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A KINEMATICS BASED TOLERANCE ANALYSIS OF 

MECHANISMS 
 
 

SHAHRBANOO  FARKHONDEH 
 
 

ABSTRACT 
 
 A kinematic based tolerance analysis of mechanisms is presented in this thesis.  It 

is shown that standard kinematic analysis can be used for obtaining closed-form explicit 

formulations for tolerance analysis of mechanisms.  It is proposed that the manufacturing 

tolerances are accounted for by incorporating fictitious sliding members in the rigid links, 

thereby allowing them to either “grow” or “shrink” along the lines of their pin 

connections.  The virtual expansions or contractions of these fictitious sliders are 

captured in the kinematic equations by taking the differentials of the magnitudes of the 

vectors that define the length of rigid links having dimensional tolerances.  These 

mathematical differentiations follow exactly the procedure of kinematic velocity analyses 

of mechanisms.  The method can further be extended to perform tolerance analysis on a 

group of identical mechanisms. The tolerance analysis presented in this thesis was 

utilized to study tolerance accumulation  in three (3) different mechanisms, slider crank, 

Scotch-Yoke, and a one-way clutch.  In each case, the effect of tolerances in the 

individual components were combined together, through modified kinematic analyses, in 

order to determine the resulting accumulation of the tolerances in the assembly of the 

parts for any generalized configuration of the mechanisms. The analysis was further 
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extended to include statistical skewness analyses on the tolerance distributions of the 

individual components and the resulting skewness on the assembly of the mechanism.  

The main benefit of the presented approach is its allowance for the use of standard 

kinematic computer codes for tolerance analyses of mechanisms.   
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CHAPTER I 
 

INTRODUCTION 
 
 

 
 

1.1 Background Information 
 

 Tolerance analysis and tolerance control are important factors for 

manufacturing industries that attempt to increase productivity and improve the 

quality of their products.  Not only do the machine part tolerances affect the 

ability to assemble the final product, but also they affect the production cost, 

process selection, tooling, setup cost, operator skills, inspection and gauging, and 

scrap and rework.  Tolerances also directly affect engineering performance and 

strength of a design.  Products of lower quality, excess cost, or poor performance 

will eventually lose out in the marketplace.  
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 Design Engineering and manufacturing groups have competing tolerance 

requirements. Design engineers want tight tolerances to assure accurate 

performance; while manufacturing groups on the other hand prefers loose 

tolerances to reduce cost.  It is essential to have a quantitative design tool for 

specifying tolerances and estimation of tolerance stack-up in machinery. 

Tolerance analysis brings the engineering design requirements and manufacturing 

capabilities together into a common ground, where the effects of tolerance 

specifications on both design and manufacturing requirements can be evaluated 

quantitatively.  

 Parts are always fabricated with dimensional tolerances; therefore 

assemblies will have their own tolerances.  If the product has only one geometric 

configuration, then a simple tolerance stacking is sufficient.  In case of machinery 

with moving parts there are multitudes of geometric configurations; therefore a 

simple tolerances stacking is no longer sufficient. The tolerance stacks should 

either be evaluated over-and-over for every possible geometric configuration; or a 

closed form tolerance formulation be developed.  Tolerance variations in 

mechanisms depend upon their instantaneous configurations.  For each new 

configuration of the mechanism, there exists a different tolerance accumulation.   
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1.2 Review of Previous Research 

 Statistical tolerance analysis offers powerful analytical methods for 

predicting the effects of manufacturing variations on performance and production 

cost.  However, during the course of such tolerance analysis there are many 

factors to be considered.  Statistical tolerance analysis is a multipart problem that 

must be carefully formulated to assure validity, and then carefully interpreted to 

accurately determine the overall effect on the entire manufacturing process.  

Kenneth W. Chase and Spencer P. Magleby [1] described a new method, called 

the Direct Linearization Method (DLM), that is presented for tolerance analysis of 

2-D and 3-D mechanical assemblies, which generalizes vector loop-based models 

to account for small kinematic adjustments. This method has a significant 

advantage over traditional tolerance analysis methods in that it does not require an 

explicit function to describe the relationship between the resultant assembly 

dimension(s) and those of the manufactured components.  Formulating an explicit 

assembly function may be difficult and not feasible for assemblies with many 

parts.   

 Huo [2] described a graphical method for tolerance analysis using 

polygons; these polygons are similar to velocity polygons used in traditional 

kinematics.  This method has the advantage of being graphical in nature, and 

therefore intuitive.  Lee and Gilmore [3] introduced a method similar to the Direct 
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Linearization Method to determine the kinematic analysis of mechanisms. These 

analyses are then directly used to determine the statistical variation of the 

kinematic properties of mechanism given link-length, pin-size, and pin clearance 

variations.  Lee however didn't provide any justification for why the kinematic 

analyses are equivalent to the tolerance analyses.   

A. Liou and P. Lin [4] presented a tolerance specification for robot kinematic 

parameters using the Taguchi method.  Their method is based on identifying the 

significant parameters and in turn selecting the optimal tolerance range for each 

parameter.  It also presents a step-by-step methodology for a systematic selection 

of tolerance range in robot design.  

 Hartenberg and Denavit [5] proposed closed form expressions to calculate 

the effect of each independent part variations on the total assembly variation by 

perturbing one design variable at a time.  The tolerance sensitivity of each 

independent variable is the contribution of the variation of the individual variable 

divided by the total assembly variation.  Knappe [6] calculated these sensitivities 

directly using partial derivatives of the closed form expression describing the 

configuration of the assembly. There are several disadvantages to both methods.  

Often, development of explicit expressions is difficult or not feasible for 

mechanisms with any degree of complexity.  When these explicit expressions are 

mathematically derived, numerical techniques are often required to generate the 
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partial derivatives.  Therefore, it is fair to conclude that these two methods are 

appropriate only for simple assemblies having a small number of members. 

 Marler [7] describes a method of tolerance analysis known as the Direct 

Linearization Method. It was based on linearzing the position equations of the 

assembly using a first order Taylor's series expansion.  For two-dimensional 

mechanisms, each vector loop yields three constraint equations - closure in two 

orthogonal directions, and an angular closure.  Using linear algebra to solve these 

equations leads to the matrix of tolerance sensitivities of the assembly to the 

tolerances of the corresponding independent variables. This matrix is used in 

forming root-sum-squares (RSS) expressions which describe the statistical 

tolerances of the assembly.  This process has been incorporated into the CATS 

tolerance analysis software which has evolved into commercial CAD applications. 

 New CAD tools for tolerance evaluation are being developed and included 

with commercial CAD systems so that assembly tolerance specifications may be 

created with a graphical preprocessor and evaluated statistically.  Built-in 

modeling aids, statistical tools, and a manufacturing process database will allow 

the non-experts to include manufacturing considerations in design decisions. Use 

of these new tools will reduce the number of manufacturing design changes, 

reduce product development time, reduce cost, and increase quality.  They will 



6 
 

elevate tolerance analysis to the level of an accepted engineering design function, 

alongside finite element analysis, dynamic analysis, etc.  

 

1.3 Problem statement 

 The goal of this thesis is to derive closed-form explicit formulations for 

tolerance analysis of mechanisms based on the conventional vector loop 

kinematic analyses.  The motivation behind this approach is the availability of 

well established kinematic analyses computer codes that are already available in 

the market.  In other words, the purpose of this thesis is to provide an answer for 

the following question.  Is it possible to use the available kinematic formulations 

of mechanisms in a slightly modified manner and come up with a closed-form 

formulation for the tolerance analysis of a mechanism?  As will be shown in 

subsequent chapters of this thesis, the answer to this question is “yes”.  In order to 

introduce this approach and proceed with tolerance analysis of certain specific 

mechanism a brief review of kinematic analysis is presented next.  

 Kinematic analysis calculates position, velocity and acceleration of 

different members of a mechanism in response to its kinematic inputs, namely the 

input position, velocity and acceleration.  In conventional kinematic analyses the 

dimensions of individual rigid members are specified as “constant” quantities.  In 
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vector loop approach of kinematic analysis the vectors that represent the 

instantaneous positions of these rigid links have “constant” magnitude, with their 

angular orientation being a time dependent parameter.  On the other hand, when a 

mechanism has a sliding member, such as a slider-crank, the vector that represents 

the instantaneous position of the slider is at least variable in its magnitude.  The 

essence of this thesis is to take advantage of this attribute of the kinematic 

formulation, namely vectors with variable length, and use that in the 

tolerance analysis of mechanisms.  In order to lay the ground for the tolerance 

analyses studies in this thesis a brief introduction of tolerance analysis is 

presented next.  

 Tolerance analysis determines the output variations of assemblies with 

dimensions that are permitted to vary according to an imposed tolerance.  

Alternatively, tolerance analysis can also be described as the geometric variation 

of one assembly relative to another; therefore, tolerance analysis applies to a 

“group” of identical mechanisms. In contrast, kinematic analysis describes the 

motion of a single assembly.  Therefore, the differences between the two types of 

analysis make it difficult to directly use kinematic analysis in a tolerance analysis. 

Relationships between the two types of analysis must be established in order to 

use kinematic analysis for the purpose tolerance analysis. 
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 A closer look at the dimensional variations (tolerances) of the rigid links 

of a mechanism due to their manufacturing process could leads us to consider 

these rigid members to be hypothetically augmented with fictitious sliding 

members.  Figure 1 shows this concept.  As shown in Figure 1-a, the link AB 

could be a rigid member of a mechanism; while Figure 1-b shows the same Link 

AB augmented with a fictitious slider. The potential of the “growth” or 

“shrinkage” of AB due to the existence of the fictitious slider can be interpreted as 

the manufacturing tolerance that can occur in the length of AB during the 

manufacturing process.  This allows for formulation of tolerance analysis is a 

closed-form, with the possibility of accounting for length variation on the rigid 

links.   

 

  Figure 1-(a) A rigid link, AB, for kinematic analyses  

  Figure 1-(b) Link AB with its fictitious slider, for tolerance 
analyses 
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 It is understood that upon inclusion of fictitious sliding members the total 

number of degrees of freedom (DOF) of the system will increase, thereby 

requiring more input parameters to obtain unique kinematic solutions.  In contrast 

this is not a problem in tolerance analysis, because these additional input 

parameters are known; they are the imposed or known tolerances of the individual 

rigid members.     

1.4 Contributions of this thesis 

 This thesis provides the foundation for the use of kinematic analysis in 

tolerance analysis of mechanisms and linkages. It describes a library of equivalent 

variation mechanisms based on assembly joints for modeling dimensional 

variation.  It also provides a systematic method for analyzing tolerances for the 

full range of motion of mechanisms as well as static assemblies.  The goal of this 

research is to determine the relationship between the kinematic analysis and the 

tolerance accumulation in the mechanism so that standard kinematic analysis 

software can be used to perform tolerance analysis of assemblies and 

mechanisms. 
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CHAPTER II 

COMPARISON OF KINEMATIC AND TOLERANCE 
ANALYSIS 

 

 In order to show the similarity between kinematic and tolerance analysis 

the trivial kinematic formulation of slider crank mechanism is presented here.  

Such analysis is then modified in section 2.1 of this chapter to conduct tolerance 

studies. 

2.1 Kinematic Analysis of a Slider-Crank Mechanism 

 The slider crank shown in Figure 2.1 is a typical mechanism with its 

position, velocity and acceleration equations easily derivable.  In this chapter the 

relationship between kinematic and tolerance analysis is demonstrated.  

Kinematic analysis predicts the angular position, velocity and acceleration of the 

connecting rod and the rectilinear position, velocity and acceleration of the slider 

(link 4) in response to the kinematic input parameter of the crank (link 2) . An 
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appropriate vector loop for solving the kinematics of the slider crank is shown in 

Figure2.2. 

 

Figure 2-1 Schematic view of a typical slider crank mechanism     

                                                

 

 

Figure 2-2 Vector loop of a slider crank mechanism 
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The vector loop showed in Figure 2-2 yield the following equations: 

                              (2-1) 

 
In Equations 2-1 the values of Ө3, x are unknown parameters, and the input 

parameter Ө2 is known for kinematic analysis.  

 

The loop equations are then differentiated with respect to time yielding the 

following two equations: 

      (2-2) 

  
Where  

 
Equations 2-2 may be represented in a matrix form as: 

 

                                                        (2-3) 

 
 

Where    A=             , and                              

 
 
Solving for the dependent variables and  Equations 2-4 are obtained: 
 

 

                                                    (2-4) 
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Where: 

 
 

 
This results in a closed form solution for the unknown parameters as: 
 

 

 
 
 
For the slider crank mechanism with geometric dimensions and its instantaneous 

positions shown in Table 1 the numerical values of the solutions become: 

 

 

 
 

 
 

 
where the final solution may be written as: 
 

 = -33.487 
 

    
                                                       (2-5) 
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Table 2-1 Dimensions and angular position data for numerical examples. 
 

 
 
The  matrix is known as the Jacobian matrix. The rows of the Jacobian 

describe the ratio, or effect of on and .  Thus, the Jacobian describes the 

kinematic sensitivity of the input on the resulting angular velocities and . 

Numerically, this means that the magnitude of is 0.2626 of , and  is -

33.487 of . 

 

 In contrast, and for the purpose of this thesis, tolerance analysis of this 

mechanism is defined as prediction of the variation in the angular position of link 

3 and the variation of the rectilinear position of link 4 in response to dimensional 

variation in the length of link 2 and 3. 

 
2.2 Tolerance Analysis using a vector loop 
 
 In tolerance analysis, small changes in geometric dimensions, caused by 

manufacturing variation, reveal the resulting variations in the system’s 

configuration from its nominal configuration.  Such variations accumulate, or 

 length Absolute Angle  Relative Angle Angle Velocity
Link ri θi αi ωi 

2  0 

3  
4 ? 
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stack up, in an assembly resulting in poor performance or badly fitting parts.  To 

allow for tolerance stack up to be transmitted through the vector chain, the 

angular position of each vector is defined relative to the preceding vector by 

means of the relative angles as shown in Figure 2-3. 

 

 

 

Fig 2-3 - The slider crank mechanism with  

fictitious sliders for tolerance analysis 

  

 In order to examine the tolerance sensitivity of the slider crank mechanism 

as shown in Figure 2-3, the crank and connecting links  to be 

variable in length. This of course increases the number of degrees-of-freedom of 

the system from 1 to 3. However in this section our purpose is not kinematic 

analysis but tolerance analysis. The components of the vector loop shown in 

Figure 2-3 are described by equation 2-6: 
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                    (2-6) 

 
 
Where    are the relative angles between adjacent links.  
 
Let =   and further for slider crank ,  
 

  ,   =                                            (2-7) 
Rewriting Equations 2-7 in terms of the relative angles yield: 
 
                                              

 
 
 
Now following the conventional kinematic analysis, let's take geometric variation 

of Equation 2-6. 

 
By taking the differentials of r and  Equations 2-8 are obtained: 
 
 

 
                                                                                                                                      
         (2-8) 
 
 
Here,  dr’s  and dα’s represent small changes in the lengths and angles 
respectively. 
 
In Equation 2.8 dr2 and dr3 represent the manufacturing variations (tolerances) 

that are resulted during the fabrications of the crank and connecting rod 

respectably.  Furthermore, the values of dr2, dr3 and dα2 are known.  This will 
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make dα3 and dx as the two unknown parameters which are the resulting output or 

"assembly tolerances" of the mechanism. 

Equations 2-8 may be expressed in matrix form as: 
 

                                              (2-9) 

 

                           (2-10) 

 
The [A] and [B] matrices of Equation 2-10 are the coefficient matrix of the 

independent and dependent variables respectively and are expressed in Equations  

2-11.  

  and       (2-11) 

 
 

The combination of [A] and [B] matrices form the tolerance sensitivity matrix 

[S]of Equations 2-10. 

The [S] matrix defines the variation dα3 and dx as the sum of the fractions of the 

variations  and .  Matrices [A] and [B] may be substituted from 

Equations 2-11 into 2-10 in order to obtain a closed form solution for dα3 and dx. 
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2.3 Parametric study of the tolerance analysis of slider crank 

 In Section 2.2 a closed-form formulation was derived for tolerance 

analysis of a slider crank mechanism.  This section presents a parametric study of 

this tolerance analysis for a set of geometric dimensions and their corresponding 

tolerances of the mechanism.  Table 2.1 contains the geometric dimensions of the 

mechanism.  Here, let's postulate a length variation of 0.005” in each of the crank 

and connecting rod lengths.  Using the closed form formulations of Section 2.2 

we can obtain the resulting variations in α3 and x for any configuration of the 

mechanism. 

 
Substituting the numerical values of the known parameters in Equations 2-10 
yield: 
 

 
 

   (2-12)     

 
 

 
2.4 Tolerance analysis of a group of slider crank assemblies 

 
The above calculations represent a single case tolerance analysis for given 

geometric configuration.  To predict the tolerance stack up statistically in a group 
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of assemblies, we can use the above presented calculations for the conventional 

statistical Root-Sum-Square analysis: 

                                                     (2-13) 

 where  is the probable error in the input position  and .  Equation 

2-13 is based on a 3σ tolerances of the manufacturing process used to produce the 

part dimensions. Equation 2-13 comes from statistical error analysis where 

probability distributions are added by adding variances, which are the standard 

deviation squared.  For the slider crank analyzed in this section the results 

become: 

 

               (2-14) 
 
 

 
 
 
 
2.5 Summary 

 In this chapter we showed that standard kinematic analysis can be used for 

tolerance analysis of a slider crank mechanism.  The method is however 

applicable to any mechanism with any number of degrees of freedom.  In the 

presented approach, the manufacturing tolerances are accounted for by 

incorporating fictitious sliding members in the rigid links, thereby allowing them 

to either “grow” or “shrink” along the lines of their pin connections.  The virtual 
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expansions or contractions of these fictitious sliders can be captured in by taking 

the differential of the magnitudes of the vectors that define the length of rigid 

links having dimensional tolerances.  These mathematical differentiations follow 

exactly the procedure of kinematic velocity analyses of mechanisms.  The method 

can further be extended to perform tolerance analysis on a group of identical 

mechanisms.  

 

 As the fictitious sliders are added to the rigid members of a mechanism, a 

modified linkage is constructed with higher number of degrees of freedom (DOF) 

that requires higher number of kinematic input parameters in order to obtain 

unique kinematic solutions. The extra required input parameters however are the 

known tolerances of the individual parts that result in obtaining a unique solution 

for the tolerance analysis of a mechanism in a general explicit form for any 

configuration of the system.  
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CHAPTER III 

TOLERANCE ANALYSIS OF A SCOTCH-YOKE  

3.1 Configuration of a scotch -yoke Mechanism 

 The purpose of this chapter is to conduct dimensional tolerance analysis 

for a Scotch-Yoke mechanism. Figure 3-1 shows a schematic representation of a 

typical Scotch-Yoke mechanism. 

 

Figure 3-1 Schematic view of a Scotch-Yoke mechanism 
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The Scotch Yoke is a mechanism for converting the linear motion of a 

slider into rotational motion of a crank or vice-versa. The slider part is directly 

coupled to a reciprocating yoke with a slot that engages a pin on the rotating part, 

as shown in the Figure 3-1.  An appropriate vector loop for solving the kinematics 

of the scotch-yoke is shown in Figure 3-2. 

 

 

 Figure 3-2 Vector loop of a Scotch-Yoke mechanism 

  

3.2 Kinematics analysis using a vector loop 

  Vector loop showed in Figure 3-2 yields the following equations: 

                                                              (3-1) 
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The loop equations are then differentiated with respect to time yielding the 

following two equations: 

 

                                      (3-2) 

 

                                              (3-3) 

 
 are the known for the position and velocity analysis respectively. 

 

                                                        (3-3) 

 

 

 

Where     , and           

 

 



24 
 

 

Solving for the dependent variables    and . 

 

 

 

For the scotch-yoke mechanism with link length and position with parameters 

shown in Table 3.1 the results of the kinematic analysis are: 

 

       

Table 3-1 Link lengths and angular position data for numerical examples. 
 

 
 
 

 
 
 
 
 
 
 

 length Absolute Angle  Relative Angle Angle 
Velocity 

Link ri θi αi ωi 
2  0 

y - 3π/2 π/2 +θ2 - 
x - 



25 
 

3.3 Tolerance analysis using a vector loop 
 
 For tolerance analysis of a Scotch Yoke, we must allow to be variable 

(no longer constant). The angular position of each vector is defined relative to the 

preceding vector by means of the relative angles as shown in Figure 3-3. 

 

Fig 3-3 A scotch-Yoke mechanism with variable crank arm 

 

 
The vector loop of Figure 3-2 yields the following vector equations for the 

mechanism shown in Figure 3-3: 

 

 

                                    (3-6) 
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Where    is the relative angle between the crank and slider links.  Using the 

definitions of the relative angles as: and    Equation 3-6 

may be represented as:              

 

                   (3-7) 

 

Unlike Equation 3-1 in which was a constant parameter, here, in tolerances 

analysis must be allowed to vary. Taking the differential of Equation 3-7 yields: 

 

    (3-8) 

 

where dr2 and dα2 represent small changes in the lengths and angles respectively. 

Here dr2 represents the tolerance that can be specified for the crank arm. The 

value of dr2 must be specified by designer.  Ultimately, the purpose of this 

analysis is to estimate the influence of dr2 in the variation of the slider location dx 

and the pin location dy. 

 

It is desired to determine the variation in x and y in terms of the imposed 

tolerances in the crank arm r2.  
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Equations 3-8 may be represented in a matrix form as: 

 

                                      (3-9) 

 

Here [A] and [B] are the coefficient matrix of the independent and dependent 

variables respectively, which combine to form the tolerance sensitivity matrix [S] 

as shown in Equation 3-10: 

 

                       (3-10) 

 

3.4 Parametric study of the tolerance analysis of Scotch-Yoke 

 In Section 3-2 a closed-form formulation was derived for tolerance 

analysis of a Scotch-Yoke.  This section presents a parametric study of this 

tolerance analysis for a set of geometric dimensions and their corresponding 

tolerances of the mechanism.  Table 3-2 contains the geometric dimensions and 

the specified tolerances for the parts that are manufactured.  

 

Table 3-2 Link lengths and angular position data for numerical examples. 

 length Absolute Angle  Relative Angle Tolerances 
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The known parameters of Table 3-2 are employed to find the solutions for 

Equations 3-10.  

 Table 3-3 contains the results of this parametric study.  For the Scotch-

Yoke mechanism with parameters shown in Table 3.2, solving for the dependent 

variables dx and dy yields: 

 

 

 

 

 

 

 

        (3-11) 

 

Link ri θi αi --- 
2  0 dr2=0.005” 

y - 3π/2 π/2 +θ2 dy = ? 
x - dx = ? 
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Table 3-3 Result of tolerance analysis of the Scotch-Yoke 

 
 

dx dy 
-0.002625 0.00425 

 
 

 
3.5 Tolerance analysis of a group of Scotch-Yoke assemblies 

 The tolerance analysis presented in Section 3.3 is for a single Scotch-Yoke 

mechanism. To predict the tolerance stack-up statistically in a group of 

assemblies, the definition of standard deviation may be used as follow: 

 
                                                (3-12) 

Where duj  is the probable error in the input position dr2 and dα2 are the 3σ 

tolerances of the manufacturing process used to produce the part lengths.  This 

comes from statistical error analysis where probability distributions are added by 

adding variances, which are the standard deviation squared.  For the Scotch-Yoke 

described in Table 3.1 the values of stack-up tolerances in a group of assemblies 

are: 

 

 

       

                   (3-13) 
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The values of dx and dy presented in Equation 3-13 are the variations in position 

of the slider and the pin of the mechanism for a group of assemblies. 

 

 
3.6 Summary 

 In this chapter conventional kinematic analysis was employed to conduct 

tolerance analysis of a Scotch-Yoke mechanism.  The only member with a 

potential tolerance in its geometric dimension was assumed to be the crank arm of 

the mechanism. This increased the degree of freedom of the system from one (1) 

to two (2).  The additional required input was taken as the prescribed tolerance in 

the length of the crank arm.  Knowing the tolerances specified on the crank arm, a 

closed form set of equations were derived to predict the tolerance stack up in the 

position of the sliding member at any desired configuration of the mechanism.  

The tolerance analysis was then extended to a group of assemblies of the 

mechanism. 
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CHAPTER IV 

TOLERANCE ANALYSIS OF A ONE-WAY CLUTCH 
  

 4.1 Description of a one-way clutch 

 A typical one-way clutch is shown in Figure 4-1.  A clockwise rotation of 

the ring causes the roller to wedge between the ring and the hub, forcing the hub 

to rotate with the ring.  The rollers disengage as the ring rotates counter-

clockwise, allowing the hub to remain stationary as the ring rotates.  This type of 

clutch is commonly used in lawn mower pull starter assemblies. 

 

Figure 4-1 Schematic view of a one-way clutch Figure 4-2 Vector loop of the 
              one-way clutch 
 Referring to Figure 4-2, the pressure angle “γ”, has to be between 5 and 9 

degrees for the clutch to operate properly.  Angles larger than 9 degrees prevent 

the clutch from engaging, while angles smaller than 5 degrees may cause an 
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undesirable condition of self-locking and prevent the clutch from disengaging. 

The ideal pressure angle is 7 degrees1.  Dimensional variations of length “d” and 

angle “γ” are dictated by the dimensional variations (tolerances) specified in the 

hub’s shoulder “h”, the roller radius “r”, and the ring radius “R”.  

 

 The tolerance analysis presented in this chapter considers only the 

engaged position of the clutch.  Other positions of the clutch are not critical, 

therefore, allowing us to view the clutch as a static assembly. In this chapter, once 

again, the relationship between kinematic and tolerance analyses is demonstrated.  

A final tolerance analysis, using the kinematic formulation will then be presented 

in Section 4.3.   

 

4.2 Tolerance analysis of a one-way clutch using a vector loop 
 
 The vector loop from Figure 4.2 yields the following vector equation:  
 
 

                    
     (4-1) 
 
1- "General 2-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments" 
Where  and .  Here the roller is assumed to be a 

perfect sphere, where .  
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 In order to allow placement of manufacture tolerances on different parts of 

this mechanism parameters h, d, r and R are allowed to have differential 

variations of dh, dd, dr, dR respectively.  Take differential of equation (4-1) 

yields: 

 

 
                     (4-2) 
 
 
Rearranging Equation 4-2 provides: 
 
 

 
                       (4-3) 
 
 
Defining a new parameter and substitution it in Equation 4-3 yields: 
 
 

 
                       (4-4) 
 
 
Tolerance analysis traditionally uses relative angles to describe angular positions. 

This is useful since tolerance specifications are often given in relative coordinates.  
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The vector loop with each vector described using absolute angles given in 

Equation 4-1 results:  

 

              (4-5) 
 
 
Comparing Equations 4-1 and 4-5 shows the following equalities: 
 
 

  
  

                                                      (4-6) 
  

 
 
Substituting the parameters of Equations 4-6 into Equations 4-4 yields: 
 
 

                                 
                                                                                          (4-7) 
 
Resolving this vector equation into its X and Y components yields two scalar 

equations: 

 

 
  
            (4-8) 
  

 
= 0                                                                                                                      
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Rewriting Equation 4-8 in matrix form results in Equation 4-9: 
 
 

 
              (4-9)                                                                  
               
 
 Equation 4-9 can be used for tolerance analysis of the one way clutch. 

Here the tolerances in hub shoulder h, roller radius r, and ring radius R are treated 

as known as previously selected input parameters as dh, dr and dR respectively. 

The goal in solving equation 4-9 is to estimate the tolerance in the contact angle 

dγ and the contact distance d where the part tolerances dh, dr and dR are known.   

 

 The matrices in Equation 4-9 can be defined as [A] and [B] according to 

Equations 4-10: 

 

 

        (4-10) 
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Rewriting Equation 4-9 in terms of the newly defined matrices [A] and [B], the 

unknown tolerances dd and  are solved from Equation 4-11:    

 

                                                          (4-11) 

 
 

Equation 4-12 provide the closed form solutions for the tolerances dd and  
 

                                             (4-12) 

 

4.3 Parametric analysis of the tolerance analysis of one-way clutch 

assemblies 

 In Section 4.2 a closed-form formulation was derived for tolerance 

analysis of a one-way clutch.  This section presents a parametric study of this 

tolerance analysis for a set of geometric dimensions and their corresponding 

tolerances of the clutch.  Table 4-1 contains the geometric dimensions and the 

specified tolerances for the parts that are manufactured.  
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Table 4-1 Nominal dimensions and tolerances for the one-way clutch. 

Tolerance  Nominal Size Dimension 

0.050 mm 37.33 mm Hub shoulder, h 

 

0.010mm 11.18 mm Roller radius, r 

0.0130mm 60.00 mm Ring radius, R 

unknown 12.45 mm Contact distance, d 

unknown 7.0 degrees Pressure angle, γ  

 

 

The known parameters of Table 4-1 are employed to find the solutions for 

Equations 4-12.  

For the clutch with dimensions found in table 4.1 the final solution becomes: 

 

               (4-12) 
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Equation 4-10 can be used to find the variance of d and γ given individual part 

variations of h, r and R, The tolerance analysis can be used to develop worst case 

and statistical tolerance models. 

  

4.4 Summary 

 In this chapter modified kinematic analysis was followed to perform 

tolerance analysis of a one-way clutch.  The motivation for this study is to 

investigate the effects of the specified tolerances of the individual components of 

the clutch on the critical contact angle of the rolling elements and the contact 

distance of the rolling element of the clutch.  As it is known in this field of 

machine design, there exists an optimum angle of 7 degrees that assures the best 

performance for these clutches.  As a design tool, this tolerance analysis can be 

used to specify the individual part tolerances such that the targeted optimum angle 

of the system does not deviate drastically from its preferred 7 degrees.  The 

formulation presented in this chapter provides this design tool.      
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CHAPTER V 
 
 

SKEWNESS ANALYSIS OF TOLERANCE STACK-UP 
 

FOR A SLIDER-CRANK 
 
 
5.1 Skewness in tolerance analysis of planer mechanisms 
 
  This chapter presents an extension of the tolerance analysis for 

determining the skewness of the tolerance distributions in a group of assemblies 

of planner mechanism.  In certain assemblies of mechanisms it is desired to 

specify the tolerances of the individual components such that the resulting stack-

up tolerance distribution becomes skewed.  One example of such tolerance 

requirements is the one required for the assembly of shafts inside of sleeve 

bearings.  Other examples include mechanisms that are parts of medical and 

electronic.  In this chapter the method of determining the skewness of tolerance 
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stack-up is presented for a slider crank mechanism.   The next section introduces 

the concept of skewness in a statistical analysis of a typical random variable 

distribution.  

  

5.2 Definition of skewness in statistical analysis 

 In probability theory and statistics, skewness is a measure of the 

asymmetry of the probability distribution of a real-valued random variable.  For a 

random variable distribution shown in Figure 5-1, the number of occurrence of 

the random variable is not symmetrically distributed about a “mean” value.  As 

shown in this figure, there are generally a lesser number of occurrences to the 

right side of the “mean” than those to its left.  Here, the distribution is skewed 

around its “mean” value.  In the example of Figure 5-1 the distribution is skewed 

more to the right of the “mean” value.  In other words, the tapering of the 

distribution is non-symmetric around the “mean.  The longer tapering is called 

“tail” and it provide a visual means for determining the type of skewness exist in 

a distribution.  Therefore, the skewness could be divided into the following two 

types: 
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Figure 5-1 Example of experimental data with non-zero skewness 

 

1- Positive skewness, shown in Figure 5-2, where the mass (area under carve) 

of the distribution is concentrated on the left of the figure. The distribution 

is said to be right-skewed. 

 

2- Negative skewness, shown in Figure 5-3, where the mass (area under 

carve) of the distribution is considered on the right of the figure. The 

distribution is said to be left-skewed.      
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Figure 5-2 Negative Skew                                    Figure 5-3 Positive Skew 

 

The skewness of the normal distribution (or any perfectly symmetric distribution) 

is zero.  The skewness of a non-symmetric distribution is defined as: 

 

        (5-1) 

where “y” is the skewness of the distribution, “n” is the sample size, xi is the 

random variable, and “μ” is the mean value of the random variable.  In MATLAB 

the skewness of a non-symmetric distribution is calculated according to the 

syntax: 

 

y = skewness(x) (5-2) 

 

where,  y = skewness(x) returns the sample skewness of vector x.   
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5.3 Skewness in tolerance stack-up for a group of slider-crank assemblies 

 In chapter 2 the tolerance stack-up of a group of slider-crank assemblies 

was performed using a kinematic velocity equation approach.  Unlike 

conventional configurations of a slider-crank in which the crank and connecting 

rod  are treated as rigid members in the velocity analysis, in tolerance analysis 

these rigid likes are modified to include sliding features that allow dimensional 

variations in these links that are encountered in manufacturing processes.  

 

 Figures 2-1, 2-2, and 2-3 are shown here again as Figures 5-4, 5-5, and 5-6 

respectively.  The sliding features incorporated in Figure 5-5 allows the length of 

the crank and connecting rod to be treated as variables, instead of constants, such 

variations in turn represent the tolerances that can occur during the manufacturing 

process of these two components of the slider crank.    

 

Figure 5-4 Schematic view of a typical slider crank mechanism 
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Figure 5-5 Vector loop of a slider crank mechanism 

 

                 

            Fig 5-6  The slider crank mechanism with  

               fictitious sliders for tolerance analysis 

The vector loop Equation of 2-1 of chapter 2 is re-written here as Equation 5-2: 

 

                                                 (5-2) 

 



45 
 

According to Figure 5-6 the lengths r2 and r3 are allowed to vary.  In Chapter 2 

their first variations where treated as the tolerances in their length.  Here, their 

second variations are treated as the skewness in the distributions of these lengths 

for a group of assemblies of mechanisms shown in Figure 5-4.  

  

Equations 5-3, shown below, are the time derivatives of Equations 5-2: 

 

                  (5-3) 

 
 
 
Where .  The second time derivatives of Equations 5-2 
yield: 
 
 
 

 
                                               
                   (5-4) 
 

 
 
 
In Equations 5-4 the values of the first and second derivatives of θ are zero: 
 

 
 
In order to interpret Equations 5-4 as skewness analysis, the time derivative 

characters may be replaced by the “differential” representation, for example: 
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, from tolerance analysis of chapter 2 
         (5-5) 

, from tolerance analysis of chapter 2 
 
 
 It is the purpose of this analysis to determine the effects of skewness in the 

distribution of dimensions of r2 and r3 on the resulting skewness in the 

distribution of “x” and “θ3” of a group of assemblies of the mechanism.  Here, all 

second time derivative parameters are replaced by double differential parameters 

as shown in Equations 5-6: 

                                           (5-6) 

 
 

Substituting all of the time derivative parameters of Equations 5-4 by their 

corresponding differential parameters yield:    

  
                                                   
 
Representing Equations 5-6 in a matrix form provide Equations 5-8 as: 
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                                                                                     (5-8) 
  stated before, as shown in Equations 5-8, the values of d(dr2), d(dr3) are 

known skewness in the statistical distributions of the lengths of the crank and 

connecting rods.  On the other hand, the values of dr3 and dθ3 have been 

determined in chapter 2 as the outcomes of the tolerance analysis.  Let’ define the 

matrices of Equations 5-8 as [A] and [B] as: 

 

       

 

     

                                                                                                        (5-9)               
 
 
 
Solving Equations 5-8, with the [A] and [B] matrices defined in Equations 5-9, 

the resulting skewness of “x” and “θ3 “ can be determined for the distributions of 

a group of assemblies of the slider crank mechanism as:  

    

                             (5-10) 
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5.4 Parametric analysis of the skewness of slider-crank assemblies 

 In Section 5-3 a closed-form formulation was derived for skewness 

analysis of a slider crank mechanism. This section presents a parametric study of 

this skewness analysis for a set of geometric dimensions and their corresponding 

tolerances of a slider crank mechanism.  Table 5-1 contains a summary of the 

parameters used in this section:    

 
Table 5-1 Known parameters for skewness analysis of a slider crank 

 
Crank 
length,  

Connecting 
rod length,  

     

10 20 45 0.005 0.005 339.3*
 

 

 
 
The known parameters of Table 5-1 are employed to find the solutions for 

Equations 5-7.  Table 5-2 contains the results of this parametric study.  

 
 

Table 5-2 Skewness of the slider position and connecting rod angle 
 

              Skewness in X                  Skewness in  
 

          -0.9625                        -0.0113 

 
 
 

5.5 Summary 



49 
 

 The tolerance analyses presented in this thesis is mainly founded on the 

vector loop kinematic “velocity” formulation of mechanisms.  Such velocity 

analyses enable a designer to substitute the velocities of the individual 

components of a mechanism with first “differential” parameters that stem from 

incorporation of fictitious sliding members in the mechanism.  The virtual 

displacements of these fictitious sliders are then interpreted as the dimensional 

manufacturing tolerances of the individual components.  Chapter 5 of this thesis 

extends this method of tolerance analysis to a statistical “skewness” analyses. 

This is accomplished by working with the second time derivatives of the 

kinematic position equations, namely the acceleration analysis of the mechanism.  

Here, the acceleration parameters of a kinematic system, having fictitious sliders, 

are replaced by the second differentials of the displacements of these fictitious 

sliders and thereby are interpreted as the second variations in the geometric 

dimensions of the mechanism.  In other words, the skewness of the tolerance 

distributions may be determined via the closed-form formulations developed in 

this chapter for any configurations of the kinematic system.  



50 
 

 

 

 

 

 

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 A kinematic based tolerance analysis of mechanisms was introduced in 

this work.  It was shown that standard kinematic analysis can be used for 

tolerance analysis of a mechanism and linkages for obtaining a closed-form 

formulation.  In the presented approach the manufacturing tolerances are 

accounted for by incorporating fictitious sliding members in the rigid links, 

thereby allowing them to either “grow” or “shrink” along the lines of their pin 

connections.  The virtual expansions or contractions of these fictitious sliders can 

be captured in by taking the differential of the magnitudes of the vectors that 

define the length of rigid links having dimensional tolerances.  These 
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mathematical differentiations follow exactly the procedure of kinematic velocity 

analyses of mechanisms.  The method can further be extended to perform 

tolerance analysis on a group of identical mechanisms.  

 

 As the fictitious sliders are added to the rigid members of a mechanism, a 

modified linkage is constructed with higher number of degrees of freedom (DOF) 

that requires higher number of kinematic input parameters in order to obtain 

unique kinematic solutions. The extra required input parameters however are the 

known tolerances of the individual parts that result in obtaining a unique solution 

for the tolerance analysis of a mechanism in a general explicit form for any 

configuration of the system. 

 

 The tolerance analysis presented in this thesis was utilized to study 

tolerance stack ups in three (3) different mechanisms, slider crank, Scotch-Yoke, 

and a one-way clutch. In each case, the effect of tolerances in the individual 

components were combined together, through modified kinematic analyses in 

order to determine the resulting stack up of tolerances in the assembly of the parts 

for any generalized configuration of the mechanisms.  
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 The analysis was further extended to include statistical skewness analyses 

on the tolerance distributions of the individual components and the resulting 

skewness on the assembly of the mechanism.  

The main benefit of the presented approach is the use of standard 

kinematic solver computer codes for tolerance analyses of mechanisms.  

Incorporating fictitious slider in a mechanism is interpreted by these coded as 

additional degrees of freedom, with the corresponding input parameters known as 

the individual tolerance of the machine components.   

  

6.2 Future work 

 The present work can be expanded to the following areas of tolerance 

analyses of machine assemblies: 

 

• Tolerance analysis of spatial mechanisms 

• Inclusion of part deformation as the results of the interacting loads 

among the machine components 
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