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ACTIVATED NEUTROPHILS MEDIATE KIM-1 SHEDDING AND RENAL 

REMODELLING 

 

SHREYAS LINGADAHALLI 

 

ABSTRACT 

 

Kidney performs a complex task of concentrating the urine, retention of salts and protein 

and excretion of metabolic toxins and by the virtue of its function, is always under the 

chemical stress and subject to constant tissue damage. Post injury, nephrons have the 

ability to regain their function by remodeling including, clearing of apoptotic and 

necrotic debris. Kidney Injury Molecule-1(KIM-1/TIM-1/HAVCR-1) is a 

phosphatidylserine receptor that recognizes the apoptotic bodies and directs them to the 

lysosomal degradation. KIM-1 a type I transmembrane glycoprotein, although not 

constitutively expressed, is expressed in injured epithelial cells. It is known that the 

extracellular domain is cleaved by, MMP-9 and MMP-3, and the cleaved protein can be 

detected in the urine, making it a sensitive and non-invasive biomarker of renal injury. In 

rat renal injury model we observed neutrophil infiltration at the site of injury. To 

understand the role of neutrophis and its relation to KIM-1, we hypothesized, activated 

neutrophils increases shedding of the KIM-1 extracellular domain via MMP activity 

and thus reducing the uptake and clearing of apoptotic bodies. The purpose of the 

study is to determine if activated neutrophils can cause KIM-1 shedding and identify the 

MMP involved in this cleavage. Immortalized human proximal tubular (HK2) cells were 
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treated with supernatant from PAF (pro-inflammatory lipid) activated neutrophils. We 

observed an increase shedding of KIM-1 on treatment with activated neutrophil 

supernatant and that shedding was blocked after pretreatment  

 

of neutrophils with an MMP-9 inhibitor. Pretreatment with MMP-3 inhibitor did not 

show any change. We also found KIM-1 mediated uptake of apoptotic bodies is reduced 

after the KIM-1 ectodomain shedding .Our study suggests that activated neutrophils can 

cause KIM-1 shedding via MMP-9 that consequentially reduces the phagocytic activity 

of the epithelial cells and thus affect the kidney remodeling 
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CHAPTER I 

INTRODUCTION 

 

1.1 Acute renal failure and its significance  

 Acute Renal Failure (ARF), previously known as Acute Renal Injury or 

Ischemic Renal Injury (IRI) (Bellomo et al., 2004), is a syndrome characterized by rapid 

loss (ranging from hours to days) of kidney function with the accumulation of metabolic 

wastes such as urea, creatinine, uric acid and many other metabolites. It is usually 

associated with reduction in the urine output (not in all cases), increased serum potassium 

and sodium concentrations, and increased metabolic acids (Bellomo et al., 2004). ARF 

carries a high risk of both short-term and long-term mortality and morbidity (Ali et al., 

2007). Despite advances in pharmacological intervention, there is no marked reduction in 

mortality and morbidity. Over the years, research has stressed the need for detecting ARF 

in the early stages. Intervention at the early stages of the disease progression not only 

reduces mortality and morbidity, but also favors better prognosis with complete 

regeneration of the renal functions. Urinary MMP-9, IL18, NGAL, and KIM-1 are among 



2 
 

the renal injury biomarkers in different stages of investigation. Of these, KIM-1 has 

emerged to be a very sensitive and specific biomarker for renal injury; it is better than 

traditional markers such as serum creatinine and blood urea nitrogen (BUN) (Vaidya et 

al., 2010). The pathogenesis of ARF is complex and involves endothelial and epithelial 

cell death, alterations in microvascular blood flow, intra-tubular obstruction, and 

immunological and inflammatory processes. Of the many components involved in this 

complex mechanism, the role of infiltrating leuckocytes, especially neutrophils and the 

epithelial cell death by apotosis and its clearance, are of special interest to this study. This 

study ventures to explore the role of activated neutropils, their cross talk with other 

molecules, and their effects on pathophysioloy of AFR and renal repair. Ischemic 

reperfusion injury (IRI) is the most common etiology of ARF, and most of the 

understanding of ARF comes from the murine model of IRI. Recent studies in the murine 

model of IRI have demonstrated the role of apoptotic cells in inflammation, and the 

importance of rapid clearing of apoptotic cells to prevent further inflammation and 

immunological reactions (Kelly et al., 2001). KIM-1, apart from being a sensitive 

biomarker, is suggested to play an important role in the pathogenesis and subsequent 

renal repair. KIM-1 is a scavenger receptor, and is involved in the clearing of 

apoptotic/necrotic bodies (Ichimura et al., 2008). This study is focused towards 

understanding the role of activated neutrophils, medicated KIM-1 modulation, and its 

overall affect on apoptotic/necrotic cell uptake and renal repair. 
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1.2 Current treatment modalities for ARF 

 The current treatment modalities for ARF can be broadly divided into non-

dialysis treatment and dialysis treatment. The non-dialysis treatment is focused on 

reversing the underlying cause and reversing its metabolic consequences, which include 

volume overload, solute overload (hyperkelemic acidosis; uremia), endocrine 

deficiencies, and non-renal disturbances like GI bleeding, delirium, sepsis, respiratory 

dysfunction, and cardiac arrest (Alkhunaizi and Schrier, 1996, Conger, 1995). Even with 

the newer pharmacological agents like loop diuretics (Nigwekar and Waikar, 2011), 

mannitol, Fenoldopam (dopamine-1 receptor agonist that decreases vascular resistance 

and increases renal blood flow) (Denton et al., 1996), atrial natriuretic peptide (ANP) 

(Allgren et al., 1997), and insulin-like growth factor -1 (Petrinec et al., 1996), there has 

not been any significant reduction in mortality and morbidity associated with ARF or 

improvement of renal regeneration (Westenfelder, 2011).  

 Dialysis therapy, or renal replacement therapy (RRT), includes continuous renal 

replacement therapy (CRRT) and intermittent renal replacement therapy (IRRT). 70% of 

all patients with ARF in the intensive care unit require RRT (Davenport et al., 1991). 

IRRT has been the only available mode of therapy. The disadvantage of this procedure is 

that it is not well tolerated by patients with hemodynamic instability. CCRT, which was 

first introduced in 1977, involves slow and continuous dialysis, and it is well tolerated by 

most patients. However, it has the disadvantage of being a complicated, expensive 

procedure and carries increased risk of infections. Many non-randomized and 
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retrospective studies in comparing CRRT vs. IRRT have shown no significant differences 

in the mortality rates of the patients (Kellum et al., 2002). Even with the RRT therapy, 

the mortality is as high as 50% in critically ill patients (Star, 1998). This suggests a need 

for better understanding of the molecular mechanism of ARF and developing novel 

therapies aimed at improving renal regeneration. KIM-1, a scavenger receptor, may play 

an important role in renal regeneration and hence, better understanding of its molecular 

mechanism and exploiting it as a treatment modality are prime goals of this study. 

 

1.3 Hypothesis and specific aims 

Neutrophils play an important role in the pathogenesis of ARF. The goal of this 

study is to understand the interaction of neutrophils with KIM-1 and its role in 

pathogenesis and epithelial cell repair. Hence we hypothesized: activated neutrophils 

increase the KIM-1 ectodomain shedding via MMP-9 activity and thereby reduce 

the uptake of apoptotic bodies by renal tubular epithelial cells.  

Specific aim 1) Understand the role of neutrophils in KIM-1 modulation. Determine if 

activated neutrophils mediate KIM-1 ectodomain shedding.  

Specific aim 2) Determine the effect of neutrophils on KIM-1 mediated apoptotic cell 

uptake. 

Specific aim 3) Identify the matrix metalloproteinase (MMP) involved in the cleavage of 

the KIM-1 ectodomain. 
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1.4 Organization of thesis 

 Chapter II provides detailed background information on etiology and 

pathogenesis of ARF, and the role of leukocytes and apoptotic/necrotic cells in the 

inflammation process; KIM-1 structure, expression, and renal and extra-renal functions of 

KIM-1. The mechanism of renal regeneration, the role of KIM-1 in clearing the 

apoptotic/necrotic cells, and possible role in renal regeneration will be discussed. 

Relevant anatomy and the physiological role of the kidney will also be discussed. 

Materials and methods used in this study will be discussed in chapter III. The results 

obtained from these experiments will be discussed in chapter IV. Conclusions and future 

directions will be discussed in chapter V.   
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CHAPTER II 

BACKGROUND 

2.1 Kidney  

2.1.1 Gross anatomy of the kidney 

 The kidney is one of the most versatile organs in the body, performing several 

essential and regulatory functions. It is one of the vital components of the human urinary 

system. Human healthy kidneys are reddish brown in color and are situated behind the 

peritoneum on either side of the vertebral column. Figure 1 depicts the gross anatomy of 

the kidney. The upper border of the kidney is marked at the level of the 12th thoracic 

vertebra and the lower border at the 3rd lumbar vertebra. The right kidney lies about 1cm 

lower than the right kidney to accommodate the liver. The dimensions of adult kidneys 

are approximately 11cm X 6cm X 3cm, and it weighs about 150 grams in males and 135 

grams in females. The internal microstructure of the kidney can be divided into an 

internal medulla and an external cortex. The renal medulla consists of pale, striated, 

conical renal pyramids with a peripheral base and apices converging towards papillary 

sinuses. The subcapsular renal cortex arches over the base of the pyramids. It is divided 
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from the medulla by tangential blood vessels. The cortex can be histologically divided 

into outer and inner cortexes. The cortex closest to the medulla is sometimes referred to 

as the juxtamedullary cortex. The renal artery, a direct branch of the abdominal aorta, 

supplies about 20% of the total cardiac output to the pair of kidneys.  The renal artery 

divides into lobar arteries, which supply each pyramid. These further divide into 

interlobar, arcuate, and interlobular arteries. The lateral rami of the interlobular arteries 

continue as afferent arterioles, which carry the blood through the glomuruli and efferent 

arterioles carry the filtered blood away from the glomeruli. The venous drainage is by the 

renal veins, which drain to the inferior vena cava (Standring S 2009). 

                    

Figure 1: Gross anatomy of human kidney. Adopted from 

http://www.infobarrel.com/External_Anatomy_of_the_Kidney 

http://www.infobarrel.com/External_Anatomy_of_the_Kidney
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2.2 Nephron  

A nephron comprises the functional unit of the kidney, and each kidney consists 

of  about 1 million nephrons. The parts of the nephron are shown in Figure 2.  

 

Figure 2: Parts of nephron.  Adopted from www. holzbau-brunner.de   



9 
 

 

2.2.1 Glomerulus  

 A glomerulus is a collection of convoluted capillary blood vessels supported by a 

delicate mesh of mesangial matrix. The tuft of capillaries creates a mesh to filter the 

blood carried in by the afferent arteriole. Filtrate formed moves to the tubules and the 

filtered blood exits the glomerulus by the efferent arteriole (Standring S 2009). 

2.2.2 Bowman’s capsule  

 Bowman’s capsule is the blind expanded end of a renal tubule. It consists of 

simple squamous epithelial cells on its outer wall and the inner wall is made of 

specialized epithelial podocytes. Podocytes are stellate cells with foot processes that 

branch and give rise to terminal pedicles. These pedicles form a tight junction between 

the neighboring pedicles, and form a narrow slit between two pedicles called the filtration 

slit. The filtration slit is lined by a dense membranous slit diaphragm, through which the 

filtrate must pass to enter the urinary space (Standring S 2009).  

2.2.3 Renal tubule 

 The renal tubule consists of a glomerular capsule that continues as a proximal 

tubule, connected by a small neck. The proximal tubule continues as a coiled or 

convoluted tubule. As this approaches the medulla, it straightens and becomes the 

descending thin limb of the loop of Henle, and with an abrupt U-turn, continues as the 

ascending limb of Henle. Deep in the medulla, the tubules are narrower and the walls are 

thin. These sections are called descending and ascending thin segments of Henle’s loop 
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respectively. The ascending thick limb of Henle continues as the distil tubule and re-

enters the medulla. The distil tubule then continues as the convoluted distal tubule, and 

finally straightens out again to form the connecting tubule to join the collecting ducts. 

 The renal tubules are lined by single layered epithelial cells, and the type of 

epithelial cells varies according to the region and function. Proximal tubules are lined by 

cuboidal, or low columnar epithelial cells, with brush border of tall microvilli on its 

luminal surface, and basal cytoplasm, which is rich in mitochondria. The microvilli on 

the luminal surface increase the surface area in contact with the tubular fluid. Abundant 

mitochondria provide the ATP required for medullary transportation and reabsorption of 

ions and small molecules against the concentration gradient. 

 Renal tubules, based on their marked differences in structure, histology, and 

function, can also be divided into three segments: namely S1, S2, and S3. All three 

segments are characterized by unique cell type. S1 and most of the S2 segment comprises 

the proximal convoluted tubule. A sharp transition in the cell type from the convoluted 

part to the straight part of the tubule marks the boundaries of S3 segment (Standring S 

2009).  

 

2.3 Functions of kidney 

  Kidney performs a wide range of functions, from excretion of metabolic wastes 

to maintaining the normal homeostasis of the total body fluid, volume, or acid-base 

contents. These functions are carried out independently, or in orchestration with the many 

hormones secreted by the kidney. The major functions of the kidney are as follows: 
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A. Excretory functions: Kidney is involved in the production, concentration, and 

excretion of the metabolic wastes like urea, uric acid, and creatinine. 

B. Osmolality regulation: Kidney regulates the osmolality, or total body fluid, by 

regulating the water contents of urine; i.e., when plasma osmolality drops, kidney 

increases water reabsorption, and secretes concentrated urine. Similarly, when the 

plasma osmolality increases, the kidney secretes dilute urine, and thus maintains 

the total body fluid. This function is under strict control of antidiuretic hormone, 

secreted by the posterior pituitary gland. The hormone increases the vascular 

permeability of the collecting duct, thus secreting dilute urine. 

C. Acid base homeostasis: Kidney and lungs are the principle organs involved in the 

regulation of acid base balance and maintenance of pH in permissible levels. 

Kidneys maintain the pH levels by reabsorbing the bicarbonate ions or excreting 

H
+
 ions. 

D. Blood pressure regulation: Kidneys are involved in the maintenance and 

regulation of blood pressure by regulating the reabsorption of sodium chloride. 

This, in turn, is controlled by renin, a hormone secreted from kidney, which is a 

part of renin-angiotensin pathway. 

E. Hormone secretion: Kidney secretes a variety of hormones, including 

erythropoietin and enzymes like renin. In response to hypoxia, erythropoietin is 

secreted, which stimulates the bone marrow for increased erythropoiesis. 

Calcitrol, an active form of vitamin D, facilitates absorption of calcium in the 

intestine and renal phosphate reabsorption. It is also involved in maintenance of 

bone calcium deposition.  
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F. 2.4 Epidemiology of acute renal failure 

 The global burden of ARF and the complications associated with it are increasing. 

A recent epidemiological study from Scotland shows incidence of ARF as 2147 per 

million population per year (PMP) (Ali et al., 2007), and a large community based study 

in the United States shows incidence of ARF over 5000 PMP requiring no dialysis, and 

over 2915 PMP requiring dialysis (Hsu et al., 2007). The rate of ARF increases 

drastically in critically ill patients, with a reported rate of 67% in patients admitted to 

intensive care facility, and a frequency of 1.9% in all hospital admissions (Hoste et al., 

2006). ARF is a very important cause for mortality and morbidity in hospitalized patients, 

with an adjusted mortality risk of 1.4 (Lafrance and Miller, 2010).  Mortality of patients 

developing post-operative ARF ranges 24-100% and 50-70% in patients in intensive care 

facility on dialysis (Zanardo et al., 1994, Spiegel et al., 1991).  20-60% of patients with 

ARF require dialysis, and of the subgroup surviving the initial dialysis, only 25% 

required lifelong dialysis (Pascual et al., 1990). This shows that the syndrome can be 

reversed, and that the kidney possesses the property of regeneration.  

 

2.5 Etiology of acute renal failure 

 ARF can result from a wide range of insults to the body. In a hospital setting, 

ARF is common in elderly, newborns, or patients with other serious debilitating 

conditions. It is usually associated with multi-organ failure, sepsis, patients on 

nephrotoxic drugs, and administration of radio contrast dye. The common etiological 

factors have been depicted in Figure 3. 
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Figure 3 Etiology of acute renal failure. The figure shows, most important causes of ARF. 

Modified from (Lameire et al., 2005) 

 

 2.5.1 Pre-renal causes 

 Reduction in the perfusion of the kidney with intact tubular and glomerular 

function results in the reduction of renal clearance, is called pre-renal failure or pre-renal 

azotemia. The most common causes include severe dehydration due to diarrhea, use of 

diuretics, excessive vomiting, and cardiac failure (Brater, 2002, Gambaro and Perazella, 
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2003). Elderly people and newborns are particularly susceptible, owing to pre-existing 

hypovolemia state (Himmelfarb, 2009).  The kidney responds to reduction in the renal 

perfusion or pressure, by auto-regulating glomerular filteration rate (GFR) and renal 

blood flow. When the pre-glomerular pressure drops gradually, the kidney maintains a 

constant glomerular capillary hydrostatic pressure by secreting vasodilatating agents like 

prostaglandin I2 (Baylis and Brenner, 1978) and NO2 (De Nicola et al., 1992). A 

tubuloglomerular feedback mechanism maintains the GFR and the fluid delivery to the 

distil nephron. In case of acute fluid loss, there is an increased fluid absorbtion from the 

proximal tubule, and the tubuloglomerular feedback mechanism mitigates a reduction in 

GRF (Blantz, 1998, Badr and Ichikawa, 1988). In patients with reduced renal perfusion, 

non-steroidal anti inflammatory drugs (NSAIDS) are known to precipitate pre-renal 

azotemia (Shankel et al., 1992). Drugs like cyclosporine and tacrolimus cause 

vasoconstriction of small renal vessels leading to pre-renal azotemia (Textor et al., 1993). 

ACE inhibitors or ACE receptor blockers are also known to precipitate pre-renal 

azotemia (Franklin and Smith, 1986).  In hospital settings, patients with septic shock, 

cardiac failure, liver diseases, or multi-organ failure are at high risk (MacDowall et al., 

1998) to suffer from pre-renal azotemia. In surgical cases, postoperative and 

perioperative renal dysfunction, reduction in the mean arterial blood pressure, and 

reduction in the effective blood volume due to anesthesia, lead to pre-renal azotemia 

(Shusterman et al., 1987).  
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2.5.2 Renal or intrinsic causes.  

 Renal azotemia is associated with some cellular injury. The renal failure is 

characterized based on the site of the insult: glomerulus, vessels, interstitium, or tubules. 

And of these, tubular necrosis accounts for about 70% of all the cases (Nash et al., 2002), 

and 50% of tubular necrosis is caused by ischemic injuries. Tubular ischemic injury is 

usually a continuation of pre-renal azotemia, where the blood supply to the tubule is 

severely compromised, leading to necrosis of the tubular cells. The ischemic tubular 

necrosis can be reversed on early detection and by treating the root cause. 

Toxic injury counts as the second most common cause of intrinsic renal failure, 

accounting for about 20% of all the renal failure cases (Pannu and Nadim, 2008). The 

most common drugs causing failure, but not limited to these, include aminoglycoside 

antibiotics, radio contrast dyes, heme pigments, NSAIDS, chemotherapeutic agents like 

cisplatin, and myeloid light chain proteins (Liangos, 2012). The toxins act directly on 

cells or through another mechanism, damaging them. The mechanisms of action of most 

common nephrotoxic drugs are discussed in Table 1. Ischemia and toxins often combine 

to cause acute renal failure in severely ill patients with conditions such as sepsis, 

hematologic cancers, or the acquired immunodeficiency syndrome (Rao and Friedman, 

1995).  
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Table 1: Mechanism of action of common nephrotoxic drugs. Adopted from 

(Thadhani et al., 1996) 

 

Interstitial nephritis, glomerular nephritis, and vascular nephritis represent a very 

small percentage of all the ARF cases. Interstitial nephritis is most commonly caused by 

drug reaction. The other less frequent causes include autoimmune disease like lupus, 

infiltrating disease like amylodosis, and many viral infections (Cameron, 1988). 

Glomerular nephritis is mostly secondary to autoimmune diseases. Malignant 

Mechanism of action Drug

Reduction in renal perfusion

through alteration of intrarenal

hemodynamics

NSAIDs, angiotensin-convertingĞenzyme

inhibitors, cyclosporine, tacrolimus, 

radiocontrast

Direct tubular toxicity Aminoglycoside antibiotics, radiocontrast

agents, cisplatin, cyclosporine, tacrolimus,

amphotericin B, methotrexate,

foscarnet, pentamidine, organic solvents,

heavy metals, intravenous immune

globulin

Heme-pigmentĞinduced tubular

toxicity (rhabdomyolysis)

Cocaine, ethanol, lovastatin

Intratubular obstruction by precipitation

of the agent or its

metabolites or by-products

Acyclovir, sulfonamides, ethylene glycol,

 chemotherapeutic agents,methotrexate

Allergic interstitial nephritis Penicillins, cephalosporins, sulfonamides,

rifampin, ciprofloxacin, NSAIDs, thiazide

diuretics, furosemide, cimetidine,

phenytoin, allopurinol

HemolyticĞuremic syndrome Cyclosporine, tacrolimus, mitomycin, cocaine,

quinine, conjugated estrogens
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hypertension and vasculitis are the common reason for vascular nephritis (Graciano et al., 

2007). Interstitial nephritis and glomerular nephritis are also reversible in most cases, and 

corticosteroids are known to hasten the recovery. 

 

2.5.3 Post -renal causes 

 Obstruction to the urinary outflow at the level of the kidney or further down the 

urinary tract leads to increased backpressure on the kidney, resulting in structural and 

functional damage to the kidney. The most common causes include obstruction of the 

urethra by prostatic hypertrophy, prostatic cancer, or cervical cancer (Feest et al., 1993). 

Other less frequent causes include bilateral kidney stones, blood clots, fungal infections, 

retroperitoneal infection, colon and rectal carcinoma.  

 

2.6 Pathophysiology of acute renal failure 

 Acute renal failure is a complex dynamic process, involving a cross-talk between 

the tubular epithelial cells (Ueda and Shah, 2000), basement membrane, extra cellular 

matrix, infiltrating leukocytes (Okusa, 2002), and vascular factors (Sutton et al., 2002). 

This discussion will be limited to acute tubular necrosis from ischemia/toxic injury, 

which, as mentioned in the section 2.5.2, accounts for more than 90% of all the ARF 

cases. Interestingly, tubular epithelial cell are particularly vulnerable to injury (Havasi 

and Borkan, 2011), more than any other cell in the nephron. In this section, the 

pathophysiology of acute tubular necrosis, especially resulting from ischemic renal 
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injury, will be discussed in detail. Pathophysiology of other non-common causes such as 

interstitial necrosis and glomerular nephritis, are complex and usually immune-cell-

mediated (Falk and Jennette, 2010, Glassock, 2010, Lightstone, 2010) and will be beyond 

the scope of this study. 

 Most of our understanding of pathophysiology of acute tubular necrosis comes 

from the well-established mouse ischemia/reperfusion model (Wei and Dong, 2012). 

Although this model has its limitations, as the tubular injury resulting from sepsis or toxic 

insults are not explained (Ishikawa et al., 2010), it does give us a clear understanding of 

tubular necrosis secondary to pre-renal causes.  

 Following an ischemic insult, the complement system is activated; predominantly 

by an alternative pathway (Thurman et al., 2005). Complement up-regulates the 

endothelial binding proteins, receptors for collagen-like (cC1qR) and globular domains 

(gC1qR) of complement C1q (Guo et al., 1999). Complement also activates dendritic 

cells (DC) and C3 (macrophage derived complement protein) binding to the endothelial 

cells. The activated DCs in turn activate T cells (Sandor et al., 2009). Complement 

receptor 1-related protein y (Crry), a complement inhibitor, is expressed by the basement 

membrane of the proximal tubular cells (Thurman et al., 2006b). Loss of polarity and 

destruction of the basement membrane leads to altered expression of Crry. The inability 

of Crry to inhibit the complement is the key in activation of complement (Thurman et al., 

2006a). Crry deficient mice, as would be expected, are more susceptible to IRI (Thurman 

et al., 2006a). In tubular necrosis, tubular epithelial cells are not innocent victims of 

injury, but play an active role in the inflammation process. They not only generate pro-

inflammatory cytokines like TNF-α, MCP-1, IL-8, IL-6, IL-1β, TGF-β, RANTES, and 
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epithelial neutrophil-activating protein 78 (ENA-78), which activate inflammatory cells; 

they also express Toll-like receptors (TLRs), complement and complement receptors, and 

molecules that regulate T lymphocyte activity (Bonventre and Zuk, 2004). TLRs are 

transmembrane receptors widely expressed in leukocytes and renal epithelial cells. 

Increased expression of TLR-2 and TLR-4 and increased neutrophil infiltration has been 

observed during ischemic injury. TLR-4(-/-) mice with wild type mice bone marrow graft 

showed significantly less serum creatinine and histological tubular necrosis compared to 

wildtype mice with TLR-4(-/-) bone marrow graft after an IRI (Pulskens et al., 2008). 

Similarly, cisplatin treatment in mice with a targeted deletion of TLR-2, demonstrated 

reduced renal dysfunction, tubular necrosis serum, urinary cytokines, and chemokines 

compared to mice expessing TLR -2 (Zhang et al., 2008a). 

Tubular epithelial cells undergo a series of alterations, as depicted in Figure 4, 

finally resulting in necrosis or apoptosis. Ischemia results in extensive damage to the 

basement membrane with a rapid loss of cytoskeletal integrity (Lameire et al., 2005). 

Apical membranes are damaged with the shedding of the proximal tubular brush border 

(Solez et al., 1979). This is followed by mislocalization of cell adhesion molecules and 

other membrane proteins like Na
+
K

+
ATPase and β-integrins (Gailit et al., 1993, Zuk et 

al., 1998). ATP depletion leads to an increase in intercellular free calcium concentrations, 

resulting in activation of proteases and phospholipases, which in turn contribute to further 

disruption of the cytoskeleton and impair mitochondrial energy metabolism interfering 

with production of ATP (Bonventre, 1993). Na
+
K

+
ATPase maintains the cell volume and 

cell polarity by maintaining a negative intracellular charge and low Na
+
 concentrations. 

With depletion of oxygen and ATP, Na
+
K

+
ATPase ceases to function, leading to an 
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increase Na
+
 and Cl

-
 concentration with a loss of cell polarity (Leaf, 1959, Flores et al., 

1972). β-integrin dependent cell-cell, cell-matrix adhesions are disrupted by cytokines 

and with superimposed ATP depletion, results in disruption of cell–cell junctional 

complexes (Zuk et al., 1998). Disruption of the tight junction alters both cell permeability 

and cell polarity (Abbate et al., 1994). Loss of cell membrane integrity leads to swelling 

of the cells. The swollen cells block the lumen and further reduce the blood supply to 

already ischemic cells (Linshaw et al., 1991). This ultimately leads to activation of the 

apoptosis pathway. The dead and living cells slough into the lumen forming casts. The 

casts are known to block the lumen, increase the intertubular pressure, and reduce the 

glomerular filtration rate. The increase in permeability also results in back-leak of 

glomerular filtrates.  In rat renal ischemia/reperfusion models, the majority of luminal 

cells were apoptotic or necrotic cell debris (Ichimura et al., 1995). These apoptotic and 

necrotic cells were gradually cleared as the kidney regenerated (Borregaard and Cowland, 

1997). 
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Figure 4: Tubular epithelial cell injury and repair in ischemic reperfusion injury. Modified 

from (Thadhani et al., 1996) 

 

2.6.1 Role of inflammatory cells in pathogenesis of ARF  

 Inflammatory cells also play an important role in the pathogenesis of ARF. The 

roles of neutrophils, macrophages, dendritic cells, and lymphocytes in pathogenesis of 
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ARF are the subject of active research. However roles of lymphocytes, dendritic cells, T 

cells, and B cells remain controversial and are beyond the scope of this discussion. Only 

the role of neutrophils and macrophages in the pathogenesis of ARF will be discussed in 

detail.  

 Neutrophils constitute the majority of white blood cells, and are the first 

responders to the site of injury. Infiltration of neutrophils during ischemic injury has been 

demonstrated in large number mice and human renal biopsies (Furuichi et al., 2002, 

Miyazawa et al., 2002, Willinger et al., 1992, Linas et al., 1992). Though the role of 

neutrophils in the pathogenesis of ARF is still not clearly understood, mice depleted of  

peripheral circulating neutrophils were less susceptible to ischemic renal injury (Kelly et 

al., 1996). Neutrophils adhere to the endothelial cells through a complex mechanism 

involving several classes of adhesion molecules, which includes selectins, mucins, 

integrins, and the Ig superfamily of proteins (Rabb et al., 1997). After neutrophils adhere 

to the endothelial cells and chemotax ouside the vessel, they release reactive oxygen 

species (ROS), proteases, elastase, myeloperoxidase, and matrix metalloproteinases that 

further increase inflammation (Rabb et al., 1997). Chemokines and selectins are 

upregulated by cytokines like IL-1 and TNFα. Then chemokines recruit leukocytes and 

activate them, increasing adhesion (Rahman et al., 1998). Circulating or locally produced 

TNFα and ROS produced during reperfusion injury is also known to recruit neutrophils 

(Ishibashi et al., 1999). Transgenic mice overproducing anti-oxidants show less 

histological injury and reduced neutrophil infiltration compared to wildtype mice 

(Ishibashi et al., 1999). Of the many adhesion molecules involved, ICAM-1 has been 

studied in detail; blocking ICAM -1 by injecting anit-ICAM-1 antibody, beneficial effects 
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were observed in mice subjected to renal ischemia (Kelly et al., 1994). Similarly, ICAM-

1 knockout mice also demonstrated reduced tubular necrosis and serum creatine, versus 

wild type mice subjected to ischemic injury (Kelly et al., 1996). After activation, 

neutrophils are known to secrete matrix metalloproteinases (MMP). In fact, neutrophils 

are considered the major source of MMPs in kidney, and are associated with many 

diseases like pylonephritis and renal tissue scarring (Tan and Liu, 2012). MMPs from 

neutrophils are particularly of great interest to this study, as some family members have 

the ability to cleave a transmembrane protein expressed from the injured tubular cells 

known as kidney injury molecule -1(KIM-1) (Ichimura et al., 1998). The role of KIM-1 

and KIM-1 ectodomain shedding in relation to renal injury and regeneration will be 

discussed in detail in section 2.11.  

 Macrophages are derived from blood monocytes. Apart from their role as 

phagocytes, they are also known to secrete NO from iNOS and proinflammatory 

cytokines including IL-18, IL-1α, IL1β, TNF α, and Nk-kB (Akcay et al., 2009). 

Macrophage infiltration is observed at different stages of ARF. At early stages of AKI, 

they are known to increase inflammation due to their pro-inflammatory cytokines (Li et 

al., 2008); whereas, in the later stages they exhibit protective functions, clearing the 

apoptotic cells by phagocytosis and secreting anit-inflammatory cytokines (Lee et al., 

2011). Depletion of macrophages using genetic techniques (Furuichi et al., 2003) or 

liposomal colodronate (Ferenbach et al., 2012) during AKI, has demonstrated beneficial 

effects; however, in a different study, depletion of macrophages in cisplatin-induced AKI 

had no protective effects (Lu et al., 2008). Macrophage phenotype also determines their 

role; M1 macrophages have pro-inflammatory effects, while M2 macrophages have 
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protective function (Lee et al., 2011). Hence, further studies are required to understand 

the exact functions of macrophages in AKI.  

 

2.6.2 Apoptotic cells and inflammation 

 Apoptotic cells produced as a result of various insults need to be cleared by 

physical removal, and this represents the final stage in apoptosis programming (Kerr et 

al., 1972). Accumulation of apoptotic cells in the lumen not only blocks the lumen and 

reduces the GFR, but also promotes secondary inflammation. Apoptotic cells are self- 

contained, and thus prevent the release of intracellular contents. However, if they are not 

cleared rapidly, they lose their cell membrane integrity; and, over time, release their 

intracellular contents, which can provoke secondary inflammation and autoimmunity in 

the tissue (Daemen et al., 1999). Studies in the murine model of ischemic reperfusion 

injury show administration of IGF-1 (a growth and survival factor) and active caspase 

inhibitor reduced inflammation; and this is most likely because of their ability to inhibit 

apoptosis (Daemen et al., 1999). These findings strongly suggest that apoptotic cell death, 

either directly or indirectly, contributes to inflammation and autoimmune reaction. 

Professional phagocytes, such as macrophages, dendritic cells, and non-professional 

phagocytes surrounding epithelial and endothelial cells, perform an important role in 

clearing these cells. They are usually very efficient and rapid in clearing 

necrotic/apoptotic bodies (Lauber et al., 2004); and thereby reduce secondary 

inflammation. In the early stages of apoptosis, cells release ‘find-me’ signals, which 

include many chemokines. The chemokines attract the motile phagocytes to the cells 
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undergoing apoptosis. In the later stages of apoptosis, the cells express molecules like 

phosphatidylserine (PS), which are termed as ‘eat-me’ signals (Ravichandran and Lorenz, 

2007). Among the array of eat-me signals, exposure of PS on the cell surface, which is 

otherwise on the inner surface of a healthy cell, is the key signal recognized by the 

phagocytic cells.  The phagocytic cells identify and bind to these ‘eat-me’ signals on 

apoptotic bodies, and mediate their uptake (Peiser et al., 2002, Pearson, 1996). 

Macrophages also help in attenuating the inflammation by secreting the anti-

inflammatory cytokine IL10, and reparative growth factors including TGF-β (Savill and 

Fadok, 2000). Uptake of apoptotic cells by non-professional phagocytes has also been 

shown to secrete growth-promoting factors and thus reduce further injury. Mouse 

mammary epithelial cells, involved in the clearing of the apoptotic Jurkat-T cells, 

secreted hepatocyte growth factor, TGF-β and VEGF, and also primed the cells to resist 

UV induced cell injury (Golpon et al., 2004).  In a similar study in mice, administration 

of excessive apoptotic cells, or masking the PS via annexinV (to prevent the PS mediated 

uptake) in the mice, produced the hallmark of autoimmunity, such as autoantibody 

production and deposition of IgG in glomurulus (Asano et al., 2004). Defective clearing 

of apoptotic cells depicts strong relation with the development of autoimmune disorders 

like lupus, and it is due to development of antinuclear antibody against the chromatin 

from the ruptured apoptotic cells (Taylor et al., 2000).  Hence, clearing of 

apoptotic/necrotic cells is necessary to attenuate the inflammation.  
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2.7 Tubular epithelial cell regeneration and apoptotic cell clearance 

 Unlike the heart or brain, kidney possesses the capability to recover completely 

from ischemic or toxic injury. As mentioned in earlier sections, proximal tubular necrosis 

comprises the majority of ARF cases.  Hence, this discussion is limited to the events 

following tubular damage: i.e. regeneration and proliferation of the surviving proximal 

tubular epithelial cells, and the regaining of renal functions. After injury, surviving 

epithelial cells undergo a series of alterations before they can function at their normal 

capacity. Although the exact mechanism of the renal regeneration remains elusive, a 

series of studies over years has emphasized the role of apoptotic cell clearing and renal 

regeneration. Many theories have been proposed to identify the source of the cells that 

are involved in the replacement of the dead cells. First, the new cells could be produced 

from the resident stem cells (Oliver et al., 2004). Stem cells are self-renewing; i.e. can 

produce more cells of their own kind by division. They also have the capability to 

differentiate into different cell types by asymmetric division (Tanaka and Reddien, 2011). 

Extensive experiments using genetic–fate mapping techniques have demonstrated the 

absence of marrow-derived or renal interstitial cell-derived epithelial stem cells involved 

in the reparative process (Humphreys et al., 2008). Second, there are specialized 

progenitor cells, which have only a limited self-renewal property; they differentiate along 

one particular cell lineage. Using unbiased DNA analog-based lineage identification in a 

mouse model subjected to IRI, it was confirmed that no special progenitor cells were 

involved in the repair of the renal epithelial cells (Humphreys et al., 2011). Third, the 

surviving epithelial cells dedifferentiate to cover the loss of the neighboring cells (Pawar 
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et al., 1995). Of the three possible hypotheses, dedifferentiation and proliferation of 

surviving epithelial cells seem to the accepted mechanism. 

 

2.8 Mechanism of renal proximal tubular epithelial cell regeneration 

 During homeostasis, kidney proximal tubular cells exhibit minimal proliferation 

as demonstrated by proliferative cell nuclear antigen (PCNA) and Ki-67 

immunoreactivity (Nadasdy et al., 1994, Messier and Leblond, 1960). The proliferation is 

under a rigid control, and is limited to just replace the cells lost into the urine. Post injury, 

surviving epithelial cells rapidly enter the cell cycle and extensively proliferate to make 

up for the loss of the neighboring cells (Witzgall et al., 1994). The mechanism of renal 

repair is depicted in Figure 5. The crucial processes involved in the regeneration process 

are migration, proliferation, and recuperation of physiological functions.  

 The functional recovery of the nephron begins with the migration of the 

surviving epithelial cells. The mechanical scrape technique is the most widely used 

method to mimic the tubular epithelial cell loss. In this technique, a tract of cells is 

scraped from the confluent monolayer, and the capability of the surrounding cells to 

migrate and cover the tract is measured. Using these techniques, rabbit proximal tubular 

epithelial cells were scraped. It was observed that 77% of the scraped area recovered 

within 7 days with no treatment; whereas epidermal growth factor (EGF) stimulated more 

complete recovery, TGFβ inhibited the recovery. It was also observed that when the cells 

were treated with known neprotoxins like mercuric chloride or fumonoisin, they 
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displayed migratory defects and overall cytotoxicity. These results suggest the 

importance of migration in renal repair (Counts et al., 1995).  

Dedifferentiation is a property of rapidly dividing epithelial cells. The cells 

dedifferentiate to attain the gene expression pattern seen in the developing nephron, 

which has a major implication for regulation of renal repair. The dedifferentiation process 

in renal tubular epithelial cells is associated with an up-regulation of genes encoding Egr-

1, c-fos, NAK-1, c-myc, and heat shock protein-70 (HSP-70) (Counts et al., 1995). 

Several developmental genes like vimentine and Pax2, are also re-expressed (Basile et 

al., 1997). Vimentin is an intermediate filament protein found in the undifferentiated 

mesenchymal cell, otherwise not found in the adult kidney, and it is also a marker for 

dedifferentiated epithelial cells. Cell adhesion molecules also play an important role in 

the migration and dedifferentiation process. α6β1 intigrin (Kreidberg and Symons, 2000), 

neural cell adhesion molecule (NCAM) (Acheson et al., 1991), and leukocyte-endothelial 

adhesion molecule are the most important cell adhesion molecules in the adult proximal 

tubular epithelial cell. After ischemic injury, β1 integrin relocates to the lateral border, 

facilitating cell-cell and cell-matrix interaction (Zuk and Matlin, 2002). NCAM, a 

member of Ig superfamily of proteins, controls the cell polarity and cell shape (Walsh 

and Doherty, 1997). NCAM is also used as a marker for dediffrentation phenotype 

metanephric mesynchyme (Bokel and Brown, 2002). 

The role of extra cellular matrix (ECM) cannot be overstressed. ECM not only 

provides a scaffold for the proliferating and migrating epithelial cells, many signaling 

pathways are also activated by the interaction of ECM molecules with integrins. Post-

ischemic insult, there is an increased production of ECM components including type IV 
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collagen α1 chain and fibronectin, containing the extra type III (EIIIA) domain, and their 

activity is detected in the basement membrane of the proliferating epithelial cells (Basile 

et al., 1998). It is further confirmed by the finding that splice variants of fibrinonectin-

EIIIA are minimal in the normal kidney, but significantly increased after IRI (Zuk et al., 

2001), which suggests the fibrinonectin-EIIIA involvement in the renal regeneration. 

Similarly, lamilin 5, which is known to be involved in the regeneration of skin wounds, is 

proposed to be involved in renal regeneration. It is widely expressed along the basement 

membrane of the nephron.  
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Figure 5: Mechanism of renal regeneration. Figure adopted from (Tadani, et.al., 2008)  RTPC- 

Renal proximal tubular epithelial cells  
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2.9 KIM-1/TIM-1/HAVCAR-1 

 The same protein has been separately identified in different processes, and so 

identified by different names. When expressed in kidney, particularly proximal tubular 

epithelial cells, it is called kidney injury molecule -1(KIM-1); similarly, when expressed 

on T cells, it is called T cell immunoglobulin mucin domain-1 (TIM-1), and in liver it is 

known as hepatitis A virus cellular receptor -1. In the following sections, structure, 

function, and role of KIM-1 in renal regeneration will be discussed in detail. 

 

2.9.1 Structure of KIM-1 

KIM-1 is a type I transmembrane glycoprotein, and structurally resembles 

mucosal addressin cell adhesion molecule (MAdCAM-1) (Briskin et al., 1993). KIM-1 

has an extra cellular domain, a transmembrane domain, and a cytoplasmic tail.  The 

ectodomain, consisting of 100 residues, has an immunoglobulin V (Ig-V), made of highly 

conserved 6 cystine residues, similar to what is found in immunoglobulin superfamily 

(IgSF). It also contains a region rich in Thr/Ser/Pro with O-linked glycosylation, a 

characteristic of mucin like domain. Many N-linked glycosylation are also present (Bailly 

et al., 2002). The crystal structure of KIM-1 reveals the IgV domain to be made up of 2 

anti-parallel β- sheets (BED and GFC) with four cystine residues joining a CC’ loop to 

the GFC β- sheet which forms a pocket that recognizes phosphatidylserine (PS) (Su et al., 

2008). This binding cleft is unique for KIM-1, and is not found in other molecules of 

immunoglobulin super family. The ability of KIM-1 to bind to the phosphatidylserine 

suggests an important function in recognition of apoptotic cells. The transmembrane 
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domain consists of 20 residues, but specific functions of the transmembrane domain are 

still unknown. The C terminal or the cytoplasmic region is short and made of 47 residues, 

and is ~10 KDa in size. It is also the most highly conserved region between the human 

and the mouse (Monney et al., 2002). Human KIM-1 has 2 splice variants that differ in 

the cytoplasmic domain; KIM-1a, consisting of 339 amino acids, is mainly expressed in 

the liver, and has no tyrosine kinase phosporylation site; KIM-1b (referred to as KIM-1 in 

this literature), consisting of 359 amino acids, is mainly expressed in the kidney, and has 

2 highly conserved tyrosine residues and a predicted tyrosine kinase phosporylation motif 

at position 350 (Zhang et al., 2007). The extracellular region of KIM-1 can be cleaved at 

a proteolytic site close to transmembrane domain; thus shedding a physiologically active 

soluble protein of ~90kDa into the extracellular space. This carries a great clinical 

significance, as the ectodomain serves as a renal injury marker. The cells expressing 

KIM-1 display constitutive shedding of the ectodomain (Bailly et al., 2002). The 

shedding was inhibited by a broad-spectrum matrix metalloproteinase (MMP) inhibitor or 

by blocking of the proteoletic site by a site-specific antibody (Bailly et al., 2002). Thus, 

the cleavage of the extracellular domain is believed to be MMP mediated in vivo. Yet, a 

separate study has also shown that the constitutive ectodomain shedding is mediated by 

the activation of extra cellular signal regulated kinases (ERK) activation, and the 

shedding is accelerated by the activation of p38 mitogen activated protein (MAP) kinase, 

suggesting endogenous shedding is regulated.  The secondary structure (and not the 

amino acid sequence) in the juxtamembrane region is important for the shedding of the 

ectodomain (Zhang et al., 2007). 
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Figure 6: Structure of KIM-1. Adopted from (Waanders et al., 2009) 

 

2.9.2 Expression of KIM-1 

 KIM-1 was first identified and characterized in 1998. It was noted that KIM-1 

was not expressed in healthy murine kidney, but was abundantly expressed after different 

direct or indirect renal injuries (Ichimura et al., 1998). Similar findings were observed for 

human KIM-1 expression. While KIM-1 was undetectable in healthy human urine, it was 

abundant in patients suffering from various primary and secondary kidney injuries, 

allograft transplantation, and renal cell carcinoma. On further examination, with double 

labeling with aquaporin-1 (a marker for renal tubules), it was observed that KIM-1 was 

co-expressed with aquaporin-1 and was predominantly expressed by the proximal tubular 

epithelial cell (van Timmeren et al., 2007). KIM-1 is expressed on the apical membrane 
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of the injured tubules (van Timmeren et al., 2007). The expression of murine KIM-1, 

depending on the nature of the injury, varies between different segments of the proximal 

tubule. In the renal ischemic model, the expression was predominantly from the S3 

segment of the corticomedullary tubules (Chiusolo et al., 2011). In conditions like 

polycystic kidney disease, where the injury is not primarily to the S3 segment, the 

expression was observed from the mid-cortical and superficial tubules (van Timmeren et 

al., 2006). However, in 90% of all the renal injuries, both acute and chronic, the 

expression was predominantly from the S3 segment of the proximal tubules (van 

Timmeren et al., 2007).  

  

2.9.3 Function of KIM-1 

 KIM-1/TIM-1 has been a topic of extensive research over the past few years 

because of its varied roles in the kidney and immune system. In the renal system, most of 

the work is directed towards understanding KIM-1 as a sensitive renal injury marker. 

Similarly, extensive research has been carried out by immunologists to understand the 

role of TIM-1 in regulating the immune system; although a global knockout was without 

effect for immune responses (Barlow et al., 2011). In the following sections, the role of 

renal and extra renal functions of KIM-1/TIM-1 will be discussed in detail. 
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2.9.3.1 Renal functions of KIM-1 

As mentioned earlier, the extracellular domain of KIM-1 is a receptor for PS. PS is 

present in the inner surface of the cell membrane, but when cells undergo apoptosis, PS is 

exposed on the outer surface. This is recognized by a scavenger receptor, which by 

definition, recognizes the PS, or oxidized LDL, and mediates their uptake. In vitro studies 

show rat tubular epithelial cells recognize the PS on the apoptotic cells, mediate its 

uptake, and direct it towards lysosomal degradation (Ichimura et al., 2008). Thus, the 

KIM-1 expressing epithelial cells act as ‘semi-professional’ phagocytes. Hence, KIM-1 

expressing epithelial cells recognizes the ‘eat me’ signal from the apoptotic/necrotic cells, 

and so should mediate uptake, degradation, and clearance of the tubule of the dead and 

necrotic cells. The mechanism and role of KIM-1 in directing the apoptotic cells to the 

lysosomal degradation is not clear yet, but it is proposed, KIM-1 may be a co-receptor in 

mediating the uptake.  

KIM-1 has also demonstrated protective functions in IRI. In a murine kidney IRI 

model, administration of monoclonal antibody against KIM-1 (RMT-10 clone) to the 

mice had a protective function (Nozaki et al., 2102). Similar results were also observed 

after liver ischemia/reperfusion injuries (Ueno et al., 2008). However, other groups using 

a different monoclonal antibody, directed towards different epitopes, failed to observe 

similar results. Hence, it is speculated that blocking different epitopes on the KIM-1 may 

lead to altered functions. Further studies are required to have a conclusive answer.  

Early detection of renal injury has always been of great significance; it not only 

reduces the mortality and morbidity related to ARF, but also reduces the cost of the 
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treatment.  Following an injury, renal cells are known to have altered expression or 

secretion of some molecules. They have been exploited for their use as renal injury 

markers. KIM-1, IL-18, MMP-9, osteopontin, clusterin, and NGAL are some of the 

molecules to be studied for use as renal injury markers (Bonventre et al., 2010). The 

ectodomain of KIM-1 shed to the extracellular space can be detected in the urine, and 

serves as a non-invasive marker for renal injury, and has been validated for its sensitivity 

and specificity (Vaidya et al., 2010). Urinary KIM-1 has the highest sensitivity and 

specificity compared to all the other biomarkers of renal injury (Vaidya et al., 2010). 

KIM-1 is more sensitive than traditional biomarkers like serum creatinine and blood urea 

nitrogen (BUN) (Liangos et al., 2007).   KIM-1 shedding has also been considered a good 

prognostic marker of renal injury, where the reduced shedding in the urine signifies the 

reduction of the renal injury.  

KIM-1 is also proposed to be involved in development of interstitial fibrosis. 

KIM-1 expression is observed around the atrophic tubules surrounding the fibrosis. 

Although there is no proof of increased expression of KIM-1 leading to fibrosis, a 

positive association between the KIM-1 expression and renal fibrosis exists (Kuehn et al., 

2002). However, positive significant association is observed with tubular KIM-1 

expression and interstitial damage (fibrosis and macrophage infiltration). 

 Extensive KIM-1 expression and shedding is observed in clear-cell type renal 

carcinoma (RCC). Though the tumor cells do not express KIM-1, abundant expression is 

observed in the neighboring epithelial cells (Cuadros et al., 2013). Many hypotheses have 

been proposed to explain the expression of KIM-1 in them. First, mechanical pressure 

exerted by the rapidly dividing tumor cell may cause ischemia in the neighboring cell or 
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may dedifferentiate them. Second, KIM-1 expressing cells may represent the early stages 

of the RCC (Cuadros et al., 2013). Conclusive answers remain elusive. Since RCC is an 

immunogenic tumor, KIM-1/TIM-1 may be involved in modulating the immunogenicity 

of the tumor. 

KIM-1 is expressed in the primary cilia of the proximal tubular epithelia cells 

(Kotsis et al., 2007). Primary cilia play important and diverse functions in the cellular 

signaling. Defects in the primary cilia, usually due to the mutations in the genes encoding 

the ciliary proteins, are associated with diseases such as impaired mucociliary clearance, 

situs inverses, hydrocephalus, obesity, infertility, and polycystic kidney disease (Singla 

and Reiter, 2006). Autosomal dominant polycytic kidney (PKD) disease is usually 

associated with the mutations in PKD-1 gene, which encodes polycystin-1, or PKD-2 

encoding TRPP-2 (Wu and Somlo, 2000). Renal cilia are non-motile, and lead to an 

increase in intracellular calcium in response to urine flow (Liu et al., 2003). It is now 

known that KIM-1 interacts with TRPP2 (Kotsis et al., 2007) and is dependent on the 

highly conserved tyrosine at 350 in the cytoplasmic tail, and mutation of the tyrosine 

residue results in defect of intracellular calcium change in response to flow (Kotsis et al., 

2007). As KIM-1 holds structural homology to MaDCAM family of proteins, an 

endothelial integrin and selectin receptor, it is proposed to be involved in cell-to-cell or 

cell-to-matrix adhesion. The exact role of KIM-1 in this process is yet to be determined 

(Gordon, 2002). 
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2.9.3.2 Extra renal function of KIM-1 

KIM-1, also known as HAVCR-1, is expressed in hepatocytes, and facilitates the cellular 

entry of hepatitis A virus (Silberstein et al., 2001).  

KIM-1, also known as TIM-1, belongs to TIM family of proteins, which consist 

of TIM-1, TIM-3, and TMI-4 in humans, and 4 (TIM-2) members in mice. TIM plays 

important and complex roles in regulating the immune system. It is involved in the T cell 

activation differentiation, survival, and T cell tolerance (Rodriguez-Manzanet et al., 

2009). TIM-1 is expressed on the active CD4
+
 T cells, but not on the naïve cells. Post 

differentiation, TIM-1 is predominantly expressed on TH-2 cells; whereas, TH-1 cells 

show limited or no expression (Umetsu et al., 2005). On T cells, TIMs act as receptors. 

TIM-4 present on the antigen presenting cells or dentritic cells is the ligand for TIM-1, 

and mediates the differentiation of Th-2 cells (Meyers et al., 2005). TIM-3 is known to 

bind to gelatin-9 and regulate the duration of response of Th-1 (Umetsu et al., 2005).     

Initial studies in interval-specific congenic mice (HBA) (McIntire et al., 2001) 

identified TIM-1 as a susceptible gene for asthma and hypersensitive airway disease. 

TIM-1 plays an important role in regulating the TH-2 cell responses, and thus regulates 

the airway inflammation by regulating the TH-2 response in the asthma mice model 

(Sizing et al., 2007). Epidemiological studies have also established a relation between the 

SNPs in TIM-1 gene to increased asthma and atopy (Graves et al., 2005).  

KIM-1/TIM-1 is also known to play an important role in organ transplant 

rejection. Anti-KIM-1/TIM-1 monoclonal antibody administered to mice before the 



39 
 

cardiac allograft, reduced the rate of rejection; whereas, agonist KIM-1/TIM-1 antibody 

increased the rate of organ transplant rejection in the murine allograft kidney 

transplantation model. The above-mentioned studies and more similar studies depict a 

very strong association of KIM-1/TIM-1 in modulating some elements of the immune 

response in allograft tissue transplantation.  

Cisplatin, a widely used chemotherapeutic agent, which is nephrotoxic, is also 

ototoxic. In cisplatin treated mice, increased expression of KIM-1 was observed in 

cochlear cells (Mukherjea et al., 2006). Possible cochlear injury molecule (CIM-1) is 

being explored.  

 

2.10 Role of Matrix metalloproteinase in KIM-1 cleavage and acute renal failure 

Matrix metalloproteinases are groups of Zn dependent endopeptidases. They were first 

discovered about 50 years ago in the metamorphosis of tadpole tail for their 

collagenolytic activity, degrading the extra cellular matrix. To date, 28 MMPs have been 

identified, which share structural similarities and a catalytic Zn
+
 domain (Rodriguez et 

al., 2010). Based on their substrates, MMPs are divides as collagenase (MMP -1, -8 and -

13), stromelysins (MMP- 3,-10 and -11), gelatinases (MMP -2 and -9), and membrane 

type MMP (MT-MMP) (Back et al., 2010). MMPs and their natural inhibitors TIMPs are 

under a strict regulation, and play important and varied roles ranging from embryonic 

development to pathogenesis of various diseases. MMP-9 is also a predicted renal injury 

marker (Han et al., 2008). Apart from their role in the pathogenesis of various renal 
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diseases, as discussed in section 2.9.1, the KIM-1 ectodomain is known to be cleaved by 

MMP (Bailly et al., 2002), which makes it even more important for this discussion.  

 

Figure 7: the expression profile of MMPs and their natural inhibitors TIMPs. The figure 

shows the complied data for the expression profile for different MMPs in relation to nephron in 

kidney. * denotes upregulation of MMPs in different pathological conditions. Adopted from (Tan 

and Lui, 2012) 

Many recent studies have demonstrated the role of MMPs, especially MMP-2 and 

MMP-9, in the pathogenesis of renal ischemia-reperfusion injury. An increased 

expression of MMP-2 and MMP-9 has been observed after IRI (Basile et al., 2004, Caron 

et al., 2005, Catania et al., 2007). However, as contradictory results have also been 

reported, uncertainties still exist (Jain et al., 2000, Ziswiler et al., 2001, Bengatta et al., 
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2009). The extracellular domain shedding in P769 cells was inhibited by preincubating 

the cells with broad-spectrum MMP inhibitor BB94 (Bailly et al., 2002); which suggested 

the role of MMP in endogenous KIM-1 shedding. Further, experiments carried out in 

primary tubular cell culture suggested the role of MMP-3 in KIM-1 shedding (Lim et al., 

2012). Yet another study suggested the role of membrane-type 1 MMP (MT-MMP1) in 

KIM-1 shedding (Guo et al., 2012). These conflicting results suggest that MMP involved 

in KIM-1 shedding is still unclear or more than one MMP may be involved in the KIM-1 

shedding. Hence, as mentioned in section 1.3, one of the specific aims of this study is to 

discover the MMP involved in the KIM-1 shedding in injured kidney. 

  

2.11 Role of KIM-1 in apoptotic cell clearance and renal regeneration 

 The earlier sections discuss the role of apoptotic and necrotic cells in sustaining 

inflammation during ARF, and the importance of rapid clearing of the necrotic and 

apoptotic cells in renal regeneration. The role of professional phagocytes and non-

professional phagocytes in clearing the apoptotic and necrotic cells has also been 

discussed in section 2.6. The studies from our lab, using a rat ethanol injury model, 

showed extensive renal damage with apoptotic bodies as determined by TUNEL staining 

(Latchoumycandane C, unpublished data). He observed extensive neutrophil infiltration, 

whereas macrophages at the site of injury were minimal. Similar findings of absence of 

infiltrating macrophages have been reported (Waanders et al., 2010). Hence, with 

absence of macrophages, the ‘semiprofessional phagocytes’ are all that can be involved 

in rapid clearing of apoptotic/necrotic cells. As discussed in section 2.9.3, KIM-1 confers 
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a phagocytic phenotype to the epithelial cells (Ichimura et al., 2008). Hence, KIM-1 

might play role in clearing the apoptotic bodies and in turn, could contribute to 

attenuating the inflammation, preventing further inflammation, stalling immunological 

response, and remodeling and regeneration of kidney.  Renal allograft kidney biopsies 

showed increased expression of KIM-1; interestingly, increased expression of KIM-1 was 

associated with better prognosis with allograft renal transplantation (Zhang et al., 2008b). 

This demonstrates, KIM-1 may not just be a prognosis marker, but involved in the renal 

repair and regeneration. 

Hepatocyte growth factor (HGF), a well-characterized renal repair factor (Liu and 

Yang, 2006), is known to be upregulated in the epithelial cells that phagocytosed  

apoptotic cells. It was observed that over expressing KIM-1 in pig kidney epithelial cells 

also demonstrated increased mRNA expression of HGF (Ichimura et al., 2008). This 

suggests that KIM-1 expressing epithelial cells, apart from clearing the apoptotic bodies, 

may be involved in the renal regeneration by secreting growth/reparative factors.  

KIM-1 is expressed in dedifferentiating epithelial cells and co-localizes with the 

other dedifferentiation markers. KIM-1 also shares spatial relationship with ostiopontin, a 

protein expressed from the tubular epithelial cells involved in renal repair (de Borst et al., 

2007). All these observations point towards the role of KIM-1 as more than just a 

biomarker or a silent observer in renal injury and repair, but rather, play a role in renal 

repair. 
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Cell culture  

  Immortalized normal human proximal tubular epithelial (HK2) cells were 

purchased from ATCC (# CRL-2190); were revived in Dulbecco’s minimum essential 

medium- F12 (DMEM-F12), cell culture media (Media core, Cleveland Clinic 

Foundation, Cleveland OH); supplemented with 10% v/v heat inactivated fetal bovine 

serum, (FBS Sigma Aldrich St. Louis MO) and 10000 IU penicillin streptomycin, (Sigma 

Aldrich St. Louis MO). The cells were cultured in controlled environment of 5% CO2 at 

37
0
C. The cells were cultured to 80% confluence before passaging.  

 

3.2 Isolation of neutrophils 

 Blood was collected from healthy volunteers in blood collection bag with the anti-

coagulant, ACD. RBC, buffy coat, and plasma were separated by centrifugation for 20 
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min at 1300 RPM using Beckmen Coulter Allegra X15 R tabletop swinging bucket 

centrifuge. The buffy coat was carefully transferred to a different tube and diluted with 

equal volume of Hanks balanced salt solution (HBSS) w/o Mg
++

, Ca
++

, or phenol red 

(Cleveland clinic media core Cleveland OH). Equal volume of 3% dextran 500 (#31395, 

Sigma Aldrich St. Louis MO) solution in 1.9% NaCl was added and mixed well. It was 

left to stand in 4
0
C for 45 minutes – 1 hour allowing the RBCs to settle to the bottom. 

The supernatant, which mainly contains neutrophils and monocytes, was carefully 

transferred to a different tube.  The netrophils/monocytes were precipitated by 

centrifuging at 1100 rpm for 10 minutes in Beckmen Coulter Allegra X15 R tabletop 

centrifuges with swinging buckets. The carry over RBCs were lysed in 0.2% NaCl 

solution for 30 sec. Care was taken not to exceed the lysis over 30 sec. RBC free 

neutrophil/monocyte were resuspended in HBSS and loaded on top of Ficoll-Plaque plus 

(#17-1440-02, GE Life sciences, Pittsburgh PA) cushion in the ratio of 5:4 v/v. 

Neutrophils were separated from the monocytes by centrifuging for 30 mins at 1100 rpm. 

The neutrophils were counted using hemecytometry counter and 10
7
 neutrophils were 

resuspended in 1mL of HBSS and used for further experiments.  

 

3.3 Western blotting for KIM-1 

 Western blotting was performed to analyze total KIM-1 expression in the HK2 

cells, and ectodomain shedding into the conditioned media. The cells were harvested in 

RIPA buffer with 10% v/v protinase inhibitor cocktail. The total protein content was 

estimated by Bio-Rad DC
TM

 protein assay kit (#500-0111 Bio-Rad, Hercules CA) using 
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the manufactures protocol.  20µg of protein was mixed with the 2X Laemmli sample 

buffer (#161-0737EDU Bio-Rad, Hercules CA) containing 0.5% β-mercaptoethanol and 

boiled for 5 minutes at 95
0
 C and loaded on to a 4-20% gradient Tris-HCl precast gel 

(#345-0032 Bio-Rad, Hercules CA). The electrophoresis was carried out at 120 V for 2 

hours. The proteins were transferred on to nitrocellulose membrane using iBlot dry 

transfer system (Invitrogen Inc). The membrane was then blocked for 1 hour in 5% non-

fat milk in PBST. Then the membrane was probed for KIM-1 using human anti-KIM-1 

mouse monoclonal antibody (# MAB1750, R&D Minneapolis, MN) at the concentration 

of 1:1000 in 5% non-fat milk in PBST overnight at 4
0
C. The primary antibody was 

decanted and washed with PBST for 10 minutes X 3 times followed by incubation with 

HRP conjugated goat anti-mouse secondary antibody (# Bio-Rad, Hercules CA) in the 

concentration of 1: 10000 in 5% non-fat milk in PBST for 1 hour at room temperature. 

The membrane was washed with PBST for 15 minutes 3 times.   

 

3.4 Analysis of surface expression of KIM-1 on HK2 cells and uptake of lipid 

vesicles by FACS. 

 Flow cytometric analysis was utilized to quantify the surface expression and 

ectodomain shedding of KIM-1 in HK2 cells. HK2 cells were grown in complete media 

and at 70% confluence and serum starved overnight before treatment. Post treatment, the 

cells were harvested in 1X trypsin EDTA (Media core, Cleveland Clinic, Cleveland OH). 

The harvested cells were washed 3 times with filtered PBS (Sigma Aldrich, St Louis 

MO) and blocked with 1% bovine serum albumin (BSA) in PBS for 30 minutes on ice. 
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The cells were incubated with mouse monoclonal KIM-1 antibody (#MAB-1750 R&D 

Minneapolis, MN) in the dilution of 1:100 v/v in 1% BSA for 30 minutes followed by 

goat anti-mouse secondary antibody tagged with Alexa Fluor 488 IgG (#A-11029, Life 

Technologies, Carlsbad, CA) in the dilution of 1:100 in 1% BSA in PBS for 30 minutes 

to detect the surface KIM-1 expression. The cells were washed in PBS thrice after each 

step and fixed with 4% parformaldehyde and stored in the same fluid at 4
0
C until utilized 

for flow analysis. 350000 cells were analyzed in FACScan (BD Biosciences). The live 

cells were gated and the KIM-1 expression was analyzed using FlowJo software.  

The uptake of lipid vesicles containing DiI (synthesis of unilayer lipid to be 

explained in the next section) by HK2 cells used 3 hours incubation. The cells were 

harvested as mentioned before and washed with 1% BSA in PBS X 3 times. Then cells 

were resuspended in 300 µL of PBS and analyzed in FACScan (BD Bioscienses) in FL2 

channel to detect the DiI taken up by the cells. The cells were gated for live cells and 

analyzed by FlowJo software. 

 

3.5 siRNA mediated KIM-1 knockdown 

 KIM-1 specific siRNA was purchased from Dharmacon (#L-019856-00-0005, 

Thermo Fisher Scientific, Wlatam MA) and reconstituted in siRNA buffer purchased 

from Dharmacon (#B-002000-UB-100, Thermo Fisher Scientific, Wlatam MA). The 

working concentration of 25 µM was used to transfect the cells. HK2 cells were cultured 

in 6 well plates and allowed to reach ~ 50% confluence before transfection. Transfections 

were carried out according to manufactures protocol using lipofectamin RNAimax 
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(#13778030 Life technologies NY). The cells were incubated at 5% CO2 at 37
0
C for 72 

hours. The cells were harvested and analyzed for KIM-1 expression using western blots.  

 

3.6 Unilamellar lipid vesicle synthesis 

 In a live cell, PS is present in the inner leaflet, while in cells undergoing 

apoptosis/necrosis, the PS is exposed on the outer surface. The PS on the 

apaototic/necrotic cells is recognized by scavenger receptors that mediates uptake of the 

cells or particles. We mimicked this system by synthesizing unilamellar vesicle 

containing PS. Mini extruder from Avantis polar lipids was used to synthesize these 

liposomes.  1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-

2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) were purchased from Avanti polar 

lipids, Alabaster AL (#770557 and 840034 respectively). POPC and POPS were mixed in 

the molar ratio of 7:3.Vibrant DiI (Life technologies, Carlsbad CA) at the concentration 

of 3:500 v/v was added and mixed well. The chloroform solvent was evaporated using a 

liquid nitrogen evaporator. The pellets were hydrated in 500 µL of sterile HBSS. Lipid 

vesicles were prepared by extrusion by repeatedly forcing the slurry through a 100 nm 

membrane. The unilammelar vesicles contained either POPC alone, or POPC and POPS 

in defined molar ratio, along with DiI.  
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3.7 Quantification of shed KIM-1 by ELISA 

 The shed ectodomain of KIM-1 in conditioned media was quantified by ELISA. 

Human KIM-1 ELISA duo kits were purchased from R&D (# DY1750 Minneapolis MN) 

and the experiment was performed using manufacture’s protocol. In brief, Costar 96 well 

EIA plate (# 3590 Costar, Cambridge MA) was coated with goat anti-human KIM-1 

capture antibody by incubation at the concentration of 72 µg/mL in PBS overnight at 

room temperature. Next day the plate was washed with PBS containing 0.5% Tween-20 

(PBST) X 3 times followed by blocking with 1% BSA in PBS for 2 hours at room 

temperature. 100 µL of sample diluted in 1% BSA in PBS was added and incubated at 

room temperature for 1 hour. The washing step was repeated and 100 µL of biotinylated 

goat anti-human detection antibody at the concentration of 72 µg/mL was added and 

incubated for 1 hour at room temperature. The plate was washed again and 100 µL 

Streptavidin-HRP in the dilution of 1:200 v/v was added and incubated for 20 minutes. 

After  washing, 100 µL substrate solutions (Thermo scientific, Wlatam MA) was added 

and incubated for 20 minutes in the dark. The reaction was stopped by 50 µL 2N H2SO4 

and the optical density was determined at 450 nm in multi well plate reader. 

 

3.8 Gelatin zymogram to determine MMP activity 

 Precast gelatinase zymogram gels were purchased from Bio-Rad (#161-1167, 

Bio-Rad, Hercules CA) to identify MMPs in cell culture and neutrophil supernatants. The 

supernatants were mixed with equal volumes of 2X Liemmli buffer and loaded on to the 

gel without boiling. After electrophoresis, the gel was renatured in 2.5% v/v Triton X 100 
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(#T9284 Sigma Aldrich, St Louis MO) for 1 hour in room temperature. The gel was then 

incubated in developing solution (# LC2671 Invitrogen, Carlsbad CA) for 48 hours at 

room temperature. The developing solution was decanted and the gel was stained with 3 

% Commassie blue for 30 minutes at room temperature. Then the gels were destained by 

destaining buffer containing 40% methanol and 10% glacial acetic acid, until the bands 

were clear.  

 

3.9 Immunocytochemistry to quantify uptake of unilamellar phosphatidylserine 

vesicles   

 HK-2 cells were cultured in 4 well chamber slides (# 70400 Lab-Tek
®
, Hatfield 

PA) to 60 % confluence. The cells were treated with unilamellar vesicles in the dilution 

of 3:100 v/v for 3 hours. After decanting the cell culture media, cells were washed in 1X 

PBS followed by fixation in 4 % paraformaldehyde for 10 minutes. The HK-2 cells were 

stained for KIM-1 using mouse monoclonal KIM-1 antibody (#MAB-1750 R&D 

Minneapolis, MN) in the dilution of 1:100 v/v in 1% BSA for 30 minutes followed by 

goat anti-mouse secondary antibody tagged with Alexa Fluor 488 IgG (#A-11029, Life 

Technologies, Carlsbad, CA) in the dilution of 1:100 in 1% BSA in PBS for 30 minutes. 

As the unilamellar vesicles were prestained with DiI; no additional staining was 

necessary. The cells were washed with 1X PBS and mounted on with a covering slip 

using mounting media containing DAPI (# H-500 Vector laboratories Peterborough UK). 

The slides were sealed to prevent drying and viewed under Olympus fluorescent 

microscope.  
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CHAPTER IV 

RESULTS 

 

4.1 Activated neutrophils increase KIM-1 shedding in HK-2 cells  

 As we hypothesized, activated neutrophils mediate KIM-1 shedding in human 

renal proximal tubular cells. The KIM-1 shedding was measured by 1) analyzing the 

surface expression of KIM-1 by FACS and 2) detection and quantification of the shed 

KIM-1 in the conditioned media by ELISA.  Neutrophils were isolated freshly from 

human blood as mentioned in section 3.2. Neutrophils (1 X 10
7
) were resuspended in 1 

mL of HBSS and were activated by 3 µM Platelet Activating Factor (PAF) for 1 hour at 

room temperature with gentle agitation (Kuijpers et al., 1991). Other activation factors 

like LPS was also tried, but discontinued, as neutrophils formed aggregates and adhered 

to the walls of the microcentrifuge tubes. Supernatant from activated neutrophils was 

used for the over-night treatment of HK2 cells (200 µL, for each well of a 6 well cell 

culture plate). Supernatent from unactivated neutrophils was used as control. The relative 

decrease in the surface expression of KIM-1 or increase in the shed KIM-1 into the 

conditioned media was measured against the untreated cells.  Figure 8A depicts the 
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results from the FACS analysis. The untreated cells (control) show the maximum KIM-1 

expression (shown in pink). As the cells were not permeabilised, the measured KIM-1 are 

expected on the cell surface. HK-2 cells treated with activated neutrophil supernatents 

show least relative fluorescent intensity denote the maximum shedding of KIM-1from the 

surface (shown in green). The mean fluorescent intensity analyzed by FACS show 

significant reduction on treatment with activated neutrophils compared to untreated HK-2 

cells (Figure 8B). No significant changes in KIM-1 expression in HK-2 cells were 

observed on treating HK-2 cells with supernatants form unactivated netrophils which 

suggests the role of activation of neutrophils. Treatment with PAF, in absence of 

neutrophils, did not show any effect on KIM-1 expression by HK2 cells (data not shown). 

As the antibody detects only the N- terminal region, the reduction in KIM-1 expression 

signifies the shedding of KIM-1 ectodomain. Unactivated neutrophils also mediate some 

KIM-1 shedding (shown in blue); this is likely from unavoidable neutrophil activation.  

 To confirm that decreased surface expression of KIM-1was due to the shedding of 

the ectodomain, the shed ectodomain in the conditioned media was quantified by KIM-1 

ELSIA. The results from ELISA are depicted in the Figure 8C. HK2 cells treated with 

supernatants from activated neutrophils showed significant increase in KIM-1 shedding 

into the conditioned media compared to untreated HK2 cells and HK-2 cells treated with 

supernatants from unactivated neutrophis. However there is no significant difference in 

KIM-1 shedding between untreated HK-2 cells and HK-2 cells treated with supernatants 

from unactivated neutrophil.  
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Figure 8: Activated neutrophils mediate KIM-1 ectodomain shedding in HK-2 cells. A) 

Surface expression of KIM-1 was analyzed by FACS and 35,000 HK-2 cells were counted per 

group. The relative fluorescent intensity profile is represented in the graph. B) The bar diagram 

shows the mean relative fluorescent intensity values from 4 independent experiments. HK-2 cells 

treated with supernatants from activated neutrophils show significant reduction in the mean 

fluorescent intensity value of KIM-1 compared to untreated cells, suggesting KIM-1 shedding 

mediated by activated neutrophils C) The shed KIM-1 ectodomain into conditioned media was 

quantified by ELISA. HK-2 cells treated with supernatants from activated neutrophils show 

significant increase in the KIM-1 compared to untreated HK-2 cells or HK-2 cells treated with 
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supernatants from unactivated neutrophils . The data are expressed as mean ± SEM (n=4), p ˂ 

0.05 was considered as significant. 

 

4.2 Phosphatidylserine dependent uptake of lipid vesicles 

 

Figure 9: Immunofluorescence showing PS dependent uptake of lipid vesicles. HK-2 cells 

were treated with unilamellar lipid vesicles containing POPC and POPS in defined molar ratios 

and DiI. The pictures were taken at 60X maginifcation. HK-2 cells were also stained for KIM-

1(green fluorescence) A) HK2 cells treated with liposomes containing only POPC, shown no red 

florescence indicating the absence of uptake of vesicles. B) HK2 cells treated with liposome 

contain POPS show red fluorescence indicating PS dependent uptake of vesicles. 

 Unilamellar lipid vesicles, containing POPC and POPS in defined molar ratios 

and labeled with Vibrant DiI, cell labeling solution (Life technologies Carlsbad CA) , 

were prepared as explained in section 3.6. The uptake of unilamellar lipid vesicles was 

examined by FACS (Figure 10), and immunofluorescence (Figure 9).  To identify the 

uptake of unilamellar vesicles by immunofluorecence, HK2 cells cultured to 60% 

confluence in a 4 well chamber slide were treated for 3 hours with lipid vesicles 

containing only POPC, or, vesicles containing POPC + POPS in molar ratios of 7:3. The 
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HK2 cells treated with lipid vesicles containing no POPS show no red fluorescence 

suggesting the absence of uptake of the lipid vesicles (Figure 9A). Whereas HK-2 cells 

treated with lipid vesicles containing POPS (Figure 9A) show red fluorescence 

suggesting uptake of lipid vesicles. 

 

Figure 10: Phospatidylserine dependent uptake of lipid vesicles in HK-2 cells.  Uptake of 

unilammelar vesicles by HK-2 cells was analyzed by FACS and 35,000 HK-2 cells were counted 

per group. HK-2 cells treated vesicles containing PS (red) show increased amount of relative 

fluorescent intensity compared to HK-2 cells treated with vesicles without PS (blue), suggests PS 

dependent uptake of lipid vesicles in HK2 cells.  

The uptake of PS vesicles was also quantified by FACS.   HK2 cells grown to 

80% confluence were treated with unilamellar lipid vesicles consisting of POPC alone or 

vesicles containing POPC and POPS in the ratio of 7:3 for 3 hours in the dilution of 1 to 

100 in DMEM-F12 media. The cells were harvested with trypsin EDTA and the excess 

lipids in the media were removed with 1% BSA in PBS and subjected to FACS analysis. 
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The cells treated with liposomes containing only POPC (shown in blue), show the least 

amount of relative fluorescent intensity, signifying minimal or no lipid vesicle uptake. 

Similarly, lipid vesicles containing PS (shown in red), show increased relative amount of 

relative fluorescent intensity, suggesting uptake of unilamellar lipid vesicles. Untreated 

cells (shown in green) served as control. This data suggests that uptake of lipid vesicles is 

PS dependent and the physiological uptake of apoptotic bodies is successfully mimicked.   

                 

4.3 The uptake of unilamellar lipid vesicles containing phospatidylserine is KIM-1 

mediated 

 The above results show that uptake of lipid vesicles was PS dependent. Hence we 

wanted to examine if the KIM-1, a scavenger receptor, had any role in its uptake. To do 

this, a transient siRNA mediated KIM-1 knockdown in HK2 cells was created. The 

siRNA mediated KIM-1 knockdown was confirmed by western blotting which was 

probed for KIM-1. The results are depicted in Figure 11. Lane 1, 2 and 3 show KIM-1 

expression in untreated cell, cells treated with transfection reagent, Lipofectamin 2000, 

and non-specific siRNA control respectively. Lane 4 and 5 shows KIM-1expression in 

HK-2 cells treated with KIM-1 specific siRNA at the concentration of 15 µM and 25 µM 

respectively. Lane 4 and 5 show appreciable reduction of KIM-1 (102 kDa) compared to 

the untreated cells, which signifies successful siRNA mediated KIM-1 knockdown. 
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  Figure 11: Western blots showing successful siRNA mediated knockdown of KIM-1in HK-

2 cells. KIM-1 identified at 102kDa, show appreciable reduction in KIM-1 expression in KIM-1 

siRNA transfected cells (lane 4 and lane 5) compared to untransfected cells (lane 1), non-specific 

control siRNA transfected cells (lane 3) and transfection reagent control (lane 2), suggesting 

successful knockdown of KIM-1 in HK2 cells using KIM-1 specific siRNA.  

  Further we examined the uptake of lipid vesicles containing PS in KIM-1 

knockdown HK2 cells by FACS. As mentioned earlier, the cells were treated with the 

lipid vesicles in the ratio of 1: 100 v/v for 3 hours. The cells were harvested and subjected 

to FACS. The results of FACS analysis are shown in Figure 11. Control or untreated cells 

(shown in green) show the maximum amount of relative fluorescent intensity, which 

signify maximum lipid vesicle uptake. Cell treated with control siRNA (shown in blue) 

do not show any reduction in the amount of relative fluorescent intensity. However, HK-

2 cells with KIM-1 knockdown (shown in pink and light blue), show significant reduction 
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in the amount of relative fluorescent intensity. This result gives us concrete evidence of 

KIM-1 mediated uptake of PS containing lipid vesicles. As apoptotic cells express PS on 

their surface, this result suggests KIM-1 mediated uptake apoptotic cells by renal tubular 

epithelial cells.  

 

             

Figure 12: KIM-1 mediated uptake of PS vesicles by HK-2 cells. Uptake of unilammelar 

vesicles by HK-2 cells was analyzed by FACS and 35,000 HK-2 cells were counted per group. 

Relative fluorescent intensity profile in FL2 channel is represented in the graph. HK-2 cells 

lacking KIM-1 (shown in pink and blue) show reduced amount of relative fluorescent intensity 

compared to control (shown in green) or HK-2 cells transfected with control siRNA (shown in 

blue) which suggests KIM-1 dependent uptake of PS vesicles. 
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4.4 Activated neutrophils reduces phospatidylserine liposome uptake in HK-2 cells 

by increasing the KIM-1 shedding  

 In section 4.2 we observed an increase in KIM-1ectodomain shedding mediated 

by activated neutrophils. It is also known the PS binding site is situated in the ectodomain 

of KIM-1. Hence, effect of loss of KIM-1 ectodoamin on uptake of PS containing 

unilamellar vesicles was tested.  HK2 cells were cultured to 80% confluence and treated 

overnight with the supernatant from neutrophils activated by 3 µM PAF. These cells were 

treated with PS containing unilamellar lipid vesicles. The cells were harvested with 

trypsin EDTA and washed with 1% BSA before the cells were fixed using 4% 

paraformaldehyde and analyzed by FACS. The results are depicted in Figure 13. 

 

Figure 13: Activated neutrophils reduce PS liposome uptake in HK-2 cells. A) Uptake of PS 

vesicles by HK-2 cells was analyzed by FACS and 35,000 HK-2 cells were counted per group. 

The relative fluorescent intensity profile is represented in the graph. B) The bar graph represents 

the mean relative fluorescent intensity values from 4 independent experiments. HK-2 cells treated 
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with supernatants from activated neutrophils show significant reduction in relative fluorescent 

intensity values, suggesting reduced uptake of PS liposomes, compared to untreated HK-2 cell, 

and cells treated with supernatants from unactivated neutrophils. The data are expressed as mean 

± SEM (n=4) p ˂ 0.05 was considered significant. 

HK-2 cells treated with activated neutrophil supernatants (orange) show reduced relative 

fluorescent intensity compared to untreated cells (blue) suggesting a reduction in the 

uptake of PS containing lipid vesicles. The reduction in the lipid vesicle uptake is due to 

increased shedding of KIM-1 ectodomain by activated neutrophils. Due to unavoidable 

activation of neutrophils, unactivated neutrophils also cause some reduction in the lipid 

vesicle uptake (green).  

 

4.5 Neutrophils secrete Matrix metalloproteinas -9 upon activation 

 Activated neutrophils are known to secrete MMP-1, 2, 3, 7 and 9. Of theses, 

MMP-9, a gelatinase, is most important and well studied (Allport et al., 2002).  Gelatin 

zymography explained in section 3.8 was employed to identify the MMP activity.  The 

cell culture supernatents from untreated cells served as a control to compare the MMP 

activity in activated and unactivated neutrophil supernatants. The results from the gelatin 

zymography are depicted in Figure 14. Lane 1, MMP activity from the supernatant of 

untreated HK2 cells, shows minimal MMP-9 activity (92kDa). Lane 2 shows the MMP 

activity in the supernatant form unactivated neutrophils. There is no increase in MMP-9 

activity compared to control. However on activation of neutrophils with PAF, as in lane 

3, shows appreciable increase in the MMP-9 activity. The specificity of the increased 
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MMP activity was confirmed to be from MMP-9 by pre-treating the activated neutrophils 

with specific MMP-9 inhibitor (# 1177749-58-4, EMD Millipore, Billerica, MA) as 

shown in Lane 4. There is appreciable reduction in the band at 92 KDa, which suggest the 

MMP activity from activated neutrophil is from MMP-9. 

  

Figure 14:  Activated neutrophils secrete MMP-9. Supernatants from PAF activated 

neutrophils, unactivated neutrophils, activated neutrophils treated with activated neutrophils, and 

HK-2 cells were loaded on to gelatin zymogram. Shown activated neutrophils (lane 3) show 

maximum MMP-9 activity. HK2 cell supernatants (lane 1) and unactivated neutrophils (lane 2), 

show minimal or no active MMP-9. The MMP-9 activity is reduced on pretreating the activated 

neutrophils with specific MMP-9 inhibitor (lane 4). 
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4.6 Activated neutrophils mediate KIM-1 shedding via MMP-9 

 Bitamastat or BB94 (#2961 Tocris bioscience Bristol UK) is a broad spectrum 

MMP inhibitor and this inhibits a range of MMPs when used at different concentrations. 

To identify the MMP involved in KIM-1 shedding, activated neutrophils were treated 

with different concentrations of BB-94 for 1 hour at room temperature; their releasates 

were added to HK2 cells and surface KIM-1 expressions in these HK-2 cells were 

quantified by FACS and shed KIM-1 in conditioned media by ELISA.  Figure 14 shows 

the results from the analysis.  BB-94 when used at the concentrations that inhibit, MMP-1 

and MMP 2 there was no inhibition of KIM-1 shedding. When used in higher 

concentrations (50 nM) where MMP-1, -2, -9, - 7 and -3 were inhibited, inhibition of 

KIM-1 shedding was complete. Finally, a specific MMP-9 inhibitor (# 1177749-58-4, 

EMD Millipore, Billerica, MA) was used to confirm the role of MMP-9 in KIM-1 

shedding. As shown in Figure 15A, HK-2 cells treated with supernatants from activated 

neutrophils pretreated with MMP-9 inhibitor (shown in green) shows increased amount 

of relative fluorescent intensity compared to cells treated with activated neutrophil 

supernatant or pretreated with MMP-1and -2 inhibitor (black) suggesting inhibition of 

KIM-1 shedding. Bar graph (Figure 15B) shows the mean relative fluorescent intensity 

from 4 independent experiments. HK-2 cells treated with supernatants from activated 

neutrophils pretreated with MMP-9 inhibitor show significant reduction in the KIM-1 

shedding compared to HK-2 cells treated with supernatants from activated neutrophils 

without MMP inhibitor. Figure 15C show the quantification of shed KIM-1 ectodomain 

into the culture media by ELSIA.. 
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Figure 15: Pretreatment of activated neutrophils with MMP-9 inhibitor inhibits KIM-1 

shedding in HK2 cells. A) Surface expression of KIM-1 was analyzed by FACS and 35,000 HK-

2 cells were counted per group. The relative fluorescent intensity profile is represented in the 

graph. B) The bar diagram shows the mean relative fluorescent intensity values from 4 

independent experiments. HK-2 cells treated with activated neutrophils show significant 

reduction in the KIM-1 expression and the shedding is significantly inhibited on pre-treating the 
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activated neutrophils with specific MMP-9 inhibitor. Pre-treating the activated  neutrophils with 

MMP-1 and MM-2 inhibitor show now change in the KIM-1 expression. C) The shed KIM-1 

ectodomain was quantified by ELISA.   Shed KIM-1 in conditioned media quantified by ELISA. 

The data are expressed as mean ± SEM (n=4), p ˂ 0.05 was considered significant.  

A significant reduction in the shedding of KIM-1 ectodomain is observed on 

treating the HK-2 cells with activated neutrophils + MMP-9 inhibitor compared to 

activated neutrophils without MMP-9 inhibitor. However, HK-2 cells treated with MMP 

inhibitors did not show any changes in the surface expression of KIM-1, suggesting that 

the MMPs involved in KIM-1 ectodomain shedding are secreted by activated neutrophils 

and not by HK-2 cells (data not shown). According to our findings, even though MMP-9 

secreted from activated neutrophils predominantly mediates KIM-1 ectodomain 

shedding, the role of other MMPs cannot be neglected. 

 

4.7 Inhibiting secreted MMP-9 increases the uptake of vesicles containing 

phosphatidylserine in HK-2 cells  

 As discussed in section 4.6, we observed a significant reduction in the KIM-1 

ectodomain shedding on inhibiting the secreted MMP-9 from activated neutrophils. As 

the KIM-1 ectodomain contains the PS binding site and is involved in the uptake of the 

unilamellar vesicles containing PS, we analyzed the effect of inhibiting MMP-9 in 

activated neutrophils on PS vesicle uptake in HK-2 cells by FACS. The results from the 

FACS analysis are represented in Figure 16. As described in section 3.4, HK-2 cells 

cultured to 80 % confluence were treated with activated neutrophils with or with not 
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pretreating them with specific MMP-9 inhibitor followed by treatment with unilamellar 

lipid vesicles containing PS. HK-2 cells treated with activated neutrophils show 

significant reduction in the amount of relative fluorescent intensity, suggesting reduced 

uptake of vesicles (green) compared to untreated cells (blue). On inhibiting MMP-9 in 

activated neutrophils, the amount of relative fluorescent intensity significantly increases, 

suggesting the regain of the lipid uptake capacity by HK-2 cells (orange). Inhibition of 

MMP-9 inhibits the shedding of KIM-1 ectodomain, which leads to the regain of the 

phogocytic property of HK-2 cells.  

 

Figure 16: Inhibition of activated neutrophil secreted MMP-9 increases the uptake of 

unilamellar PS vesicles in HK-2 cells. A) Uptake of PS vesicles by HK-2 cells was analyzed by 

FACS and 35,000 HK-2 cells were counted per group. The relative fluorescent intensity profile is 

represented in the graph. B) The bar diagram shows the mean relative fluorescent intensity values 

from 4 independent experiments. HK-2 cells on treatment with supernatants from activated 

neutrophils pretreated with specific MMP-9 inhibitor show significant increase in uptake of 
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unilamellar vesicles containing PS  compared to HK-2 cells treated with supernatants from 

activated neutrophils.  There is also significant reduction in the uptake of PS vesicles in HK-2 

cells treated with  supernatents from activated neutrophils comaperd to untreated HK-2 cells.The 

data are expressed as mean ± SEM (n=4), p ˂ 0.05 was considered significant.   
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

 KIM-1, a sensitive, non-invasive urinary biomarker for kidney injury is also 

suggested to play a role in ARF pathogenesis, renal repair, and regeneration.  In this 

study, we have examined the interaction of activated neutrophils with KIM-1 on HK-2 

cells, relevant to its possible effects on kidney regeneration after acute injury. We have 

demonstrated activated neutrophils mediate significant KIM-1 ectodomain shedding in 

HK-2 cells. Activated neutrophils are known to secrete many proteases including MMPs. 

We have demonstrated a significant reduction in the KIM-1 ectodomain shedding in HK-

2 cells on pretreating the activated neutrophils with a specific MMP-9 inhibitor, 

suggesting the role of neutrophil secreted MMP-9 in KIM-1 shedding. Even though role 

of other MMPs cannot be neglected, we have demonstrated that shedding of KIM-

1ectodomain is predominantly by MMP-9 mediated. 

 KIM-1 is a scavenger receptor i.e. epithelial cells expressing KIM-1 obtain the 

properties of ‘semi-professional’ phagocytes. KIM-1 expressing epithelial cells 
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recognizes the PS on apoptotic/necrotic cells and mediates its uptake and directs it to 

degradation in lysosome. Rapid clearing of apoptotic/necrotic cells is necessary to 

prevent further inflammation and renal regeneration. We examined the neutrophil 

mediated KIM-1 shedding on the ability to take up the PS containing unilamellar vesicles 

which mimicked this process of apoptotic/necrotic cell uptake by renal tubular epithelial 

cells. In this study we have demonstrated a reduction in PS vesicle uptake by HK-2 cells 

by materials released from activated neutrophils. Inhibiting KIM-1 shedding in HK-2 

cells by inhibiting neutrophil secreted MMP-9 prevents the neutrophil mediated loss of 

PS vesicle uptake capacity. Thus we conclude, KIM-1 may play a role in renal repair and 

regeneration by rapid clearing of apoptotic/necrotic cells from the lumen and preventing 

the shedding of KIM-1 by inhibiting MMP-9 form the neutrophils may hasten the renal 

regeneration. 

5.2 Future directions  

 In this in-vitro study we have successfully demonstrated the role of activated 

neutrophils in KIM-1 shedding and its effects on uptake of apoptotic bodies. These 

results should be further validated in a mouse model. Though TIM-1(-/-) mouse has 

failed to show any changes in the phenotype, mice lacking renal KIM-1/TIM-1 will help 

to provide a better understanding of role of KIM-1 in renal pathogenesis and repair. A 

neutrophil depletion model will provide a better understanding of the interaction of 

neutrophils with KIM-1. These studies will provide us with an opportunity to develop 

treatment modalities, which involves prevention of KIM-1 shedding and hastening the 

renal recovery. 
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