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RESEARCH ARTICLE Open Access

Metabolomics of ApcMin/+ mice genetically
susceptible to intestinal cancer
Jean-Eudes J Dazard1,6*†, Yana Sandlers2,3†, Stephanie K Doerner4, Nathan A Berger4,5,6 and Henri Brunengraber2,6*

Abstract

Background: To determine how diets high in saturated fat could increase polyp formation in the mouse model of
intestinal neoplasia, ApcMin/+, we conducted large-scale metabolome analysis and association study of colon and
small intestine polyp formation from plasma and liver samples of ApcMin/+ vs. wild-type littermates, kept on low vs.
high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds,
respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling
approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between
plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model.

Results: Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in
ApcMin/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics
pathway and network analyses in ApcMin/+ mice on high-fat diet revealed associations between polyp formation
and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide
and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result
from a combination of ApcMin/+-mediated tumor progression and high fat diet. The biological significance of these
findings is discussed in the context of intestinal cancer progression.

Conclusions: These studies show that high-throughput metabolomics combined with appropriate statistical
modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the
metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate
the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results,
metabolic signatures and metabolic pathways of polyposis and intestinal carcinoma have been identified, which
may serve as useful targets for the development of therapeutic interventions.

Keywords: Metabolomics, Fat diet, Tumor development, Association and correlation analysis, High-throughput
mass spectrometry

Background
In the high-throughput omics era, metabolomics is a rap-
idly emerging field that involves non-targeted, comprehen-
sive analysis of known and unknown small biomolecules in
a given biological sample [1-4]. While the metabolome is
strongly influenced by multiple factors including heredity,
diet, disease progression and response to therapy, this
metabolomics approach also allows for global assessment

of biological variations as a consequence of such variation
in genetics or environment. Changes in the metabolome
can be used to elucidate changes that occur downstream of
genomic or proteomic pathways. These changes can further
be correlated with alterations or interventions associated
with particular biochemical pathways, disease stage or
environmental factors [5,6]. Metabolomics is a snapshot
of the metabolic status of a living system at a specific
biological time point. Unlike changes in the genome or
proteome, metabolic fluctuations take place in a shorter
time frame, therefore metabolomics may assist in early
diagnosis or real time monitoring of disease [7].
Metabolomics promises to be a powerful systems

approach for studying metabolic profiles pertinent to
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a variety of normal and disease states. Global metabolic
profiling is widely used in clinical studies to assist in early
diagnosis or real time monitoring of disease [7], for identi-
fying biomarkers for neuropsychiatric [8], cardiovascular
[9,10] and liver diseases [11], colorectal neoplasia [12],
and for characterization of dysregulation in some meta-
bolic pathways [13,14]. Metabolomics based methods have
also been applied in translational studies to characterize
and understand genetically modified rodent models of
different disease [15,16]. Application of metabolomics
has also been shown to be advantageous in drug develop-
ment, discovery and toxicology fields [17,18]. Metabolomics
based methods have also been applied in translational stud-
ies to characterize and understand genetically modified ro-
dent models of different disease [15,16]. Although all these
studies are data driven rather than hypothesis driven, meta-
bolomics widen the fields in which hypothesis can be for-
mulated and increase the potential to uncover unexpected
correlations and new insights into biological processes.
Cancer progression and development affects the whole

metabolome. Metabolomics of cancer tissues can give
insight into mechanisms surrounding carcinogenesis and
can help identify cancer biomarkers for establishing
preventive and therapeutic treatments [19-21]. Recently,
several cancer metabolomics studies were carried out in a
variety of cancers and used as a diagnostic or disease pat-
tern recognition tool and as an assessment tool for differ-
ent anti-cancer therapies [22-27]. This approach has great
potential in clinical studies [28] such as for tumor typing
and biomarker discovery [29].
Prevention of colon cancer remains a significant public

health issue that is highly associated with genetic and
environmental factors such as diet composition [30].
Evidence is emerging that diet and nutrient factors may
play an important role in colorectal cancer incidence and
progression [31-34]. Consumption of high fat diet in com-
bination with genetic factors leads to energy imbalances
and increased risk of colon cancer [35-39]. Meanwhile, it
was also demonstrated that obesity and excess body weight
is a major risk factor for colon cancer [40,41]. Several hy-
potheses have emerged to explain the positive correlation
between increased adiposity and colorectal cancer. Some
recent studies reported that obesity induced insulin resist-
ance and chronic inflammation lead to hyperglycemia and
hyperlipemia [42]. These have been positively associated
with colon cancer risk and development [40,43].
Previous studies have investigated whether a high fat

diet promotes formation and development of intestinal
polyps in mice genetically predisposed to colon cancer.
Specifically, studies have investigated the interaction of
fat content in the diet and genetic susceptibility to colon
cancer in the ApcMin/+ mouse model. Because mutations
in Adenomatous Polyposis Coli (APC) was observed in
over 80% of sporadic human colon cancer cases [44-46],

ApcMin/+ mice carrying a dominant mutation in the Apc
gene commonly serve as the mouse model of choice for
the human Familial Adenomatous Polyposis (FAP) syn-
drome. ApcMin/+ mice spontaneously develop multiple
intestinal neoplasia (Min) and numerous intestinal polyps,
which increase in number and accelerate in development
in response to a high fat diet [47]. Also, we recently
showed that high-fat dietary exposure can increase intes-
tinal polyp formation in the ApcMin/+ model by several
fold (>5) as well as both systemic and local inflammation
before the onset of overt obesity or characteristics associ-
ated with metabolic syndrome, such as increase insulin or
glucose levels [48].
The first phase of this study was to run untargeted

metabolomics profile and association analyses to a clinical
outcome on plasma samples (assayed by GC-MS) from
wild type and ApcMin/+ mice fed either with high fat or
low fat diets. Acyl-CoA profiles (assayed by LC-MS/MS)
on liver tissue samples were analyzed for all groups as
well. The plasma metabolic concentrations found to be
statistically different between mutation and diet factors,
and statistically correlated to intestinal polyp number,
was then studied by large scale functional metabolomics
approaches. Metabolomic pathway and network analyses
reveal an association in the presence of high fat diet
and Apc mutation between polyp formation and plasma
concentrations of metabolic compounds including those
involved in the metabolic pathways of several amino-
acids, hippuric acid, and nicotinamide. Liver acyl-CoA
profiles also show changes, which may result from a
combination of ApcMin/+-mediated cancer progression and
high fat diet. These results illustrate that high-throughput
mass spectrometry-based metabolomics combined with
appropriate statistical modeling and large scale functional
metabolomics approaches can be used to investigate com-
plex environment-gene interactions, such as a combined
diet-mutation effect, and their association with intestinal
polyposis and tumorigenesis. Understanding these import-
ant interactions in biological systems can potentially lead to
the identification of new biomarkers or the development of
early diagnostic tools.

Methods
Animal experimental design
Ethics statement
This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
Procedures were approved and conducted in compliance
with Institutional Animal Care and Use Committee
(IACUC) standards at Case Western Reserve University
(IACUC, Protocol 2012–0080). All surgery was performed
under 2% isoflurane anesthesia, and all efforts were made
to minimize suffering.
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Mice strains
Wild-type C57BL/6 J (B6 Apc+/+) and mutant C57BL/
6 J-ApcMin/+/J (B6 ApcMin/+) mice were purchased from
The Jackson Laboratory (Bar Harbor, ME) and maintained
on a 12-h light/dark cycle at the Wolstein Research Facility
(CWRU).

Diet composition and tissue sample harvesting
The animal experimental design was as previously de-
scribed in the literature in the field using the same ani-
mal model [48,49]. High- or low-saturated fat diets
were as previously described [31,48]. Briefly, diets were
purchased from Research Diets and contained identical
amounts of vitamins, minerals and protein. The high
fat (58%) and low fat (10.5%) diets were made using hy-
drogenated coconut oil for the fat source. Male mice
were maintained on normal laboratory diet from birth
till 30 days of age, then randomly placed on a high or
low fat diet and maintained on this diet for 60 days
until dissection and tissue harvesting. At this time
(90 days of age), samples were collected from all mice;
polyp formation (or non-formation) was assessed by
direct observation and confirmed by histology. When
present at this time, polyps were counted and measured in
size and mass per animal.

Sample preparations
Powdered frozen liver tissue (25 mg - spiked with internal
standards (5 nmol) of heptadecanoic acid and [2H27]
myristic acid as a retention time locker compound) was
extracted with 2 ml of CH3CN/Methanol (1:1 precooled
at −12°C and degassed with N2 flow) using Polytron
homogenizer. The slurry was centrifuged at 3800 rpm,
4°C. The supernatant was collected, dried with air before
derivatization. 25 μl of plasma was spiked with 5 nmol hep-
tadecanoic acid. Metabolites were extracted with 0.5 ml of
acetonitrile/methanol (1:1 precooled at −12°C and degassed
with N2). Samples were centrifuged at 3800 rpm, 4°C. The
supernatant was collected, dried with air before derivatiza-
tion. 30 μl of 15 mg/ml of methoxylamine-HCl in dry
pyridine was added to samples and incubated at 30°C for
90 minutes, followed by 70 μl of N-Methyl-N-trimethylsi-
lyltrifluoroacetamide with 1% trimethylchlorosilane. The
mixture was incubated at 37°C for 40 min.

GC-MS analyses
Mass spectrometry
All solvents, standards and labeled internal standards
and derivatization reagents for GC-MS were obtained
from Sigma-Aldrich. GC-MS analyses were carried out
on an Agilent 5973 mass spectrometer, linked to a model
6890 gas chromatograph equipped with an autosampler, a
Phenomenex ZB-5MSi capillary column (30 m, 0.25 mm
inner diameter, 0.25 μm film thickness). The carrier gas

was helium (1.67 psi) and injections were 1 μl in split-
less mode. The GC temperature program was: initial
temperature 60°C, hold for 1 min, increase by 10°C/min
to 325°C and hold 10 min. The injector temperature
was set at 250°C and the transfer line at 275°C. EI
source and quadrupole temperatures were set at 250°C
and 150°C, respectively.

GC-MS metabolite identification and quantification
Peak extraction from raw GC/MS data was carried out
according to Stein’s initial method [50] implemented in the
Automated Mass spectral Deconvolution and Identification
System (AMDIS) software developed at the National
Institute of Standards and Technology (NIST, http://
chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis).
Peak identification was carried out by matching retention
time and mass spectral similarity against homemade and
Fiehn libraries (Agilent). For quantification of peak areas,
the data was exported to the SpectConnect server devel-
oped by Styczynski et al. [51] at Massachusetts Institute
of Technology (MIT, http://spectconnect.mit.edu/). From
the output of SpectConnect, the only metabolites retained
were those that were consistently detected in at least 80%
of samples. All peak areas were normalized relative to
the peak area of the internal standard heptadecanoic
acid. All relative amounts then were normalized to the
relative concentration of the corresponding metabolites in
the control sample.

LC-MS analyses
Sample preparation
Acyl-CoA profiles were assayed by LC-MS analyses.
Samples of 200–300 mg of frozen and powdered liver
tissues were spiked with an internal standard of [2H9]
pentanoyl-CoA and were extracted with methanol-
H2O, 5% v/v acetic acid buffer (5 ml) using a Polytron
homogenizer. The slurry was centrifuged at 4000 rpm
at 4°C. The supernatant was collected and loaded on a
SPE cartridge (SupelCo 3 ml cartriges 2-(2-pyridyl) ethyl
functionalized silica gel). Cartridges were washed with 9 ml
of methanol-H2O, 5% v/v acetic acid buffer, Acyl-CoAs
were eluted with 9 ml of 50 mM ammonium formate in
MeOH-H2O (1:1), followed by 9 ml of 50 mM ammonium
formate in methanol-H2O (3:1) and 9 ml of methanol.
The slurry was dried with air and the residue dissolved in
100 μL of buffer A.

HPLC separation
For short and medium chain acyl-CoAs HPLC separation
we used a Thermo Hypersil Gold column (2 mm × 100 mm
3 μm) and a 2 × 4 mm guard column with the same pack-
ing material. The flow rate was 200 μl/min in gradient
mode with the following method: the column was equili-
brated with 98% mobile phase A (CH3CN/H2O 98:2 v/v,
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containing 50 mM ammonium formate). After sample
injection, 98% mobile phase A was continued for 3 min,
followed by a 23 min gradient to 90% of buffer B (H2O/
CH3CN 98:2 v/v, containing 50 mM ammonium formate).
The column was held at 90% B for 5 min, followed by wash
by a 10 min. gradient to starting conditions (98% buffer A).
For long chain acyl-CoAs, the same column and flow
rate were used in gradient mode with the following
method: the column was equilibrated with 60% mobile
phase A (CH3CN/H2O (98:2 v/v, containing 50 mM am-
monium formate). After sample injection, the 60% mobile
phase A was continued for 3 min, followed by a 28 min gra-
dient to 90% of buffer B (H2O/CH3CN 98:2 v/v, containing
50 mM ammonium formate). The column was held at 90%
B for 5 min, followed by a wash by a 10 min. gradient to
starting conditions (60% buffer A - 40% buffer B).

Mass spectrometry
The analysis was performed with Applied Biosystems API
4000 QTrap (AB SCIEX). Nitrogen was used as nebulizer
and desolvation gas. Declustering potential was 90 V and
collision energy was set to 50 eV. Acyl CoAs were de-
tected in multiple reaction monitoring (MRM) mode.
Specific MRM transitions for all Acyl CoAs are provided
in (Additional file 1: Table S1).

Label-free data preprocessing
Raw data acquisition and quantitative processing
All raw GC-MS spectra were processed with AMDIS soft-
ware and compared against Fiehn GC-MS library (Agilent).
Extracted data were exported to the external server while
peaks that were not consistently found in 80% of samples
have been excluded from the data analysis. Through all
the samples, 220 unique metabolites were detected. Out of
these detected metabolites, 82 in total were fully annotated.

Data quality control and pre-filtering
After raw data acquisition and processing, data QC and
pre-filtering were performed for this study. To reduce
the number of variables (metabolites) at play, that is, to
reduce the dimensionality of the data and error rates in
subsequent inferences that are due to the lower number
of samples than variables (p >> n paradigm), and to sim-
ultaneously remove the variables (metabolites) with the
largest number of missing values without potentially indu-
cing a severe selection bias in the presence of informative
missingness (see next paragraph), an empirical variable se-
lection procedure was carried out. Those metabolites were
retained for which the observed count of missing values
per metabolite is the nearest upper integer (ν) satisfying
two criteria simultaneously: (i) ν maximizes the difference
between the overall number of remaining metabolites
after selection and the overall number of missing values,
(ii) ν is less than the total sample size n minus the minimal

half sample size (ng / 2) over all experimental groups
g = 1,…,G (see also example in reference [52]). Here, with
an initial number of p = 220 metabolites, the procedure
retained a final number of p = 201 metabolites. Out of these
selected metabolites, 76 in total were fully annotated.

Missing value imputation
Missing values in LC/MS data arise because of imperfect
detection and alignment of peak intensities or by true
absence. To account for the non-random nature of the
missingness mechanism at play and its extent in this
type of data (informative missingness or non-ignorable
left-censoring), we used a probability model adapted from
Wang et al. [53] which describes ‘artifactual missing events’.
This model makes inferences on the missing values of one
sample based on the information from other ‘similar’ sam-
ples (technical replicates or nearest neighbors). It substi-
tutes a missing measurement of intensity with its expected
value of the true intensity given that it is unobservable.
Remaining missing values represent truly absent metabo-
lites in the samples and are typically imputed by taking an
estimate of the background noise (see also reference [52]).

Transformation of features
To help remove sources of systematic variation in the
measured intensities (bias and variance due to experimental
artifacts) and to ensure that the usual assumption of
normality is met for statistical inferences, we first applied
a log-transformation on the variables (metabolites). In
addition, since the homoscedasticity assumption in multi-
group designs is also required, e.g. in ANOVA models,
we also applied our recently developed ‘joint adaptive
mean-variance regularization’ procedure as described in
[54] now available as an R package called “MVR” [55].
Briefly, the joint adaptive regularization procedure simul-
taneously overcomes the lack of degrees of freedom and
the variance-mean dependence issue in this type of dataset
where the number of variables hugely dominates the num-
ber of sample [54]. The procedure stabilizes the variance
and normalizes the concentration values, both of which are
required for preprocessing high-dimensional data and
making inferences. Although, the procedure is designed
to stabilize the variance across variables (metabolites), we
observed in our methodology article [54] that it also trans-
lates into good variance stabilization effect across sample
groups in a multi-group design, as is the case in this study.
Note that intensity levels on this transformed scale are on
the entire real domain, so they are not necessary positive.

Experimental design
Experimental units, groups, factors and sample size
In this experimental design three factors are at play: (i)
the Diet (High Fat (HF) vs. Low Fat (LF)), denoted DF, (ii)
the Genotype (Apc Wild-Type (WT) vs. Mutant (MU)),
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denoted GF, and (iii) the Source of Tissue (Plasma (PLA)
vs. Liver (LIV)), denoted TF, representing the variable over
which repeated measures are made within each experi-
mental unit. The experimental units under study are the
n = 20 individual mice or biological replicate. Samples
were assumed to be independent and randomly sampled
from the entire population. Further, samples were random-
ized across the design (without blocking) and balanced for
each combination of Diet by Genotype by Source of Tissue
experimental group (8) to have an equal number of
biological replicates per experimental group (ng = 5). The
group sample sizes used in this study were consistent with
other metabolomics studies carried out in the same mouse
model (ng = 2–10 [56]; ng = 6–9 [49]). A common reference
sample was used to normalize mass spectrometry readouts.
No technical replicates were performed. No sample pooling
was done. Observations were repeated with the same
biological replicate for each tissue. In sum, this is a factorial
arrangement of treatments (Diet by Genotype) laid out on a
balanced Completely Randomized Design (CRD) with re-
peated measures on another treatment (Source of Tissue)
amounting to a total of 2n = 40 observations (Table 1).

Statistical analyses
Analysis of variance of Acyl-CoA concentrations profiles of
liver samples
The standard error of the means were computed for all
absolute or relative concentration means per experimen-
tal group (ng = 5). Two-sample two-sided t-test p-values,
or multi-group ANOVA p-values, were computed for
assessing the significance of difference between two
groups, or between a group mean and the overall mean
across the groups under the assumption of normality
and homoscedasticity of concentration levels within each
group.

Test of independence/association
We carried out a Pearson’s Chi-square test of independence
to assess the independence between the two categorical
factors (Diet by Genotype) of the experimental design. Ba-
sically, we tested the distribution of counts in a 2-by-2

contingency table to determine whether there were non-
random associations between two categorical factors.

Principal Component Analysis of plasma samples
Potential groups and outliers among the samples were
checked by a Principal Component Analysis (PCA) [57].
A PCA scatterplot of samples (scoreplot) was formed by
plotting the plasma samples in the first two coordinate
axes (PC1 and PC2) of the PC space. The scoreplot repre-
sents the scores that each sample has on the PCs. Points
that have similar scores in the PC space cluster together
and correspond to samples behaving similarly.

Statistical modeling and inference of differential metabolite
concentrations in plasma samples
A standard analysis method in modeling high dimensional
data is to fit the same statistical model individually to each
variable (metabolite) and test for the contrast or effect
of interest using the hypothesis testing framework. A
drawback of this univariate approach is that the correl-
ation structure or dependence between the variables is
ignored. However, thanks to the parallel nature of the
high-throughput data, some compensating possibilities
exist by borrowing information across variables, resulting
in more stable variance estimates, which in turn assist in
inference about each variable individually. Statistical mod-
eling was performed using a linear model of analysis of
variance (mixed two-way ANOVA), fitted univariately to
each individual variable (single metabolite) for the plasma
samples. If we let Yij be the intensity signal on the trans-
formed scale of the jth variable (metabolite) and ith unit
(mice) using the appropriate transformation mentioned
above [54], a linear ANOVA model for each individual
metabolite j is fitted as follows:

Y ij ¼ μj þ xTij βj þ εij

where (for each individual metabolite j) μj represents
the average signal intensity for that metabolite across
all factors and observations; the vector of regresssors
xij = [Gij,Dij,Gij ⋅Dij]

T represents the covariates (i.e. the

Table 1 Experimental design

Diet factor (DF)

Low fat (LF) High fat (HF)

Genotype Factor (GF)

Wild-Type (WT)

Source of Tissue Factor (TF) Source of Tissue Factor (TF)

Liver (LIV) Plasma (PLA) Liver (LIV) Plasma (PLA)

Mice #1-5 Mice #1-5 Mice #6-10 Mice #6-10

Apc Mutant (MU)

Source of Tissue Factor (TF) Source of Tissue Factor (TF)

Liver (LIV) Plasma (PLA) Liver (LIV) Plasma (PLA)

Mice #11-15 Mice #11-15 Mice #16-20 Mice #16-20

In all experimental groups ng = 5.
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factors of interest, all taken as fixed effects) with the
Genotype factor denoted as Gij, the Diet factor as Dij

and their two-way interaction as Gij ⋅Dij; βj = [β1j, β2j, β3j]
T

is the vector of regression coefficients to be estimated; and
the error term εij represents the random deviations due to
non-systematic sources of variations, assumed to be nor-
mally distributed with mean 0 and some (unknown) variance
component: εij∼Nð0; σ2j Þ . In ANOVA notation, the model
can be written as yijkl = μj + (G)jk + (D)jl + (GD)jkl + εijkl,
where (G)jk, (D)jl, and (GD)jkl represent the Genotype
factor, Diet factor and their interaction, respectively. A
number of authors have noted in gene expression studies
that application of empirical Bayes methods and estima-
tors derived from them (moderated F-, t-, and B statistics)
are more reliable and resulted in greater statistical power
[58-62]. In addition, posterior odds statistics have proven
to be a useful means of ranking variables in terms of evi-
dence for differential expression [59,62-65]. Information is
borrowed by constraining the within-block correlations to
be equal between variables and by using empirical Bayes
methods to moderate the standard deviations between
them [48,66]. These methods are particularly appropriate
when only few samples are available, as is always the case
in high throughput datasets [62].

Reports for label-free analysis in plasma samples
In this experimental design, contrasts were built for each of
the fixed effects of interest, and coefficients were estimated
accordingly. Variables were ranked in order of evidence
of differential concentration. Corresponding p-values
were adjusted for multiple testing using a recent extension
of the standard Benjamini-Hochberg procedure, which
controls the expected False Discovery Rate (FDR) [67]. This
error rate, called the positive FDR (denoted pFDR) [68,69],
results in a procedure that is less conservative than the
FDR. (Additional file 1: Table S1; Additional file 2: Table S2
and Additional file 3: Table S3) report top-ranked metabo-
lites (rows) from the model fit for each effect of interest.
Each table consists in columns with the following informa-
tion: the estimated log2-Fold Change (FC) or M log-ratio
for individual metabolite across effect or contrast of inter-
est. It represents a log2-FC (M= log2 (FC)) between two
experimental conditions in the case of a main effect and to
a difference in log2-FC in the case of an interaction effect.
An estimated average log2-fold change of - 1 and + 1 cor-
respond to a ½- and 2-fold change respectively. Moderated
t- and B- statistics represent different measures of statistical
significance. The Moderated t-statistic corresponds to the
usual t-statistic except that information has been borrowed
across variables (metabolites), while the B-statistic is the
empirical Bayes log2 of the posterior odds that the metab-
olite is differentially expressed. Finally raw and adjusted
p-values are listed. Note that in every list all the metabolites
are ranked by adjusted p-value and then by B-statistic.

Modeling polyp counts
To analyze how experimental factors (Diet and Genotype)
control the relationship between polyp counts and indi-
vidual plasma metabolite concentrations, we modeled
the polyp counts univariately for each variable (metabolite)
using a zero-inflated negative-binomial regression model.
This provides a way to account for the excess zeros in
addition to allowing for overdispersion simultaneously
[70,71]. Zero-inflated models are preferable to their
classical Generalized Linear Model (GLM) counterparts
(Poisson or Negative Binomial regression models) [72,73]
to model these two situations typically occurring in
biomedical sciences count data. Briefly, zero-inflated
models are two-component mixture models combining
(i) a zero-inflated count probability distribution (Binomial
probability mass at 0), employed for zero counts, with (ii)
a non-zero count probability distribution (e.g. Negative
Binomial), employed for positive counts. Zero-inflated
models allow distinct regressors for each component
model. Formally, if we denote by Cij the observed polyps
count for the ith unit (mice) and jth variable (metabolite),
the probability distribution of Cij counts for each individual
metabolite j can be written as:

Pr Cij ¼ cij xij; zijÞ ¼ πijI 0f g cij
� �þ 1−πij

� �
f cij xijÞ

������

Where I{0} (.) denotes the indicator function at 0,

πij ¼ π zTij γj
� �

denotes the unobserved probability of be-

longing to the zero-inflated count component, modelled by

a binomial GLM model π zTij γj
� �

¼ exp zTij γj
� �

using the

canonical log link function, and where the vectors of
regressors xij and zij, with corresponding coefficients βj
and γj, are the vectors of covariates in the non-zero
and zero-inflated count components, respectively. The
corresponding regression equation for the mean count

is E cij xij� ¼ πij⋅0þ 1−πij
� �

exp xTij βj
� ����h

. Here, using above

notations, we fit the zero-inflated model with covariates
xij = [Gij,Dij,Gij ⋅Dij ⋅ Yij]

T (i.e. the factors of interest) and
zij = 1 (i.e. intercept only for simplicity), where Gij ⋅Dij ⋅ Yij
denotes the three-way interaction between the Genotype
factor Gij, the Diet factor Dij and Yij the intensity signal on
the transformed scale of the jth metabolite and ith mice.

Implementations, algorithms and softwares
Whenever available, implementations and algorithms of
our methods are freely available from the CRAN consor-
tium (Comprehensive R Archive Network) at http://cran.
r-project.org/. All other R codes written in our group can
be provided upon request. For linear modeling and su-
pervised inferences, we used the package “limma” [62].
For count data modeling, we used the package “pscl”
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[48,74]. Finally, for the control of the positive FDR, we
used the package “qvalue” [65].

Functional metabolomics analyses
Significantly altered metabolites with pFDR-adjusted
p-values ≤ 0.05 outputted from the statistical model were
selected for functional metabolomics analyses. Metabolite
identifiers with their corresponding raw and pFDR-adjusted
p-values were up-loaded onto the Ingenuity Pathway
Analysis application for biological functions, canonical
metabolomics pathways, and interaction network analyses
(IPA version #14855783, http://www.ingenuity.com/ -
Ingenuity Systems, Inc., Mountain View, CA). Whenever
a multiple-testing correction was required to assess signifi-
cance e.g. of function, pathway, or network enrichment, we
report adjusted p-values using the Benjamini-Hochberg
(BH) method [67], which is the only error-rate control-
procedure available for that matter in IPA at this time.

Canonical metabolomics pathways
For the computation of enrichment p-values, we used the
IPA Metabolomics Knowledge Base as our reference data-
base set, i.e. the universe of all metabolomics entities. Sig-
nificance of each individual pathway was measured in two
ways: (i) A ratio (in percentage) of the number of selected
molecules mapping a selected pathway that meets a cutoff
criterion, divided by the total number of molecules that
exist in this canonical pathway. (ii) A right-tailed Fisher
exact test p-value for the probability under the null hypoth-
esis that the association between those metabolites found
in a given pathway of our list with all those constitutive of
the corresponding canonical metabolomics pathway is ex-
plained by chance alone (the null hypothesis being that the
function/data set association is just random). The smaller
the p-value, the less likely it is that the association is
random and the more significant the association. Note
that the right-tailed Fisher’s exact test only assesses over-
represented pathways, that is, those that have more mole-
cules found than would be expected by chance alone.

Metabolomics network analysis
Significant metabolites were mapped in IPA to the global
molecular network that was developed from the Ingenuity
Knowledge Base. Networks for these metabolites were algo-
rithmically generated based on their connectivity. A score
equal to the negative log of the p-value of the right-tailed
Fisher’s exact test was assigned for each network. This score
takes into account the number of eligible metabolites in
our dataset and the size of the network to calculate the fit
between each network and the metabolites in the dataset.

Cytoscape
Metabolomic networks were also generated using Cytoscape
version 3.0.2 [75]. Cytoscape allows users to build and

analyze networks of genes and compounds, identify
enriched pathways from expression profiling data, and
visualize changes in gene expression and/or compound con-
centration. Two plug-in apps were used for metabolic ana-
lyses directly from mass spectrometry data: (i) MetScape
3.0.0 [76] that traces connections between metabolites, reac-
tions and genes, and provides a bioinformatics framework
for the visualization and interpretation of metabolomics
data; (ii) MetDisease 1.0.0 [77] that allows users to annotate
a metabolic network with MeSH disease terms, explore re-
lated diseases within a network, and link to PubMed refer-
ences corresponding to any node and selection network.
MetScape uses an internal relational database stored at
NCIBI to integrate metabolic compounds, reactions and
pathway information from KEGG, EHMN, or Entrez Gene
IDs. MetDisease supports both KEGG IDs and Pub-
Chem IDs. Metscape and MetDisease were used in
addition to Ingenuity Pathway Analysis to interpret re-
sults of canonical pathways found by IPA.

Overlap/enrichment analyses
To assess the statistical significance of overlap/intersection
of a set of metabolic compounds (e.g. a IPA functional/
disease category) with another set of compounds (e.g. a IPA
network), we tested the null hypothesis that the two sets of
compounds are unrelated i.e. that any intersection is due to
chance alone (i.e. the result of a random selection process).
Using the hypergeometric distribution as the null distribu-
tion, and letting X be the random variable of the observed
number of metabolic compounds in common between the
two sets, for a given number y of compounds in the first
set, L compounds in the second set, and a total of N com-
pounds/molecules from the knowledge database that are
associated with the analysis (the size of the reference set or
“universe”), the probability of observing X = x overlapping
compounds under the null is given by:

P X ¼ xjy;N ; Lð Þ ¼
y
x

� �
N−y
L−x

� �

N
L

� �

This rejection probability gives the p-value of overlap/
intersection, based on the assumed null probability
distribution.

Results
Grouping of plasma samples
To study global metabolic differences associated with
ApcMin/+ mutation and/or different diets we first used
an unsupervised statistical approach. Principal Component
Analysis (PCA) is a visualization and dimension reduction
technique that allows detection of any groups or outliers in
the data. The PCA was carried out in the plasma samples.
Principal Components (PCs) derived from the analysis
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represent rotated coordinate axes pointing to directions of
the predictor space (metabolite space) where the spread of
the data (variance) is the largest, allowing a better
visualization of groups or outliers in the samples (Figure 1).
PCA scree plots determine the order and the number of
principal components (PCs) accounting for the largest
amount of variance in the data (Additional file 4: Figure S1).
Here, a minimum of 2 PC’s was enough to explain most of
the cumulative Percentage of Explained Variance for the
plasma samples (PEV = 38.3%, PEV PC1 = 21.54%, PEV
PC2 = 16.78%). The corresponding loading plots (Additional
file 4: Figure S1) ranks the respective contribution of all
the variables (metabolites) to each PC.
Based on the previous analysis of explained variance,

the first two PCs were retained for groups and outliers
detection among the samples. The biplot in Figure 1 is
the PCA analysis of the plasma samples. It shows a
complete separation between all four experimental groups
(WT-LF, WT-HF, MU-LF, MU-HF). Notice, however, how
the distance between Mutant vs. Wild-Type sample groups
increases from Low-Fat diet to High Fat diet treatments.
Similarly, notice how the distance between High Fat diet vs.
Low-Fat diet sample groups increases from Wild-Type to
Mutant treatments. Overall, this indicates a potential

synergistic interaction effect between the Diet and Geno-
type factors in plasma metabolite concentration profiles, i.
e. that a high fat diet tends to enhance metabolic differ-
ences associated with ApcMin/+ mutation, or vice-versa, i.e.
that a ApcMin/+ mutation tends to enhance metabolic differ-
ences associated with a high fat diet. Essentially, this means
that a single metabolic process may be affected by a com-
bined treatment of a specific diet and genotype.

Evaluation of treatments on metabolite concentration
profiles in plasma
To profile the plasma metabolite concentrations across
the experimental groups and determine their differential
concentrations between experimental groups, we fitted the
same linear mixed-effect model of analysis of variance uni-
variately to each individual metabolite as described in the
‘Methods’ section. In this experimental design, the primary
contrasts of interest are the Genotype and Diet main
effects, as well as their Genotype by Diet interaction ef-
fect. The latter, although harder to interpret, is actually
of most interest since this evaluates how a change in
Genotype (e.g. from Apc Wild-Type to Mutant) affects
a metabolite concentration and how this varies by type
of Diet (High Fat vs. Low Fat); or alternatively, how a
change of Diet (e.g. from Low Fat to High Fat) affects a
metabolite concentration and how this varies by Genotype
(Apc Wild-Type vs. Mutant). Metabolites were ranked
by significance across comparisons. Adjusted p-values for
multiple testing (or q-values) and a positive pFDR thresh-
old cutoff of up to 5% were used to determine significance
according to our criteria for confirmation of metabolite
identification as described in the ‘Methods’ section (see
also FDR analysis plots in Additional file 5: Figure S2).
Note that, with the sizes of the lists (effects) of signifi-
cant tests given below, a pFDR threshold cutoff of 5%
means that no more than 4 to 5 metabolites, depending
on the corresponding effect, are expected to be falsely
called significant. The False Discovery Rate (FDR) theory,
however, does not allow us to determine which metabo-
lites are falsely included in each of these lists, but only
their proportions [67].
Overall, a significant number of plasma metabolite con-

centrations changed by effect. These represent metabolites
for which the concentration is sensitive to ApcMin/+ muta-
tion, fat diet treatment or an interaction between the two.
Venn diagrams summarize the counts of significant up- and
down-regulated plasma metabolites. In the two main effects
of interest, 97 plasma metabolites (61 up and 36 down) were
found regulated between the Genotype groups; and 82
plasma metabolites (44 up and 38 down) between the
Diet groups (Additional file 2: Table S2; Additional file 3:
Table S3 and Additional file 6: Figure S3).
Further, to describe how the Genotype effect (Apc Wild-

Type vs. Mutant) on a plasma metabolite concentration

Figure 1 Groups and outliers detection by 2D PCA scatterplot
in plasma samples. The 2D scatterplot uses the first two PCs to
display the relationship between plasma samples (dots) as indicated by
inter-individual distances. See ‘Methods’ section for the interpretation
of samples and between-samples positions. Briefly, points that cluster
together correspond to samples behaving similarly. Notice how
samples form groups by experimental conditions and the absence of
outliers. WT-LF, WT-HF, MU-LF, and MU-HF stand for the following
groups: Apc Wild-Type - Low Fat Diet, Apc Wild-Type - High Fat Diet,
Apc Mutant - Low Fat Diet, Apc Mutant - High Fat Diet respectively.
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varies by the Diet (High Fat vs. Low Fat), or vice-versa, we
focused on the Genotype by Diet interaction effect. In this
interaction effect, 65 plasma metabolites (46 up and 19
down) were found differentially regulated. This Genotype
by Diet interaction effect result is consistent with observa-
tions made for their individual main effects as the majority
of metabolites identified as significant in the interaction
effect were also found synergistically and/or antagonistically
changed for these two factors individually. This is also con-
sistent with the PCA interpretation (Figure 1). This result is
summarized in aVenn diagram (Additional file 6: Figure S3)
and the list is provided in Additional file 7: Table S4.
To visually describe the metabolites with significant

regulation, it is convenient to visualize them in a so-called
volcano plot. (Additional file 8: Figure S4). Overall, the
lists of plasma regulated metabolites reveals the metabolo-
mics variations resulting from the individual or combined
effects of a mutation in the Apc gene and/or a high-fat
diet. In the next section, we further examined how these
metabolomics variations correlate to a clinical outcome of
interest, namely the intestinal polyp counts.

Independence between genotype and diet factors
Table 2 shows total polyp counts as measured in the in-
testine at animal sacrifice. On the one hand, wild-type
animals do not apparently develop any polyps at all with
either diet. This represents a classical situation of artificial
over-inflation of zeros in count data analysis in the presence
of relatively low counts and sample sizes. On the other
hand, all ApcMin/+ mice show polyps growth, and high fat
diet promotes polyps development (Table 2).
We tested the association/dependence of the two main

factors (Diet by Genotype) and their contribution to
polyp counts (Table 2). The Null hypothesis that is to be
tested for comparing two categorical factors in a 2-by-2
contingency table is:

H0: The Genotype factor is independent of the Diet factor:

The χ2-test with one degree of freedom (df = 1) yielded
χ21≫1 with a p-value < 2.2 E-16. Therefore, we would re-
ject the null hypothesis of independence, i.e. there is
strong evidence of association of polyp counts with
specific groups of Diet by Genotype factors.

Relationship between polyp counts and metabolite
profiles in plasma
A mere comparison of plasma metabolite levels between
experimental groups cannot answer the causality question
as to whether the observed differences arise from or con-
tribute to polyposis and tumorigenesis. Typically, this ques-
tion can only be addressed with respect to the controlled
experimental variables of our design, namely the Genotype
and Diet factors. If, however, one models the relationship
between the polyp counts simultaneously with the plasma
metabolite levels and the controlled experimental variables,
one can analyze how changes in the Genotype and Diet
factor levels modify this relationship and determine what
the metabolite associated with these changes are.
For each metabolite, we fit a zero-inflated Generalized

Linear Model (GLM) of polyp counts with respect to the
categorical variables of the design matrix (Genotype and
Diet) and each univariate continuous measurement of
metabolite concentration (see ‘Methods’ section). With the
restriction that this linear model will, by definition, only
explore linear relationships, this allows modeling the (lin-
ear) correlation between polyp counts and each metabolite
concentration profile for each combination of Genotype
and Diet factor levels. Specifically, the primary combination
of interest in this experimental design is the two-way inter-
action between Genotype and Diet since this represents
how polyp count varies by metabolite concentration and
how this relationship is influenced by the Apc genotype
(Wild-Type vs. Mutant) and diet content (High vs. Low
Fat). Individual p-values of the coefficient of interest were
reported for each individual model (i.e. metabolite).
Adjusted p-values represent a positive FDR (see pFDR
definition in the ‘Methods’ section). With a maximum FDR
of 5%, we found as many as 102 plasma metabolites having
a significant correlation with polyp count in association
with an interaction effect (Table 3). Many of the plasma
metabolites listed are still uncharacterized or un-annotated
(see complete list by tissue in Additional file 9: Table S5).
This list reflects how deeply the combination of ApcMin/+

mutation and high fat diets is associated with the plasma
metabolome and translates into intestinal polyps formation.
They are essential to further determine the underlying
metabolomics pathways of the host and the role of environ-
mental factors in relation to the progression of the disease.
These results are further analyzed and discussed.
As an illustration of the above association and influence

of controlled experimental variables, we show correlation
and regression results between plasma metabolite levels
and polyp counts by combination of Genotype and Diet
factor levels for the hippuric acid, the pyrophosphate and
nicotinamide metabolic pathways (Figure 2A,B,C) and the
uptake of six amino acids (Figure 2D,E,F,G,H,I). Consistent
with previous results, note immediately how the Mutant -
High Fat Diet samples specifically cluster in the region of

Table 2 Total polyp counts in the small intestine and
colon by experimental groups

Diet factor (DF)

Low fat High fat Total

Genotype Factor (GF)
Wild-Type 0 0 0

Mutant 51 273 324

% (Mutant/Total) 100 100 100
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Table 3 List of annotated plasma metabolites having a significant correlation with polyp counts in association with a
Genotype by Diet interaction effect
Metabolite HMDB CAS KEGG p.val Adj.p.val

Uracil HMDB00300 66-22-8 C00106 2.555E-11 2.130E-10

Palmetoleic acid HMDB03229 373-49-9 C08362 2.311E-02 3.533E-02

Serine HMDB00187 56-45-1 C00065 5.215E-02 3.533E-02

Glycine 2TMS HMDB00123 56-40-6 C00037 9.164E-02 3.533E-02

Glucose HMDB00122 50-99-7 C00031 1.203E-01 3.533E-02

Methionine HMDB00696 63-68-3 C00073 1.339E-01 3.533E-02

Palmitate HMDB00220 57-10-3 C00249 1.419E-01 3.533E-02

Gluconic acid HMDB00625 526-95-4 C00257 1.432E-01 3.533E-02

Stearic acid HMDB00827 57-11-4 C01530 1.457E-01 3.533E-02

Tryptophane HMDB00929 73-22-3 C02983 1.481E-01 3.533E-02

Glycerol-1-phosphate HMDB00126 57-03-4 C00093 1.507E-01 3.533E-02

Erytrithol 149-32-6 1.595E-01 3.533E-02

Threonine HMDB00167 72-19-5 C00188 1.735E-01 3.533E-02

Fumarate HMDB00134 110-17-8 C00122 1.744E-01 3.533E-02

Hippuric acid HMDB00714 495-69-2 C01586 1.786E-01 3.533E-02

1-Monopalmitin 1.829E-01 3.533E-02

Cholesterol HMDB00067 57-88-5 C00249 1.924E-01 3.533E-02

Phenylalanine HMDB00159 63-91-2 C00079 2.023E-01 3.533E-02

Glutamic acid HMDB00134 110-17-8 C00122 2.046E-01 3.533E-02

Lysine HMDB00182 56-87-1 C00047 2.158E-01 3.533E-02

Proline HMDB00162 147-85-3 C00148 2.290E-01 3.533E-02

Creatinine HMDB00562 60-27-5 C00791 2.331E-01 3.533E-02

Succinic acid HMDB00254 110-15-6 C00042 2.355E-01 3.533E-02

2-Monopalmitin 19670-51-0 2.428E-01 3.533E-02

1,2 Dipalmitin 761-35-3 2.600E-01 3.533E-02

Norleucine HMDB01645 327-57-1 C01933 2.633E-01 3.533E-02

Ascorbic acid HMDB00044 50-81-7 C00072 2.716E-01 3.533E-02

Urea HMDB00294 57-13-6 C00086 2.756E-01 3.533E-02

Nicotinamide HMDB01406 98-92-0 C00153 2.932E-01 3.584E-02

Pyrophosphate HMDB00250 14000-31-8 C00013 2.992E-01 3.584E-02

Alanine HMDB00161 56-41-7 C00041 3.127E-01 3.670E-02

Ribose-5-phosphate HMDB01548 3615-55-2 C00117 3.287E-01 3.756E-02

1,3-Dipalmitin HMDB31011 502-52-3 3.372E-01 3.763E-02

2-Amino adipic acid HMDB00510 542-32-5 C00956 3.440E-01 3.763E-02

Pyroglutamic acid HMDB00267 98-79-3 C01879 3.553E-01 3.763E-02

Glutamine HMDB00641 56-85-9 C00064 3.568E-01 3.763E-02

Pyruvate HMDB00243 127-17-3 C00022 3.569E-01 3.763E-02

Valine HMDB00883 72-18-4 C00183 3.790E-01 3.769E-02

Inositol phosphate HMDB34220 551-72-4 C06151 3.879E-01 3.769E-02

Malic acid HMDB00744 6915-15-7 C00711 4.790E-01 4.158E-02

Glycerol HMDB00131 56-81-5 C00116 5.514E-01 4.642E-02

Glycine HMDB00123 56-40-6 C00037 5.824E-01 4.805E-02

Raw p-values from the Generalized Linear Model are reported with pFDR-adjusted p-values as described in the ‘Methods’ section. Metabolites with pFDR ≤ 0.05 are shown
and ranked by pFDR-adjusted or equivalently by raw p-values. Accession numbers from the Human Metabolome Database accession (HMDB), the Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases, and Chemical Abstract Service (CAS) are provided. Only annotated compounds of the list of significant compounds are shown here.
The full list with hyperlinked accession numbers is provided in (Additional file 9: Table S5).
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Figure 2 Selected plasma metabolites having a significant correlation with polyp counts in association with the Genotype by Diet
interaction effect. The nine metabolites were selected from Table 3 of significant plasma metabolites having a correlation with polyp counts in
association with a Genotype by Diet interaction effect. They reflects how the combination of ApcMin/+ mutation and high fat diets is associated
with the plasma metabolome and translates into intestinal polyps formation. In all subplots A-I, the correlation p-values (pGLM) were obtained
from fitting the GLM after adjustment for multiplicity (‘see ‘Methods’ and Table 3). To graphically show the grouping and localization of the samples
as well as to visualize the linearity and correlation at play for each significant metabolite, the linear regression line is plotted (dotted lines) with its
corresponding determination coefficient (r2) and the Pearson correlation coefficient (ρ). Because of the vertical alignment of all sample points from
the WT-LF and MU-LF groups, the resulting coefficient of determination (r2) is 0 and the Pearson correlation coefficient (ρ) is mathematically
undetermined. In contrast, for all the other samples in the MU-LF and MU-HF experimental groups, where r2 and ρ are both meaningful, we observe
for all metabolites (A-I) the best coefficient of determination (r2) and the largest Pearson correlation coefficient (ρ) in the MU-HF group (blue) in
comparison to the MU-LF group (green). Hippuric acid (A), Pyrophosphate (B), Nicotinamide (C), Glycine (D), Phenylalanine (E), Methionine (F),
Tryptophane (G), Threonine (H), Glutamic acid (I) for all combinations of Genotype and Diet factors. WT-LF, WT-HF, MU-LF, and MU-HF stand
respectively for the following groups: Apc Wild-Type - Low Fat Diet, Apc Wild-Type - High Fat Diet, Apc Mutant - Low Fat Diet, Apc Mutant - High Fat
Diet. Concentration levels are normalized on a transformed scale as explained in the ‘Methods’ section.
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the plot of higher polyp counts (Figure 2). Further, note also
for the same experimental group of samples the positive
(increase) or negative (decrease) correlation of polyp counts
with plasma metabolite levels. The plot also shows the
comparisons of correlation coefficients and determin-
ation coefficients observed in each of the combination
of Genotype and Diet factors levels (Figure 2). These re-
sults are further analyzed and discussed.

Functional analyses in plasma
Plasma metabolites correlated with intestinal polyps and
associated with a Genotype by Diet interaction effect (Table 3
and complete Additional file 9: Table S5) were subjected to
functional metabolomics annotations analyses. For reasons
explained above, this list of identified metabolites is essential
to the understanding of the underlying metabolomics path-
ways related to the progression of intestinal tumorigenesis
and how genetic and environment factors affect it.
Biological functions, canonical metabolomics pathways

and metabolomics interaction networks analyses were
first carried out by Ingenuity Pathway Analyses (IPA).
Remarkably, results show that among the complete list
of significant canonical biological functions/diseases
found by IPA, the top two ones are annotated as (in order
of significance): “Cancer” and “Gastrointestinal Disease”
(complete list in Additional file 10: Table S6(A)). Also,
among the lists of significant IPA canonical metabolomics
pathways, the “tRNA Charging” pathway is the most sig-
nificant (complete list in Additional file 10: Table S6(B)).
Integrating molecular networks from high-throughput

data is often sought as a powerful means to visualize and
model functional interactions in a system of molecular
components. To further elucidate the biological meaning
of the above “tRNA Charging” canonical pathway as well as
the canonical function/disease “Cancer and Gastrointestinal
Disease” found by IPA, Metscape genes-metabolites
metabolic networks were built using their corresponding
metabolic compounds. In each network view, connections
between metabolites and genes were drawn to form a uni-
fied conceptual network as described in the Methods sec-
tion. Genes-metabolites networks corresponding to the
“tRNA Charging” canonical pathway and to the “Cancer
and Gastrointestinal Disease” canonical disease revealed
key ‘hub’ compounds also present in our list of interest
(Table 3 and complete Additional file 9: Table S5); such
as, respectively, pyrophosphate, in relation to numerous
genes of the RNA polymerases family (Figure 3A), and
nicotinamide, in relation to numerous genes of the
poly(ADP-ribose) polymerases (PARP) families, as well as
Sirt-6 histone deacetylase (Figure 3B). These findings are
further discussed. An important property of networks or
graphs is related to the node connectivity or node degree,
i.e. the number of connections a node has to other nodes.
In non-random networks the degree distribution or

probability distribution of these degrees over the whole
network follows a scale-free power law rather than a bino-
mial distribution [78]. This so-called ‘scale-free’ connectivity
property is conjectured to be present in most common
networks such as biological, genetic, metabolic, social
networks and the Internet. In any kind of network, the
presence of hierarchical structures such as ‘hubs’ and
the associated overall high level node connectivity
(node degree) are hallmarks of non-randomness. Here, the
figure shows this ‘hub’ feature in at least two prominent me-
tabolite compounds of interest (pyrophosphate, Figure 3A,
nicotinamide, Figure 3B) as well as the overall high level of
node degree in both genes-metabolites networks.
We further analyzed the function of plasma metabolites

correlated with intestinal polyps and associated with
a Genotype by Diet interaction effect (Table 3 and
complete Additional file 9: Table S5) by building IPA
interaction metabolomics networks. Among the list of
significant interaction metabolomics networks found
by IPA (complete list in Additional file 11: Table S7),
the most significant one is canonically referred to as
“Increased Levels of Albumin, Cellular Growth and
Proliferation, Organismal Development” (Figure 4). To
add functional description to this biological network,
we overlaid the information of the top two biological
functions/diseases found by IPA, namely “Cancer” and
“Gastrointestinal Disease”. Notice the extent of overlap
of this metabolomics interaction network with the dis-
ease set (13/37 nodes). The corresponding intersection
p-value (p = 6.27E-06) was computed as described in
the Methods section (here with x = 13 and parameters
y = 18, L = 37 and N = 150), which is statistically highly
significant at the α = 0.05 significance level, indicating
that the two sets of compounds are (probably) truly
intersecting. Therefore, in addition to showing the spe-
cific metabolites (and their relationships) that have a
Genotype by Diet Interaction effect associated with
polyp counts, this biological network shows the extent
of overlap between these metabolites and the disease
information, i.e. their relevance to the disease process.
Furthermore, the biological network also shows the
involvement of the hippuric acid metabolic pathway
(Figure 4), and consequently its relevance to the “Cancer
and Gastrointestinal Disease” canonical function/disease
mentioned above. A biological model for this finding is
proposed and further discussed.
Finally, to gain insight into the underlying metabolic

and genetic networks involving the plasma metabolites
correlated with intestinal polyps and associated with a
Genotype by Diet interaction effect (Table 3 and Additional
file 9: Table S5), we subjected these metabolites to in-
tegrated Metscape-MetDisease disease annotation ana-
lyses as described in the Methods section. MeSH terms
corresponding to “Gastrointestinal Neoplasms” and
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Figure 3 (See legend on next page.)
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“Gastrointestinal Disease” were matched to a metabolites-
only network (Additional file 12: Figure S5A) or a genes-
metabolites network (Additional file 12: Figure S5B).
The overlap between the set of metabolic compounds
and their annotation to the disease terms is striking. In
the former case, a total of 45 matching nodes were

found out of a total of 249 metabolic compounds nodes
(Additional file 12: Figure S5A). The corresponding
overlapping p-value was computed here with parameters
x = 45, y = 124 (total number of unique nodes, matched
to all MeSH terms for the network), L = 249 (metabolic
compounds nodes for the network) and N = 2136 (total

(See figure on previous page.)
Figure 3 Metscape gene-compounds metabolic network views of top IPA canonical pathway and biological function/disease. Integrated
Metscape genes-compounds metabolic network view for (A) the “tRNA Charging” canonical pathway and (B) the “Gastrointestinal Cancer”
canonical function/disease found by Ingenuity Pathway Analysis (Additional file 10: Table S6). Close-up views (top left and bottom left) are
excerpts of the corresponding global Metscape genes-compounds network views (lower right). Hexagonal nodes (transparent) and circle nodes
(blue) represent metabolic compounds and genes, respectively. Hexagonal nodes with red border paintings indicate metabolites present in our
list (plasma metabolites listed in Table 3 and Additional file 9: Table S5). Notice the high node degree of these networks (number of connections
a node has to other nodes) and the two most prominent hub configurations formed by Pyrophosphate (top left) in relation to numerous RNA
polymerase genes (A) and by Nicotinamide (bottom left) in relation to numerous PARP genes (B).

Figure 4 IPA metabolic interaction network of plasma metabolites having a significant correlation with polyp counts in association
with a Genotype by Diet interaction effect. Most significant IPA metabolic interaction network for the plasma metabolites correlated with
polyp counts and associated with a Genotype by Diet interaction (listed in Table 3 and Additional file 9: Table S5). For metabolic pathways, an
arrow pointing from node A to node B signifies that B is produced from A. The keys of molecule shapes and relationship labels show the nature
of the nodes as and their relationships, respectively. Acronyms refer to relationship labels and numbers in parentheses next to them refer to the
number of literature findings that support these relationships individually. Both direct (solid line) and indirect (broken line) specific relationships
between the metabolites are indicated. Nodes with pink fillings represent metabolites that were significantly changed in the interaction effect
and correlated with the outcome of interest. Metabolites involved in “Gastrointestinal Disease and Cancer” are circled in dark pink. Note in the top-
left of the graph the presence of the hippuric acid metabolic pathway resulting from the conjugation of glycine with benzoic acid, which in turn
is a conversion by-product of the L-phenylalanine metabolism.
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number of compounds in Metscape for which there is
pathway information). The resulting p-value (0) that is
below the computer lower bound of floating-point
representation let us draw two conclusions. First, the
metabolomics signature of “Gastrointestinal Neoplasms”
and “Gastrointestinal Disease” is certainly present in
the list of metabolic compounds of interest (Table 3
and Additional file 9: Table S5). Second, and more im-
portantly, the metabolic network views provided in
(Additional file 12: Figure S5B) are useful representations
of the metabolite-metabolite interactions sub-networks
and of the metabolite-genes workflows that underlie
the progression of intestinal polyposis or tumorigen-
esis and how genetic and environment factors affect it.
Further, the figure shows hierarchical structures such
as ‘hubs’ for many metabolite compounds of interest.
This feature and the overall high level of node degree
in both networks (Additional file 12: Figure S5A and B)
are hallmarks of organized non-random networks.

Acyl-CoA profiles in liver
Cancer progression is usually associated with profound
changes in energy metabolism since tumor cells stimulate
growth through increased glycolysis and fatty acid oxidation
pathways [79]. Because acyl-CoAs represent important in-
termediates of lipid metabolism that are affected in cancer
[29], we report the concentrations of both long-chain as
well as short/medium-chain acyl-CoAs from the liver tissue.
Mean absolute concentrations (measured by LC-MS/MS)
were normalized per gram of wet liver tissue [nmol/mg]
(Table 4, Figures 5 and 6). Relative concentrations were
calculated with respect to acyl-CoAs concentrations in
Apc Wild-Type Low Fat (WT-LF) animals (Figure 5).

Long-chain Acyl-CoAs
Total content of long chain acyl-CoAs data show that
the effect of high fat feeding is associated with a very
significant fold change between MU-HF and MU-LF
groups (FC = 3.66; p = 6.52 E-6), while no significant dif-
ference is observed between WT-HF and WT-LF
(FC = 1.09; p = 0.714) (Table 4). Overall, this profile
underscores the synergistic (interaction) effect of the
ApcMin/+ mutation with a high fat diet in the total content
of long chain acyl-CoAs.
First, looking further into individual long chain acyl-

CoAs, note that the effect of high fat feeding is associated
with an increase of specific long chain acyl-CoAs contents,

namely C12-CoAs and to a lower extent C14-CoAs, in both
Apc genotype backgrounds: We report in Apc wild-type
and ApcMin/+ mutant animals, both fed with high fat, a
significant fold change increase of C12-CoAs content as
compared to all other long chain acyl-CoAs contents
(WT-HF group: FC = 3.34; p = 3.06 E-4; MU-HF group:
FC = 4.23; p = 1.30 E-4) (Figure 5A). Second, note the
remarkable fold change increase of C12-CoAs content
upon high fat feeding in ApcMin/+ mutant animals
(fold-change between MU-LF and MU-HF experimental
groups: FC = 9.55; p = 3.68 E-5), which is less pronounced
in Apc Wild-Type animals (fold-change between WT-LF
and WT-HF experimental groups: FC =4.02; p = 1.13 E-3)
(Figure 5A). The latter profile also underscores the syner-
gistic (interaction) effect of the ApcMin/+ mutation with a
high fat diet in the content of C12-CoAs.

Short and medium-chain Acyl-CoAs
We found a very significant fold change increase of free
acyl-CoAs contents in the MU-HF group as compared to
the other three experimental groups (FC= 2.1; p= 3.48 E-3),
underlying a strong synergistic (interaction) effect of
ApcMin/+ mutation with a high fat diet on these com-
pound levels (Figure 5B). Likewise, note the synergistic
(interaction) effects of ApcMin/+ mutation and high fat diet
in the increase of propionyl-CoA (FC = 2.86; p = 6.78 E-2)
and pentanoyl-CoA (FC= 2.47; p= 4.67 E-2) levels, indica-
ting that the ApcMin/+ mutation and high fat diet act both
alone and in concert on these compound levels (Figure 5B).
Finally, note the increasing (main) effect of high fat diet on
octanoyl-CoA levels (FC= 1.65; p= 8.37 E-4) and the
decreasing (main) effect of ApcMin/+ mutation in BHB-CoA
levels (FC = 1 / 2.53 ≈ 0.39; p= 7.39 E-4) (Figure 5B).

Acyl-CoA/Free-CoA ratios
The [Acyl-CoA]/[CoASH] ratio usually reflects energy
demand of the tissue. This ratio alters in response to
change in energy state of a system. Figure 6 shows the
[Acyl-CoA]/[CoASH] ratios for all four groups. Effects
of increased availability of free fatty acids on β-oxidation
rates and on gene expression of β-oxidation enzymes
have already been studied by others [80,81]. These stud-
ies illustrate that high levels of dietary fatty acids induce
mitochondrial and peroxisomal β-oxidation in liver and
thus decrease the [Acyl-CoA]/[CoASH] ratio. Our
findings are compatible with those studies and show a
significant decrease in the [Acyl-CoA]/[CoASH] ratio

Table 4 Variations of mean total long chain Acyl-CoAs concentrations by group in liver

Genotype – diet combination WT - LF MU - LF WT - HF MU - HF

1.16 ± 0.23 0.41 ± 0.07 1.27 ± 0.23 1.52 ± 0.25

Mean concentrations were calculated per experimental group (ng = 5), normalized per gram of wet liver tissue [nmol/mg] and computed for the following
long-chain acyl-CoAs: C12-CoA, C14-CoA, C16-CoA, C18-CoA, C16:OH-CoA, C16:1-CoA, C18:1-CoA, C18:2-CoA, C20:4-CoA, C22:6-CoA. Standard error of the means are
indicated. WT-LF, WT-HF, MU-LF, and MU-HF stand respectively for the following combination of treatments: Apc Wild-Type - Low Fat Diet, Apc Wild-Type - High Fat Diet,
Apc Mutant - Low Fat Diet, Apc Mutant - High Fat Diet.

Dazard et al. BMC Systems Biology 2014, 8:72 Page 15 of 21
http://www.biomedcentral.com/1752-0509/8/72



(FC = 1/2.87 ≈ 0.35; p = 2.42 E-3) for the MU-HF group
(Figure 6). This indicates a synergistic effect of the ApcMin/+

mutation with a high fat diet on the relative abundance of
Acyl-CoAs to free-CoAs.

Discussion
Our study demonstrates that global GC-MS-based plasma
metabolomics and targeted LC-MS/MS-based liver metab-
olite profiling can be combined with clinical observations
to investigate diet interventions and genetic susceptibility to
intestinal cancer. Our results underscore the high po-
tential of metabolomics profiling in pattern recognition
and characterization of potential pathways of intestinal
cancer. Metabolites from different pathways have been
identified including TCA cycle intermediates, amino acids,
carbohydrates, lipids and various acyl-CoAs. Unsupervised

and supervised statistical procedures allowed us to study
plasma metabolic alterations between wild type and genet-
ically predisposed mice to intestinal cancer (ApcMin/+)
under diet intervention. As a part of our study, we were
able to correlate an important clinical outcome of intestinal
cancer to plasma metabolic profiles in an animal model
genetically predisposed to intestinal cancer, and determine
how this is modified by a change of diet. In our experiment,
this correlation characterizes how polyp counts in the small
intestine vary by metabolite concentration, levels of the
Genotype factor (Apc Wild-Type vs. Mutant), and levels of
the Diet factor (High Fat vs. Low Fat). Overall, plasma
metabolomics concentration profile results indicate that
that high-fat diet significantly enhances some of the
metabolic perturbations that are associated with ApcMin/+

mutation and small intestine tumor development.

Figure 5 Bar chart of mean concentrations of Acyl-CoAs by group in liver. (A) Mean concentrations of long-chain and (B) short/medium-chain
acyl-CoAs were calculated per experimental group (ng = 5) and normalized per gram of wet liver tissue [nmol/gr] and per mean concentration in the
WT-LF group for all combinations of Genotype and Diet factors. All WT-LF CoA’s relative mean concentrations are therefore equal to 1. Standard error of
the means are shown with the ANOVA p-value for assessing the significance of difference of group means as compared to the overall mean. In the le-
gend WT-LF, WT-HF, MU-LF, and MU-HF stand respectively for the following groups: Apc Wild-Type - Low Fat Diet, Apc Wild-Type - High Fat
Diet, Apc Mutant - Low Fat Diet, Apc Mutant - High Fat Diet.
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Increase in some of plasma amino acids levels has been
observed. Since cancer cells are high proliferation cells and
require free amino acids as an energy source [82] or as
building blocks for metabolites [83], presumably elevated
plasma amino acids levels reflect malignant tissues need
for bloodstream amino acid supplies. Regarding the role
of methionine, there are controversial studies showing
either a positive or negative effect of methionine on
different types of cancer in various tissues [84-87]. The
methionine-mediated DNA methylation along with folate
and homocysteine (through S-adenosyl methionine) hypo-
methylation could increase the risk of cancer [88].
While poly(ADP-ribose) polymerase-1 (PARP-1) has

well-described functions in the regulation of chromatin
structure, transcription and genomic integrity, recent
evidences point to a role in transcriptional regulation in
the context of human malignancy (reviewed in [89,90]).
Specifically, PARP-1 may play an important role in
carcinogenesis of colorectal cancer and recent findings
have raised the possibility of using PARP inhibitor
therapy in colorectal cancers clinical trials (reviewed in
[91]). The observed negative correlation between nicotina-
mide concentration levels and polyp numbers (Table 3,
Figure 2C), along with the numerous known relations of
nicotinamide to genes of the PARP family that were re-
vealed in our data (Figure 3A), suggest a possible antagonist
effect of nicotinamide compound levels on polyp formation
and on promotion of intestinal cancer via inhibition of

PARP activity. Alternatively, the reduction of nicotinamide
concentration could reflect its consumption as substrate for
Nicotinamide phosphoribosyltransferase (NAmPRTase
or Nampt) to synthesize nicotinamide phosphoribosyl
pyrophosphate as a key precursor for synthesis of NAD+

[92]. NAD+ is required to support tumor growth, both as
substrate for PARP [91] and for function of SIRT1, an
NAD+ dependent deacetylase whose activity is associated
with deacetylation of p53, consequently leading to progres-
sive tumor growth [93]. The potential consumption of nico-
tinamide to support NAD+ synthesis and increased activity
of PARP and/or SIRT1 indicates this pathway, which was
identified in our studies, is a potentially important target
for chemotherapy.
The correlation between plasma hippuric acid (hippurate

or benzoyl-glycine) levels and polyp numbers could be
a result of different rates of benzoate uptake, possibly
through polyps. Berger et al. reported in their study that
benzoic acid is absorbed from the intestine by sodium-
coupled monocarboxylate transporters (SMCTs), followed
by benzoyl-glycine production in liver from benzoic
acid through activation of benzoate to benzoyl CoA [94].
SLC5A8 and SLC5A12 transporters mediate uptake of a
variety of monocarboxylates including benzoic acid and
show different concentration profiles in normal vs. cancer
tissues [95]. Consequently, we interpret the increase in
plasma hippurate concentration as reflecting a stimulation
of benzoate uptake from the intestine, probably linked to
the monocarboxylate transporter associated with intestinal
polyps (See our putative biological model in Figure 7).
A key question relates to the causality of our findings

with intestine polyp formation. Should some of the plasma
metabolite levels found in animal fed with high fat diet
be considered, at least in part, a cause or a consequence
of the formation of these polyps? Further studies are
warranted to determine whether the increase of plasma
metabolites levels that is observed in the combination
of high-fat diet with Apc mutation and for which there
is a significant correlation with intestinal polyp formation
(Table 3 and complete Additional file 9: Table S5), could
be interpreted as a consequence of tumor formation and
not a cause. In some cases, such as hippurate metabolism,
this interpretation would be consistent with our proposed
biological model for that compound (Figure 7) and sup-
port our recent results in the same ApcMin/+ mouse model
of intestinal neoplasia in that high-saturated fat-diets in-
crease polyp development and formation [48]. Alternatively,
a possibility that needs to be considered stems from recent
studies showing that intestinal and circulating metabolites
may be significantly altered by the intestinal micro-
biome to change the composition and available energy
content of ingested nutrients as well as to generate factors
which stimulate inflammation, cardiovascular disease and
cancer [96-98].

Figure 6 Bar chart of mean concentration ratios of [Acyl-CoA]/
[CoASH] by group in liver. Mean concentration ratios were
calculated per experimental group (ng = 5) and normalized per
gram of wet liver tissue [nmol/gr]. Standard errors of the means
are shown with the ANOVA p-value for assessing the significance
of difference of group means as compared to the overall mean. In
the legend, WT-LF, WT-HF, MU-LF, and MU-HF stand respectively for the
following groups: Apc Wild-Type - Low Fat Diet, Apc Wild-Type - High Fat
Diet, Apc Mutant - Low Fat Diet, Apc Mutant - High Fat Diet.
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To investigate deregulations in lipid metabolism, which
are critical for energy homeostasis, we have measured liver
acyl-CoA profiles. High fat diet intervention stimulates
fatty acid metabolism by increasing the availability of free
fatty acids that might lead to the increase in β-oxidation
rates. On the other hand, apart from the nutrition inter-
vention, the fatty acid oxidation pathway is up-regulated
in cancer cells since these cells have high proliferation
rates and increased energy consumption. Our findings
show a decrease of [acetyl-CoA]/[CoASH] ratio and it
presumably reflects up-regulation in β-oxidation pathway
as a result of a combination of ApcMin/+-mediated cancer
progression and high fat diet.

Conclusions
Our study shows that mass spectrometry-based cancer
metabolomics, when used in an appropriate experimen-
tal design, can give important insights into genotype
characterization and diet intervention effects, and their
association with intestinal polyposis and tumorigenesis.
Although high-throughput mass spectrometry-based
metabolomics data feature relative concentrations (peak
area of analyte/peak area of references compound), these
studies show that high-throughput metabolomics com-
bined with appropriate statistical modeling and large scale
functional approaches can be used to monitor and infer

changes and interactions in the metabolome and genome
of the host under controlled experimental conditions.
Further these studies demonstrate the impact of diet on
metabolic pathways and its relation to intestinal cancer
progression. Based on our results, metabolic signatures
of polyposis intestinal carcinoma have been identified,
such as those involving nicotinamide and hippuric acid
metabolic pathways, which may serve as a useful targets
for the development of therapeutic interventions.

Supporting information
The online version of this article contains five (5) additional
figures and seven (7) additional tables for a total of 12
Additional files.

Additional files

Additional file 1: Table S1. Specific Multiple Reaction Monitoring
(MRM) Transitions for Each Acyl-CoA. Free-CoA and all CoA esters show
an m/z transition of 507 amu during LC-MS/MS analysis.

Additional file 2: Table S2. Full List of Significant Plasma Metabolites
in the Genotype Effect. Significant metabolites are ranked by significance
and highlighted in yellow (controlled at pFDR ≤ 5%). Statistics that are
listed are described in the ‘Methods’ section: estimated log2-Fold Change
(logFC), moderated t-, and B- statistics, raw and pFDR-adjusted p-values.
Metabolites are ranked by adjusted p-value and then by B-statistic.

Additional file 3: Table S3. Full List of Significant Plasma Metabolites
in the Diet effect. Significant metabolites are ranked by significance and
highlighted in yellow (controlled at pFDR ≤ 5%). Statistics that are listed
are described in the ‘Methods’ section: estimated log2-Fold Change
(logFC), moderated t-, and B- statistics, raw and pFDR-adjusted p-values.
Metabolites are ranked by adjusted p-value and then by B-statistic.

Additional file 4: Figure S1. Scree Plots and Loading Plots for the
Plasma Samples. (A) Plot of the distribution of contributed variances
(i.e. eigenvalues based on the spectral decomposition of the correlation
matrix) by Principal Component PC# 1 – 20. (B) Cumulative Percent of
Explain Variance (PEV) against the number of selected Principal
Components 1–20 PC’s. Dashed red lines on both plots show the
corresponding contributed variance (33.8) and cumulative PEV (38.3%) for
the first two selected PC’s. Loading plots of the top 100 metabolites
loadings ordered by decreasing absolute correlation coefficient with the
corresponding selected Principal Component (PC1 (C), and PC2 (D)).

Additional file 5: Figure S2. FDR Analysis Results by Effect for the
Plasma Samples. Genotype Effect (GF) or Diet Effect (DF) and their
Interaction Effect (GFDF) are plotted for the Plasma samples. (A) Positive
pFDR-controlled discoveries by effect, where pFDR is controlled under
some dependency at 5%. (B) Expected number of false discovery by
effect under a pFDR of 5%. (C) Comparison of raw p-values vs. adjusted
p-values (q-values) by effect.

Additional file 6: Figure S3. One-set and Three-set Venn Diagrams by
Effect for the Plasma Samples. Each Venn diagram shows the distribution
of counts (pFDR ≤ 5%) of plasma metabolites regulated by effect
(circle or set). Counts are given for the three classical effects of interest:
(A, E) main Genotype effect; (B, F) main Diet effect; (C, G) Genotype by Diet
interaction effect; (D, H) their three-set intersections. The counts in each
Venn diagram of the bottom row (E, F, G, H) represent the number of
regulated metabolites by effect and by direction of change, either up (red)
or down (green). One may obtain the aggregated counts of up- and down-
regulated metabolites in each of the one-set Venn diagram (A, B, C, D) by
summing the up and down counts in the corresponding Venn diagram
below, provided that this is done by effect and not by intersection subset
alone (duplicates are accounted for by effect when intersections are formed
between multiple effects in multiple-set Venn diagrams). For instance, the

Figure 7 Proposed biological model involving hippuric acid
metabolism. This model derives from the most significant IPA
metabolic interaction network plotted in Figure 4 in relation to the
plasma metabolites correlated with polyp counts and associated
with a Genotype by Diet interaction (listed in Table 3 and Additional
file 9: Table S5). The sketch displays the workflow of benzoic acid
(benzoate - Bz) uptake by intestinal polyps, followed by its transport
to the liver, its reaction with glycine (Gly) to produce hippuric acid
(hippurate) and its final release in the plasma.
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aggregated count of up- and down-regulated metabolites in the Diet effect
is 82, that is, in the one-set Venn diagrams (B, F): 82 (B) = 42 + 38 (F), which
also matches the counts in the three-set Venn diagrams (D, H): 82 = 14 + 12 +
51 + 5 (D) = (14 + 23) + (11 + 9) + (12 + 5) + (7 + 1) (H). The total number of
regulated metabolites in all effects is given by the aggregated counts in the
top row Venn diagrams (A, B, C, D), that is, 33 + 12 + 14 + 1 + 51 + 5 + 8 =
124. MU-WT, HF-LF, and MU-WT x HF-LF stand respectively for the following
groups: Apc Mutant vs. Wild Type, High vs. Low Fat Diet, and Apc Mutant vs.
Wild Type in High vs. Low Fat Diet.

Additional file 7: Table S4. Full List of Significant Plasma Metabolites
in the Genotype by Diet Interaction Effect. Significant metabolites are
highlighted in yellow (controlled at pFDR 5%). Statistics that are listed are
described in the ‘Methods’ section: estimated log2-Fold Change (logFC),
moderated t-, and B- statistics, raw and pFDR-adjusted p-values.
Metabolites are ranked by adjusted p-value and then by B-statistic.

Additional file 8: Figure S4. Volcano Plots of Significant Plasma
Metabolites by Effect in Plasma. The Genotype (A) and Diet (B) main
effects are shown with the Genotype by Diet interaction effect (C) in
plasma samples. When only two group samples are compared at a time,
a volcano plot is adequate. The volcano plot is a scatter plot of all
metabolite species arranged by an individual measure of magnitude of
change of concentration between experimental groups (horizontal axis)
versus a corresponding measure of statistical significance (vertical axis).
Here, the horizontal axis represents the estimated log-Fold-Change of
differential expression, denoted log2(FC) or M. The vertical axis represents
the log-Odds of differential concentration, denoted log2(Odds) or B. Each
point on the volcano plot represents a metabolite. Metabolites with large
absolute values of estimated Log2-Fold Changes (logFC or M) and large
values of Log2-odds (B) indicate metabolites with significant differential
concentrations in the contrast or effect of interest. All preselected
metabolites (201) are plotted in grey, but only those with a significant
effect (controlled at pFDR ≤ 5%) are highlighted in red (up-regulated) or
green (down-regulated). Points on the volcano plot in the upper right
and upper left directions are metabolites with large absolute values of
estimated Log2-Fold Changes on the transformed scale (log2(FC) or M)
and large values of Log2-odds (log2(Odds) or B), indicating significantly
regulated metabolites.

Additional file 9: Table S5. Full List of Plasma Metabolites Having a
Significant Correlation with Polyp Counts in association with a Genotype
by Diet Interaction Effect. Raw and pFDR-adjusted p-values are reported
as described in the ‘Methods’ section. Metabolites are ranked by
pFDR-adjusted p-values or equivalently by raw p-values, both from the
Generalized Linear Model. Accession numbers from the Human Metabolome
Database accession (HMDB), the Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases, and Chemical Abstract Service (CAS) are provided.

Additional file 10: Table S6. Full List of Significantly Enriched IPA
Metabolic Biological Functions/Diseases and Canonical Pathways. Both
sub-tables are from the results of significant plasma metabolites
correlated with polyp counts and associated with the Genotype by Diet
interaction effect (Table 3 and Additional file 9: Table S5). (A) List of top
12 significant IPA canonical biological functions. (B) List of top 10 significant
IPA canonical metabolic pathways. ‘BH p-value’ stands for enrichment
p-value, adjusted by the FDR control procedure (see ‘Methods’ section), and
‘95% CI’ is its corresponding 95% confidence interval. ‘Ratio’ in a given
pathway represents the overlap of those metabolites found in our Table 3
to all those constitutive of the corresponding canonical pathway. ‘Molecules’
represents the ones found in our Table 3 matching up the corresponding
canonical pathway. For both sub-tables, ranking was done by BH-adjusted
enrichment p-values. The FDR threshold of significance was set at 5%.

Additional file 11: Table S7. Full List of Significant IPA Metabolic
Interaction Networks. List of top 3 significant metabolic interaction
networks from the results of significant plasma metabolites correlated
with polyp counts and associated with the Genotype by Diet interaction
effect (Table 3 and Additional file 9: Table S5).

Additional file 12: Figure S5. Full-Size High-Resolution Graphs of the
Cytoscape Compounds-only and Genes-Compounds Metabolic Networks.
Integrated Metscape-MetDisease metabolic network views of (A) metabolic
compound-only and (B) genes-compounds for the plasma metabolites
correlated with polyp counts and associated with a Genotype by Diet

interaction (listed in Table 3 and Additional file 9: Table S5). Hexagonal
nodes (transparent) and circle nodes (blue) represent metabolic compounds
and genes, respectively. Hexagonal nodes with red border paintings indicate
metabolites present in our list (plasma metabolites listed in Table 3 and
Additional file 9: Table S5). Hexagonal nodes with yellow fillings represent
metabolite compounds whose MeSH disease annotation matches the terms
“Gastrointestinal Disease” or “Gastrointestinal Neoplasm”. Notice the high node
degree of each of these networks (number of connections a node has to
other nodes) and the extent of overlap of MeSH-disease annotated-metabolite
compounds in both networks.

Abbreviations
PCA: Principal Component Analysis; PC: Principal component; PEV: Percentage
of Explained Variance; ANOVA: Analysis of variance; GLM: Generalized Linear
Model; GC-MS: Gas chromatography–mass spectrometry; LC-MS: Liquid
chromatography-mass spectrometry; APC: Adenomatous polyposis coli;
WT: Wild-type; MU: Mutant; DF: Diet factor; GF: Genotype factor; TF: Source of
tissue factor; HF: High fat; LF: Low fat; PLA: Plasma; LIV: Liver.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
J-ED designed and performed all the statistical and functional analyses. YS
performed all the biochemical and mass spectrometric assays. SD conducted
all the animal and genetic work. All authors (J-ED, YS, SD, NAB, HB)
formulated the problem, wrote and approved the manuscript.

Acknowledgements
This work made use of the High Performance Computing Resource in the
Core Facility for Advanced Research Computing at Case Western Reserve
University. This work was supported by grants from the NIH (5P40RR12305 to
Joseph H. Nadeau and N.A.B.; 5U54CA116867 to N.A.B.), the NIDDK RoadMap
Initiative (5R33DK070291 to H.B.), the Case Comprehensive Cancer Center
(NIH-National Cancer Institute P30-CA043703 to JE.D.) and by the Case Mouse
Metabolic Phenotyping Center. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.
We thank the Case Mouse Metabolic Phenotyping Center for help with the
animal experiments. We also thank Guo-Fang Zhang and Sophie Kochheiser
from the Center for Metabolomics and Isotopomics for helpful comments and
graphical art work, respectively.

Author details
1Center for Proteomics and Bioinformatics, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA. 2Department of Nutrition,
Case Western Reserve University School of Medicine, Cleveland, OH 44106,
USA. 3Kennedy Krieger Institute, Baltimore, MA 21205, USA. 4Department of
Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
44106, USA. 5Department of Medicine, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA. 6Case Comprehensive Cancer
Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
44106, USA.

Received: 25 February 2014 Accepted: 10 June 2014
Published: 23 June 2014

References
1. Fiehn O: Metabolomics–the link between genotypes and phenotypes.

Plant Mol Biol 2002, 48:155–171.
2. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P,

Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner
LW: Potential of metabolomics as a functional genomics tool. Trends Plant
Sci 2004, 9:418–425.

3. Griffiths WJ, Karu K, Hornshaw M, Woffendin G, Wang Y: Metabolomics and
metabolite profiling: past heroes and future developments. Eur J Mass
Spectrom 2007, 13:45–50.

4. Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C: Metabolomics:
current state and evolving methodologies and tools. Appl Microbiol
Biotechnol 2007, 76:495–511.

Dazard et al. BMC Systems Biology 2014, 8:72 Page 19 of 21
http://www.biomedcentral.com/1752-0509/8/72

http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S7.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S8.tiff
http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S9.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S10.xlsx
http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S11.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-8-72-S12.tiff


5. Weckwerth W, Fiehn O: Can we discover novel pathways using
metabolomic analysis? Curr Opin Biotechnol 2002, 13:156–160.

6. Steuer R, Kurths J, Fiehn O, Weckwerth W: Observing and interpreting
correlations in metabolomic networks. Bioinformatics 2003, 19:1019–1026.

7. Kuhara T: Noninvasive human metabolome analysis for differential
diagnosis of inborn errors of metabolism. J Chromatogr B Analyt Technol
Biomed Life Sci 2007, 855:42–50.

8. Quinones MP, Kaddurah-Daouk R: Metabolomics tools for identifying
biomarkers for neuropsychiatric diseases. Neurobiol Dis 2009, 35:165–176.

9. Lewis GD, Asnani A, Gerszten RE: Application of metabolomics to
cardiovascular biomarker and pathway discovery. J Am Coll Cardiol
2008, 52:117–123.

10. Giovane A, Balestrieri A, Napoli C: New insights into cardiovascular and
lipid metabolomics. J Cell Biochem 2008, 105:648–654.

11. Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, Shen X: A serum metabolomic
investigation on hepatocellular carcinoma patients by chemical derivatization
followed by gas chromatography/mass spectrometry. Rapid Commun Mass
Spectrom 2008, 22:3061–3068.

12. Montrose DC, Zhou XK, Kopelovich L, Yantiss RK, Karoly ED, Subbaramaiah K,
Dannenberg AJ: Metabolic profiling, a noninvasive approach for the
detection of experimental colorectal neoplasia. Cancer Prev Res (Phila)
2012, 5:1358–1367.

13. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM: Metabolomics: a global
biochemical approach to drug response and disease. Annu Rev Pharmacol
Toxicol 2008, 48:653–683.

14. Atherton HJ, Bailey NJ, Zhang W, Taylor J, Major H, Shockcor J, Clarke K, Griffin
JL: A combined 1H-NMR spectroscopy- and mass spectrometry-based
metabolomic study of the PPAR-alpha null mutant mouse defines
profound systemic changes in metabolism linked to the metabolic
syndrome. Physiol Genomics 2006, 27:178–186.

15. Griffin JL: Understanding mouse models of disease through
metabolomics. Curr Opin Chem Biol 2006, 10:309–315.

16. Major HJ, Williams R, Wilson AJ, Wilson ID: A metabonomic analysis of
plasma from Zucker rat strains using gas chromatography/mass
spectrometry and pattern recognition. Rapid Commun Mass Spectrom
2006, 20:3295–3302.

17. Wishart DS: Applications of metabolomics in drug discovery and
development. Drugs R D 2008, 9:307–322.

18. Nicholas PC, Kim D, Crews FT, Macdonald JM: 1H NMR-based metabolomic
analysis of liver, serum, and brain following ethanol administration in
rats. Chem Res Toxicol 2008, 21:408–420.

19. Kim YS, Maruvada P, Milner JA: Metabolomics in biomarker discovery:
future uses for cancer prevention. Future Oncol 2008, 4:93–102.

20. Spratlin JL, Serkova NJ, Eckhardt SG: Clinical applications of metabolomics
in oncology: a review. Clin Cancer Res 2009, 15:431–440.

21. Serkova NJ, Spratlin JL, Eckhardt SG: NMR-based metabolomics:
translational application and treatment of cancer. Curr Opin Mol Ther
2007, 9:572–585.

22. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T,
Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O: Metabolite profiling
of human colon carcinoma–deregulation of TCA cycle and amino acid
turnover. Mol Cancer 2008, 7:72–87.

23. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S,
Konsgen D, Dietel M, Fiehn O: Mass spectrometry-based metabolic profiling
reveals different metabolite patterns in invasive ovarian carcinomas and
ovarian borderline tumors. Cancer Res 2006, 66:10795–10804.

24. Griffin JL, Kauppinen RA: Tumour metabolomics in animal models of
human cancer. J Proteome Res 2007, 6:498–505.

25. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita
T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T: Quantitative metabolome
profiling of colon and stomach cancer microenvironment by capillary
electrophoresis time-of-flight mass spectrometry. Cancer Res 2009,
69:4918–4925.

26. Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di LA:
Metabolomics: available results, current research projects in breast
cancer, and future applications. J Clin Oncol 2007, 25:2840–2846.

27. Budczies J, Denkert C, Muller BM, Brockmoller SF, Klauschen F, Gyorffy B,
Dietel M, Richter-Ehrenstein C, Marten U, Salek RM, Salek RM, Griffin JL, Hilvo M,
Oresic M, Wohlgemuth G, Fiehn O: Remodeling of central metabolism in
invasive breast cancer compared to normal breast tissue - a GC-TOFMS
based metabolomics study. BMC Genomics 2012, 13:334.

28. Nordstrom A, Lewensohn R: Metabolomics: moving to the clinic.
J Neuroimmune Pharmacol 2009.

29. Denkert C, Bucher E, Hilvo M, Salek R, Oresic M, Griffin J, Brockmoller S,
Klauschen F, Loibl S, Barupal DK, Budczies J, Iljin K, Nekljudova V, Fiehn O:
Metabolomics of human breast cancer: new approaches for tumor
typing and biomarker discovery. Genome Med 2012, 4:37.

30. Yu CF, Whiteley L, Carryl O, Basson MD: Differential dietary effects on
colonic and small bowel neoplasia in C57BL/6 J Apc Min/+Mice. Dig Dis
Sci 2001, 46:1367–1380.

31. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G,
Subramaniam S, Berger NA, Croniger C, Lambris JD, Nadeau JH: Diet-induced
hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet
2009, 18:2975–2988.

32. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T:
Dietary fibre, whole grains, and risk of colorectal cancer: systematic
review and dose–response meta-analysis of prospective studies.
BMJ 2011, 343:d6617.

33. Vargas AJ, Thompson PA: Diet and nutrient factors in colorectal cancer
risk. Nutr Clin Pract 2012, 27:613–623.

34. Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB,
Whittom R, Hantel A, Benson A, Wigler DS, Venook A, Fuchs CS: Dietary glycemic
load and cancer recurrence and survival in patients with stage III colon cancer:
findings from CALGB 89803. J Natl Cancer Inst 2012, 104:1702–1711.

35. Giovannucci E, Goldin B: The role of fat, fatty acids, and total energy
intake in the etiology of human colon cancer. Am J Clin Nutr 1997,
66:1564S–1571S.

36. Kim YS, Milner JA: Dietary modulation of colon cancer risk. J Nutr 2007,
137:2576S–2579S.

37. Calle EE, Thun MJ: Obesity and cancer. Oncogene 2004, 23:6365–6378.
38. Johnson IT, Lund EK: Review article: nutrition, obesity and colorectal

cancer. Aliment Pharmacol Ther 2007, 26:161–181.
39. Frezza EE, Wachtel MS, Chiriva-Internati M: Influence of obesity on the risk

of developing colon cancer. Gut 2006, 55:285–291.
40. Gunter MJ, Leitzmann MF: Obesity and colorectal cancer: epidemiology,

mechanisms and candidate genes. J Nutr Biochem 2006, 17:145–156.
41. Sung MK, Yeon JY, Park SY, Park JH, Choi MS: Obesity-induced metabolic

stresses in breast and colon cancer. Ann N Y Acad Sci 2011, 1229:61–68.
42. Gonzalez AS, Guerrero DB, Soto MB, Diaz SP, Martinez-Olmos M, Vidal O:

Metabolic syndrome, insulin resistance and the inflammation markers
C-reactive protein and ferritin. Eur J Clin Nutr 2006, 60:802–809.

43. John BJ, Irukulla S, Abulafi AM, Kumar D, Mendall MA: Systematic review:
adipose tissue, obesity and gastrointestinal diseases. Aliment Pharmacol
Ther 2006, 23:1511–1523.

44. McNally JB, Kirkpatrick ND, Hariri LP, Tumlinson AR, Besselsen DG, Gerner
EW, Utzinger U, Barton JK: Task-based imaging of colon cancer in the
Apc(Min/+) mouse model. Appl Opt 2006, 45:3049–3062.

45. Backshall A, Alferez D, Teichert F, Wilson ID, Wilkinson RW, Goodlad RA,
Keun HC: Detection of metabolic alterations in non-tumor gastrointestinal
tissue of the Apc(Min/+) mouse by (1)H MAS NMR spectroscopy. J Proteome
Res 2009, 8:1423–1430.

46. Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA, Lanza E,
Haines DC, Schatzkin A, Hursting SD: Calorie restriction and diet
composition modulate spontaneous intestinal tumorigenesis in Apc(Min)
mice through different mechanisms. Cancer Res 2003, 63:1752–1755.

47. van Kranen HJ, van Iersel PW, Rijnkels JM, Beems DB, Alink GM, van Kreijl CF:
Effects of dietary fat and a vegetable-fruit mixture on the development of in-
testinal neoplasia in the ApcMin mouse. Carcinogenesis 1998, 19:1597–1601.

48. Doerner SK, Leung ES, Berger NA, Nadeau JH: High Dietary fat Promotes
Inflammation and Intestinal Neoplasia, Independently of Diet-Induced
Obesity, in B6.Apc Min/+Congenic-Consomic Mouse Strains. In
Proceedings of the 102nd Annual Meeting of the American Association for
Cancer Research April 2–6; Orlando, Florida. AACR Cancer Research; 2011.

49. Ju J, Kwak Y, Hao X, Yang CS: Inhibitory effects of calcium against
intestinal cancer in human colon cancer cells and Apc(Min/+) mice.
Nutr Res Pract 2012, 6:396–404.

50. Stein SE: An integrated method for spectrum extraction and compound
identification from gas chromatography/mass spectrometry data. J Am
Soc Mass Spectrom 1999, 10:770–781.

51. Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos
GN: Systematic identification of conserved metabolites in GC/MS data
for metabolomics and biomarker discovery. Anal Chem 2007, 79:966–973.

Dazard et al. BMC Systems Biology 2014, 8:72 Page 20 of 21
http://www.biomedcentral.com/1752-0509/8/72



52. Schlatzer DM, Dazard JE, Ewing RM, Ilchenko S, Tomecheko S, Eid S, Ho V,
Yanik G, Chance MR, Cooke KR: Biomarker discovery and predictive models
for disease progression in idiopathic pneumonia syndrome following
allogeneic stem cell transplantation. Mol Cell Proteomics 2012. in press.

53. Wang P, Tang H, Zhang H, Whiteaker J, Paulovich AG, McIntosh M:
Normalization regarding non-random missing values in high-throughput
mass spectrometry data. In Pac Symp Biocomput; Lihue, Hawaii. World
Scientific Press; 2006:315–326.

54. Dazard J-E, Rao JS: Joint adaptive mean-variance regularization and
variance stabilization of high dimensional data. Comput Statist Data Anal
2012, 56:2317–2333.

55. Dazard J-E, Xu H, Santana A, Rao JS: R package MVR. 2011.
56. Griffin JL, Sang E, Evens T, Davies K, Clarke K: Metabolic profiles of

dystrophin and utrophin expression in mouse models of Duchenne
muscular dystrophy. FEBS Lett 2002, 530:109–116.

57. Hotelling H: Analysis of a complex of statistical variables into principal
components. J Educ Psychol 1933, 24:417–441.

58. Efron B: Robbins, empirical Bayes and microarrays. Ann Stat 2003, 31:366–378.
59. Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a

microarray experiment. J Am Stat Assoc 2001, 96:1151–1160.
60. Lonnstedt I, Rimini R, Nilsson P: Empirical bayes microarray ANOVA and

grouping cell lines by equal expression levels. Stat Appl Genet Mol Biol
2005, 4:Article7.

61. Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW: On
differential variability of expression ratios: improving statistical inference
about gene expression changes from microarray data. J Comput Biol
2001, 8:37–52.

62. Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3:Article3.

63. Kendziorski CM, Newton MA, Lan H, Gould MN: On parametric empirical
Bayes methods for comparing multiple groups using replicated gene
expression profiles. Stat Med 2003, 22:3899–3914.

64. Newton MA, Noueiry A, Sarkar D, Ahlquist P: Detecting differential gene
expression with a semiparametric hierarchical mixture method.
Biostatistics (Oxford, England) 2004, 5:155–176.

65. Dabney A, Storey JD: Contributed R package Qvalue: Q-Value Estimation for
False Discovery Rate Control. In Book Contributed R package Qvalue: Q-Value
Estimation for False Discovery Rate Control. City: Editor ed.^eds; 2003.

66. Smyth GK, Michaud J, Scott HS: Use of within-array replicate spots for
assessing differential expression in microarray experiments. Bioinformatics
(Oxford, England) 2005, 21:2067–2075.

67. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Statist Soc 1995, 57:289–300.

68. Storey JD: A direct approach to false discovery rates. J R Statist Soc 2002,
64(3):479–498.

69. Storey JD: The positive false discovery rate: a Bayesian interpretation and
the q-value. Ann Stat 2003, 31:2013–2035.

70. Lambert D: Zero-inflated poisson regression, with an application to
defects in manufacturing. Technometrics 1992, 34:1–14.

71. Mullahy J: Specification and testing of some modified count data
models. J Econometrics 1986, 33:341–365.

72. McCullagh P, Nelder JA: Generalized Linear Models. Boca Raton, London,
New York, Washington D.C: Chapman & Hall/CRC; 1989.

73. Nelder JA, Wedderburn RWM: Generalized linear models. J R Statist Soc
1972, 135:370–384.

74. Zeileis A, Kleiber C, Jackman S: Regression models for count data in R.
J Stat Softw 2008, 27:1–25.

75. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res 2003, 13:2498–2504.

76. Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW,
Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV: Metscape: a
Cytoscape plug-in for visualizing and interpreting metabolomic data in
the context of human metabolic networks. Bioinformatics (Oxford,
England) 2010, 26:971–973.

77. Duren W, Weymouth T, Hull T, Omenn GS, Athey B, Burant C, Karnovsky A:
MetDisease–connecting metabolites to diseases via literature. Bioinformatics
(Oxford, England) 2014. doi:10.1093/bioinformatics/btu179.

78. Barabasi AL, Albert R: Emergence of scaling in random networks. Science
1999, 286:509–512.

79. Liu Y: Fatty acid oxidation is a dominant bioenergetic pathway in
prostate cancer. Prostate Cancer Prostatic Dis 2006, 9:230–234.

80. Ouali F, Djouadi F, Bastin J: Effects of fatty acids on mitochondrial
beta-oxidation enzyme gene expression in renal cell lines. Am J Physiol
Renal Physiol 2002, 283:F328–F334.

81. Khasawneh J, Schulz MD, Walch A, Rozman J, de Hrabe AM, Klingenspor M,
Buck A, Schwaiger M, Saur D, Schmid RM, Kloppel G, Sipos B, Greten FR,
Arkan MC: Inflammation and mitochondrial fatty acid beta-oxidation link
obesity to early tumor promotion. Proc Natl Acad Sci U S A 2009,
106:3354–3359.

82. Medina MA, Sanchez-Jimenez F, Marquez J, Rodriguez QA, Nunez dCI:
Relevance of glutamine metabolism to tumor cell growth. Mol Cell
Biochem 1992, 113:1–15.

83. Argiles JM, zcon-Bieto J: The metabolic environment of cancer. Mol Cell
Biochem 1988, 81:3–17.

84. Tan Y, Zavala J Sr, Xu M, Zavala J Jr, Hoffman RM: Serum methionine
depletion without side effects by methioninase in metastatic breast
cancer patients. Anticancer Res 1996, 16:3937–3942.

85. de Vogel S, Dindore V, van Engeland M, Goldbohm RA, van den Brandt PA,
Weijenberg MP: Dietary folate, methionine, riboflavin, and vitamin B-6
and risk of sporadic colorectal cancer. J Nutr 2008, 138:2372–2378.

86. Takata Y, Cai Q, Beeghly-Fadiel A, Li H, Shrubsole MJ, Ji BT, Yang G, Chow
WH, Gao YT, Zheng W, Shu XO: Dietary B vitamin and methionine intakes
and lung cancer risk among female never smokers in China. Cancer
Causes Control 2012, 23:1965–1975.

87. Epner DE: Can dietary methionine restriction increase the effectiveness
of chemotherapy in treatment of advanced cancer? J Am Coll Nutr 2001,
20:443S–449S. discussion 473S-475S.

88. Kim YI: Folate and DNA methylation: a mechanistic link between folate
deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 2004,
13:511–519.

89. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG: PARP inhibition:
PARP1 and beyond. Nat Rev Cancer 2010, 10:293–301.

90. Krishnakumar R, Kraus WL: The PARP side of the nucleus: molecular actions,
physiological outcomes, and clinical targets. Mol Cell 2010, 39:8–24.

91. Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G: DNA damage
response pathways and cell cycle checkpoints in colorectal cancer:
current concepts and future perspectives for targeted treatment.
Curr Cancer Drug Targets 2012, 12:356–371.

92. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis
AN, Swigart LB, Nasi S, Evan GI: Modelling Myc inhibition as a cancer
therapy. Nature 2008, 455:679–683.

93. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, Larsson
LG, Hermeking H: The c-MYC oncoprotein, the NAMPT enzyme, the
SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive
feedback loop. Proc Natl Acad Sci U S A 2012, 109:E187–E196.

94. Thangaraju M, Cresci G, Itagaki S, Mellinger J, Browning DD, Berger FG,
Prasad PD, Ganapathy V: Sodium-coupled transport of the short chain
fatty acid butyrate by SLC5A8 and its relevance to colon cancer.
J Gastrointest Surg 2008, 12:1773–1781.

95. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S,
Prasad PD: Sodium-coupled monocarboxylate transporters in normal
tissues and in cancer. AAPS J 2008, 10:193–199.

96. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB,
Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA,
Lusis AJ, Hazen SL: Gut flora metabolism of phosphatidylcholine promotes
cardiovascular disease. Nature 2011, 472:57–63.

97. Plottel CS, Blaser MJ: Microbiome and malignancy. Cell Host Microbe 2011,
10:324–335.

98. Carvalho BM, Saad MJ: Influence of gut microbiota on subclinical
inflammation and insulin resistance. Mediators Inflamm 2013, 2013:986734.

doi:10.1186/1752-0509-8-72
Cite this article as: Dazard et al.: Metabolomics of ApcMin/+ mice
genetically susceptible to intestinal cancer. BMC Systems Biology
2014 8:72.

Dazard et al. BMC Systems Biology 2014, 8:72 Page 21 of 21
http://www.biomedcentral.com/1752-0509/8/72


	Metabolomics of ApcMin/+ Mice Genetically Susceptible to Intestinal Cancer
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Animal experimental design
	Ethics statement
	Mice strains
	Diet composition and tissue sample harvesting
	Sample preparations

	GC-MS analyses
	Mass spectrometry
	GC-MS metabolite identification and quantification

	LC-MS analyses
	Sample preparation
	HPLC separation
	Mass spectrometry

	Label-free data preprocessing
	Raw data acquisition and quantitative processing
	Data quality control and pre-filtering
	Missing value imputation
	Transformation of features

	Experimental design
	Experimental units, groups, factors and sample size

	Statistical analyses
	Analysis of variance of Acyl-CoA concentrations profiles of liver samples
	Test of independence/association
	Principal Component Analysis of plasma samples
	Statistical modeling and inference of differential metabolite concentrations in plasma samples
	Reports for label-free analysis in plasma samples
	Modeling polyp counts
	Implementations, algorithms and softwares

	Functional metabolomics analyses
	Canonical metabolomics pathways
	Metabolomics network analysis
	Cytoscape
	Overlap/enrichment analyses


	Results
	Grouping of plasma samples
	Evaluation of treatments on metabolite concentration profiles in plasma
	Independence between genotype and diet factors
	Relationship between polyp counts and metabolite profiles in plasma
	Functional analyses in plasma
	Acyl-CoA profiles in liver
	Long-chain Acyl-CoAs
	Short and medium-chain Acyl-CoAs
	Acyl-CoA/Free-CoA ratios


	Discussion
	Conclusions
	Supporting information

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

