

Cleveland State University EngagedScholarship@CSU

ETD Archive

2014

Computation of Fifteen Thermodynamic Properties Along Arbitrary Paths from Fundamental Equations of State Correlations

Prashanth Krishnamoorthy Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Biomedical Engineering and Bioengineering Commons How does access to this work benefit you? Let us know!

Recommended Citation

Krishnamoorthy, Prashanth, "Computation of Fifteen Thermodynamic Properties Along Arbitrary Paths from Fundamental Equations of State Correlations" (2014). *ETD Archive*. 552. https://engagedscholarship.csuohio.edu/etdarchive/552

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

COMPUTATION OF FIFTEEN THERMODYNAMIC PROPERTIES ALONG ARBITRARY PATHS FROM FUNDAMENTAL EQUATIONS OF STATE CORRELATIONS

PRASHANTH KRISHNAMOORTHY

Bachelor of Engineering (Hons.) in Chemical Engineering Birla Institute of Technology and Science, Pilani May 2009

submitted in partial fulfillment of requirements for the degree MASTER OF SCIENCE

in

CHEMICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

DECEMBER 2014

We hereby approve this thesis For Prashanth Krishnamoorthy Candidate for the Master's degree in Chemical Engineering for the Department of Chemical and Biomedical Engineering And CLEVELAND STATE UNIVERSITY'S College of Graduate Studies by

Dr. Rolf Lustig Chemical and Biomedical Engineering

Dr. Orhan Talu Chemical and Biomedical Engineering

Dr. Dhanajai B Shah Chemical and Biomedical Engineering

12/2/2014

COMPUTATION OF FIFTEEN THERMODYNAMIC PROPERTIES ALONG ARBITRARY PATHS FROM FUNDAMENTAL EQUATIONS OF STATE CORRELATIONS

PRASHANTH KRISHNAMOORTHY

ABSTRACT

In this work, a set of fifteen thermodynamic properties for thirty pure compounds has been estimated using fundamental equations of state (FEOS). A computer program was written which allows to input any two of four fundamental thermodynamic properties entropy, pressure, temperature and density to fix a state point and then use the FEOS to generate any other property at that given state. The program further applies the FEOS to trace thermodynamic processes like isochoric, isobaric, isenthalpic, isothermal and isentropic state changes to find the final state of the compound. The program subsequently displays the initial, final and intermediate state points in a 2-dimensional plot with any two of fifteen thermodynamic properties along any two axes.

TABLE OF CONTENTS

	ABSTRACT	iii
	LIST OF SYMBOLS	v
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
1.	CHAPTER I – INTORDUCTION	
	1.1. MOTIVATION FOR WORK	1
	1.2. REVIEW OF PREVIOUS WORK	3
	1.3. FUNDAMENTAL EQUATIONS OF STATE FOR IDEAL FLUIDS	4
	1.4. FUNDAMENTAL EQUATIONS OF STATE FOR REAL FLUIDS	10
2.	CHAPTER II – THE PROGRAM	
	2.1. INTRODUCTION TO THE PROGRAM	15
	2.2. INPUTS TO THE PROGRAM	19
	2.3. ALGORITHM	21
	2.4. USED METHODS IN THE PROGRAM	23
	2.5. ESTIMATION OF STATE POINTS	26
3.	CHAPTER III – RESULTS AND DISCUSSION	27
4.	CHAPTER IV – CONCLUSION AND FUTURE WORK	36
5.	BIBLIOGRAPHY	38

LIST OF SYMBOLS

Upper Case Symbols

- 1. A_i Substance specific model parameter
- 2. B_i Substance specific model parameter
- 3. C_p Specific heat of at constant pressure
- 4. C_v Specific heat of at constant volume
- 5. M Molecular mass
- 6. P Pressure

.

- 7. R Universal gas constant
- 8. T Temperature
- 9. Z Compressibility factor

Lower Case Symbols

- 10. a Specific Helmholtz energy
- 11. g Specific Gibbs energy
- 12. h Specific enthalpy
- 13. u Specific internal energy
- 14. n_i Substance specific model constants
- 15. s Specific entropy
- 16. v Specific volume
- 17. y_i Substance specific model constant

Upper Case Greek Symbols

18. θ_i Model parameter

Lower Case Greek Symbols

19. α	Dimensionless Helmholtz energy
-------	--------------------------------

- 20. β Inverse of temperature
- 21. δ Inverse reduced volume
- 22. ρ Density
- 23. σ Model parameter
- 24. τ Inverse reduced temperature

Subscripts

- 25. i Index of summation
- 26.0 Reference state
- 27. c Critical

Superscripts

28. 0 Ideal gas property

LIST OF TABLES

1.	Substances used in this work with their range of validity	13
2.	Thermodynamic properties and their corresponding Helmholtz energy derivatives	18

•

LIST OF FIGURES

1.	Spreadsheet data with parameter data for	
	fundamental equations of state	25
2.	Initial run screen for the program	27
3.	Second run screen for input of properties	28
4.	Property data for the input current state	29
5.	Screen to input thermodynamic process	30
6.	Define final state point	31
7.	Computing of properties from initial to final state	32
8.	Display of T-v data for an isentropic process	33
9.	Representation of T-v data on a curve	33
10.	Screenshot to input two properties for a 2-D curve	34
11.	Representation of any two properties input on a curve	35

CHAPTER I

INTRODUCTION

1.1 MOTIVATION FOR WORK

To design any heat engine or refrigerator one usually first decides on what temperatures the unit should work between. The working fluid selection would then impose pressure changes that the fluid would undergo to produce desired effects. Then a suitable thermodynamic cycle, such as the Stirling cycle, is selected. Upon selection of a process change, an equation of state (EOS) is necessary to describe any intermediate state between the initial and final state. As the name suggests, EOS are equations that relate different states of a particular fluid through a mathematical model usually determined from numerous experiments. Most widely used EOS, such as the van der Waals EOS and its improvements (Peng-Robinson, Redlich- Kwong etc.) are known as cubic equations of state, which have serious limitations for application in process design. Usually, these EOS are only valid in regions where underlying experiments for their correlations have been performed. The focus of this study is to apply a more general class of EOS called fundamental equations of state (FEOS), which allow for not only highly accurate correlations but also for determination of thermodynamic properties without restriction. One of the key tasks of thermodynamics is the description of thermodynamic properties by means of FEOS.

Thermodynamic consistency is essential to ensure stability during process simulation. FEOS allow derivation of all thermodynamic properties from a single mathematical expression, thus ensuring their thermodynamic consistency. The structure of the FEOS is complicated and tracing thermodynamic paths from them is computationally challenging. This study used FEOS from the work by Tillner-Roth [1] to trace thermodynamic properties along various paths for a set of thirty pure compounds in their fluid phase. For example, in a Stirling cycle [2] the working fluid undergoes the thermodynamic processes; isothermal expansion, isochoric heat removal, isothermal compression and isochoric heat addition. This work computes a set of fifteen thermodynamic properties along each of the state changes in the cycle, for all thirty pure compounds from a database. Under real conditions the processes may not be strictly isothermal or isochoric. The algorithm is developed such that, a function of temperature or volume maybe be input, as a modification to the source code, and the program can trace the path along the given function to simulate more realistic operating conditions.

2

1.2 REVIEW OF PREVIOUS WORK

For the study in this thesis the FEOS of each of the thirty compounds was required. The book compiled by Tillner-Roth [1] contained the FEOS for each of the pure compounds and the empirical constants associated with each correlation. We first discuss what a FEOS is and how it is different from a thermal EOS.

The simplest EOS is the ideal gas law Pv = RT[3], where P is pressure, v is molar volume, R is the universal gas constant and T is temperature. One explicit form of the EOS is P=f(T,v). With $v = 1/\rho$, where ρ is molar density, we can also express the EOS as $P=f(T,\rho)$. More realistic EOS such as the van der Waals EOS are also expressed as function of temperature and density. Similarly, many subsequent EOS such as Peng-Robinson, Redlich –Kwong, Benedict-Webb -Rubin were expressed as $P=f(T,\rho)$. The problem with these EOS is that properties like enthalpy or internal energy cannot be obtained without additional quantities like specific heats. These quantities are obtained from experiments and correlations are usually valid only for the conditions under which the experiments were performed. Extrapolation into state regions not backed by experimental data are most likely to fail for the above mentioned EOS.

An EOS where properties like enthapy and internal energy are correlated simultaneously would allow to compute any other thermodynamic property. Fundamental equations of state (FEOS) provide such means, therefore they constitute much more advanced correlation. FEOS for pure substances are exclusively in terms of the Helmholtz energy $a(T,\rho)/RT \equiv \alpha(T,\rho)$ where $\alpha(T,\rho)$ is some complex algebraic,

3

exponential or logarithmic expression or a combination of all. The Helmholtz energy is a thermodynamic potential which allows for the calculation of any other thermodynamic property by differentiation with respect to T and ρ . A P, ρ ,T relationship is called a thermal equation of state. A FEOS contains an EOS.

1.3 FUNDEMENTAL EQUATIONS OF STATE FOR IDEAL FLUIDS

In this section the FEOS for pure substances are discussed in further detail, as outlined in the work by Tillner-Roth[1].

As indicated before, the thermal EOS for all real gases approaches

$$Pv = RT$$
(1)

for $\rho \rightarrow 0$ or $v \rightarrow \infty$. The ideal gas state is a fictitious state which nevertheless plays a significant role in FEOS correlation. Furthermore, internal energy u and enthalpy h depend on temperature only. This limiting behavior is called the ideal gas state which has to be fulfilled by every EOS or FEOS. From an operational point of view the measurable ideal gas heat capacities $C_p^0(T)$ or $C_v^0(T) = C_p^0(T) - R$ are augmented to the thermal EOS (1).

Integration yields other ideal gas properties such as enthalpy[1]:

$$h^{0}(T) = h_{0}(T_{0}) + \int_{T_{0}}^{T} C_{p}^{0}(T) dT$$
 (2)

internal energy

$$u^{0}(T) = u_{0}(T_{0}) + \int_{T_{0}}^{T} C_{v}^{0}(T) dT$$
 (3)

and entropy

.

$$s^{0}(T, P) = s_{0}(T_{0}, P_{0}) + \int_{T_{0}}^{T} (C^{0}_{p}(T)/T) dT - R \ln (P/P_{0})$$
(4)

or

$$s^{0}(T, v) = s_{0} (T_{0}, v_{0}) + \int_{T_{0}}^{T} (C^{0}_{v}(T) / T) dT + R \ln (v / v_{0})$$
(5)

The Gibbs energy can be derived from (3) and (4),

$$g^{0}(T, P) = h^{0}(T) - T s^{0}(T, P)$$

= h_{0} - $T s_{0} + \int_{T_{0}}^{T} C^{0}_{p}(T) dT - \int_{T_{0}}^{T} (C^{0}_{p}(T)/T) dT + R \ln (P/P_{0})$ (6)

For an ideal gas s_0 , u_0 and h_0 are the values of an arbitrary reference state T_0 and P_0 or v_0 which can be freely chosen and $h^0(T)$, $u^0(T)$, $s^0(T, P)$, $s^0(T, v)$, $g^0(T, P)$ indicate these are properties of the ideal gas with respect to the assumed reference state.

Correlations for $C_{p}^{0}(T)$ or $C_{v}^{0}(T)$ are usually quadratic or cubic polynomials for small temperature intervals. For larger temperature intervals however, extrapolation of quadratic or cubic polynomials might not be accurate. Hence correlations for $C_{p}^{0}(T)$ or $C_{v}^{0}(T)$ are functions of type [4]

$$C_{\nu}^{0}/R = C_{0} + \sum_{i=1}^{n} C_{i} \frac{(\theta_{i}\tau)^{2} \exp(\theta_{i}\tau)}{(\exp(\theta_{i}\tau) - 1)^{2}}$$
(7)

with critical temperature T_c and inverse reduced temperature $\tau=T_c/T$. The coefficients C_i , θ_i and n are usually fitted to experimental heat capacity data. Correlation (7) is based on Einstein's theory of the contributions of molecular vibrations to heat capacity, therefore, often called Einstein terms. The advantage of this correlation is improved extrapolation capability towards higher temperatures.

A FEOS combines the first and second law of thermodynamics. It can be expressed in various forms. Two of those are h(s,P) and u(s,v). For what follows, references [4,5] give further details. The mathematical expression for the first law of thermodynamics is

$$dq = du + dw \tag{8}$$

The definition of reversible work in thermodynamics is,

,

$$dw = Pdv \tag{9}$$

The mathematical expression for the second law of thermodynamics involves reversible heat

$$dq = T ds$$
(10)

Combining (9) and (10) into (8),

$$du = Tds - Pdv \tag{11}$$

which is u(s,v).

To obtain an expression for enthalpy,

$$du + d (Pv) = Tds - Pdv + d(Pv)$$
(12)

$$d(u + Pv) = Tds + v dP$$
(13)

by definition $h \equiv u + Pv$,

$$dh = Tds + v dP \tag{14}$$

which is h(s,P).

Expressions (11) and (14) are FEOS neither of which are explicit in T. Therefore, they cannot be directly derived from, $C_p^0(T)$ or $C_v^0(T)$ as a function of temperature. To compute them from $C_p^0(T)$ or $C_v^0(T)$ some mathematical manipulation is necessary.

From (11) and (14) it follows that,

$$T = \left(\frac{\partial h^{o}}{\partial s}\right)_{p}$$
 and $v = \left(\frac{\partial h^{o}}{\partial P}\right)_{s}$

which transforms the ideal-gas law into,

$$P\left(\frac{\partial h^{0}}{\partial P}\right)_{s} = R\left(\frac{\partial h^{0}}{\partial s}\right)_{P}$$
(15)

Analogously, using internal energy, the ideal gas law can be written as:

$$-v \left(\frac{\partial u^{0}}{\partial v}\right)_{s} = R \left(\frac{\partial u^{0}}{\partial s}\right)_{v}$$
(16)

Upon replacing one of the partial derivatives by Eq (15) in the total differential of the enthalpy, it follows

$$dh^{0} = \left(\frac{\partial h^{0}}{\partial s}\right)_{p} ds + \left(\frac{\partial h^{0}}{\partial P}\right)_{s} dP = \left(\frac{\partial h^{0}}{\partial s}\right)_{p} ds + \frac{R}{P} \left(\frac{\partial h^{0}}{\partial s}\right)_{p} dP$$
$$= \left(\frac{\partial h^{0}}{\partial s}\right)_{p} d(s + R \ln \frac{P}{P_{0}})$$
(17)

Accordingly the total differential of internal energy $u^0(s,v)$, can be expressed as :

$$du^{0} = \left(\frac{\partial u^{0}}{\partial s}\right)_{v} d\left(s - R \ln \frac{v}{v_{0}}\right)$$
(18)

The fundamental equations of state $h^0(s,p)$ and $u^0(s,v)$, therefore, depend only on one independent variable,

$$h^{0} = h^{0}(s + R \ln \frac{P}{P_{0}})$$
(19)

or

$$u^{0} = u^{0} (s - R \ln \frac{v}{v_{0}})$$
 (20)

by which the ideal gas law is automatically fulfilled. Hence instead of having isobars and as a consequence having multiple lines, we can collapse all of them into one line when enthalpy is plotted versus σ , which can be defined as

$$\sigma = s + R \ln \frac{P}{P_0}.$$
(21)

Similarly all the isochors also collapse into one line when plotting internal energy versus entropy.

An expression for $h^{0}(s,p)$ can be derived analytically for an ideal gas with constant heat capacity.

$$s-s_0 = C_P^0 \ln \frac{T}{T_0} - R \ln \frac{P}{P_0}$$
(22)

Solving for temperature leads to

$$T^{0}(s,P) = T_{0} \left(\frac{P}{P_{0}}\right)^{\frac{R}{C_{P}^{0}}} \exp\left(\frac{s-s_{0}}{C_{P}^{0}}\right)$$
(23)

This is then consequently put into the enthalpy equation along with the substitution for σ after which the enthalpy becomes

$$h^{0}(\sigma) - h_{0} = T_{0} C_{P}^{0} \left[\exp\left(\frac{\sigma}{C_{P}^{0}}\right) - 1 \right]$$
(24)

A similar equation could be established for the internal energy of an ideal gas with a constant heat capacity.

Even for a linear temperature dependence of the heat capacity the FEOS cannot be deduced analytically. It can only be established through the empirical extension of the above equation. In short the solution can be combined as a polynomial with both exponential and algebraic terms. The empirical constants result from regression analysis as was pioneered by Wagner [6].

1.4 FUNDEMENTAL EQUATIONS OF STATE FOR REAL FLUIDS

FEOS for many compounds have been developed from experimental data where the Helmholtz energy is represented as a function just like the function for enthalpy and entropy in the previous section. The Helmholtz energy is split into two parts.

$$a^{r}(T, v) = a(T, v) - a^{0}(T, v)$$

The ideal part of the FEOS $a^{0}(T, v)$ consists of terms like

- 1. $\ln(\tau)$, where $\tau = T_c/T$
- 2. $\ln(1-\exp(-n_i\tau))$, where n_i , is a constant depending on the model
- 3. $\tau \ln(\tau) \tau$

4. τ^{n_i}

A general form of a correlation is,

$$\alpha^{0} = \ln\delta + y_{0} + y_{1}\tau + y_{2}\ln(\tau) + \sum_{i=4}^{X1} y_{i}^{0}f_{i} \quad (\tau) + \dots$$
(25)

where

 $\delta = v_c/v$, where v_c is critical volume and v is volume

y₀, y₁, y₂... are substance specific constants

 $\tau = T_c/T$, where T_c is critical volume and T is the temperature

 f_i (τ) are functions of temperature as outlined in detail by Tillner-Roth[1]

X1, X2... = 1, 2, ..., n, where n is the total number of terms in the expression

The residual term , $\alpha^{r}(T, v)$, of the Helmhotlz energy is usually of the form

$$\alpha^{r} = \sum_{i=1}^{IP} y_{i} \delta^{d_{i}} \tau^{t_{i}} + \sum_{i=IP+1}^{IE} y_{i} \delta^{d_{i}} \tau^{t_{i}} \exp(-\delta^{e_{i}}) + \sum_{i=IE+IP+1}^{IG} y_{i} \tau^{t_{i}} \exp(-\delta^{2}) - 1$$
(26)

where IP,IE IG are the numbers of purely polynomial, polynomial and exponential, and Gaussian terms.

These above correlation models are the results of decades of research. For example, the third term in the residual function whose shape corresponds to a two-dimensional Gaussian was introduced by Setzmann and Wagner [7] in their equation of state for

methane. These terms have the largest impact near the critical point $v=v_c$ and $T=T_c$. The larger the distance of the state point from the critical point the lower the influence of such terms .The intention of Gaussian terms is to model the critical region if enough precise measurements are available. Since critical point measurements are very rare and not available for all substances such terms have not been used often.

The above remarks indicate a high level of sophistication for FEOS correlation in terms of the reduced Helmholtz energy. The involved terms are purely empirical and their accuracy is limited by the uncertainty of available experimental data. The development of new terms through new optimization schemes have led to FEOS correlations of outstanding quality. Genetic algorithms developed by Span[4] optimize the functional form of an analytical FEOS correlation by automatically selecting the most influential terms from a bank of terms so that a given data set is represented with the smallest standard deviation possible. As it is not the intention of this work to ponder the optimization and regression analysis the reader is referred to the original literature in the book by Span [4]. Table 1 contains a list of substances used in this thesis. The FEOS for these particular substances are obtained from the work of Tillner-Roth [1] and references therein.

12

Substances	Vali	Validity Range						
	Pmax/MPa	Tmin/K	Tmax/K					
Methane	1000	90	625					
Ethane	69	90	523					
Propane	100	85	600					
n-butane	70	134	500					
Isobutane	35	113	600					
Ethylene	260	103	450					
Propylene	200	100	600					
Methanol	800	175	570					
Ammonia	1000	195	700					
Argon	1000	83	700					
Fluorine	20	53	300					
Helium	100	2	1500					
Neon	700	25	700					
Oxygen	82	54	300					
Nitrogen	1000	63	2000					
Trichloromonofluromethane (R11)	200	163	525					
Dichlorodifluromethane (R12)	200	116	525					
Monochlorodifluromethane (R22)	200	155	525					

Difluromethane (R32)	70	136	435
Trichlorotrifluroethane (R113)	200	236	525
2,2-Dichloro-1,1,1-trifluroethane (R123)	40	166	525
2-Chloro-1,1,1,2-tetrafluroethane (R124)	40	100	440
Pentafluroethane (R125)	70	172	440
1,1,1,2-Tetrafluroethane (R134a)	70	170	455
1,1,1-Trifluoroethane (R143a)	35	161	430
1,1-Difluroethane (R152a)	35	154	435

Table 1: Substances used in this work with their range of validity [1].

.

CHAPTER II

THE PROGRAM

2.1 INTRODUCTION TO THE PROGRAM

From the previous section it follows that very accurate FEOS correlations are available. The objective is to find thermodynamic properties of substances using these FEOS under various state changes. Such state changes involve nonlinear equations including polynomial, exponential and logarithmic terms. Analytical solutions to the problem are not possible. Numerical solution using series approximations and concepts of interval shrinking are necessary. This section discusses how to use the FEOS to develop equations for practical process design involving pure substances. Properties to be considered are

- 1. Thermal properties
 - a. P,v,T data
 - b. Compressibility factor $Z \equiv \frac{Pv}{RT}$ (27)
- 2. Caloric properties

- a. Internal energy u
- b. Entropy s
- c. Enthalpy $h \equiv u + Pv$ (28)

d. Gibbs energy
$$g \equiv u + Pv - Ts$$
 (29)

3. Mechanical coefficients

a. Isothermal compressibility
$$\beta_{\rm T} \equiv -v^{-1} (\frac{\partial v}{\partial P})_{\rm T}$$
 (30)

4. Adiabatic coefficients

a. Speed of sound
$$w^2 \equiv \frac{-v^2}{M} \left(\frac{\partial P}{\partial v}\right)_s$$
 (31)

b. Joule-Thompson coefficient
$$\mu_{JT} \equiv \left(\frac{\partial T}{\partial P}\right)_h$$
 (32)

5. Caloric coefficients

a. Isochoric heat capacity
$$C_v \equiv \left(\frac{\partial u}{\partial T}\right)_v$$
 (33)

b. Isobaric heat capacity
$$C_p \equiv (\frac{\partial h}{\partial T})_P$$
 (34)

From the combined first law and second law of thermodynamics one has for the Helmholtz energy the following expression

$$da = -sdT - Pdv$$
(35)

Comparing (35) with the purely mathematical result

$$da = \frac{\partial a(T,v)}{\partial T} dT + \frac{\partial a(T,v)}{\partial v} dv$$
(36)

yields P and s in terms of partial derivatives a(T,v) which can be used to devise an algorithm. Pressure is therefore the partial derivative of Helmholtz energy with respect to v at constant T. Analytical and numerical methods may be used to compute the partial derivates for equations (25) and (26). Similarly entropy is the partial derivative of the Helmholtz energy with respect to temperature at constant volume. Usually Jacobi transformation [8] is used to compute other thermodynamic properties.

The following is an example given by Lustig [8,9].

According to equation (31) the definition of speed of sound is

$$w \equiv \left[-\rho M (\partial v / \partial P)_{s} / v\right]^{-1/2}$$
(32)

The derivative $(\partial v / \partial P)_s$ must be expressed as partial derivates of the Helmholtz energy with respect to T and v. Jacobi transformation accomplishes such tasks. For the problem at hand the method yields, with $\beta \equiv 1/T$ [9]

$$\left(\frac{\partial p}{\partial v}\right)_{s} \equiv \frac{\partial(p,s)}{\partial(v,s)} = \frac{\frac{\partial(p,s)}{\partial(v,\beta)}}{\frac{\partial(v,\beta)}{\partial(v,\beta)}} = \frac{\left(\frac{\partial p}{\partial v}\right)_{\beta} \left(\frac{\partial s}{\partial T}\right)_{v} - \left(\frac{\partial p}{\partial \beta}\right)_{v} \left(\frac{\partial s}{\partial v}\right)_{\beta}}{\left(\frac{\partial s}{\partial \beta}\right)_{v}}$$
(30)

The result is then

$$w(T, v) = \frac{v^2}{M} \left[\frac{\left(\frac{\partial^2 a}{\partial \beta \partial v}\right)^2}{\frac{\partial^2 a}{\partial \beta^2}} - \frac{\partial^2 a}{\partial v^2} \right]$$
(31)

where, again, $\beta \equiv 1/T$

The above mathematical tools are used to manipulate different thermodynamic properties along different paths into expressions which contain derivatives with respect to (T, v) only.

Property	Helmholtz energy derivatives
Derivatives	$\alpha_{\delta} \equiv \frac{\partial \alpha}{\partial \delta}, \alpha_{\tau} \equiv \frac{\partial \alpha}{\partial \tau}, \alpha_{\delta\delta} \equiv \frac{\partial^2 \alpha}{\partial \delta^2}, \alpha_{\delta\tau} \equiv \frac{\partial^2 \alpha}{\partial \delta \partial \tau}$
Pressure, P	$RT\delta \alpha_{\delta}/v$
Volume, v	v (Independent variable)
Temperature, T	T (Independent variable)
Compressibility factor, Z	$1 + \delta \alpha_{\delta}^{r}$
Internal energy, u	RΤτα _τ
Enthalpy, h	$RT(\tau\alpha_{\tau} + \delta\alpha_{\delta})$
Entropy, s	$R(\tau\alpha_{\tau}-\alpha)$
Gibbs energy, g	$RT(\alpha + \delta\alpha_{\delta})$
Isothermal compressibility, β_T	$\frac{1}{((1+\delta(2\alpha_{\delta}^{r}+\delta\alpha_{\delta\delta}^{r}))(1/v)RT)}$

Speed of sound, w ²	$RT(2\delta\alpha_{\delta}+\delta^{2}\alpha_{\delta\delta}+(\delta\alpha_{\delta}-\tau\alpha_{\delta\tau})^{2}/(C_{v}/R))$
Joule-Thompson coefficient, μ_{JT}	$\frac{-(\delta \alpha_{\delta}^{r} + \delta 2 \alpha_{\delta\delta}^{r} + \delta \tau \alpha_{\delta\tau}^{r})100v}{((1 + \delta \alpha_{\delta}^{r} - \delta \tau \alpha_{\delta\tau}^{r})^{2} - \tau^{2} \alpha_{\tau\tau}(1 + 2\alpha_{\delta}^{r} + \delta^{2} \alpha_{\delta\delta}^{r}))R}$
Isochoric heat capacity, C _v	$-R \tau^2 \alpha_{\tau\tau}$
Isobaric heat capacity, C _p	$R\left(\left(\frac{C_{v}}{R}\right) + \left(\delta\alpha_{\delta} - \tau\alpha_{\delta\tau}\right)^{2} / \left(2\delta\alpha_{\delta} + \delta^{2}\alpha_{\delta\delta}\right)\right)$

Table 2: The thermodynamic properties computed in this work and their respective Helmholtz energy derivates [1]. Note that τ is proportional to inverse of temperature and δ is proportional to the density.

2.2 INPUTS TO THE PROGRAM

In the previous section we have established that we can compute any thermodynamic property from the FEOS given by $a/RT = \alpha = f(T, v)$. Any thermodynamic state for a pure compound in a single phase can be fixed with any two properties. In this program the properties that were used to fix a state, in addition to temperature and volume, are pressure and entropy. Hence, given any two of the above mentioned properties the program computes a set of 15 thermodynamic properties which includes pressure, volume, temperature, enthalpy, entropy, internal energy, isochoric heat capacity, isobaric heat capacity, speed of sound, isothermal compressibility , Joule-Thompson coefficient. The objective of the program is not only to find all properties at one particular state but to trace a thermodynamic process as 2- dimensional plot with any two of the fifteen properties as abscissa and ordinate. Hence, the program should find all properties at a given initial state and then select certain paths at certain constant given property based on user inputs. A spreadsheet file is created for each specific compound. In that file any specified path of the state change is input.

Initially, the program asks for the substance. The user can input the name of the compound like methane or R134a. Based on the substance entered the program will chose a corresponding spreadsheet file along with constants such as the critical temperature and critical volume.

The program asks the user to input any two of the four thermodynamic properties pressure, temperature, volume and entropy to compute all thermodynamic properties at that state and asks for the number of state points desired to reach the final state: Obviously, the more points the smoother the curve. Then the program asks to select a certain path for the process: Isothermal, isochoric, isobaric, isentropic or isenthalpic. Finally the program computes all 15 thermodynamic properties at all the intermediate state points from initial to final state. Depending on the user specified input a 2dimensional plot of any of the 15 properties versus any other can be plotted.

20

2.3 ALGORITHM

As established by now, a Helmholtz energy correlation as a function of temperature and density allows to compute any thermodynamic property as derivatives. If only one of temperature or density is given along with some other property like pressure or entropy, the problem becomes highly nonlinear with more than 30-40 terms, and analytical solutions are impossible. Even numerical solutions are difficult because the mathematical form of correlations change with substances. A general algorithm for different types of correlation is necessary, which is accomplished by iteration using an initial guess.

Assuming a state point is given by pressure and temperature and the required property is volume, the task is accomplished by using the ideal gas law to guess an initial value for the volume. The pair of volume and temperature are input to the specific Helmholtz energy correlation. Pressure then follows from a differentiation of the correlation according to Table 2. Based on if pressure is higher or lower than the required value the program corrects for the initial value of volume. The procedure is repeated until a user specified convergence criterion is satisfied.

A problem with the proposed algorithm is limited convergence under certain circumstances. A nested iteration scheme is employed. If during the overall iteration the user defined convergence criteria in nested iterations is not met, they are relaxed to progress towards overall convergence.

After computing any thermodynamic property at a given state point the program computes the corresponding properties at a final state point of a given process and also at each specified amount of point in between. The user is asked to input a specific thermodynamic process. The current choices are isochoric, isothermal, isobaric, isentropic and isenthalpic state changes, as most thermodynamic cycles consists of a combination of these. For example, if the process is isothermal the program asks the user for the number of state points and properties to be computed. The more state points between the initial and final state the smoother the resulting curves for the process. The program also requires an input for final state variable like pressure, volume and temperature excluding the property which is being held constant during the process. For example, in an isothermal process the final state property can be any one of pressure, volume or entropy. The program will construct an isothermal path, then use pressure, for example, as a final state point and then partition the path into regular intervals based on user input. Finally, the 15 thermodynamic properties along the path are computed.

The program also allows to plot any property versus any other property. That is, for the above example, the user could plot the Joule-Thompson coefficient (32) versus the isothermal compressibility (30) at constant temperature.

22

2.4 USED METHODS IN THE PROGRAM

The above is an overview of the overall algorithm. This section explains individual MATLAB functions. A driver program and subroutines (functions) compute the thermodynamic property from the specific Helmholtz energy. In the following, subsection titles are identical to MATLAB function names.

1. main_code.m

A driver program runs the overall code and will invoke different subroutines to perform specific tasks. The driver asks the user for all inputs including the substance, initial and final state points, the particular process and the properties to be displayed. It then searches the data banks for the respective FEOS correlation constants and applies them in further subroutines.

2. display_properties.m

Displays a set of 15 thermodynamic properties at a given state point. Input arguments are volume, pressure, temperature, critical volume, critical temperature and molecular mass.

3. compute_properties.m

Computes a set of 15 thermodynamic properties at a given state point. Input arguments are volume, pressure, temperature, critical volume, critical temperature and molecular mass. Output is a 1×15 vector of the 15 properties at each state point.

4. first_do_res .m and first_do_id.m

First order partial derivative of the specific Helmholtz energy with respect to reduced density. Output is the numerical value of the derivative.

5. first_tau_res.m and first_tau_id.m

First order partial derivative of the specific Helmholtz energy with respect to inverse reduced temperature. Output is the numerical value of the derivative.

6. first_do_first_tau_res.m

Second order mixed partial derivative of the specific Helmholtz energy with respect to reduced density and inverse reduced temperature are computed. Details are as above.

7. sec_do_res.m and sec_do_id.m

Second order partial derivative of the specific Helmholtz energy with respect to reduced density are computed. Details are as above.

8. sec_tau_res.m and sec_tau_id.m

Second order partial derivative of specific Helmholtz energy with respect to inverse reduced temperature. Details are as above.

9. find_vol_tp.m

Volume of a given state if temperature and pressure are specified.

10. find_vol_st.m

Volume of a given state if entropy and temperature are specified

11. Find_temp_vp.m

Temperature of a given state if volume and pressure are specified.

12. Find_temp_sv.m

Temperature of a given state if entropy and volume are specified.

For modules 9-12, the iterative algorithm is based on directional search of roots. Starting with an initial guess for whichever property, the program computes the deviation from the target property. Based on that error it narrows the guess to converge to a specified tolerance.

Data spreadsheets are Microsoft Excel data sheets which contain all model parameters for a specific compound. Every compound will have two such data sheets, one for the ideal and one for the residual part of the FEOS correlation according to equations (25) and (26). A sample screenshot of the data sheet for methane is shown in Figure 1.

1.1	Home K Cut	1	ge Layout	Formulas	Dota	Roulew	View					表:iii	N.T.!	rendt		* 51	X AutoSua	• Aw	35	<u>.</u>
Ц,	La Copy	Calib				= < 🏷		Viap Test	.Gen				- Maria	4			a Fai •	23	33	
ste -	J Farm	nat Painter	I U P	9 • j. Ca - 2	7 i E	2 3 (C	17 H	derge & Cen	ster • \$	· ¼ •	3 3	Considiana Formatting	if Format • as Toble •	Cell Styles	inien De	iele Format	2 Ger	्रहत्ते हे. निर्देश		
ं ः	çeasid	1.1.1. 5 .21.1	fact	and construction attends		2	ingcontrat		Es - 1	liumber	4		Styles		· · · · · · · · · · · · · · · · · · ·	ests		lang		2005
	J31	• (*	fx 0																	
	А.	8	c	D	E	F	G	н	1		ĸ	L.		N	0	P	٥	8	5	Ţ
· · ·	1	0.04357901	0	+0.5	1	o	0	0	້	13										
	2	0.67092362	0	0.5	1	0	0	0	0	36										
		-1.765577859	0	2	1	0	0	0	0	40										
			0	0.5	2	0	0	0	0	0										
		-1.206513052	0	1	2	0	0	0	0	0										
			0	1.5	2	0	Q	0	0	0										
		-0.000400001	¢	4,5	2	0	0	0	0	0										
		-0.012478424	0	0	3	0	0	0	0	٥										
			0	1	4	0	0	0	0	0										
		0.001754749	0	3	4	0	0	0	0	0										
		-3.17192E-06	0	1	8	0	0	0	0	0										
		+2.24035E-06	Q	3	9	0	0	0	0	0										
	13	2.94706E-07	0	3	10	0	0	0	0	0										
	-	0.183048791	1	0	1	0	U	0	0	0										
		0.151188368	1	1	1	ບ ຄ	Ű	0 N	0	0										
		-0.428936388 0.068940024		4	1	0	0	0	a a											
	17 18	-0.01408314	1	0	4	0		0	c c											
		-0.030630548	1	Š	5	0		0	ō											
		-0.029699067	÷	5	6	ő	ň	ň	õ	ŏ										
		-0.019320408	2	5	1	ŏ	ů	ő	ő	å										
		-0.110573996	2	5	2	ō	0	õ	ō	°,										
	23	0.09952549	2	ŝ	3	ō	ů	Ğ	ő	G										
		0.008548438	2	2	4	0	0	ō	ō	ů.										
		-0.061505557	2	4	4	ō	ů.	ō	ō	0										
÷н			Sheet3 , *	's <i>Ma</i> lles							<i></i>	a series a				1. Marca - 24 8	£			V
				************************											. 1. 1		· · · · · · · · · · · · · · · · · · ·	(6 m) 48 -	16886 - Leo	ain Grise

Figure 1: Model constants in the residual part of the methane FEOS correlations. Each column represents a constant from equation (26). For example, row 13 column D is the value of the model parameter t for the thirteenth term in the residual part of methane FEOS correlation.

2.5 ESTIMATION OF STATE POINTS

Again, the user can choose different paths for a given substance to proceed from one state point to another: Constant temperature, constant pressure, constant volume, constant entropy and constant enthalpy. The objective of the program is to compute the set of thermodynamic properties along the path and plot them as a curve as chosen by the user. The computation of properties at intermediate state points becomes relevant. For example, an isothermal process with initial state defined and a final pressure requested at a number of intermediate states defined by the user, the program partitions the process. This information is then stored as a pressure vector. For each pressure in the vector other thermodynamic properties are computed and they are also stored as respective vectors. Hence, the program populates 15 vectors of each thermodynamic property at each state.

CHAPTER III

RESULTS AND DISCUSSION

In this section some results are shown as screenshots generated by the program. The screen shots are taken at consecutive input screens and resulting output screens.

(a) the state of the state o

	MATLAB 7.10.0 (R2010a)			×
3 🖬 🔉 🐂 🕞	ile Edit Debug Parailel Desktop	Window Kelp		BOOť
8 - 10 F	ាថ់ ដង់ជា។។ សេថ	👔 🕖 Current Folden: CAUsers/Prashanth/Dropbox/Molysim_thesis_wrk/thesis_wrk_in progress 💌 👦	ů.	<u> </u>
clear;	Shortcuts Al How to Add Al What's N			Ì.
	ignent Folder ► □ * ×		Warkissere + D + X	
			× 🗑 🖉 🖉 🖓 🖗 💭 Selec	
k1 =0; While(k1	· * 』; * lhesis_w * 户 登		 「四回回回回」(如) 2660 · · · · · · · · · · · · · · · · · ·	
3912	Name -	A ENTER COMPONENT : methane	Name - Value	
	(i) sec_tau_res.m		The second se	
	sec_tau_rer.asv			ĺ.
	() sec_tau_id.m			
	sec_tau_id_asv			
1	b sec_do_res.m			l.
	sec_do_res.asv		Antipe Contraction	
1	🗿 r134a_residual.xis		1 Prince	<u>.</u>
	Ti34a_ideal.xls			
1	3 r22_residual.xls 3 r22_ideal.xls			
	Dehuresidual.m		(anterior distance)	
	phi_residual.asv		1	
	b) phy.ideal.m		Command History -* 🗖 २ 🗙	
	phi_idezl.asv		z134a -	
	🕅 p_w.bmp		3	
14	🕅 P_Y IP3		140	ŧ.
1	D P_V.fig		283	
	🕅 p_v.bmp		10	
	(3) Methane_residuals			
	methane_residual.png Methane_ideal.pis			
	回 menancjaeaus 別 it_bt.pg		1	
1	hs_en_pid5003.log		323	
buto	Ginst_tau_res.m		1	
end	, first_tau_res.asy		15	
	A fort tou id m	m	N 10/22/12 9:10 X21 -	
	ctada ^		· consections in the section of the	
	Start Waiting for input		OVR	
ao = Ilta	679019797			8
u_0				

Figure 2: Initial run screen. Input is the substance, here methane.

4	MATLAB 7.11.0 (R2010b)	_ s
File Edit Debug Parallel Deski	tep Window Heip	
4 90062 60	🗂 🖞 😡 Conent Felder: Cilibert parch (00) Despisar Meljaan thesis will besis wil yn progress 💉 🕳 🗓	
Shortcuts 🖉 How to Add 🔝 What's	s New	
Current Folder	+ C + X Command Window	Worksare Morksare Morksare
🔆 🕊 these write in progress 🕴	- D 10 0- O New to MATLAR? Walch that <u>Video</u> see <u>Domos</u> , or stad <u>Gerting Started</u>	× 🔄 🖬 🔄 🖏 Stack 🖾 Selett date to plot 🔹
Tiame ~	ENTER CONFONENT : methane	Name - Volue Min
3. 101233.pati	INTER 2 PROPERTIES	
🖉 algo_pic.bmp	2. TIMPERATURE & VOLUME	🖽 B «42x1 double» 0
codelaty	2. FRESSURE & VOLCHE	💾 Deita 🛛 🕹 🕹 🕹 🕹
T code1.m	3.TEMPERATURE & FRESSURE	10641 < 2.4 double> -6.3327
code2aty	2.FEESTRE 4 VOLDE 3.TENERATURE 4 FALSSURE 4.TENERATURE 1 ENTOPY 5. CONTERATURE 1 ENTOPY	HM 16.0423 16.0423 HR 8.3145 8.3145
T cede2.m	5. FRESSURE AND ENTROPY	□ B -43rd double> 0 □ Dehn -43rd double> 0 □ DGL -43rd double> -4227 □ M 16023 16023 □ R 83145 83145 □ 28247 -43rd abs
Compute properties and	6.VOLDE & ENTROPY	Raw «Edicell»
() compute stoperties.m	fe ENTER:	(Ann Ann Ann Ann Ann Ann Ann Ann Ann Ann
i comergence pg		EEEDUAL «Salbdrukke» -64245
R, convergence pag	/ EDITA:	() DAT (2004)
Devolg		🖸 TX11 (40.00)
		I 10 1905640 19056
daplay_properties and		🗄 Theiz <40al double> 0
asplay properties m		
find_temp_ty.atv		1 al_id (20002000) 0
find_temp_svm		al_es <#val double> 0
find_temp_vol_sp.asv		Constant and the second s
A find_temp_vol.sp.m		
find temp ypass		Command History - D +
find temp yp.m		
find volutiv		5+5
fied yelm		5 11/17/2016 12/20 AX
find yel stasy		11
find val sum		± 8 11/27/2016 12:02 3208
find yol to any		Nethane
6 find yol tom		zethene
fest do fest tau res.esv		
Pifen da fent teu serm	v	
<12.75	×	
		1
		and the second se
Select a file to view o	details	1

Figure 3: Second run screen. Input initial state variables.

A	MATLAB 7 11.0 (R2010b)			🖾
File Edit Debug Parallel Desktop	s Window Help			
101:20000 00	🛐 🖗 Conerfeder. Oliteri such States Mehon beis wittens wit a progress 🗸 👘			
Shentends E Hewite Add _ Mulis H				
Current Folder	P □ P X Crosseaud Westing	Workspace		101
	/ P		stuck D Sciente	and the second second
	• D & & . O Hento HATLAST Visich His Video ree Derves or and Gering Stated.		S SCICK CAP SOLET 6	stato per
Name +	EUTER CONFOULNT : methane	Name +	Value	Man
E	ENTER 2 PROPERTIES	HA	<42x1 deuble>	ó
algo_pic.bmp		H A H B	< 40xt double>	ð
codelany	2.FRESBURE & VOLUME	E Dette	(the double)	ō
acodel.m	3.TENFERATURE & FRESSURE	IT IDEAL	<8a4 double>	-6.3327
code2aty	1. LEMERATELY & VOLTHE 2. FRESHTE & VOLTHE 3. TENERRATER & FRESHTE 4. TENERRATER & ERTOOPY 5. FRESHTE AND ENTROPY EDTER: ENTER CURRENT STATE FRESHTE (FR):400 ENTER CURRENT STATE FRESHTE (FR):400 ENTER CURRENT STATE INSERATOR (FRESHTE (FR):400 ENTER CURRENT STATE INSERTOR (FRESHTE (FR):400 ENTER (FRESHTE) (FRESHTE (FRESHTE) (F	HM	16.0423	160602
Codelm	5.FRESTURE AND ENTROPY	H M H R	2,3145	£3145
	6. VOLDAE & ENTROPY	R R L W	< dat cella	
El compute properties.m		RAW RAWI	<43:13 (cf>	
E countration contraction	LITER CURRENT STATE FREESURE 14Fa) (00	ESODIAL	< 3 12 deables	6.4240
Re convergence.pro	ENTER CURRENT STATE TENGERATURE (RELVIN): 600	0 101	<0.0 cell>	
) c sta	EALER CONCENT STATE TERSENALVE (KEIVIN) FOUS	10 DTI	<0:0 cell>	
	FROFERTIES OF NETWORK AT CURRENT STATE	Hte	190.5640	190.56
🖕 (v_p)sg display_properties.asv	Freesure (KFA) 400.00	Theta	<40el double>	0
anplay_properties.m		Η,	<43a1 double>	-6.4240
	5pcf. Volume(m3/kg) 0.7779	Han ed	[5,0,0,0,0,0,0]	0
[] Ind temp arm	Ures(KJ/mc1) -1.220	al.res	<401 double>	ň
	Gv(baz/K) 5.007	E State	Andre Constraines	*
A find temp vol spass	BT(1/bar) 2495.356	Concernation tentestation		<u> </u>
	Gs(bsr/X) 0.611	Command Hist	08V	* 0 *
find_temp_vp.stv	Cv(J/mc1/K) 0.350		1014 Bull 25*	
A find_temp_sp.m	Cp(J/mal/E) 0.544	1	1014 0011 025 444	
feed volume		5+5		
find_veim	Corses 1.023	A 12/17/	2014 12:20 22	ŧ
end vol starv	Speed of sound(m/s) 274.79	à 8 11-17/	1014 13:22 AM	ŧ
(ind vol st.m		Hethane		
find_vol_tpusv	JI (K/bax) 0.254	Rethane		
[] find_vel_ip.m	Entropy(J/mp1/K) 1.146			
first_do_first_tru_res.acv	Enthelpy (J/mol) 520.16	3		
News a		400		
-64-2	TOTAL INTERIAL ENERGY 1= : 505.972	600		
	A Number of points Between Initial and Final states :			
Select a file to view det	afa			

.

Figure 4: Property data for the given state point. In the current example for methane at state point 400 kPa and 600 K the thermodynamic properties are computed.

<u>しのますのもので</u>	6 7 []/ :	D Current Folder: C:\Users\Prashanth\Dropbox\Molysim_thesis wrk\thesis_wrk_in prog	liess ▲ [···] (\$J		
Shortcuts 者 How to Add 👔	What's Nev	ý			
Current Folder ++	X 5 O	Command Window	计图开文	Workspace	כאםו+
🛊 🎄 🐇 « thesis_w 🔻	• ○ ☆	(1) New to MATLAB? Watch this Video, see Demos, or read Getting Started.	X	DEGAS	🕼 Selec 🗸
Name -		ENTER CURRENT STATE TEMPERATURE (KELVIN):600	•	Name 🗠	Value
(i) sec_tau_res.m		PROPERTIES OF METHANE AT CURRENT STATE		⊞A	<40x1 doubl
	Ē	Pressure(kPa) 400.00		⊞B	<40.d doubl
A sec tau id.m		Temperature(K) 600.0		BT_vectr	<20x1 doubl
sec_tau_id.asv		Spcf. Volume(m3/kg) 0.7779		H CT_vectr	<20x1 doubl
sec_do_res.m		Ures(kJ/mol) -1.220		E Cp_res_vectr	<20x1 doubl
i sec_do_res.asv		Gv(bar/K) 0.007		E Cp_vectr	<20x1 doubl
(134a_residual.xls	B	BI(1/bar) 2498.356		H Cv_res_vectr	<20x1 doubl
al 134a_ideal.xls		Gs(bar/K) 0.011	0.000	H Cv_vectr	<20x1 doubl
(a) r22 residualats	-	Cv (J/mo1/K) 0.358	ay model for	🗄 Delta	<40x1 doub!
(a) r22 ideal.xls		Cp (J/mo1/K) 0.544	100	H D-00	0.0044
Is phi residual.m	and the second	Cv res 0.001			
phi residual.asv	Ľ.	Cp res 1.008			
(*) phi_ideal.m		Speed of sound(m/s) 874.79		Command History	지 다
phi_ideal.asv		JT (K/bar) 0.254		G t 10/23/12	9:10 AM -
p_w.bmp		Entropy (J/mol/K) 1.146		nethane	
p_v.jpg		Enthalpy (J/mol) 820.14	E.	3	
p_v.fig		rnenalpy (ofmol) 620.14		-	
🖉 p_v.bmp		TOTAL INTERNAL ENERGY 13 : 502,972		400	
Methane_residual.xls		Number of points Between Initial and Final states : 20		600	
🖉 methane_residual.ong		······································		20	
(a) Methane_ideal.xis		SELECT PROCESS		zethane	
🖉 jt_btjpg		1. ISOTHERMAL		3	
hs_err_pid5008.log		2.ISOBARIC		400	
🖉 first_tau_res.m		3.ISOCHORIC			
j first_tau_res.asv	_	4.ISENTROPIC		600	
the fore the iden		5.ISENTHALPIC		20	
etails	^	A ENTER : 4	+	<	inneisiad 🕴 🕨

Figure 5: Selection of paths for the program to trace. In the current example, the user

selects an isentropic process.

rent Folder	HO IX Contrara Window	Noriseve	101
* thesis wit in provides *	 ρ (j) φ -	× 필정실립트 Such (1754	ect data to plot
Rine +	3.TERPERATURE (FRESURE	* Hame + Value	t.Con
. FELIZI ENS	A LIENFERATURE & ENTROPY	田本 《43ai dozda) 日本 《43ai dozda) 日 日本 《43ai dozda) 日 日本 《43ai dozda)	• •
sigo pictimo		🗄 B	0
todelanı	5. FRESSURE AND ENTROPY 5. VOLUE & ENTROPY ENTER: 3	📅 Deita 🕹 A daubier	
codel.m	FNTER:S	10 De0 0.0644	0.4044
codeLaty	ENTER CUPRENT STATE FRESSURE (KFa):400	EDe1 0.0079	0.0079
code2m	LINER CURRENT STATE FAISTER ENTER CURRENT STATE FAISTERATURE (FELVID):603 FROFERITES OF METANER AT CURRENT STATE Freesure(EFA) 450.00 Temperature(EFA) 450.00 Spct. "Joine (EFA) 50.0779 Cres(EA/Eal) -1.220 D'(ber/S) 0.007 FIL(ber) 2002 155	ि [] मि -55291	-5522_
compute_properties.asv	FROPERTIES OF METRAVE AT CUPRENT STATE	HI 551397	22.11
compute properties.m	Pressure/kPa) 450.00	IDE4L «But double»	-6.3327
n convergence.jpg	Texperature (R) 600.0	Han 160422 Hey 110	15.6428
L convergence.prg	Spot. Volume(m3/kg) 0.7779	EP\$ 100	100
] cv_p.fig	Ures(bJ(mol) -1.720	田en 10	430
ex pypg	. 07(bcz/3) 0.007		2315
, doplay_properties.acv	51(1/bar) 2692,356	E PAN (tal ref)	
display properties m	Gs(bar/3) 0.011	(1000) (1000) (1000)	
find temp svasv		ESSDUAL <42a 10 double	
find_temp_tv.m	Cr(J/mol/Z) 0.355 Cr(J/mol/Z) 0.511	(12) (12) (12) (12) (12) (12) (12) (12)	0.0001
fed_temp_vol_spasy		C	SS 🔰 🕻
find temp vol tp.m	Cv_tes 0.001	Command History	+07≯
find_temp_vp.asv	Cp_res 1.008	8 * 11/15/17:4 8:21 28 -	*****
] fad_temp_yp.m	Speed of sound(m/s) 276.79		
find_velary I find velan	€T(K/baz) 0.254	5+5	
	Entropy(J/mol/R) 1.146	- A-+ 11/17/2514 12:25 AH	1
) find_vol_stanv) find_vol_stanv	Enthelpy (J/zcl) E20.14	S 8++ 01/17/2014 12:22 AM	!
Ind volto av		Mattate	
jind veltare	IOTAL INTERNAL EMERGY 1s : 509.972	nethane	
j innojekcijajni) fast do fast tau netase	Number of points Between Initial and Final states : 20	1	
) feet do fant tou rot m	JELECT FROCESS	400	
1	v 1.ISOTAERGL		
•	2.ISOBARIC	600	
	3. ISOCHORIC	sethate	
	4.ISENTROFIC	3	
	5.ISENTRALFIC	403	
	ENTER : 4	620	
Select a file to view deta	NEICE ERCFERTY TO ENTER	20	
	1.TEMPERATURE		
	2. VOLUME		
	3. FRESSURE		
	A ENTER :1		

Figure 6: Upon selection of a process, a final state point is selected. In the current example, the user selects temperature.

	• • •	Current Folder: C:\Users\Prashanth\Dropbox\Molysim_thesis wrk\thesis_wrk_in pro	ogress 🔻 🛄 🕏		
Shortcuts 👌 How to Add 👌) What's Nev	4			
urrent Folder 🛛 🕨	XSO	Command Window	-1 E * X	Workspace	: א 🗅 ווּי
🏟 🏂 « thesis_w	- 0 ☆-	(1) New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	×	9 69 66	D Selec
Name -	·	Gv(bar/K) 0.007	*	Name 🔺	Value
f sec_tau_res.m		BT(1/bar) 2498.356		⊞₄	<40x1 doubl
sec_tau_res.asv	n.	Gs(bar/K) 0.011		⊞s	<40x1 doubl
sec_tau_id.m		Cv(J/mol/K) 0.358		BT_vectr	<20x1 doubl
sec_tau_id.asv		Cp(J/mo1/K) 0.544		TD T_vectr	<20x1 doubl
F) sec do res.m		Cv_res 0.001		Cp_res_vectr	<20x1 doubl
sec_do_res.asv		Cp_res 1.008		Cp_vectr	<20x1 doubl
🕘 r134a_residual.xls	ŧ	Speed of sound(m/s) 874.79		Cv_res_vectr	<20x1 doubl
🗿 r134a_idealxls	interior in the second	JT(K/bar) 0.254		Cv_vectr	<20x1 doubl
(122_residuals) (122_residuals)	1990-90	Entropy(J/mol/K) 1.146	(and	Delta Do0	<40x1 doubl
r22_idest.xts		Enthalpy (J/mol) 820.14	1000	<u>⊞</u> 0₀0	0.0044
🖄 phi_residual.m			1000	(Same Marca and	• • • • •
phi_residual.asv		TOTAL INTERNAL ENERGY 15 : 508.972		- (14) -	
[*] phi_ideal.m		Number of points Between Initial and Final states : 20	and the second sec	Command History	* 🗆 *
phi_ideal.asv		SELECT PROCESS		3	
🧾 p_w.bmp		1.ISOTHERMAL	and a second	400	
🕅 p_v.jpg		2.ISOBARIC	100	600	
D p_v.fig		3.ISOCHORIC	æ	20	
💹 p_v.bmp		4. ISENTROPIC		methane	
Methane_residual xis		5. ISENTHALPIC	a state of the sta	3	
methane_residual.png		ENTER : 4	1	11 -	
Methane_ideal.xls		WHICH PROPERTY TO ENTER	and the second se	400	
₿ jt_bt.jpg		1. TEMPERATURE	1	600	
hs_err_pid5003.log		2.VOLUME	1	20	
first_tau_res.m		ENTER 11		4	
La filist_tau_res.asv	-	ENTER FINAL STATE TEMPERATURE : 800	100	1	
ails	^	A	L	800	

Figure 7: Upon defining a final state point, the program computes properties at each state point along the selected process. In the example, for 20 state points between T=600 K and T=800 K the program computes properties.

.

File Edit Debug Parallel Desktop Window	Help	/	
10.X22010 ADD 0 0	'urrent Folder: C/Users/Prashenth/Dropbox/Molysm_thesis wit/thesis wik_in progress 🔹 🕒 🗯		
Shortcuts 2 How to Add 2 What's New			
Current Folder 🕨 🖬 🔻 🖓	Commit Vindes	Werkspace	*□*
4 ゆ 🎄 « thesis_wirk_in progress 🍡 🖉 🏶・	(1) New to MATLAB? Watch this Video, see Denics, or read Getting Stated.	× Jødigigi	D Select data to plot
Name *	Cp_xes 1.029	* Name +	Value
A sec.tau_res.m	Speed of sound(m/s) 0.00	⊞ ₄	<401 doubles
sec tau recarv	JT (R/bar) 0.325	E s	<10d double>
A sec tay dam	Entropy(J/mol/K) 1-146	BT_vectr	<20x1 double>
sec_tav_ed.asv	Enthalpy (J/mol) 1543.19	H CI vett	< Xh1 double>
A sec_tao_taaw		Cp.res_vectr	<201 double>
sec do result	TOTAL INTERNAL ENERGY 18 : 1125.055	Cp.vect	<20x1 double>
 a) (134) residualais 	Specific Volume (m5/kg) Temperature(%)	H Cy res vecto	<20xl double>
a) ri34_idealxis	0,7780 600.0	H Cv.vectr	<20d double>
(i) r22_residual.ds	0.7125 610.0	Detta	<40.1 double>
3)/22 idealada	5,6527 620.5	H Dea	0.0044
P) ohi residualun	0.5991 630.0	1001	0.0079
philesidualary 3	0.5423 660.0	H Gs vectr	<20st double>
2) phujdeslm		Gv_vectr	<2011 double>
phi_deal.asv		100 00	
a p.wbmp	0.4611 660.0	•	waawaadi
2 p_v.pg	0.4231 670.0	Command History	* 0 *
▲ p_vfg	0.3224 620.0	11	<u></u>
四 p_vbmp	0.3566 690.0	1 K. Kan 10:22-31	2 9:10 NE
3) Methane residualids	0.3275 700.0	methane	
methane residuationa	0.3209 710.6		
S Methane idealack	0.2766 720.0	3	
A blipg	0.2543 730.0	400	
i hs_en_pid5008Jog	0.2339 740.0	E 600	
first tau res.m	0.2182 750.0	20	
first tau cet-ary	0.1991 760.0	zethabe	
E first_tau_id.m	0.1224 770.0	3	
first Lau id.asv	0.1690 *20.0	31 -	
E linst_do_res_m	0.1348 790.0	400	
first_do_res_asv	0.1427 800.0	600	
G first_do_first_tau_res.m	TO GET SPECIFIC FROPERTY CURVE ENTER RESPECTIVE NUMBER FOR ABSCISSA AND ORDINATE	20	
first do first tau resurv		4	
F lind vol to.m -	1.FRESSURE		
stats ^	fr 2.TEHPERATURE	- 800	
(100.7 M	1/2		6

Figure 8: Screenshot for T, v data for points between the initial and final state points

along an isentropic process.

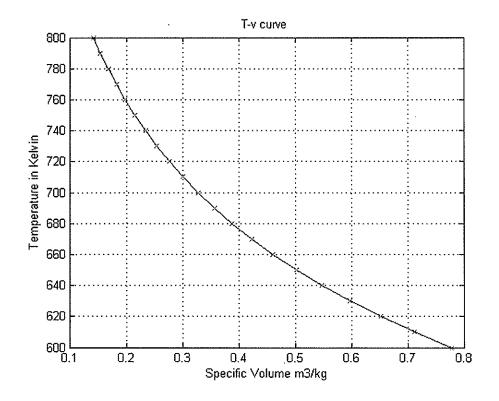
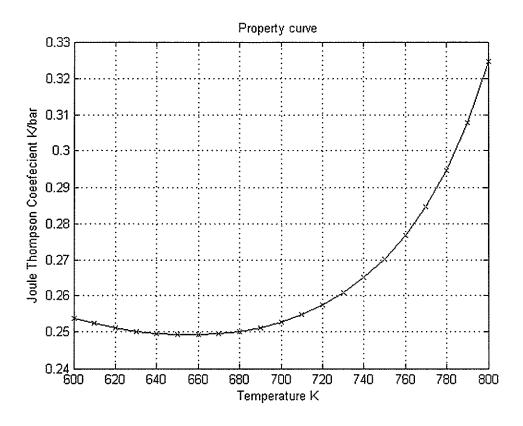
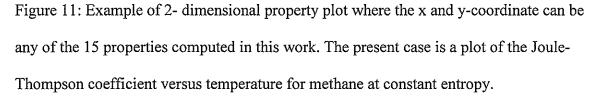


Figure 9: Representation of a T, v curve for an isentropic process.


File Edit Debug Paneliel Desktop W	indow Help		
10189898 402	0 Current Folder: Critisers/Frashanth/Dropba/Molyum, theirs with theirs, with in progress 🔹 💭 🚯		
Shortcuts]] How to Add]] What's New			
	* X Connectivides	Workspace	××□(+
	0 g. () New to MATLAST Watch this <u>Video</u> see <u>Demos</u> , or read <u>Getting Stated</u>	× 16445	płot(W_vectr) •
	0.4231 \$70.0	Name +	Value
Name *	0.3994 680.0	₩Tc	190,5640
n sec_tau_res.m	3 0.3566 690.0	Hine,	<ini double=""></ini>
jų sec_tau_tes.asv	0.3275 700.0	H Theta H 10	-197,3947
🕘 sec_tau_id.m		E U_res_vects	<zirl double=""></zirl>
isec_tau_istasv	0.5009 710.0	El Oles Men	<2111 double>
🙆 sec_do_res.m	9.2766 720.0		
sec_do_res.asv	3 0.2543 730.0	Hal'iq Hay	<\$0x1 double>
3 1134a residualais	· · · · · · · · · · · · · · · · · · ·	Щ <u>"</u> ч	[\$000,000,00] <40x1 double>
B 1134 idealuds	. · · · · · · · · · · · · · · · · · · ·	Hal.es	
පි) r22 residual ය	0.1981 760.0	H 10	[9.9124;-6.3327;3.001
all 122 destats	0.1951 7€0.0 ■ 0.1824 770.0	in cmpt	methane
bhi_residual.m	0.1620 780.0	H count	0
ph_residual.asv	0.1542 730.0	⊞₄	<40ul double>
🖞 phi_idesl.m		⊞ d10	-0.0037
chi_ideaLasv	0.1427 500.0		
2 p_w.bmp	TO GET SFECIFIC FROPERTY CURVE ENTER RESPECTIVE HUMBER FOR ABSCISSA AND GRDINATE 1. FRESSURE 2. TEMPERATURE	<u> in internet in the second s</u>	
國 p_v;pg		Command History	*0 * X
and the state of t	1.FRESSURE	4	
To Apud	2. TEMPERATURE	1	
(a) p_v.omp (b) Methane_residual.sls	3.SPC.VOLUME	11 -	
I methane_residual.png	4.U_RES	800	
	5.ISOCHORIC PRESSURE COEFF	7	
3) Methane idealads	6.ISOTHERMAL COMPRESSIBILITY		
💹 ji bijog	7.ADIAB. FRESSURE COEFF	nethane	
i hs_err_pid5008.log		3	
first_tau_res.m	8. ISOCHORIC HERT CAPACITY	· 31 · ·	
inst_tau_res.asv	9.15CEARIC MEAT CAPAITY	400	
fint_tau_id.m	10.CV_RESIDUAL	600	
ूर्े first_tau_id.asv	11.Cp_RESIDUAL	3 20	
f_) first_do_ves.m	12.SPEED OF SOUND		
្ញុំ តែ៨_០០_មេ.រាម	13.JOULE TROMPSON COEFFECIENT	- 31	
(c) first_do_first_tau_res.m	14.ENTROPY	1	
first_dofirst_tau_res.asv	ENTER X-COORDINATE. OF FLOT :2	900	
find_vol_tp.m	ENTER Y-COORDINATE OF FLOT 113	2	
Detada	^ ft >>	- 13	
	/s //		ÓV


Figure 10: Screenshot of the property input screen to generate a 2-dimensional plot of any

two properties.

.

.

CHAPTER IV

CONCLUSION AND FUTURE WORK

The objective of this study was to use highly accurate fundamental equations of state correlations to trace thermodynamic paths which are common in technological processes. Owing to the complexity of these correlations, analytical methods for tracing state changes are impossible. Iterative methods, of which the suggested ones are an example, are the only alternatives. The results are accurate to the combined accuracy of the correlations and the algorithms used. Anyone interested in arbitrary state changes as for the investigation of new working fluids, can directly use the results of this work.

Future work may involve addition of more compounds to the data bank. Such new correlations can be included in spreadsheets to be imported into the program directly. Another important future work is the inclusion of phase equilibrium and the development of phase transition envelopes. The program written in this study excludes state points inside the vapor-liquid phase envelope. Property values returned by the program at such state points will not be accurate, as conditions for phase equilibrium are not included. Since there are no strictly isothermal or adiabatic paths in real processes the paths traced

by the program might not be an accurate representation of the processes. To mitigate this issue a modification can be made in the source code to set properties as function of other properties to present a more realistic simulation of a path of a process.

The source code is available upon request to prashanth.87@gmail.com. A CD copy of the source code is available from the Department of Chemical Engineering at Cleveland State University upon request.

BIBLIOGRAPHY

- 1. Tillner- Roth, R., Fundamental Equations of State, Shaker, Aachen, 1998.
- Cengel, Y., Boles, M., Thermodynamics: An Engineering Approach, 7th Ed., McGraw-Hill, New York, 2010.
- Sonntag, R.E., Borgnakke, C. and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th Ed., Wiley, London, 2003.
- Span, R., Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data, Springer, New York, 2000.
- Smith, J.M., Van Ness, H., Abbott, M., Introduction to Chemical Engineering Thermodynamics, 7th Ed., McGraw-Hill, New York, 2004.
- Wagner, W., Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen - gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe, Fortschr. - Ber. VDI Reihe 3, <u>39</u>, VDI- Verlag, Düsseldorf, 1974.
- Setzmann, U., Wagner, W., A new equation of state and tables of thermodynamic properties for methane covering the range from melting line to 625 K at pressures up to 1000 MPa, J.Phys.Chem. Ref. Data <u>20</u>, 1061, 1991.
- 8. A.Münster, Classical Thermodynamics, Wiley, London, 1970.
- 9. Lustig, R., Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule-Thompson coefficient, Mol. Sim., <u>37</u>, 457, 2011.

- Tillner-Roth, R., Baehr, H.D., An international standard formulation of the thermodynamic properties of 1,1,1,2-tetrafluroethane (HFC- 134a) covering temperatures from 170 K to 455 K at pressures up to 70 MPa, J.Phys.Chem. Ref. Data <u>23</u>, 657, 1994.
- 11. William, P., Introduction to MATLAB for Engineers, McGraw-Hill, New York, 2010.