passive mount, 1c  is the damping coefficient of the passive mount, 2k  is the tire 

stiffness coefficient, f
x  is the vertical displacement of the engine, cx  is the vertical 

displacement of the vehicle body, L  is the vertical displacement change of the actuators, 

F is the external vertical force, which is considered the external disturbance. The engine 

vibration isolation will be controlled by the following three schemes.  

     During the simulation, the parameters of the system equations are chosen as: 

75
f

m kg= , 800cm kg= , 1 60000 /k N m= , 2 300000 /k N m= , 1 367 /c Ns m= , 110n = , 

and 
12

33 700 10 /d m v
−= × . The amplitude of the disturbance force is assumed to 100N , 

and the frequency is assumed to be 50Hz . 

5.1.1 By Means of Active Disturbance Rejection Control 

     This controller uses actuator voltage as the control signal and tracks the vertical 

displacement of the vehicle body. The second equation of (5.2) is used for control. 

Observing from equation (5.1) knows that L  can be regarded as the control signal once 
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33d , n  and V  are determined. Since there is a time derivative term in equation (5.2), it is 

best to integrate both sides of the equation. 

1 1 2
( ) ( )

c c f c f c c
m x k x x L c x x L k x= − − + − − −∫ ∫ ∫ ∫�      (5.4) 

     Note that the first order of ESO formulation is 

0( ) ( )y t f b u t= +�          (5.5) 

     The above first-order equation is then compared with the standard ESO formulation. 

Thus, L  is ( )u t , 1
0

c

c
b

m
= −  and y�  is cx� . The general system dynamics f  can then be 

expressed as 

1 1 2( ) ( )f c f c c

c c c

k c k
f x x L x x x

m m m
= − − + − −∫ ∫ ∫ ∫      (5.6) 

Let 1x  be y , 2x  be f , the observer can be designed as 

ˆ( )

ˆ

x Ax Bu L y y

y Cx

= + + −


=

�
        (5.7) 

where  

1

2

x
x

x

 
=  
 

, 
0 1

0 0
A

 
=  
 

, 
0

b
B

 
=  
 

, 
2

2

o

o

L
ω

ω

 
=  
 

, 
0 0

0 1
C

 
=  
 

, 0b b= . 
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     Since the equation is first-order, according to equation (4.10) in Chapter IV, the 

controller only has a proportional gain p
k , and it can be denoted as p c

k ω= . As usual, the 

control bandwidth cω  is chosen as 
1

5
c oω ω= .  

5.1.2 By Means of Fuzzy Logic Control 

     To use fuzzy logic control, the input and output membership function need to be 

constructed first. Two input variables, error and change of error are used. The fuzzy 

inferences output is u, which is essentially the control signal. 

Membership Functions 

     The membership functions for error (input variable I) are shown in Figure 20. 

 

 

Figure 20 Membership function for error 
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NL (Negative Large):     <= -0.5e-5; 

 NS (Negative Small):                    -1e-5 → 0; 

 ZE (Zero):                           -0.5e-5 → 0.5e-5; 

 PS (Positive Small):                           0 → 1e-5; 

 PL (Positive Large):                 >=0.5e-5. 

     The membership functions for change of error (input variable II) are shown in Figure 

21. 

 

Figure 21 Membership function for change of error 

NL (Negative Large):                          <= -1e-4; 

 NS (Negative Small):                    -2e-4 → 0; 
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 ZE (Zero):                           -1e-4 → 1e-4; 

 PS (Positive Small):                           0 → 1e-4; 

 PL (Positive Large):                 >=1e-4. 

    The membership functions for control signal (output variable) are shown in Figure 22. 

 

Figure 22 Membership functions for control signal 

NL (Negative Large):                          <= -2e-4; 

 NS (Negative Small):                    -4e-4 → 0; 

 ZE (Zero):                           -2e-4 → 2e-4; 

 PS (Positive Small):                           0 → 4e-4; 

 PL (Positive Large):                 >=2e-4. 
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Fuzzy rules 

    Table V Fuzzy Rule Table 

 NL NS Z PS PL 

NL NL NL NS NS NS 

NS NL NS Z Z Z 

Z NL NS Z PS PL 

PS Z Z Z PS PL 

PL PS PS PS PL PL 

 

     NL represents negative large, NS represents negative small, Z represents zero, PS 

represents positive small, and PL represents positive large. 

    The 25 linguistic descriptions of fuzzy rules are shown as follows: 

Rule 1:     If (Error is NL) and (Change of Error is NL) then (U is NL). 

Rule 2:     If (Error is NS) and (Change of Error is NL) then (U is NL). 

Rule 3:     If (Error is Z) and (Change of Error is NL) then (U is NS). 

Rule 4:     If (Error is PS) and (Change of Error is NL) then (U is NS). 

Rule 5:     If (Error is PL) and (Change of Error is NL) then (U is NS). 

Rule 6:     If (Error is NL) and (Change of Error is NS) then (U is NL). 

Rule 7:     If (Error is NS) and (Change of Error is NS) then (U is NS). 
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Rule 8:     If (Error is Z) and (Change of Error is NS) then (U is Z). 

Rule 9:     If (Error is PS) and (Change of Error is NS) then (U is Z). 

Rule 10:     If (Error is PL) and (Change of Error is NS) then (U is Z). 

Rule 11:     If (Error is NL) and (Change of Error is Z) then (U is NL). 

Rule 12:     If (Error is NS) and (Change of Error is Z) then (U is NS). 

Rule 13:     If (Error is Z) and (Change of Error is Z) then (U is Z). 

Rule 14:     If (Error is PS) and (Change of Error is Z) then (U is PS). 

Rule 15:     If (Error is PL) and (Change of Error is Z) then (U is PL). 

Rule 16:     If (Error is NL) and (Change of Error is PS) then (U is Z). 

Rule 17:     If (Error is NS) and (Change of Error is PS) then (U is Z). 

Rule 18:     If (Error is Z) and (Change of Error is PS) then (U is Z). 

Rule 19:     If (Error is PS) and (Change of Error is PS) then (U is PS). 

Rule 20:     If (Error is PL) and (Change of Error is PS) then (U is PL). 

Rule 21:     If (Error is NL) and (Change of Error is PL) then (U is PS). 

Rule 22:     If (Error is NS) and (Change of Error is PL) then (U is PS). 

Rule 23:     If (Error is Z) and (Change of Error is PL) then (U is PS). 

Rule 24:     If (Error is PS) and (Change of Error is PL) then (U is PL). 
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Rule 25:     If (Error is PL) and (Change of Error is PL) then (U is PL). 

     The Fuzzy Logic Toolbox in Matlab was used to develop inference system. Figure 23 

shows the rule editor in the interface of the toolbox. 

 

Figure 23 Fuzzy logic rules editor for active engine noise isolation 
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     To demonstrate how the fuzzy logic rules work, a few examples of randomly selected 

inputs (i.e. error and change of error) are listed below. 

     When Error is -0.3e-5 (NS), Change of Error is 0 (Z), U is -1.16e-4 (NS) 

     When Error is -0.8e-5 (NL), Change of Error is -0.8e-4 (NS), U is -2.38e-4 (NL) 

     When Error is 0 (Z), Change of Error is 1.2e-4 (PL), U is 4.83e-5 (PS) 

     When Error is 0.7e-5 (PL), Change of Error is -0.8e-4 (NS), U is 6.14e-5 (Z) 

     The results appear to follow the rules. 

 

5.1.3 Comparison of Simulation Results in Engine Vibration Isolation 

     The system output is the acceleration of the vehicle body. Results are compared using 

ADRC, Fuzzy Logic Control and PID control. All simulations are without noise. The 

three coefficients of the PID controller is : 3
p

K = , 0.6iK =  and 0.1dK = . 
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Figure 24 Output of conventional PID controlled system 

 

Figure 25 Output of ADRC controlled system 
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Figure 26 Output of fuzzy logic controlled system 

     Regardless of which control technique was used, the acceleration amplitude eventually 

fell within the range of 0.005± m/sec
2
. However, the fuzzy control quickly reduced the 

oscillation amplitude in about five seconds, whereas the PID took about 10 seconds and 

the ADRC took about more than 10 seconds. 

     For this control application, the fuzzy logic control is most effective among the three. 

Not only it does not require knowledge of the system model, the design of fuzzy 

inference system is very simple with only 25 fuzzy rules. In comparison, the PID control 

requires the exact knowledge of the system model, whereas the ADRC requires some 

knowledge of the system model, such as the order of the equations of motion. 

 



 

60 

 

5.2 Three-Tank System Control 

 

Figure 27 Three-Tank System Schematics 

     The nonlinear dynamic three-tank system is once again shown in Figure 27. It is a 

multiple-input-multiple-output (MIMO) system in which two pump rates are the inputs, 

and the water levels of the three tanks are the outputs. The pipe blockage is in terms of 

degree of fault between 0 and 1, where 0 and 1 correspond to complete blockage and no 

blockage, respectively. 

     The control for this application can be regarded as process control. The control 

objective is to quickly restore the three water levels as soon as a fault occurred. In other 

words, the control is for self-reconfiguration. 

     The three dynamic equations for the three-tank system are given as: 
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1
1 13 1 3 1 3 1

2
3 32 3 2 3 2 2 20 2 2

3
1 13 1 3 1 3 3 32 3 2 3 2

( ) 2

( ) 2 2

( ) 2 ( ) 2

dy
A a s sign y y g y y Q

dt

dy
A a s sign y y g y y a s gy Q

dt

dy
A a s sign y y g y y a s sign y y g y y

dt


= − − − +




= − − − − +



= − − − − −


  (5.8)

 

where 

A : the circular cross-section area of each tank (same for all); 

1 2 3, ,a a a : the circular cross-section area of each pipe; 

1 2,Q Q : the pump flow reates; 

1 2 3, ,y y y : the water level of each tank 

13 32 20, ,s s s : the pipe blockage 

     The control objective is to track the actual water levels of tank 1 and tank 3, and 

minimize the difference from the desired ones. The system outputs and the control inputs 

are: 

1

2

3

( )

y

y t y

y

 
 =  
  

, 
1

2

( )
Q

u t
Q

 
=  
 

. 

A single fault or multiple faults can occur at any time. But, it is assumed that multiple 

faults do not occur at the same time. 
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5.2.1 By Means of ADRC 

     Let ( )u t  and ( )y t  be the systems input and output vectors, respectively, the equations 

can be rewritten as 

0( ) ( )y t f b u t= +�          (5.9) 

where 

1

2( )

0

Q

u t Q

 
 =  
  

 , 

1

2

3

( )

y

y t y

y

 
 =  
  

, 

1

2

3

f

f f

f

 
 =  
  

, and 0

1 0 0
1

0 1 0

0 0 0

b
A

 
 =  
  

.  

f  is the system dynamics vector, which is given as 

( )1 1 13 1 3 1 32 /f a s sign y y g y y A = − − −
 

      (5.10a) 

( )2 3 32 3 2 3 2 2 20 22 2 /f a s sign y y g y y a s gy A = − − −
 

    (5.10b) 

( ) ( )3 1 13 1 3 1 3 3 32 3 2 3 22 2 /f a s sign y y g y y a s sign y y g y y A = − − − − −
 

  (5.10c) 

     Since this is a first-order system, the ADRC is reduced to simple proportional (p) 

control in which p
K  is chosen as the control bandwidth, cω . Thus 

1 1ˆ ˆˆ ˆ[ ( ) ] [ ( ) ]p cu k y y f y y f
b b

ω= − − = − − ,       (5.11) 

where 0

1

3
cω ω= and oω  (observer bandwidth) is chosen as 2. 



 

63 

 

     The first simulation assumed a single fault of 13 0.6s =  (i.e. 40% blockage), occurring 

at 40t =  second. Figure 28 shows that the ADRC closely follows the actual system 

outputs in the case of no faults. 

 

Figure 28 System outputs and the control signal from ADRC (single fault) 

     The second simulation is about two separate faults 13 0.6s =  occurring at 40t =  

second and 32 0.6s =  occurring at 80t =  second. Figure 29 shows the ADRC responded 

to two faults. 
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Figure 29 System outputs and the control signal from ADRC (double faults) 

     The third condition is that there are three separate faults, 13 32 20 0.6s s s= = = , 

occurring at 40t =  second, 80t =  second and 120t =  second, respectively. Figure 30 

shows how the ADRC responded to three separate faults. 
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Figure 30 System outputs and the control signal from ADRC (triple faults) 

 

5.2.2 By Means of Tracker-based Feedback Control 

     Like ADRC, the controller for the Tracker-based Feedback Control is almost the same, 

so the conditions of the simulations we used are the same as 5.2.1. The simulation results 

are shown in Figure 31, 32 and 33. 
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Figure 31 System outputs and the control signal from tracker-based Feedback Control 

(single fault) 

 

Figure 32 System outputs and the control signal from tracker-based Feedback Control 

(double faults) 
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Figure 33 System outputs and the control signal from Tracker-based Feedback Control 

(triple faults) 

 

5.2.3 By Means of Fuzzy Logic Control 

     Due to the similarity between Active Engine Vibration Isolation System and Three-

Tank System, the 25 rule fuzzy controller is applied to the three-tank system. Figure 34, 

35 and 36 show the simulation results for single fault, two faults and three faults, 

respectively. 
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Figure 34 System outputs and the control signal from fuzzy logic control (single fault) 

 

Figure 35 System outputs and the control signal from fuzzy logic control (double faults) 
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Figure 36 System outputs and the control signal from fuzzy logic control (triple faults) 

 

  5.2.4 By Means of Tracker-based PID Control 

     Tuning the three PID control parameters ( p
k , ik  and dk ) is much more laborious than 

using the ADRC. The chosen parameters are 2
p

k = , 0ik =  and 0dk = . 
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Figure 37 System outputs and the control signal from tracker-based PID (single fault) 

 

Figure 38 System outputs and the control signal from tracker-based PID (double faults) 
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Figure 39 System outputs and the control signal from tracker-based PID (triple faults) 

 

5.2.5 Observation on Three-Tank System Control 

     Figure 40, 41 and 42 show the comparisons for each two of the simulation results by 

employing ADRC, tracker-based Feedback Control and tracker-based PID. 
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Figure40 System outputs from ADRC and tracker-based Feedback Control (triple faults) 

 

Figure 41 System outputs from ADRC and tracker-based PID (triple faults) 
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     Figures 40 and 41 show that Tracker-based Feedback Control and Tracker-based PID 

perform better than ADRC did. When faults happened, they spent less time to bring the 

system to the predetermined stead states. 

 

Figure 42 System outputs from tracker-based Feedback Control and tracker-based PID 

(triple faults) 

     Figure 42 shows that Tracker-based PID responded a little faster than Tracker-based 

Feedback Control when faults happened. The above figures show that Tracker-based PID 

performs better than ADRC and Tracker-based Feedback Control in terms of the low 

order system. However, the Tracker-based PID is more laborious for tuning. 

     It is observed that when the third fault occurs, the ADRC had to work hard for a while 

to self-reconfigure the system, while the Tracker-based Feedback Control and the 

Tracker-based PID almost instantly reconfigure without any effort. 
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5.3 MEMS Gyroscope Control 

 

Figure 43 The MEMS gyroscope system [21] 

     A vibrational MEMS gyroscope is introduced, which consists of a vibrational proof 

mass, dampers, springs and a rigid frame [20-21]. It can be viewed as a mass suspended 

by elastic structures along two axes: drive axis ( X  axis) and sense axis (Y  axis). During 

the vibrational movements, the Coriolis force and mechanical coupling forces transfer the 

energy from the drive axis to the sense axis, resulting in the vibration along the sense axis. 

For the two-axes driving mode, feedback control is to determine the rotation rate by 

measuring the vibration of the sense axis. Both controls on single-axis and two-axes are 

described and simulated. The effects of using three different control methods are 

compared. 

Single-Axis Driving Mode 

     When only the drive axis is controlled, the vibrational MEMS gyroscope is modeled 

as 
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q Dq Kq Sq BU CN+ + + = +�� � �        (5.12) 

where [ ]( ) ( ), ( )
T

q t x t y t=  is the displacement output vector of both axes of the gyroscope,  

D  is the damping coefficient matrix, K  represents the spring constant matrix, Sq�  are 

Coriolis accelerations, in which ( )S t  denotes the Coriolis effect matrix, B  is the 

controller gain matrix, C  is the noise gain matrix, [ ]( ) ( ),0
T

x
U t u t=  is the control input 

vector, and ,
T

x yN N N =    is a mechanical-thermal noise vector. Given that the natural 

frequencies for both axes are matched and the sense axis is under open-loop control, we 

have 

0

0
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 =
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 =
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 =
 
 

, 
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2 0
S

− Ω 
=  Ω 

 

     Define 2xx
n

d

m
ξω= , 

2xx
n

k

m
ω= , and 

xy

xy

k

m
ω= , we rewrite the above equations and have 

2

2

2 2

2 2

n n xy x

n n xy y

c
x x x y y u

m

c
y y y x x N

m

ξω ω ω

ξω ω ω


= − − − + Ω +


 = − − − + Ω +


�� � �

�� � �

      (5.13)

 

where Ω  is the rotation rate that the rigid frame is rotating about the rotation axis. The 

control objective is to force the drive axis to oscillate at a specified amplitude and the 

resonant frequency in the presences of parameter variations, mechanical couplings, and 

the mechanical-thermal noise. 
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Two-Axes Driving Mode 

     When both axes are controlled, the vibrational MEMS gyroscope is modeled as 

2

2

( ) 2

( ) 2

xx xy xx xy x

yy xy yy xy y

mx d x d y k m x k y m y m y Ku

my d y d x k m y k x m x m x Ku

 + + + − Ω + − Ω − Ω =


+ + + − Ω + + Ω + Ω =

��� � � �

��� � � �
   (5.14)

 

where x  and y  are the displacement outputs of drive and sense axes, respectively, Ω  is 

the time-varying rotation rate, 2m xΩ�  and 2m yΩ�  are Coriolis forces, 2m xΩ  and 
2

m yΩ  

are centrifugal forces, m xΩ�  and m yΩ�  are Euler forces, xy
k  and xy

d  are spring and 

damping coupling constants between two axes caused by mechanical imperfections, m  is 

the mass of the MEMS gyroscope, K  is the controller gain including feed-forward gain 

and actuator and sensor scale factors, xu  and y
u  are control inputs for drive and sense 

axes respectively. The centrifugal force terms can be neglected or absorbed as part of the 

spring terms taken as unknown variations due to the reason that the rotation rate is too 

small comparing to the natural frequency of the system and the mass is also small 

(ranging from 610−  kg through 1010−  kg). 

     By defining 
k

m
ω = , and xξ  and y

ξ  as damping coefficients of two axes respectively, 

we rewrite the equations as 

2

2

2 2

2 2

x x x xy x x

y y y xy y y

x x x y y y b u

y y y x x x b u

ξ ω ω ω

ξ ω ω ω

 = − − − + Ω + Ω +


= − − − − Ω − Ω +

��� � �

��� � �
     (5.15)

 

or 
x x x

y y y

x f b u

y f b u

= +


= +

��

��
         (5.16)
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where x y

k
b b b

m
= = =  

2
2 2

x x x x xy
f x x y y yξ ω ω ω= − − − + Ω + Ω�� �  

2
2 2

y y y y xy
f y y x x xξ ω ω ω= − − − − Ω − Ω�� �  

5.3.1 By Means of ADRC 

     Dong and Avanesian [20] successfully applied ADRC to the MEMS gyroscope system 

for drive mode control. Dong, Zheng and Gao [21] applied ADRC to the MEMS 

gyroscope system for both drive mode and sense mode control. Their control is repearted 

here. In addition, Tracker-based Feedback Control is presented. 

     The drive mode controller is 0

1 ˆ( ( , , ) )
x

u f x x d u
b

= − +� . We choose 
2

p c
k ω=  and 

2d ck ω= , where 0cω > . Then we have the final controller, which is 

2

0 1 2
ˆˆ ˆ( ) 2

c c
u r x x fω ω= − − +         (5.17)

 

     For the sake that MEMS gyroscopes are small, the faults are not like those in three-

tank system. We will classify them as system disturbances and noises. In MEMS 

gyroscopes, we determine the control effect by observing the system outputs.  

     When there is only drive axis under the control, the system output is the displacement 

of drive axis. 
6

0 2.5 10ω = × , and 0

1

5
c

ω ω= . Figures 44 and 45 show the comparisons 

between reference signals and system outputs of two axes from the simulation. 
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Figure 44 Drive axis (x) displacement between referenced and ADRC (Single-Axis 

Driving Mode) 

 

Figure 45 Sense axis (y) displacement between referenced and ADRC (Single-Axis 

Driving Mode) 
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     When both axes are closed-loops, the system outputs are displacements of drive axis 

and sense axis. For the drive axis, the controller is same as single axis control, which is 

2

1 2

2 1 ˆˆ ˆ( ) ( )c c
x

x x x

u r x r x f
b b b

ω ω
= − + − −�       (5.18)

 

     In the sense axis, the output is aimed to be zero in order to calculate the rotation rate 

of the system. Hence, the vibration of sense axis is zero. The controller is designed as 

2

1 2

2 1 ˆˆ ˆc c
y

y y y

u x x f
b b b

ω ω
= + −

.        (5.19) 

     Here the observer bandwidth is
6

0 2.5 10ω = × , and 0

1

5
c

ω ω= . Figures 46 and 47 show 

the comparisons between reference signals and system outputs of two axes from the 

simulation. 
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Figure 46 Drive axis (x) displacement between referenced and ADRC (Two-Axes 

Driving Mode) 

 

Figure 47 Sense axis (y) displacement between referenced and ADRC (Two-Axes 

Driving Mode) 
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  5.3.2 By Means of Tracker-based Feedback Control 

     The drive mode controller is 0

1 ˆ( ( , , ) )
x

u f x x d u
b

= − +� . We choose 
2

p c
k ω=  and 

2d ck ω= , where 0cω > . Then we have the final controller, which is 

2

0 1 2
ˆˆ ˆ( ) 2

c c
u r x x fω ω= − − +         (5.20)

 

     When there is only drive axis under the control, the system output is the displacement 

of drive axis. We choose 
6

0 2.5 10ω = × , and 0

1

5
c

ω ω= . Figures 48 and 49 show the 

comparisons between reference signals and  system outputs of two axes from the 

simulation. 

 

Figure 48 Drive axis (x) displacement between referenced and tracker-based Feedback 

Control (Single-Axis Driving Mode) 
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Figure 49 Sense axis (y) displacement between referenced and tracker-based Feedback 

Control (Single-Axis Driving Mode) 

     When both axes are closed-loops, the system outputs are displacements of drive axis 

and sense axis. For the drive axis, the controller is same as single axis control, which is 

2

1 2

2 1 ˆˆ ˆ( ) ( )c c

x

x x x

u r x r x f
b b b

ω ω
= − + − −�       (5.21)

 

     In the sense axis, the output is aimed to be zero in order to calculate the rotation rate 

of the system. Hence, the vibration of sense axis is also to be zero. The controller is 

designed as 

2

1 2

2 1 ˆˆ ˆc c
y

y y y

u x x f
b b b

ω ω
= + −

.        (5.22) 
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     Still, we choose
6

0 2.5 10ω = × , and 0

1

5
c

ω ω= . Figures 50 and 51 will show the 

comparisons between reference signals and system outputs of two axes from the 

simulation. 

 

Figure 50 Drive axis (x) displacement between referenced and tracker-based Feedback 

Control (Two-Axes Driving Mode) 
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Figure 51 Sense axis (y) displacement between referenced and tracker-based Feedback 

Control (Two-Axes Driving Mode) 

     As Figure 51 shows, the sense axis displacement is getting larger, but as time goes on, 

it gets smaller. In contrast, the ADRC keeps the displacement of sense axis more under 

control. 

5.3.3 By Means of Tracker-based PID 

     When only drive axis is closed-loop, for conventional PID, the feedback control loop 

is quite simple. The controller is 

1 1 1
ˆ ˆ ˆ( ) ( ) ( )

x p i d
u k r x k r x k r x= − + − + −       (5.23)
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     When both axes are closed-loops, the system outputs are displacements of drive axis 

and sense axis. The controller of drive axis is still 

1 1 1
ˆ ˆ ˆ( ) ( ) ( )

x p i d
u k r x k r x k r x= − + − + −       (5.23)

 

     However, the controller for sense axis is 

1 1 1
ˆ ˆ ˆ

x p i d
u k x k x k x= + + ,        (5.24) 

     For that the reference of sense axis is zero. Figures 52, 53, 54 and 55 show the 

simulation results of tracker-based PID control. 

 

 

Figure 52 Drive axis (x) displacement between referenced and Tracker-based PID 

(Single-Axis Driving Mode) 
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Figure 53 Sense axis (y) displacement between referenced and Tracker-based PID 

(Single-Axis Driving Mode) 

 

Figure 54 Drive axis (x) displacement between referenced and Tracker-based PID (Two-

Axes Driving Mode) 
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Figure 55 Sense axis (y) displacement between referenced and Tracker-based PID (Two-

Axes Driving Mode) 

     In the MEMS gyroscope, ADRC gives a much more stabilized control result than the 

other two, and shows the advantage in high order system. 

5.4 Comparisons 

     In the active engine vibration isolation system, Fuzzy Logic Control, ADRC and 

conventional PID are used. In the three-tank system, four control schemes are applied. In 

the MEMS gyroscope system, ADRC, Tracker-based Feedback Control and Tracker-

based PID are used. Response time, steady-state error and noise filtering will be 

compared in details. 
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5.4.1 In Terms of Response Time and Steady-State Error 

     The system response time is defined a time needed to reach the system's steady state. 

Two kinds of responding time will be compared here, one is from the beginning to 

reaching the steady state with no fault occurrence, and the other is from the time of fault 

occurrence to the time the system becomes stabilized.  

     In the active engine vibration isolation system, the ADRC, the Fuzzy Logic Control 

and the Tracker-based PID were applied. Observing from Figure 24 to Figure 26, 

simulation results are obvious, that the Fuzzy Logic Control has the fastest response time, 

while the Tracker-based PID has the slowest one. The ADRC has a larger steady state 

error than the other two. 

     In the three-tank system, the four control methods were all applied, and three faults 

were assumed to occur at 40t = second, 80t = second, and 120t = second, which were 

the same as 13 32 20 0.6s s s= = = , respectively. Observing from Figures 28, 31, 34 and 37, 

the Fuzzy Logic Control and the Tracker-based PID have almost the same fastest 

response time, and the Tracker-based Feedback Control has a little faster response time 

than the ADRC. However, when a fault occurred, Tracker-based PID and Tracker-based 

Feedback Control showed their ability of self-reconfiguration faster than the other two. 

Since any PID control takes significant time to fine tune the three control gains, Tracker-

based Feedback Control is the best choice for this application. 

     In MEMS gyroscope system, ADRC and Tracker-based Feedback Control are applied. 

From Figure 44 to 55, we find that the ADRC is doing as well as the Tracker-based 

Feedback Control. For a complicated system like MEMS gyroscope, the two control 
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methods are all capable of being applied. The only difference is that the ADRC has a 

little higher steady state error than Tracker-based Feedback Control does. But the 

difference is insignificant. 

     All in all, the Tracker-based Feedback Control and the Fuzzy Logic Control have 

demonstrated excellent control abilities and faster response time. They show some 

advantages for controlling a simple system. However, for controlling a complex system, 

the ADRC and the Tracker-based Feedback Control are highly recommended. 

5.4.2 In Terms of Noise Filtering 

     In real world, disturbances exist in every system. Among the four control methods, 

only ADRC has the ability to filter noise and reject the disturbance. By properly choose 

the ESO’s observer bandwidth, noise can be filtered. 

     In contrast, each of the other three control methods requires using a low-pass filter to 

the input signals. Among the three methods, the Tracker-based Feedback Control 

performed far better than the other two. Thus only the ADRC and the Tracker-based 

Feedback Control are given for comparing the ability of noise filtering. 

     Figures 56 and 57 show the close look of outputs when a fault occurred at 40t s= , 

when 5% noise was added to the measured data. 
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Figure 56 System output from reference and ADRC 

 

Figure 57 System output from reference and Tracker-based Feedback Control 
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     Figures 56 and 57 show the control effects under the condition of single fault 

occurrence with the presence of 5% noise. During the tuning process, different filters 

interrupted the Tracker-based Feedback Control and caused the inaccurate control effects. 

Thus, although it may be observed that the Tracker-based Feedback Control has potential 

to be a better choice over the ADRC if the tracker can properly filter the noise, it is too 

laborious for choosing the filter and beaten by the ADRC on noise filtering. 
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CHAPTER VI 

OBSERVATIONS AND CONCLUSIONS 

 

 

     This thesis conducted a comparative study on rate of convergence and estimation 

accuracy between the ESO and the α β γ− −  tracker, while the tuning parameters are 

specifically chosen. The simulation results showed that the tracker outperformed the ESO 

under the condition that noise is free. The study was then extended to fault detection and 

control for self-reconfiguration. It is worthwhile to note that the ESO turned out to be a 

more effective method than the tracker for fault detection. 

     In terms of control design for self-reconfiguration, four control methods were 

investigated. They are Active Disturbance Rejection Control, Tracker-based Feedback 

Control, Fuzzy Logic Control and Tracker-based PID. To compare the control 

performance, the control methods were applied to three real-world applications. (1) 

ADRC and fuzzy logic control were applied to an active engine vibration isolation 

system. (2) ADRC, Tracker-based Feedback Control, fuzzy logic control and tracker-
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based PID were applied to a three-tank system. (3) ADRC, Tracker-based Feedback 

Control and tracker-based PID were applied to a MEMS gyroscope. 

     It has been observed and concluded that, for the active engine vibration isolation 

system, fuzzy logic is more effective than ADRC with specific chosen tuning parameters. 

For the three-tank system, Tracker-based PID performs better than the others, but more 

laborious for tuning. For the MEMS gyroscope, ADRC performs better than the others in 

controlling the high order system. 

     The future work will include the following recommendations. (1) Fuzzy Logic Control 

may be combined with Tracker-based Feedback Control to make the control more 

intelligence. (2) A better noise filter may be incorporated into the Tracker-based 

Feedback Control. 
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