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Abstract: Non-muscle Invasive Bladder Cancer (NMIBC) accounts for 80% of all bladder cancers.
Although it is mostly low-grade tumors, its high recurrence rate necessitates three-times-monthly
follow-ups and cystoscopy examinations to detect and prevent its progression. A rapid liquid biopsy-
based assay is needed to improve detection and reduce complications from invasive cystoscopy. Here,
we present a rapid spectroscopic method to detect the recurrence of NMIBC in urine. Urine samples
from previously-diagnosed NMIBC patients (n = 62) were collected during their follow-up visits
before cystoscopy examination. Cystoscopy results were recorded (41 cancer-free and 21 recurrence)
and attenuated total refraction Fourier transform infrared (ATR-FTIR) spectra were acquired from
urine samples using direct application. Spectral processing and normalization were optimized using
parameter grid searching. We assessed their technical variability through multivariate analysis and
principal component analysis (PCA). We assessed 35 machine learning models on a training set (70%),
and the performance was evaluated on a held-out test set (30%). A Regularized Random Forests (RRF)
model achieved a 0.92 area under the receiver operating characteristic (AUROC) with 86% sensitivity
and 77% specificity. In conclusion, our spectroscopic liquid biopsy approach provides a promising
technique for the early identification of NMIBC with a less invasive examination.

Keywords: liquid biopsy; bladder cancer; FTIR; machine learning

1. Introduction

Early, non-invasive, and conclusive disease identification relates to several favorable
outcomes. These include reducing the strain on healthcare expenditures that are already
stretched tight since the COVID-19 pandemic and employing therapeutic procedures that
reduce morbidity and death at an early stage. There are indications that some routinely-
employed clinical tests are unsuitable or misleading. In addition, they typically employ
inadequate single illness markers when multiple factors are at play. The growing subject
of metabolomics includes a technique known as metabolic fingerprinting, which is a form
of high throughput and is the universal analysis used to differentiate samples swiftly and
correctly. The differentiation is based on the change in a selective area as a result of different
statuses of disease or changes in the biological environment. Using infrared or Raman
spectroscopy, metabolic fingerprinting has been presented as a potential technique and a
powerful tool for disease diagnostics [1].
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Approximately 70–75% of urothelial carcinoma cases are classified as non-muscle-
invasive bladder cancer (NMIBC). In NMIBC, the tumor is not invading the muscularis
propria and is confined to mucosa and submucosa layers [2,3]. NMIBC is characterized by
a high recurrence rate of 60–70% while, in 10–20% of patients, the tumor will develop a
progression to muscle invasive carcinoma (MIBC).

Due to the high recurrence rate, a follow-up using a cystoscopy examination is re-
quired frequently according to European Association of Urology (EAU) Guidelines [4].
However, cystoscopy could give an indefinite diagnosis in patients with active inflamma-
tion, indwelling catheter, or abnormal appearance of the bladder mucosa. Besides, it is
an invasive, painful, and uncomfortable procedure with the risk of causing urinary tract
infections in 10% of the patients [5,6]. Therefore, a non-invasive liquid biopsy marker for
bladder carcinoma diagnosis is needed.

There is great potential for using urine-based tumor markers as a non-invasive, af-
fordable method for diagnosing and monitoring the progression of tumors, replacing the
use of cystoscopy in tumor follow-up [7]. Urine samples have distinct advantages such
as non-invasive sampling, and the explicit correlation between some proteins in urinary
proteome and the development of diseases [8–10].

Biochemical profiling of clinical samples using attenuated total reflectance–Fourier
transform infrared (ATR-FTIR) spectroscopy is an easy analytical technique that does not
require sample preparation [11,12]. Different spectrum regions correlate with different
biochemical moieties, and the investigation of such regions can potentially reveal altered
biochemical molecule classes. More importantly, IR fingerprint regions can represent a
unique snapshot of the complex biochemical profiles of clinical samples. Such fingerprints,
when combined with non-linear machine leaning models, can identify discriminant fea-
tures that are associated with health and disease [13,14]. Spectral profiling of biofluids
such as blood, urine and saliva is an extremely promising source of liquid biopsy-based
assays [15,16].

The ATR-FTIR spectroscopy-based liquid biopsy test, a vibrational spectroscopy tech-
niques was used in a recent clinical trial on suspected brain cancer patients, alongside
clinical assessment in primary care to help achieve earlier cancer detection and diagno-
sis [17]; this technique gives more accurate classification for early-stage tumors than other
liquid biopsy approaches that are based on tumor genetic material such as circulating
DNA [18]. Any changes in FTIR peaks could be a consequence of the induced significant
alterations in molecular characteristics as well as arrangement, and structure and dynamics
in tissues, membranes, and cells. These changes could help differentiate between diseased
and non-diseased patients [12].

FTIR spectroscopy is a promising tool to diagnose a wide range of diseases such as
Alzheimer’s [19], prostate cancer [20], bladder cancer [21], and viruses such as COVID-19 [22].

Therefore, ATR-FTIR spectroscopy has the potential to become a useful diagnostic tool
that is deliverable and feasible in the healthcare system [23,24].

Here, we have examined the performance of a rapid spectroscopy-based liquid biopsy
test in relation to tumor recurrence in non-muscle invasive bladder cancer patients. The
spectral data coupled with machine learning algorithms have been used to differentiate
between this recurrent cancer and non-recurrence (control) patients to identify an FTIR
fingerprint for NMIBC recurrence.

2. Results
2.1. Overview FTIR Spectra Dataset

Urine samples from previously diagnosed NMIBC patients were collected during
their first follow-up visit prior to cystoscopy examination. The pathological results of
cystoscopy were recorded for a total of 62 individuals (Table 1). Since the aim of this study
was to detect NMIBC recurrence, we further collapsed the patient samples into two groups,
recurrence (n = 21) and NMIBC-free, which includes all other cystoscopy results (n = 41).
Spectroscopic FTIR measurements were recorded at least in triplicate, and exported from
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Bruker software (Opus 6.5) after baseline correction, as described in the Methods section.
Empty and corrupted spectra files were discarded, resulting in a total of 187 spectra that
were included in the downstream analysis. For initial data exploration, raw spectra were
first vector-normalized and different regions were visualized as shown in Figure 1.

Table 1. Cystoscopy results for the cohort.

Cystoscopy Result Number of Patients

Free 31
Hyperplasia 1

Inflammation 9
Recurrence 21
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Figure 1. Overview of FTIR dataset (baseline corrected and vector normalized), with full range (A),
fingerprint region (B), and hydrocarbon C-H stretching region (C). Bold lines represent average
spectra in each group.

2.2. Assessment of Technical Variability and Batch Effects

Spectra were acquired on seven different days, which may introduce technical vari-
ability batch effects, affecting the downstream analysis. Several studies and tools have
investigated batch effects in FTIR, which can arise from atmospheric changes such as
humidity and temperature, operator variability, or instrument calibration [13,25]. We ad-
dressed the batch effects by randomizing the acquisition with respect to the NMIBC status.
Additionally, one of the samples was designated as a quality control (QC) sample and
measured repeatedly in all batches.

We examined the PCA plots and colored the samples by batch (Figure 2A,B). The plots
revealed a high variance and explained the first principal component (49.53%); however,
they did not show any remarkable separation between samples from different batches.
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QC samples (Figure 2A, black dot markers) were not clustered with samples from several
batches. Taken together, the results did not indicate any significant batch effects, despite
the high variability within the dataset.

Figure 2. Assessment of technical variability and batch effects. (A) Principal component analysis
showing the first two components colored by batch. Quality control samples are marked with
black dots. (B) Scree plot showing variance explained by top 10 principal components. (C) Violin
plots showing the distribution of Euclidean distances between spectra from the same patient, across
patients and batches. The vertical lines represent the first, second, and third quartiles. Wilcoxon Rank
sum p values are shown between groups.
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Next, we investigated whether the technical variability was less than the biological
variability by comparing spectra acquired from replicates and across different samples
and batches. The distribution of pairwise Euclidean distance was used to evaluate how
close the spectra were. Figure 2C confirmed that the distances between the replicate
spectra were significantly lower than for spectra from patients ((Wilcoxon-rank sum test,
p < 2.22 × 10−16). We concluded that the technical variability was lower than the biological
signal pursued in this analysis.

2.3. Preprocessing Parameters and Model Selection

To create a classifier for NMIBC status using FTIR spectra, we created a two-class
response variable, recurrence, to denote NMIBC diagnosis by Cystoscopy (n = 21), and free
to include all other diagnoses (n = 41). Using recurrence as the positive response class,
we then assessed 35 different machine learning models from the caret R package. Since
feature selection and spectral preprocessing can significantly alter the performance of the
assessed models, we sought optimal processing parameters for each model. Through
a hyperparameter grid search, we evaluated 25,200 combinations, optimizing spectrum
range, normalization, binning, [26] filter derivative, and window size (Table 2). Notably,
the selected four spectrum ranges correspond to biological regions of interest, full spectrum
500~4000 cm−1, bacterial fingerprint region 700~900 cm−1, extended fingerprint region
700~1800 cm−1, and hydrocarbon C-H stretching region 2800~3000 cm−1.

Table 2. Preprocessing parameters for spectra.

Preprocessing Parameter Variants

Spectrum Range

500~4000 cm−1

700~900 cm−1

700~1800 cm−1

2800~3000 cm−1

Savitzky-Golay Derivative 0, 1, 2

Normalization
No normalization

Amide 1500~1700 cm−1

Urea 1400~1500 cm−1

Savitzky-Golay Window Size 5, 7, 9, 13

Bin size 1, 2, 3, 5, 10

Different numbers of patients in the NMIBC-free (n = 41) and recurrence (n = 21)
groups created a class imbalance that can affect model training. We addressed the class
imbalance using two techniques. First, we used ROC as a performance metric to optimize
the classifier models. Second, we utilized the synthetic minority over-sampling technique
(SMOTE) [27] to impute new data points for the minority class, recurrence in our case.
The preprocessing combinations for each model were assessed on the holdout test set and
the top performing combination was plotted in Figure 3A. Based on performance on the
test set, we selected five models for further validation, gaussprRadial, rf, LogitBoost, mlp,
and svmPoly.
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Figure 3. Machine learning model selection and validation. (A) Top performance F1 score for
each model against different spectrum ranges. Maroon dots represent models selected for further
validations. (B) Models with high accuracy in both training set, as estimated by ROC > 0.8 in
cross-validation, and in the test set (F1 score > 0.5). Frequency indicates the number of processing
parameter combinations in a specific model achieved by these criteria. (C) Performance scores
of selected models on test sets. Dataset splitting and model fitting were repeated 10 times, and
performance was evaluated with three metrics.

Because of the large number of combinations that were evaluated relative to the dataset
size, dataset splitting into training and test sets may incorrectly inflate performance in
the holdout set. In such cases, high test set performance correlated with a poor training
set performance, which indicates poor model robustness (Table S1). To address this issue,
we introduced two additional criteria: (1) requiring good performance in both training
and test set, and (2) the model should give similar high performance in similar prepro-
cessing conditions. Consequently, we filtered models with training ROC > 0.8 and F1
test performance > 0.5, and selected four additional models that frequently matched these
criteria (Figure 3B), gbm, cforest, RRF, and ranger. The final list of selected models and
processing parameters is shown in Table 3.
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Table 3. Models selected for further validation with their processing parameters.

Model CV ROC Test
Accuracy F1 Score Spectrumrange SG

Derivative
SG

Window Bin Size Normalization
Peak

cforest 0.83 0.74 0.62 2800~3000 1 13 1 urea

gbm 0.81 0.79 0.67 2800~3000 1 7 1 none

ranger 0.82 0.77 0.64 2800~3000 1 13 1 urea

RRF 0.82 0.81 0.71 2800~3000 1 13 1 urea

gaussprRadial 0.46 0.92 0.86 2800~3000 0 9 1 none

LogitBoost 0.53 0.88 0.81 500~4000 1 9 3 amide

mlp 0.67 0.85 0.82 2800~3000 0 7 2 amide

rf 0.42 0.92 0.84 2800~3000 0 5 2 none

svmPoly 0.7 0.85 0.76 2800~3000 2 7 10 amide

CV: cross-validation; SG: Savitzky-Golay filter; model abbreviations are provided in Table S3.

2.4. Model Validation and Tuning

To assess the robustness of the model against dataset splitting, we repeated model
training and testing 10 times for each of the selected models, where we reconstructed
different training and test sets for each iteration by setting different random number
generator seeds. We subsequently assessed the performance of the models using three
metrics, accuracy, F1, and AUROC. Based on the results shown in Figure 3C, we concluded
that the regularized random forest (RRF) model was the best-performing model. To
investigate RRF model tuning, we investigated the constructed models (Table S2), which
indicated 2 as the optimal number of randomly selected predictors, a regularization value
of 1.000, and an importance coefficient of 0.0. The final selected model achieved an AUROC
of 92% with 86% sensitivity and 77% specificity (Figure 4).

Figure 4. Final model performance. (A) Receiver operating characteristic curve showing the area
under the curve. The curve was constructed using class probabilities obtained from the final RRF
model against the holdout test set; (B) confusion matrix of the performance of the binary classifier.

2.5. Extraction of Feature Importance

Random forest models enable estimating variable importance by shuffling predictor
values and measuring the performance using out-of-bag samples [28,29]. This technique
not only allows for the calculation of per-feature importance scores, but also ROC estimates.
We exploited this feature to calculate importance and ROC estimates, and to visualize
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them alongside spectra. As shown in Figure 5, variable importance and predictive ROC
spikes around 2912 cm−1 were characteristic of lipid CH2 asymmetrical stretching. An
additional spike is also observed around 2980 cm−1, reflecting the stretching vibrations of
methyl hydrocarbon chains. An investigation of processed spectra (Figure 5, second top
panel) clearly reveals spectral differences between recurrence (red) and NMIBC-free (blue)
samples. Taken together, the variable importance results suggest an altered lipid profile in
urine in recurrent NMIBC.

Figure 5. Investigation of wavenumber ranges contributing to model performance. Raw and pro-
cessed spectra for the selected spectrum range (top two panels) are shown, colored by NMIBC
status. Variable importance scores (third panel) are directly obtained from the model using out-of-bag
estimation strategy. Variable ROC scores are obtained via similar strategy but evaluating estimates
against the test set.
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3. Discussion

Non-muscle invasive bladder cancer (NMIBC) is low-grade urothelial carcinoma that
is commonly treated by transurethral resection (TURBT). While not life threating, the high
risk of recurrence and progression for muscle-invasive bladder cancer necessitates regular
patient follow-ups to detect and prevent progression. However, the gold standard for
NMIBC detection still relies solely on cystoscopy, an invasive procedure and source of
major discomfort for patients.

It has been estimated that urine markers would need to have a sensitivity between
90–95% to replace cystoscopy [30,31]. Several cytological assays have been reported previ-
ously, with sensitivities ranging from 7–93% [32]. Other multivariate biomarkers have been
suggested based on gene expression studies [33,34]; however, none were able to achieve
clinical utility [4].

In this study, we attempted to establish a rapid, easy-to-administer, and non-invasive
assay for the detection of NMIBC in follow-up patients. The simple assay relies on FTIR
spectroscopic measurement of urine samples with no sample preparation required. Using
cystoscopy examination and pathological investigation of biopsies as the ground truth,
we used machine learning to establish an accurate classifier from acquired spectra. The
achieved sensitivity was 86%. Although our study did not reach the sensitivity sought after
for clinical application, this is a pilot study and performance can be strongly affected by
outliers and inter-individual variations. Nevertheless, these promising results present a
great potential for improvement with a larger cohort size.

Exploring the machine learning models revealed a strong predictor signal in the
spectrum range 2800~3000 cm−1, a characteristic region for stretching vibrations of lipid
hydrocarbon chains. Altered lipid metabolism has previously been generally implicated in
cancer [35,36], and specifically in NMIBC [37]. Spectroscopic evidence of changes in the
serum levels of biochemical molecules including lipids has also been reported [38].

To the best of our knowledge, this study is the first report on this change in the FTIR
spectrum that ranges from 2800 to 3000 cm−1. Because of this explicit fingerprint, this
spectroscopic technique can be used as a diagnostic tool for the early detection of recurrent
NMIBC. Unlike other tools and traditional techniques in the literature that have used
complex procedures, our study proposed a direct and simple approach to detect NMIBC
patients’ recurrence. Interestingly, only a few studies have been published addressing
bladder cancer in terms of using fluids, such as urine and bladder washing water. When we
compared and contrasted these studies to our FTIR technique, we found that only one of
them dealt with bladder wash [21] and solely for the bladder cancer detection marker, not
recurrent NMIBC. In contrast, their fingerprint FTIR area had a different specific range than
what we have found here. Gok et al. listed FTIR with a broad range from 1500 to 800 cm−1

as a fingerprinting tool for bladder cancer in general, where spectroscopic evidence of
changes in serum levels of biochemical molecules, including lipids, has also been reported.

4. Materials and Methods
4.1. Patients and Samples Collection

A total of 62 patients were recruited after Transurethral Resection of Bladder Tumor
(TURBT) of non-muscle invasive bladder cancer (NMIBC) and included in this prospective
study. All patients were subjected to diagnosis and treatment at the National Cancer
Institute (NCI), Cairo, Egypt.

Urine samples for cytology were obtained and abdominal ultrasound and cystoscopy
were performed at three-month-intervals after Transurethral Resection of Bladder Tumor
(TURBT) according to European Association of Urology (EAU) guidelines [4]. Cystoscopy
was considered as the standard method for recurrences diagnosis. In the case of positive
urine cytology, CT program and random bladder biopsies were performed. The voided
urine specimens were divided into two aliquots; one was prepared for cytopathological
examination and the other was stored at −80 ◦C for the FTIR assay.
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The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the National Cancer Institute (NCI),
approval number (2111-502-015). All participants provided a written informed consent
which was signed by each patient.

4.2. ATR-FTIR Measurement

A BRUKER ALPHA FT-IR spectrometer, equipped with a ZnSe crystal attenuated
total refraction (ATR) accessory, was used for recording the infrared spectra. A deuterated
triglycine sulfate (DTGS) detector was used for measurements. The background interfer-
ogram was recorded with a clean ZnSe surface. After shaking the urine container, 5 µL
of the sample was pipetted onto the ZnSe crystal surface. Water absorption hinders the
appearance of many components in the spectrum; therefore, the sample was dried for
15 min using a gentle stream of N2 gas prior to data acquisition to remove excess water.
All samples ware measured by collecting and averaging 28 scans for a final resolution of
4 cm−1.

4.3. Spectral Data Pre-Processing

Each urine sample was loaded and acquired at least three times. Spectral data were
baseline corrected using vendor software and exported as SPC files. The files were
then imported into R statistical environment (v4.2) for analysis using hyperSpec pack-
age v0.100.0 [39]. Spectral derivative transformations and Savitzky–Golay filtering [26]
were performed using Signal R package (v0.7-7) [40], with a polynomial order of 3 and a
window size ranging from 5 to 13. Raw, first or second order derivative transformations
were performed as part of hyperparameter optimization. Transformed spectra were either
not normalized, normalized to Amide-I band maximum in the 1500–1700 cm−1 range, or to
Urea band maximum in the 1400–1500 cm−1. Outliers were identified and removed through
the pcout method from mvoutlier R package (v2.1.1). Wavenumber ranges 700–900 cm−1,
700–1800 cm−1, and 2800–3000 cm−1 were extracted where relevant.

4.4. Machine Learning

We relied on the extensive functionality implemented in caret R package (v6.0-92) to
perform dataset partitioning, model training, and testing. A comprehensive guide on the
implemented models and configurable parameters is available in Kuhn [41]. Following
outlier removal, processed spectra were randomly split into training and testing sets in
a 70:30 ratio. Replicate spectra from the sample urine samples were kept together to
prevent data leaking. Thirty-five machine learning models were evaluated as detailed
in Table S3. Two-class (free vs recurrence) variable was used for training and prediction.
Model training was performed on the dataset using a 10-fold repeated cross-validation. To
account for replicate spectra, we used a stratified K-fold sampling strategy, ensuring that
replicates were always contained together in single fold. To address the class imbalance,
ROC measure was used as a cost function instead of accuracy. Additionally, synthetic
minority over-sampling technique (SMOTE) [27] was used to create new data points for
the minority class. Trained models were then evaluated on the holdout testing set using F1
and ROC scores where appropriate.

5. Conclusions

This study presented a rapid and easy spectroscopic assay to detect NMIBC recurrence
from urine using FTIR and sophisticated machine learning modeling. We examined the
performance of 35 machine learning models using a training set (70%) and a held-out test set
(30%). With 86% sensitivity and 77% specificity, a regularized random forest model achieved
an area under the receiver operating characteristic (AUROC) of 0.92. This technology
can be further utilized to describe the transition to the defined application of ATR-FTIR
spectroscopy using urine samples for the detection of recurrence in NMIBC patients and the
subsequent impact on clinical sectors. This can be done by simply using the spectroscopy of
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urine instead of undergoing the complications associated with using cystoscopy, which is
usually uncomfortable and sometimes painful. Therefore, this technological advancement
leads to a prospective clinical validation study that is conducted in the population that is
the focus of this article, which presents exploratory findings that confirm the fingerprint
correlation with NMIBC. In addition, this finding can be used as an alternative diagnostic
tool to detect NMIB cancer at an earlier stage, or it might completely replace cystoscopy
with the use of a urine test in the clinic. This allows for early intervention and appears
as a step forward in both the advancement of technology, and the improvement of the
clinical course of treatment for patients who suffer from this cancer or in the diagnosis of
this disease. We hope to further improve the current assay in a larger cohort to assess its
potential in NMIBC surveillance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27248890/s1, Table S1: Performance of hyperparameter
combinations, Table S2: Model tuning of regularized random forests, Table S3: Machine learning
models abbreviations.
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