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INNOVATIVE WIND POWER SYSTEM 

 

 

DAVID J. KERZE 

 

 

ABSTRACT 
 

This project entails a study of a wind energy recovery system that utilizes a unique three-

dimensional spiral structure to amplify wind speed and direct it toward pluralities of turbines.  

The system is comprised of an outer spiral shell, internal support structure, turbines, and 

mechanisms for positioning the turbines to face the prevailing wind.  Computational Fluid 

Dynamics (CFD) analyses were conducted to determine the wind speed amplification factors as 

a result of a simulated wind flow around the spiral structure.  To ensure accuracy of the results, 

state of the art CFD techniques were applied using Gambit 2.2.30 and Fluent 6.2.16.  

Specifically, wind speed amplification factors were determined for 25ft and 30ft radius spiral 

shells.  The velocity profiles of the wind flow around both spiral structures were obtained under 

a postulated 10mph wind speed.  This resulted in a turbulent flow with a Reynolds number of 

5,596,819.  All analyses were run using “standard k-ε” turbulence model with the “near wall 

treatment” option “standard wall function”.  A “y+” value of 50 was held constant in all 



vi 

simulations.  The affect of the grid size on the accuracy of the results was examined.  

Convergence criterion was satisfied in each case. 

 

The 25ft radius spiral structure yielded an average velocity amplification factor of 1.524; while 

the 30ft radius resulted in an average amplification factor of 1.539. This particular information 

can help the designer of the system to select an appropriate overall shell size based not only on 

the mechanical efficiency, but also considering the cost and economical factors. 
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CHAPTER I INTRODUCTION 
 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 
 

“Worldwide, electricity generation in 2030 is projected to total 30,364 billion kilowatthours, 

nearly double the 2004 total of 16,424 billion kilowatthours.  Higher fossil fuel prices, energy 

security concerns, and environmental considerations are expected to improve the prospects for 

nuclear power capacity in many parts of the world.” 1  In non-OECD2 countries, largely within 

Asia and South America, large growth is seen in hydroelectric power and is projected to increase 

through 2030.  In OECD countries, such as the United States, hydropower is not expected to 

                                                 
1
 See References, (Energy Information Administration, Official Energy Statistics From the U.S. Government, 

2007, p. 1) 
2
 See Appendices, section 3 Abbreviations 
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grow substantially because most of the available resources have already been developed.  

“Instead, most of the increase in OECD reliable energy is expected to be in the form of non-

hydroelectric resources such as wind, solar, geothermal, municipal solid waste, and biomass.” 3  

As the energy statistics show, wind energy has proven to be a viable energy alternative for many 

of the industrialized nations.  In fact, many studies prove that wind energy is one of the most 

dependable sources of electricity worldwide. 

 

According to Distributed Energy, “The Green Energy industry is forecast to be one of the fastest 

growing industries over the next decade.  According to the market research firm Clean Edge the 

Fuel Cell, Solar, Wind, and BioFuels (Ethanol and BioDiesel) markets will grow to more than 

$167 billion worldwide by 2015” (Senall, 2007).  Table 1 lists the revenue projections for each 

Sub-sector. 

 2005 2015 

Fuel Cells $1.2 billion $15.1 billion 

Solar Equipment $11.2 billion $51.1 billion 

Wind Power $11.8 billion $48.5 billion 

BioFuels $15.7 billion $52.5 billion 

Total: $39.9 billion $167.2 billion 

Table 1 - Industry Sub-sector 2005 revenues 2015 forecast, (Senall, 2007) 

 

  

                                                 
3
 See References, (Energy Information Administration, Official Energy Statistics From the U.S. Government, 

2007, p. 1). 
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Many studies have shown that wind energy is valued as one of the most dependable sources of 

electricity worldwide.  In order to maintain this status, continued efforts to refine design and 

production techniques are necessary.  It is imperative that the rust belt states lead the research 

initiative as “wind and solar energy is likely to furnish one of the largest sources of 

manufacturing jobs worldwide.” 4  If this industry is further pursued, there is strong promise that 

the existing factories in the region could be retooled cost effectively.  This could possibly replace 

the thousands of jobs that have been lost as a result of outsourcing and corporate downsizings 

in the textile, steel, oil, and automobile industries. To date, twenty two states have already put 

Renewable Energy Standards in place.  In an effort to contribute to this cause, Dr. Majid Rashidi 

and a team of graduate students have undertaken several research projects, each with the goal of 

developing system optimizations that will contribute to more competitive energy costs. 

 

There are two common methods that are used to recover wind power (this determination is a 

result of the known formula , where S (area) and v1 (velocity) are the only two 

parameters that directly influence power generation).  The first, most commonly used, method is 

to increase the blade swept diameter.  The second technique is to try to amplify the natural wind 

speed.  As a starting point for the first approach, it is important to understand Betz law, which 

provides theoretical calculations proving the coefficient of maximum performance for a wind 

turbine.  The calculations presented in Albert Betz’s publication Introduction to the Theory of Flow 

Machines define the maximum theoretical efficiency of a rotor.   

  

                                                 
4
 See References, (Senall, 2007) 
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Please review and analyze the formulations deriving the Betz law in the attached footnote:  5 

 

 

                                                 
5
 “In order to calculate the maximum theoretical efficiency of a rotor (of, for example, a wind mill) one 

imagines it to be replaced by a disc that withdraws energy from a fluid passing through it.  At a certain 

distance behind the disc, the fluid, that has passed through, flows with a reduced velocity.  Let v1 be the 

speed of the fluid in front of the rotor and v2 that of the fluid downstream of it.  The mean flow velocity 

through the disc representing the rotor is vavg, where 

 

 

 

With the area of the disc equal to S, and r equals the fluid density, the mass flow rate (the mass of fluid per 

unit time) is given by: 

 

 

 

The power delivered is the difference between the kinetic energies of the flows approaching and leaving the 

rotor in unit time: 

 

 

 

 

 

By differentiating   with respect to  for a given fluid speed v1 and a given area S one finds the maximum 

or minimum value for .  The result is that  reaches maximum value when  .  

Substituting this value results in: 

 

 

 

The work rate obtainable from a cylinder of fluid with area S and velocity v1 is: 

 

 

 

The coefficient of performance  has a maximum value of:  (or 59.3%; 

however, coefficients of performance are usually expressed as a decimal, not as a percentage).  Rotor losses 

are the most significant energy losses in, for example, a wind mill.  It is, therefore, important to reduce these 

as much as possible.  Modern rotors achieve values for Cp in the range of 0.4 to 0.5, which is 70 to 80% of 

the theoretically possible”. (Betz, 1966) 
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There have been several attempts at amplifying the natural wind speed.  An example of this 

would be the Web Concentrator, designed by BDSP Partnership (Serbia) and was optimized 

using CFD modeling techniques by Imperial College, London (UK).  A conceptual image can be 

viewed in Figure 1. (Dutton, Halliday, & Blanch, 2005) 

 

Figure 1 - Web Concentrator, (Dutton, Halliday, & Blanch, 2005) 

 

This design achieved a power improvement ratio of roughly 0.8 when tested with winds flowing 

orthogonal to the tower.  Because this is implemented into the structure of a commercial 

building the cost of such a structure would be relatively high.  The status of the production of 

this structure is currently pending due to a lack of funding sources.  An alternative design that is 

adaptable to many flat and pitched roof structures would be the Altechnica’s patented Aeolian 
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planar concentrator wind/solar system, which can be seen below in Figure 2.  This structure 

does not use standard turbines, but instead uses a specially designed cross flow turbine.  This 

wind energy system is very unique and economical, but it does not deliver high wind 

amplification factors of that of several other designs. 

 

Figure 2 - Altechnica's Patented Aeolian Planar Concentrator Wind/Solar System 

 

The WARP Tower Configuration, Figure 3, is a standalone electrical generation tower that 

contains a series of individually rotating modules for turbine positioning.  To date this tower has 

not been produced due to the high cost of its movement system as well as its high patent price. 

 

Figure 3 - WARP Tower Configuration 
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The shortfall of many of these designs is either the feasibility or the cost associated with the 

structures.  With this being said there is still a need for improvements and new innovations in 

wind amplification, structural integrity, and cost effectiveness. 
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1.2 IDENTIFY PROBLEM/NEED 
 

The wind power industry has grown exponentially over the past decade, particularly in the 

research and development of large scale wind turbines.  Advances in the ability to generate large 

quantities of electricity from giant offshore wind turbines, described in Popular Science 

Magazine’s October 2004 Issue and made the front cover of WindTech International’s February 

2007 Issue.  There have also been additional proposals for flying electric generators by Sky 

WindPower Corporation, explained in further detail in Popular Science Magazine’s July 2006 

Issue.  Although many of these techniques look good on paper, engineers alike have found that 

most of these wind power systems need extensive amounts of additional research and testing to 

perfect these designs.  Millions of dollars are being poured into research to identify and fix the 

critical components that are linked to wind power system failures.  It is important to realize that 

every minor improvement that can help to prolong the working lifespan of modern wind power 

systems will be implemented into thousands of production models, thus often leading to savings 

in the millions of dollars for companies as failures usually have costs associated with machine 

downtime, associated service labor, and replacement material costs to name a few.  In fact, a 
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short article presented on November 3rd, 2005 named “The Gearbox: Wind Power’s Achilles 

Heel” globally illustrates how these issues can impact a once prospering company. 6 

 

Additional information can be found in “Wind Power Monthly News Magazine”, Volume 21 - 

Number 11, from November 2005.  The cover, shown in Figure 4 below, gives a clear 

illustration of the size a magnitude of what could be considered to be a standard wind power 

system gearbox. 

                                                 
6 
 “Gearboxes have been failing in wind turbines since the early 1990s. Barely a turbine make has escaped. 

Six years ago the problem reached epidemic proportions, culminating in a massive series failure of 

gearboxes in NEG Micon machines. At the time, the NEG Micon brand was the most sold wind turbine in 

the world. The disaster brought the company to its knees as it struggled to retrofit well over one thousand 

machines. It has since been taken over by Vestas, the world's largest wind turbine manufacturer. Vestas is 

still grappling with the aftermath of the gearbox catastrophe. 

 

The wind power industry and its component suppliers now believe that such major series failure of 

gearboxes is a thing of the past. Today's far larger and more sophisticated turbines, they say, are safe from 

mistakes encountered in early phases of technology development. 

 

Bigger turbines, however, are proving to be far from immune to gearbox failure, as Windpower Monthly 

reports in its November issue. ... 

 

The wind industry's gearbox problem has for years been shrouded in secrecy. While blame for the failures 

has been spread far and wide, questions outnumber the answers by far. At Windpower Monthly we set 

ourselves the task of finding out the true scale of the problem. Why is it that gearboxes in wind turbines have 

so massively failed? What is the solution? ... 

 

The good news is that understanding of the highly complex loads that gearboxes -- and particularly their 

bearings -- are subject to is being helped by a new industry willingness to co-operate and face up to the 

challenges of wind power's rapid technological evolution. But only time will tell whether a definitive 

solution has been found -- and whether it will stay the course as wind turbines get ever bigger and more 

demanding of engineering ingenuity.” (Kirby Mountain, 2005) 
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Figure 4 - Wind Power Monthly Vol. 21, Num. 11 (11/05) 

 

The structural issues of large scale turbines continue to act as a bottleneck to the wind industry.  

Although engineers do not want to “reinvent the wheel”, thus minimizing high startup costs 

associated with research, testing, and implementation of an unproven system, it is still important 

to “think outside of the box” when attempting solve challenging problems.  The system 

presented and studied in this thesis implements a series of smaller turbines into a controlled 

system, which would eliminate the high number of failures associated with large scale turbine 

gearboxes.  The aspect of this design that separates it from existing designs is that this is the first 

wind structure that has been designed to use an outer spiral shell to amplify wind natural wind 

speed toward an attached system of small turbines.  A number of smart technologies were used 

to optimize the towers rotational movement method, weight/rigidity, and aerodynamics.  The 

result is a tower with a significantly lower start-up cost and cost/energy ratio keeping the tower 

competitively priced in the energy market. 
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1.3 STRUCTURAL BENEFITS OF HELICAL SPOILERS 
 

The spiral shape possesses inherent properties that can’t be found in most other shapes such as 

its ability to amplify flow and maintain structural rigidity by minimizing flow induced vibrations.  

For example, “For tall chimneys, helical spoilers or strakes can be provided around the chimney 

shown below in Figure 5.  The helical spoilers break down the vortex pattern so that no well 

defined excitation is applied to the chimney wall.” 7 

 

 

Figure 5 - Reduction of Flow Induced Vibrations [Photo 

courtesy of Bethlehem Steel Corporation], (Inman, 2001) 

 

Further evidence of the benefits of the spiral shape can be seen in the Chicago Spire project, or 

the Fordham Spire, which was proposed by a Spanish architect in July of 2005.  The structure is 

designed to exceed heights of 2000ft and will accommodate roughly 115 floors.  Figure 6 & 

Figure 7 depict artistic renderings of the finished tower amongst the Chicago landscape. 

 

                                                 
7 

(Inman, 2001, p. 264) 
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Figure 6 - Santiago Calatrava Structures – Pic#1, 

(Wikipedia, 2007) 

 

Figure 7 - Santiago Calatrava Structures – Pic#2, 

(Wikipedia, 2007) 

 

As noted by Wikipedia’s web article Chicago Spire, “the architectural design of this structure 

poses several benefits.  The two primary benefits are described to be the added structural 

strength to the structure as well as the minimization of wind forces.  As scientific theory will 

prove, this will by no means eliminate all wind forces so a tapering concrete core and shear walls 

will be used to counteract these forces.” 8 

 

                                                 
8 

(Wikipedia, 2007) 

http://upload.wikimedia.org/wikipedia/en/5/5e/Ib5.jpg
http://en.wikipedia.org/wiki/Image:Chicago_Spire.jpg
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Figure 8 - Burj Dubai, Spiral Structure 

w/Triple Lobed Footprint, (Wikipedia, 2007) 

 

Figure 9 - Projected Heights of World’s Largest 

Skyscrapers, (Wikipedia, 2007) 

 

The Burj Dubai, Figure 8 & Figure 9, has an expected completion date of June 30th 2009, will 

be throwned the tallest building in the world with rumored heights of roughly 3,005ft.  The 

towers central core is comprised of three elements, which include the flat desert base, setbacks 

that occur in an upward spiraling pattern, and at the top the central core emerges and is shaped 

to form a finishing spire.  As shown the spiral shape is being implemented into the designs of 

some of today’s most renowned architecture.  The shape has been proven and is here to stay. 

 

Although there are many studies that deem the spiral shape and helical spoilers to be a positive 

attribute to structures of varying heights, industry has yet to implement this into its designs.  The 

benefits of this structure are such as reduction in wind induced vibrations as well as inherent 

wind amplification properties need to outweigh the added material, manufacturing, and 

installation costs.  Through research, it was determined state of the art automation processes 

were implemented this shape could be produced at feasible costs.   
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CHAPTER II INTEGRATION OF 
OUTER SPIRAL SHELL, 

SUPPORT STRUCTURE AND 
MECHANICAL COMPONENTS 

INTEGRATION OF OUTER SPIRAL SHELL, SUPPORT 

STRUCTURE AND MECHANICAL COMPONENTS 

 

2.1 RESTRICTIONS & DESIGN CONSTRAINTS 
 

A compilation of guidelines/requirements must be followed throughout the design process.  To 

simplify this process the requirements were broken down into three categories: 

1. Top Level Requirements 

2. Local Level Requirements 

3. Scope of Work 

Top & local level requirements are general requirements that serve as a guide for the design.  

These requirements are often established due to driving factors such as manufacturing facility 

size/tooling, build site restrictions, material transportation, and most often funding.  Several of 
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the requirements listed below are self imposed restrictions that were determined by consensus 

following extensive research on shortfalls of the prior art.  The top & local level requirements 

that were established are as follows: 

2.1.1 Top Level Requirements: 

 

1. Electricity must be generated at a minimum of 5 mph wind speeds instead of 11 

mph, which will greatly improve the market potential of wind energy. 

2. Noises made by the rotor blades must be minimized. 

3. “Off the shelf” impellers having a tip-to-tip dimension of 15ft in diameter 

should be implemented.  The tower must proportionally accommodate the 

aforementioned impellers, while maintaining the requirement that the outer 

diameter of the spiral structure must not exceed 60 feet.  Each turbine is 

expected to provide a nominal 10-15KW of energy as a result of recent 

technological developments.  In most cases an expected power output of the 

final system is expected to be between 100KW-500KW. 

4. The tower must be aesthetically pleasing for any given surroundings.  In 

addition to being visually pleasing, the tower must accommodate the use in 

large farms, urban areas or onto rooftops of residential districts. 

5. The spiral tower must have the capability to be equipped with antennas to allow 

for self-sustaining communications and with solar panels in order to improve 

power generation.   
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2.1.2 Local Level Requirements: 

 

1. The structure’s shape must amplify the wind velocity over the plane collinear to 

the windmill in order to maximize efficiency. 9    

2. Each windmill blade has the capability to travel a maximum rotation of 
180 . 

3. Tower design is to be modular for ease of assembly.  This shape allows various 

tower sizes depending on the applications.   

4. Windmills must be orthogonal to the wind to obtain the highest energy 

recovery. 

5. Easy access and maintenance must be assured.   

6. The design of the tower has to be capable to handle a minimum of category 4 

(Saffir-Simpson Scale) winds that can range anywhere between 131-155mph. 

7. The tower design has to be capable of upgrading old towers with ease.   

 

The Scope of Work is different from the top and local level requirements in that it 

specifically states exact requirements.  This removes any form of uncertainties and allows 

the engineer to focus on the R&D optimization. 

 

                                                 
9 

High priority requirement
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2.2 DEFINITION OF SCOPE OF WORK 
 

1. Exterior Shell 
 

Design an exterior shell for a wind energy system that meets all of the previously stated 

design constrains, while integrating the “spiral shape”.  The design is to be modular to 

accommodate low cost tooling, transportation, and assembly.  Provide a minimum of 

one drawing(s) of the “building block” (modular shape that is to be replicated). 

 

2. Load Carrying Cage 
 

Drawing(s) for a load carrying cage structure to which the spiral shell is rigidly attached.   

 

3. Building blocks (1 Rev.) 
 

Drawing(s) of a system of “building blocks” that when assembled complete one turn 

(360 degrees) of the spiral shell for a typical 300KW tower system.   

 

4. Connecting Elements 
 

Drawing of the connecting elements that rigidly link the spiral shell to the cage. 
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5. Assembly 
 

Drawings of load carrying cage and one turn of spiral shell, which includes two 

electric generators on its diametrically opposite concave sides.   

 

6. Hydrostatic Thrust Bearing 
 

Schematic drawing(s) of a thrust bearing(s). 10  This bearing is to support the CAGE 

in the vertical direction, and should allow rotation of the spiral system about its 

longitudinal axis.   

 

7. Hydrostatic Radial Bearing 
 

Schematic drawing(s) of radial bearing(s). 11  These bearings are to support the cage 

in the radial directions, and prevent tilting of the spiral system from its vertical 

standing.  These bearing(s) must still allow rotation of the system on the thrust 

bearings.   

 

8. Design Analysis – FEA Simulated Snow Test 
 

FEA testing of fiberglass shell structure.  This takes into consideration a load that 

is equivalent to the weight resulting from a volume of three cubic feet of snow as 

an additional load bearing weight on the structure. 

                                                 
10  

Designed by Dr. Majid Rashidi (Cleveland State University); Note: Actual sizing and design parameters 

are classified not disclosed as they are property of Dr. Majid Rashidi (Cleveland State University). 
11  

Designed by Dr. Majid Rashidi (Cleveland State University); Note: Actual sizing and design parameters 

are classified not disclosed as they are property of Dr. Majid Rashidi (Cleveland State University). 
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2.3 CONCEPTUAL DESIGN 
 

The illustration of the spiral tower structure, Figure 10, was artistically rendered in SolidWorks 

and PhotoWorks.  This conceptual design served as the basis for all future design 

changes/modifications.  Also shown is an array of small wind turbines mounted on the 

structure.  The conceptual design does not take into consideration: 

1. Bill of Materials (Type of Material, Properties, Weight, Cost, Quantity, etc.) 

2. Structural Integrity (Support Members, FEA Testing, Wind Force Testing) 

3. Spiral Structure Mobility (Rotation) 

4. Size Optimization (CFD Analyses) 

5. Method of Assembly (Modularity & Actual Connection Points) 

6. Manufacturability 

 

 

Figure 10 - Spiral Tower Structure Concept w/Turbines 
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Initial design ideas included a variety of different parameters.  The spiral module concept 

illustrated in Figure 11 was designed with the idea that the external shell membrane would be a 

very flexible skin that is similar to that of saran wrap.  The skin was the driving parameter in the 

design of the “formed” piping support system that is comprised of twelve unique bend 

combinations per module.  Additional I-Beam truss elements were used to structurally support 

the I-Beam track and trolley system that would be used as a guide rail.  A pulley system was 

designed to invoke the movement required to position the turbines orthogonal to the wind at 

any moment of time in any type of weather condition.  

 

Figure 11 - Spiral Module Concept w/Supporting Elements 

 

 



21 

2.4 MODEL/PROTOTYPE 
 

These conceptual models were taken further by producing small “plaster” based 3D prototypes 

on Cleveland State Universities Z-Corporation 3D printer.  This printer provides a means of 

producing early stage concept models quickly and efficiently from CAD data.  Other benefits 

include the ability to: 

1. Perform Iterative Design 

2. Communicate With Clients 

3. Identify Problems Early 

4. Achieve a Consensus on a Design 

5. Perform Ergonomic Testing 

Figure 12 shows actual models that were used in the design process of the spiral tower structure. 

 

Figure 12 - Z-Corporation 3D Model 
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2.5 DESIGN EVOLUTION 
 

The figures below show the evolution of the external shell structure from inception to 

completion.  The WARP Tower, Figure 3, which is comprised of donut shaped modules was 

proposed by Alfred L. Weisbrich in 1996.  The idea was to have individually rotating tower 

sections that would be able to alter the positions of wind turbines by way of angular ball 

bearings.  This idea was good in concept, but proved to be cost ineffective.  The original shape 

did not provide the benefits of a spiral structure such as structural stability or wind amplification.  

By consensus the spiral structure also proved to be more aesthetically pleasing to the human eye. 

 

 

Figure 13 - Prior Art - Proposed Shell 

Design Concept [Weisbrich, 1996] 

 

 

Figure 14 - Original Spire Tower System Shell 

Design [CSU, 2005] 

 

 

Figure 15 - Deca Tower System Shell 

 

 

Figure 16 - Final Tower System Shell 
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Several design iterations were needed before achieving the final product.  As previously stated, 

the turbines original positioning system was based on a track/trolley/pulley system, which later 

was modified to a more efficient system that used hydrostatic thrust bearings and hydrostatic 

radial bearings to stabilize and position the tower so that the turbines could always operate 

orthogonal to the wind.  The new system reduced the amount of material, labor, and time to 

assemble each tower system.  The primary reason for the change in positioning systems was due 

to new composite materials and material fabrication technologies that became more readily 

available.  The new shell material provided a more rigid external shell, while allowing for the 

elimination of several previously required supports (thus indirectly resulting in a structure with a 

significantly lower weight). 

 

The aerodynamics of the tower has also changed significantly since its inception.  Each stage in 

the shells evolution from its inception through it present shape can be viewed in Figure 13 - 

Figure 16.  A few variables needed to be considered in the shape optimization process include: 

1. ease of production, 

2. reduction in surface area, 

3. reduction of wind induced vibrations, 

4. & amplification of wind to the turbine blades. 

 

To do this the shapes had to be created in a 3D modeling software, in this case SolidWorks, and 

then imported into a preprocessing program such as Gambit 2.2.30.  Once in Gambit 2.2.30, the 

objects need to be meshed and assigned boundary conditions before moving to the primary 

processor.  The engineering analysis was performed using Fluent, which is a CFD 

(Computational Fluid Dynamics) code that is used to model flow and heat transfer.  To simplify 
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the process, the software takes unsolvable PDE’s and approximates them as FDE’s, which then 

can be solved using numerical methods and known CFD equations.  (Note: By applying CFD to 

run this analysis versus conventional methods of trial and error by experimentation, no major 

costs were incurred). 
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2.6  DESIGN RESULTS 
 

2.6.1 Exterior Shell 

 

This idea changed significantly to the construction of what is now classified as the 

“building block”.  The term “building block” signifies the section of the outer shell that 

will be made out of fiberglass and then interconnected onsite in single revolution 

assemblies, which when combined total 16 pieces per revolution.  The “building block” 

piece as illustrated in Figure 17 weighs approximately 143lbs for the 25ft-R building block 

and 188lbs for the 30ft-R building block. 

 

Figure 17 - Building block (1/16
th

 of One Revolution) 

 



26 

2.6.2 Load Carrying Cage 

 

The internal cage of the spiral tower structure was also designed in SolidWorks.  This 

structure was built with the sole purpose of providing a support method for the wind 

turbines as well as structural base that the hydrostatic thrust bearing will be able to lift.  

Exact details of material selection and individual connections must be done by a structural 

analyst in order to make sure that the overall structure complies with the building and 

zoning codes of the particular site in which the tower is erected. 

 

Figure 18 - Load Carrying Cage 
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2.6.3 Building Blocks - (1) Revolution 

 

One full revolution of “building block” pieces assembled together, which is comprised of 

16 fiberglass constructed building blocks and weighs 2288lbs for the 25ft-R tower and 

3008lbs for the 30ft-R tower.  Two revolutions of the building block are categorized by the 

term “module”.  Figure 19 is a representation of an assembly of one full revolution of 

building block pieces. 

 

Figure 19 - Building block - One Full Revolution 

 

Each piece occupies exactly 22.5° of a full 360° revolution, thus resulting in a total of 16 

fiberglass pieces.  These pieces are joined using a specially designed gaskets, nuts, and 

bolts. 
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2.6.4 Connecting Elements 

 

In most applications a high safety factor can be achieved by solely using structural steel 

members as the primary support method.  In areas of extreme conditions such as high 

wind velocities or snowy conditions the spiral structure can be additionally supported with 

a cable/turnbuckle support as illustrated by Figure 20. 

 

Figure 20 - Cable/Turnbuckle Support Configuration 
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2.6.5 Assembly 

 

The assembly below provides a clearer representation of how each of the previous 

components assemble together to form a short version of a spiral tower.  Smaller versions 

of the spiral tower have been proposed to be used as cost efficient rooftop models.  The 

wind turbines, 15ft tip-to-tip, have also been included in this assembly to illustrate the fit.  

As shown in on left side of Figure 21, an access door (typical for all turbines) will 

accommodate maintenance access to the wind turbines. 

 

 

Figure 21 - Assembly of Components 
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2.6.6 Design Analysis (FEA) – Snow Test 

 

To verify structural integrity a pressure test was simulated on one building block 

component.  The simulated test case is designated as “static stress” and the material that is 

being used is assumed to be fiberglass material that is provided in the CosmosWorks 

material library.  The purpose of this test is to prove that this fiberglass building block 

component is more than capable of supporting this type of loading.  The figure below 

shows the specific locations of the load/restraints. 

 

2.6.6.1 Load/Restraints 

 

Figure 22 - Load/Restraints Placement 

 

The loading/restraints were applied in the following manner: 

 The top & bottom connection points were designated using the “fixed” 

boundary condition.  The side connection flanges are neglected in this test, 

but will be present in the production model.  The flange connections will 

provide supplemental load handling capability and structural rigidity. 

 A force having a magnitude equivalent to that of the weight of three cubic 

feet of dense snow was equally applied over the flat shelf surface area. 
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 A gravitational force was applied to the entire domain of the model. 

The material type that was used was defined as a “Linear Elastic Isotropic” by the 

fabricator.  Table 2 shows the values that were used to define the material. 

 

Table 2 - Material Properties (FEA Testing) 

 

2.6.6.2 Stress 

 

The three stress plots shown below were generated to illustrate points of the 

building block that experience the highest levels of stress.  The scale uses a 

coloring scheme that shows values of lower stress in blue and areas of higher stress 

in red.  By no means does the red coloring mean that the model will fail as the 

legends scale is designed to exaggerate the magnitude of the color for visual 

purposes.  
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Figure 23 - First Principle Stress 

 

The First Principle Stress is defined as the point at which shear stress is equivalent 

to zero and the normal stress is maximum (the direction of the velocity component 

determines whether it is a tensile/compressive stress).  The maximum principle 

stress value was determined to be 6,106psi, which below the specified material 

strength. 

  

Figure 24 - Von Mises Stress 

 

The Von Mises Stress or equivalent stress is a stress quantity that is independent of 

any direction that is used to assess the safety of a design for many ductile materials.  

The maximum principle stress value was 8,053psi, which is also within the limits of 

the material. 
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Figure 25 - Shear Stress 

 

The Shear Stress is defined as the stress that is tangential to the face of the object.  

The maximum principle stress value was that was determined was 941.5psi, which 

is the lowest of all forms of stresses.  Thus, shear stress poses the lowest risk of 

material failure for the current analysis. 

 

2.6.6.3 Displacement 

  

Figure 26 - Resultant Displacement 

 

By definition, displacement is the position or point of a particle in relation to a 

datum or original point.  The figure above shows the maximum point of 

displacement, having a magnitude of roughly 0.5 inches, to occur in the region 

where the load was applied.  Because the material is proprietary the yield, tensile, 
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and compressive strengths can’t be disclosed.  As stated earlier, support flanges will 

be added and used for the purpose of providing fastening points as well as adding 

structural rigidity. 

 

2.6.6.4 Strain 

  

Figure 27 - Equivalent Strain 

 

This figure above shows the strain distribution of the building block component.  

Engineers usually design their components so that they fall within an acceptable 

strain level.  The definition of strain is the ratio of change in length “dL” to the 

original length “L”.  Because this ratio is determined using similar measurement 

qualities, strain is considered to be a dimensionless quantity. 
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2.6.6.5 Deformation 

 

 

Figure 28 - Deformation (Amplified X50) 

 

The deformation of the shape is nearly invisible to the human eye with an 

amplification factor of 1.  It is for this reason that an amplification factor of X50 was 

applied to the model to show how the model would deform if a large enough load was 

applied. 

 

With access to the proper software, additional testing can be performed on the 

building block shell structure. For example, new software technologies allow the user 

to run test cases that mimic the material properties of some of the newest materials on 

the market.  Today’s fiberglass composites (fiberglass or plastic polymers) are often 

composed of over 30 layers of material. 
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2.7 FINAL DESIGN 
 

The final spiral design will resemble the image shown in Figure 29.  The quantity of wind 

turbines that are used will be dependent on the specific application.  For a “roof top” application 

as few as a quantity of two turbines can be used.  For applications that require larger quantities 

of energy, the structure (and supporting elements) can be modified to accommodate additional 

wind turbines and the wind positioning system. 

 

Figure 29 - Spiral Tower (Illustrated using Eight Revolutions) 

 

In addition to the benefits of wind power, the outer shell can accommodate various types of 

solar panels.  This may be beneficial in regions where days are longer. 
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The spiral tower is especially beneficial in rural areas as it has the capability to be equipped with 

several forms of wireless telecommunication mediums.  Note: In areas where large quantities of 

spiral structures are present, only one tower is required to be equipped with the 

telecommunications medium. 
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CHAPTER III SIZE OPTIMIZATION 
OF SPIRAL SHELL USING 

ADVANCED CFD 
TECHNIQUES 

SIZE OPTIMIZATION OF SPIRAL SHELL USING 

ADVANCED CFD TECHNIQUES 

 

3.1 INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS 
 

The words computational fluid dynamics (CFD) can be defined as a computational technology that 

provides a means to model and study the flow mechanics of nearly any type of physical problem.  

Although a strong education in the field of fluid mechanics is required to accurately understand 

the subject matter, this exciting technology of CFD is pioneering the way engineers solve 

complex fluid flow problems.  For example, CFD software provides the means to simulate the 

flow of gases and liquids, heat and mass transfer, moving bodies, multiphase physics, chemical 

reaction, fluid-structure interaction, and acoustics through computer modeling.   
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A common question that is asked is “Why would I use CFD techniques to solve a fluid flow 

problem over the conventional method of experimentation?”  The answer is because while 

experimentation, such as in a wind tunnel test, provides accurate results this is often very time 

consuming and costly to perform.  CFD minimizes these drawbacks and provides additional 

benefits such as insight, foresight, and efficiency.  The term insight is used to emphasize the 

user’s ability to analyze system designs that are difficult to prototype or test through 

experimentation.  Foresight can be defined as the user’s ability to predict how a design will 

perform as well as test several configurations until an optimal result is achieved.  The history 

from the various test configurations that is documented allows for more efficient future designs 

and testing (better, faster, and cheaper designs). 

 

The CFD process can be broken down into three subcomponents pre-processing, solving, and 

post-processing.  The pre-processing stage entails the CAD design, mesh generation, and 

application of boundary conditions.  For the purpose of this thesis a combination of SolidWorks 

(CAD) and Gambit (pre-processing tool/meshing software) were used in the setup of all 

models.  The solving portion is the stage where the actual calculations are performed and data 

results are compiled.  This step was performed using the Fluent’s CFD code and solver.  The 

final step in an analysis involves the post-processing stage, which is also available in Fluent.  

Fluent’s post-processing software provides a number of tools that can be used to manipulate 

data and produce color based CFD images and animations. 
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3.2 FLUID FLOW ANALYSIS SOLUTION METHODS 
 

There are three fundamental means that are used when approaching fluid flow problems.  The 

control volume, infinitesimal system, and experimental approaches.  The control volume approach 

is often classified as an integral analysis.  This analysis is accurate for any flow distribution, but is 

often based on one dimensional or average values at the boundaries.  An encompassing 

description of the control volume approach would be “a method that is used to seek an estimate of 

gross effects (mass flow, induced force, energy change) over a finite region”.  These effects are 

generated as a result of four basic laws: 

1. Conservation of mass 

2. The linear momentum relation 

3. The angular momentum relation 

4. The energy equation 

In addition to that a state relation may also be required in order to complete an analysis. 

 

Another approach that is often used is the Infinitesimal System (differential analysis).  This method 

involves seeking a point-by-point detail of a flow pattern by analyzing an infinitesimal region of 

flow.  To date there is very little that is known about the general properties of the differential 

equations.  This approach is not prominently used in problems of a very complex nature. 

 

The third and final approach is performed through experimentation.  Experimentation is often 

used to verify new FDE’s to confirm that they accurately model the real life phenomenon.  The 

benefits of experimentation are that exact results can be obtained based on the surrounding 

environment.  The disadvantage is the initial setup costs, setup time, and feasibility.  There is no 
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need to perform the same exact experiment that has already been performed several years or 

decades earlier when a FDE’s has already been determined to be able to accurately represent the 

specific case (this would also result in unnecessary costs). Experimentation will always be 

needed, but should be kept to a minimum wherever possible. 

 

The fluid flow analysis for flow around a 2D cylinder, 3D cylinder, 25ft (radius) spiral structure, 

& 30ft (radius) spiral structure will be performed using the control volume approach in the CFD 

program Fluent.  To begin any problem, the first step that needs to be taken is to create the 

specific geometry.  Note: The geometry should be created to scale within the respected 

computer aided design software.  This is important as the size of the geometry plays an 

important role in determination of several variables within the respected problem. 

 

The size of the two spiral structures are driving variables for the two cylinder cases.  The size of 

the cylinder will be modeled in similar sizes, respectively 25ft and 30ft radii.  This will allow for 

an accurate comparison between the results of all analyses later in the document.  This fixed 

variable allows us to create a spatial domain for the analysis of this problem.  The size of the 

spatial domain is sometimes calculated using formulae that are determined following years of 

testing and experimentation.  Initially the domain was kept relatively small due to computational 

demands and time efficiency.   Through several iterations the domain had to be gradually 

enlarged in order to minimize wall effects on solution results.  This, in return, required much 

more memory and computational time.  It is often the goal to achieve near perfect results in any 

analysis, but with CFD a compromise needs to be made between: 

1. Accuracy/Error 

2. Time Restraints 
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3. Hardware Availability 

Following this testing, a document “Flow Over a Cylinder” (Kulkarni & Moeykens, 2005) was 

found, which accurately denotes the domain size for external flow around a cylindrical shaped 

object.  The spatial domain is dimensioned as shown in Figure 30: 

 

Figure 30 - Domain Sizing; (Kulkarni & Moeykens, 2005) 

 

Note: For three dimensional flows the vertical dimension (domain height), is equal to 28.125ft 

tall or 1.5 revolutions.  The parameters that are applied to the domain, such as the cylinder size, 

are required to initiate the fluid flow analysis and determine the parameters that most accurately 

represent the problem.  A basic starting point is illustrated in Figure 31: 
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Figure 31 - Fluid Flow Analysis - General Assumptions (White, 2003, p. 39) 

 

Extensive definitions of all of the above terms can be found in the glossary appended to the end 

of the document.  For a very simplistic fluid flow problem steady state flow is chosen 

(independent of time).  The second assumption was inviscid flow (  is approximately zero) 

meaning that friction forces in the fluid are negligible when compared to inertial forces.  The 

assumption of inviscid flow essentially eliminates the friction variable in the fluid and along the 

free surface being studied.  The next two varying assumptions need to be solved simultaneously 

since the type of fluid is often used as a variable in the determination of Incompressible or 

Compressible flow regimes.  Research has proven that the Mach number, a dimensionless 

parameter, is accurate at determining the flow regime.    Aerodynamicists use the dimensionless 

numbers shown in Table 3 to describe flow behaviors between various ranges of numerical 

values. 

 
Ma<0.3 Incompressible flow, where density effects are negligible 

0.3<Ma<0.8 Subsonic flow, where density effects are important but no shockwaves appear. 

0.8<Ma<1.2 Transonic flow, where shockwaves first appear, dividing subsonic and supersonic 

regions of the flow.  Powered flight in the transonic is different because of the mixed 

character of the flow field. 

1.2<Ma<3.0 Supersonic flow, where shockwaves are present but there are no subsonic regions 

3.0<Ma Hypersonic flow, where shockwaves and other flow changes are especially strong. 

Table 3 - Mach Number - Flow Regime Classifications 
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The Mach number that is specific to the spiral structures can be viewed in Table 4: 

 

Table 4 - Mach Number & Reynolds Number Calculations 

 

Table 4 proves that if air (flow medium) is approaching a tower of 60ft in diameter at a constant 

velocity of 10mph, it will have Reynolds number  of 5,596,819 and thus be classified 

as turbulent flow.  Additionally, these parameters can be used to determine the Mach number, 

which in this case is equivalent to 0.0131366.  Based on the predefined criteria in Table 3, the 

flow is can be classified as incompressible since the calculated value is less than 0.3. 
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3.3 FUTURE PROSPECTS OF TURBULENCE MODELING 
 

The understanding of the phenomenon turbulent motion of fluids has been sought after for 

centuries.  This continued to puzzle even the greatest minds until a breakthrough derivation, 

known as the Navier-Stokes equation, was made.  The basis of the Navier-Stokes equation is the 

three fundamental equations in fluid dynamics, which are the continuity equation (conservation 

of mass), momentum equation (Newton’s second law), and the energy equation (Newton’s first 

law). 

 

To allow for a better understanding, the generic Navier-Stokes equation is presented below: 

 

 

The general equation can be further broken down into three scalar Navier-Stokes equations: 

 

 

 

 

Additionally, if the flow is deemed to be incompressible these equations can be simplified 

further because the viscosity is held constant.  The resultant equation is: 
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It is important to note that although this equation is used to accurately represent the variables 

that define the phenomenon of turbulent flow, the exact solution has never been obtained.  

Because of the complexity of the Navier-Stokes PDE (partial differential equation), engineers 

have vested large amounts of research into the development of approximation methods or 

FDE’s (finite difference equations).  With the proper computational resources, these equations 

can then be analyzed in CFD packages such as Fluent using either DNS (direct numerical 

simulation) or LES (large eddy simulation) methods.  One of the main difficulties in solving a 

problem using direct numerical simulation is that it requires that all of the relevant length scales12 

be resolved, which range from smallest eddies all the way up to scales that are nearly equivalent 

of the physical dimensions of the problem domain. 

 

 

 

 

 

                                                 
12 

“Sometimes it is easier to think in terms of turbulence length scale instead of turbulent viscosity ratio. The 

turbulence length scale, l, is a physical quantity which represents the size of the large eddies in turbulent 

flows. Empirical relationship between the physical size of the obstruction (or characteristic length), L, and 

the size of the eddy, l, can be used to get an approximate length scale. 

 

  

 

For external flows, it is often not possible to determine a good characteristic length. In using the formulas 

below, pick a value of  and a value of u' and use the formulas on the left, the ones not involving the length 

scale. In the case of external aerodynamic flows, choose smaller values of  (0.1 to 1), whereas in the case of 

wind-tunnel external flows, choose larger values of  (1 to 10). 

NOTE: For external flows it is very important to specify appropriate turbulent quantities at the freestream 

boundaries. If the values are unphysical it can cause the solution to be unrealistic and can lead to divergence 

or non-convergence.” 
 
(ESI Group, 2007)
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3.4 CFD CODE VALIDATION – FLOW OVER A CYLINDER 
 

3.4.1 Flow Over a Cylinder - Superposition of a Doublet and Uniform 
Flow 

 

Assumptions: 

1. Two dimensional 

2. Incompressible 

3. Irrotational flow (formed from superposition of a doublet and a uniform flow) 

 

3.4.1.1 Stream function and velocity potential 
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3.4.1.3 Stagnation points 
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3.4.2 Flow Over a Cylinder - Application of Formulae 

 

For the case shown in Figure 32, 

 

Figure 32 - 2D Cyl. - Velocity Stagnation Points 

 

We see that for, 
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where  & U are defined as 

2aU  

U=free stream velocity 

 

Then apply the formula below to obtain the velocity magnitude,  
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By substituting the variable  and evaluating the expression of v


where r=a, 
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Thus, if the free stream velocity is defined to be 10mph the tangential velocity at r=a will 

be equal to 2.0E+01 or 20mph.  Note: This assumption assumes inviscid flow with a no 

slip boundary condition applied at the cylinder wall.  This example provides a basis to 

compare the numerical results against. 

 



51 

3.4.3 Numerical Verification (CFD) – 2D Cyl 

 

The domain, mesh, and B.C.’s were developed by implementing research of prior arts.  A 

series of tests were then performed to verify that what had previously been done.  The 

purpose of these tests was to improve the accuracy of the solution in any way possible, 

while reducing the user’s setup time and computational time.  Driving parameters that 

were applied in these tests include: 

1. Domain size & aspect ratio 

2. Mesh type (map, submap, pave) 

3. Mesh quality (transition between regions of importance) 

4. Mesh size (element size) 

5. Boundary layer 

6. Boundary conditions 

 

As mentioned earlier, each parameter can have an effect on the accuracy of the solution.   

 

Before proceeding, it is imperative that the user understands the solution process as well as 

the capabilities of Fluent’s code.  The beginning of the grid generation process takes place 

in Gambit, Fluent’s pre-preprocessor.  Gambit provides the user with a three-dimensional 

environment and a GUI that allows the user to position the test model(s) within the 

respected domain.  Upon finishing the model, the appropriate 2D/3D mesh elements, 

shown in Table 5, can then be applied to the model. 
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2D Elements  3D Elements 

 

Unstructured 

 

Structured 

 

 

Unstructured 

 

Structured 

Triangle Quadrilateral  Tetrahedron Hexahedron 

   

 

Unstructured 

 

Unstructured 

   Prism/Wedge Pyramid 

Table 5 - Mesh Element Types 

 

This structured/unstructured mesh can then be exported to a file format that is compatible 

with Fluent.  Since Fluent is inherently an unstructured solver, it uses internal data 

structures to assign an order to cells, faces, and grid points in a mesh, thus relieving any 

restrictions that would be present with the i,j,k indexing method.  This flexibility provides 

a huge time and cost savings for problems that are simple in nature and creates additional 

opportunity for those problems that were once deemed unsolvable due to the 

computational restrictions of the past.  It is important to remember that this code was not 

created overnight, but rather has been developed by some of the greatest minds in 

academia, government, and private industry over several decades. 
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The choice of mesh is highly dependent upon the specific application.  In general, CFD 

discretization schemes result in a problem set that is computationally demanding.  As a 

result these additional factors must be considered: 

1. Setup time 

2. Computational expense (CPU(s), memory, storage capacity, time) 

3. Numerical Diffusion 

 

Setup time will vary with every new problem.  Users will often need to develop a grid 

based on a series of trial and errors in order to achieve the optimum mesh for their specific 

problem and computer system.  In most cases structured grids should be used due to 

better result accuracy, memory savings, and computational time savings.  Experienced 

users will be able to notice how to distribute their often finite number of elements, usually 

giving added emphasis (refinement) to the areas of interest.  Because many engineering 

problems involve complex geometries, structured grids may not always be a viable option.  

For these complex cases unstructured grids often prove to be beneficial.  The time savings 

in mesh generation in most cases is worth the added computational time and the sacrifice 

of accuracy.  In the case of the spiral shape, a combination of unstructured and structured 

elements was combined in order to achieve optimum results.  Table 6 & Table 7 denote 

some initial parameters and guidelines that have been proven to produce consistent results.  

Note: If the geometry is relatively simple there may be no clear savings in setup time with 

either approach as the added setup of elements will take very little time using either 

method and there will be a very small discrepancy in computational time. 
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Table 6 - Model/Mesh/&B.C. Guidelines (25ft Spire) 
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Table 7 - Model/Mesh/&B.C. Guidelines (30ft Spire) 
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Computational expense is affected by a number of parameters.  In general, the ideal aspect 

ratio of an element has a magnitude of (1).  This will provide the most accurate results with 

the shortest time for residual convergence.  When geometries are more complex or the 

range of length scales of the flow is large an unstructured mesh can often be created with 

far fewer cells than an equivalent structured mesh.  This is a result of structured cells 

(having high aspect ratios) being forced into undesired areas.  Additional cells contribute to 

added computation time, the requirement for more memory, and possibly the addition of 

multiple CPU’s (parallel processing).  The computational expense needs to be assessed for 

each unique problem. 

 

Numerical diffusion, a form of truncation error, is an error made by numerical algorithms 

that arises from taking a finite number of steps in a computation.  Use of arbitrarily small 

steps is prevented in numerical calculations due to computational limitations (inherent to 

the FDE’s), thus resulting in what is known as round-off error.  The Fluent User’s guide 

provides an exact explanation of this, denoted below (Fluent Inc., 2007): 

1. “Numerical diffusion is most noticeable when the real 
diffusion is small, that is, when the situation is convection 
dominated. 

2. All practical numerical schemes for solving fluid flow 
contain a finite amount of numerical diffusion.  This is 
because numerical diffusion arises from truncation errors 
that are a consequence of representing the fluid flow 
equations in discrete form. 

3. The second-order discretization scheme used in FLUENT 
can help reduce the effects of numerical diffusion on the 
solution. 

4. The amount of numerical diffusion is adversely related to 
the resolution of the mesh.  Therefore, one way of dealing 
with numerical diffusion is to refine the mesh. 

5. Numerical diffusion is minimized when the flow is aligned 
with the mesh.” 
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The mesh generation of the 2D cylinder was generated using a 100% structured grid.  

When generating this grid it is important to optimize the aspect ratio of the quadrilateral 

elements as this will result in a quicker convergence and more accurate solution result.  It 

is important to note the mesh refinement in areas of interest. 

 

 

Figure 33 - 2D Cyl. - Structured Grid, Entire Domain 

 

Notice how the localized square region that is located around the cylinder is broken into 

three zones.  Because of this separation, the same numbers of elements per unit of area 

were used in each region.  This was done, while maintaining similar aspect ratios amongst 

each of the quadrilateral elements.  
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Figure 34 - 2D Cyl. – Structured Grid, Zoom 

 

Figure 34 shows the emphasis on the boundary layer around the exterior of the cylinder.  

In this case, (10) layers were created using values similar to the “first row height” values 

provided in the preceding tables. 

 

Figure 35 - 2D Cyl. – Structured Grid, Boundary Layer 
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3.4.3.1 Case I - 2D Cyl. 

 

The boundary conditions that were applied to case I are as follows: 

1. Velocity Inlet - fluid inlet 

2. Pressure Outlet - fluid exit 

3. Symmetry - Side Where cylinder is cut 

4. Symmetry – Side opposite of the cylinder 

5. Wall – Cylinder 

The flow model that was used for this case using inviscid flow (meaning m=0).  

The input velocity was equally distributed about the velocity inlet having a velocity 

of 10mph.  The results of this analysis should provide the closest solution match to 

the theoretical model.13  The residual criterion was set to a convergence criterion of 

10^-6 for each parameter. 

 

Figure 36 - 2D Cyl. – Scaled Residuals (Inviscid Flow) 

 

                                                 
13

 Note: This analysis will be used for a comparison against the theoretical model only.   
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The scaled residual plot shows that the continuity, x-velocity, and y-velocity all 

converged just shy of 1800 iterations, which further instills a level of confidence in 

the grid and solution results that are based on the specified conditions. 

 

Figure 37 - 2D Cyl. – Vel. Magnitude Contours (Inviscid Flow) 

 

The velocity magnitude results for inviscid flow around a 2D cylinder show a 

region of negative pressure (with possible reversed flow) in front of and behind the 

cylinder.  The region of maximum velocity is shown in the middle left portion of 

the cylinder having an amplification factor of roughly 1.9.14  

 

Figure 38 - 2D Cyl. – Tangential Vel. Contours (Inviscid Flow) 

 

                                                 
14

 No slip wall conditions are inherently present. 
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The tangential velocity results for inviscous flow around a 2D cylinder show 

similar regions of negative pressure as shown in the Velocity Magnitude Contour 

figure.  The tangential velocity inlet profile is linear in nature, while the region 

beyond the cylinder has a slight curve.  

 

Figure 39 - 2D Cyl. - Vel. Magnitude Pathlines (Inviscid Flow) 

 

The velocity magnitude pathlines can be rendered with extensive detail, which 

gives the user a very clear representation of the magnitude and path of the velocity 

vectors within the designated plane.  For this specific case, which involves inviscid 

flow, there is a small region of reversed flow after the cylinder.  It is important to 

note that because Re=∞ (when m=0) vortices do not exist. 

 

3.4.3.2 Case II - 2D Cyl. 

 

The boundary conditions that were applied to case II were as follows: 

1. Velocity Inlet - fluid inlet 

2. Pressure Outlet - fluid exit 

3. Symmetry - side where cylinder is cut 
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4. Symmetry – side opposite of the cylinder 

5. Wall – cylinder 

The flow model that was used for this case was k-ε turbulence model 

(Re>20,000).15  The input velocity was equally distributed about the velocity inlet 

having a velocity of 10mph.  The results of this analysis will be contrasted against a 

3D cylinder model to confirm that the mesh maintains its accuracy when being 

transformed into the 3D domain.  The residual criterion was set to a convergence 

criterion of 10^-6 for each parameter. 

 

Figure 40 - 2D Cyl. - Scaled Residuals (k-ε turbulence model) 

 

The scaled residual plot, Figure 40, for a 2D cylinder and the k-ε model shows 

that the  

1. continuity,  

2. x-velocity,  

3. y-velocity, 

4. k, 

5. and epsilon (ε) 

                                                 
15

 (Kulkarni & Moeykens, 2005) 
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all variables converged just shy of 1800 iterations, which further instills a level of 

confidence in the grid and solution results that are based on the specified 

conditions. 

 

Figure 41 - 2D Cyl. – Vel. Magnitude Contours (k-ε turbulence model) 

 

The velocity magnitude results for turbulent flow around a 2D cylinder shows a 

small region of negative pressure in front of the cylinder and a large region (with 

possible reversed flow) behind the cylinder.  The region of maximum velocity 

when applying the turbulent model is shown in the middle left portion of the 

cylinder having an amplification factor of roughly 1.74.  

 

Figure 42 - 2D Cyl. - Tangential Vel. Contours (k-ε turbulence model) 
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The tangential velocity results for turbulent flow around a 2D cylinder show 

similar regions of negative pressure as shown in the velocity magnitude contour 

figure.  The tangential velocity near the front of the cylinder has a relatively 

uniform profile, while the region beyond the cylinder is slightly more drastic curve. 

 

Figure 43 - 2D Cyl. – Vel. Magnitude Pathlines (k-ε turbulence model) 

 

The velocity magnitude pathlines can be rendered with extensive detail, which 

gives the user a very clear representation of the magnitude and direction of the 

velocity vectors on the designated plane.  This is extremely useful for more 

complex models such as the k-ε model in that the regions of reversed flow and 

vortices are clearly represented.  
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3.4.4 Numerical Verification w/Grid Independence Verification – 3D Cyl. 

 

The domain, mesh, and B.C.’s that were developed in the 2D cylinder model produced 

accurate results in a relatively short number of iterations.  Computational requirements 

such as memory and the number of CPU’s were minimized due to the implementation of a 

structured mesh within the domain.  Although this was relatively simple to setup in a two 

dimensional environment, there is an additional level of difficulty that is added when 

designing a mesh for a three dimensional environment. 

 

Three dimensional domains are often resource intensive, thus alternatives such as 

symmetry boundary conditions or short flow inlets can significantly save the users time.  

For example Figure 44, courtesy of Gambit Users Manual, displays an efficient way of 

positioning the test object within the three-dimensional domain.  The reason the sedan is 

merged with the wall of the domain is to utilize the benefit of symmetric boundary 

conditions.  

 

Figure 44 - Edges used to create face at top of sedan; (Fluent Inc., 2001) 

 



66 

All sides of the domain in Figure 45 have the boundary type set to “symmetry” except for 

the major flow inlet/outlet.  Further research will specify that for this type of problem a 

pressure outlet is required at the flow exit, thus relieving the user of additional calculations 

that would be required if it were to be specified as a velocity outlet.  The flow inlet can be 

specified as either a velocity inlet or a pressure inlet.  This boundary type is problem 

specific and will not alter the problems results. 

 

Figure 45 - Boundary types for sedan geometry; (Fluent Inc., 2001) 

 

The same parameters that are used in Figure 45 will be applied to the 3D cylinder 

analyses.  The 3D cylinder tests will compare the flow results of two unique grid types with 

the goal of verifying that both meshes produce consistent results.  The two meshes will be 

denoted by the following nomenclature “Case I” (structured grid) and “Case II” 

(unstructured grid).  Note: The unstructured grid must yield equivalent results of the 

structured mesh because the complex shapes present in the analysis of the spiral structure 

make the use of a structured grid inefficient and nearly impossible. 
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3.4.4.1 Case I - 3D Cyl. (Turbulent Flow w/Structured Grid) 

 

The first case applies a 3D structured grid, which is a product of a linear pattern of 

a 2D structured grid.  All top faces in the domain were meshed using a 

quadrilateral “map” meshing scheme.  All bottom faces in the domain were 

meshed using a quadrilateral “submap” meshing scheme.  The edges that are 

located between the top and bottom faces were all meshed uniformly using the 

“Cooper” meshing scheme in Gambit. 

 

Figure 46 - 3D Cyl. - Structured Grid, Entire Domain 

 

Figure 46 illustrates proof that the 3D grid maintained the same characteristics of 

the 2D cylinders structured grid (notice the local mesh refinement in areas of 

importance).  A zoomed perspective can be viewed in Figure 47. 
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Figure 47 - 3D Cyl. – Structured Grid, Zoom 

 

The elevation detail shows the d between each of the linearly stacked 2D 

structured meshes.  The grid maintains the same localized mesh in areas of 

importance around the perimeter of the cylinder. 

 

Figure 48 - 3D Cyl. - Structured Grid, Elevation Detail 

 

Now that the mesh has been obtained, the boundary conditions that were typical 

to the sedan example can be applied.  The only alteration that needs to be made is 

the change from pressure inlet to velocity inlet.  To be specific, the boundary 

conditions that were applied to case I are as follows: 

1. Velocity Inlet - fluid inlet 

2. Pressure Outlet - fluid exit 

3. Symmetry - side Where cylinder is cut 
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4. Symmetry – side opposite of the cylinder 

5. Symmetry – top of domain 

6. Symmetry – bottom of domain 

7. Wall – cylinder 

The flow model that was used for this case was k-ε turbulence model 

(Re>20,000).16  The input velocity was equally distributed about the velocity inlet 

having a velocity of 10mph.  The results of this analysis should provide the closest 

solution match to the theoretical model.  The residual criterion was set to a 

convergence criterion of 10^-6 for each parameter. 

 

Figure 49 - 3D Cylinder – Scaled Residuals (k-ε turbulence model) 

 

Figure 49 shows the residuals of the three velocity components, continuity, and k-

ε variables.  Although each variable converges at different points the convergence 

criterion is not satisfied until all of the residuals have converged to a value of 10^-

6.  This takes place at roughly 2000 iterations. 

                                                 
16

 (Kulkarni & Moeykens, 2005) 
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Figure 50 - 3D Cyl. – Vel. Magnitude Plane 10 Contours (k-ε turbulence model) 

 

Figure 50 illustrates the velocity distribution over plane 10 of the 3D cylinder grid.  

The velocity magnitude is computed based on all of the node points that exist 

within the default interior of the domain.  The results of this 3D structured grid 

exactly match that of the 2D structured grid with the same velocity distribution 

and maximum velocity of roughly 17.4 mph. 

 

Figure 51 - 3D Cyl. – Vel. Magnitude Plane 9 Contours (k-ε turbulence model) 

 

This cut plane, denoted as plane 9, displays a different perspective of the velocity 

magnitude distribution within the domain.  The figure shows the region near the 

cylinder where the points of maximum velocity occur.  It is important to also note 
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that the color uniformity, especially near the wall of the cylinder, confirms that the 

boundary conditions are correctly defined for this problem set. 

 

Figure 52 - 3D Cyl. - Tangential Vel. Plane 10 Contours (k-ε turbulence model) 

 

The tangential velocity that is shown on plane 10 has a maximum value of 7.25mph.  

This figure differs slightly from that of the 2D cylinder problem because the 

domain is three-dimensional, thus containing an additional velocity vector.  As a 

result the region of amplified velocity vectors is much smaller than 2D cylinders 

grid. 

 

Figure 53 - Tangential Vel. Plane 9 Contours (k-ε turbulence model) 
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The tangential velocity that is displayed on plane 9 is uniform throughout except for 

a very small d in velocity near the cylinder. 

 

3.4.4.2 Case II - 3D Cyl. (Turbulent Flow w/Unstructured Grid) 

 

The boundary conditions and flow model are the same that were applied to Case I.  

The only change in parameters between Case I and Case II was the type of grid. 

 

Figure 54 - 3D Cyl. - Unstructured Grid, Entire Domain 

 

This grid maintains a zone/mesh structure that is similar to that of the previous 

3D cylinders structure grid.  The only difference in this mesh and the previous 

mesh is in the region near the cylinder.  The local mesh refinement was altered 

from a very fine structured grid that used hex elements to an unstructured grid that 

used tet/hybrid elements.  A zoomed view is shown in Figure 55. 
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Figure 55 - 3D Cyl. – Unstructured Grid, Zoom 

 

The elevation detail shows the d between each of the linearly stacked 2D 

structured mesh elements in the global region of the mesh.  The local region shows 

the tightly packed unstructured elements, which were created independent of any 

user enforced restrictions. 

 

Figure 56 - 3D Cyl. - Unstructured Grid, Elevation Detail 
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Figure 57 - 3D Cylinder – Scaled Residuals (k-ε turbulence model) 

 

The residuals in Figure 57, unstructured grid, converge in less iterations than the 

structured grid because the tet/hybrid mesh type is designed to optimize the 

placement of additional elements into the local zone around the cylinder, thus 

resulting in smaller error and better accuracy.  However, the disadvantage of this is 

that this mesh type requires a significant amount of additional memory.  Although 

the residuals still converge at different points from one another, the residuals in the 

unstructured case remain much closer together.  All residuals satisfy the 

convergence criterion of 10^-6 at roughly 950 iterations. 

 

Figure 58 - 3D Cyl. – Vel. Magnitude Plane 10 Contours (k-ε turbulence model) 
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The velocity distribution of the unstructured mesh shows a near exact match to 

that of the structured mesh.  The maximum velocity has a slightly larger value (max 

value of roughly 17.67 mph) than in the structured case. 

 

Figure 59 - 3D Cyl. – Vel. Magnitude Plane 9 Contours (k-ε turbulence model) 

 

Note that the displayed color distribution is the same as that of the structured 

mesh, thus confirming that the results are consistent amongst the two problem 

sets. 

 

Figure 60 - 3D Cyl. - Tangential Vel. Plane 10 Contours (k-ε turbulence model) 

 

The display of the tangential velocity over plane 10 shows the same region of 

amplification on the front side of the cylinder. 
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Figure 61 - Tangential Vel. Plane 9 Contours (k-ε turbulence model) 

 

Figure 61 displays the same small semi-circle of amplification near the bottom of 

the cylinder.  This figure provides a final confirmation that the two grids produce 

the same solution results. 

3.4.5 Comparison 

 

In order to verify that the 3D structured grid matches the results of the 3D unstructured grid, 

several data points were randomly selected from each problem domain and then compared.  

The results proved to be the same in both cases, thus proving that both the unstructured and 

structured grids produce similar results when meshed properly (proper proportions/grid 

refinement).17 

  

                                                 
17

 Note: No comparisons should be made between these 3D cylinder tests and the latter 3D spiral tests 

because the cylinder diameter was not kept consistent with the spiral tower diameters.  To be specific, the 

inner radius that the wind turbine actually nearly touches in the center of the 25ft-R spiral tower is 

actually only a 15ft-R from the center of the structure and the inner radius of the 30ft-R spiral tower is 

19ft-R.  The 25ft-R and 30ft-R naming denotes the outer radius of the spiral flanges.  The 3D cylinder 

analysis used a 30ft inner/outer radius for testing, which is much larger than the respective 15ft-R and 

19ft-R radii used in the spiral tower analyses.  To achieve an equivalent comparison a 15ft-R and 19ft-R 

cylinder would need to be independently tested and compared against the corresponding spiral towers. 
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3.5 WIND SHELL SIZE OPTIMIZATION 
 

The core focus of this research is focused on the determination of the wind amplification factors 

for two towers differing in tower diameter, a 25ft-R (50ft diameter) and 30ft-R (60ft diameter) 

spiral tower.  The difference in the diameter of the two towers can be observed in Figure 62. 

 

 

Figure 62 – 25ft Radius Spire vs. 30ft Radius Spire 

 

The purpose of this research is to determine whether enlarging the towers structure is a cost 

effective approach in achieving larger wind amplification factors, and as a result an increase in 

productivity (power generation). 
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3.5.1 Initial Setup – 3D Spiral Structures 

 

The mesh development up to this point proved to be an exhaustive process that required 

over 20+ different mesh cases to be run before a proper grid was deemed acceptable.  

Also, the proof that very similar results could be obtained by using the 3D unstructured 

grid as opposed to the original 3D structured grid opened up addition flexibility and time 

savings for problems with complex contours.  This was done methodically, thus 

eliminating any uncertainties and instilling a high level of confidence that any objects tested 

in this domain will result in an accurate solution set. 

 

It is important to analyze and understand the results of each of the tests that have been 

performed thus far as this information will serve as the basis for the next case.  As 

mentioned earlier, the preparation and preliminary setup that was required to achieve the 

final grid for the 3D spire was complex and very time consuming to say the least.  Every 

test that has been performed thus far was necessary.  The 2D cylinder test (structured 

mesh, inviscid flow) gave proof that the theoretical calculations could be closely mirrored 

using the widely accepted CFD code that is implemented by Fluent.  The second 2D 

cylinder test was then run using a different flow regime (structured mesh, turbulence 

model) for the purpose of comparing the 2D cylinder results against the 3D cylinders 

results (similar mesh – cooper meshing scheme).  Once these results were confirmed to be 

similar, a second case was run that applied a very fine unstructured mesh (Elements: 

Tet/Hybrid & Type: TGrid) in the local region around the 3D cylinder.  The purpose of 

this test is to verify that the unstructured mesh produces the equivalent results of the 

structured mesh.  This presented an alternative method to accurately test the complex 
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curvature of nearly any object, specifically the spiral shell structure that is present in this 

thesis. 

 

Three planes will used to view the velocity contours following the 3D spiral tower analysis, 

two of which are the same as in the 3D cylinder analysis.  Plane 9, which is the plane that is 

vertically perpendicular to the 3D cylinder, was altered for the each 3D spiral tower case so 

that the plane would be perpendicular to the helix angle.  The 25ft-R tower was rotated 

about its origin by 6.55° and the 30ft-R tower was rotated by 5.68°.  Figure 63 & Figure 

64 provide a confirmation of these angles and dimensions.   

 

Figure 63 – 25ft Perpendicular Helix Plane 

 

Figure 64 – 30ft Perpendicular Helix Plane 

 

The coordinates for these two planes can be found using the intersection point of the 

angled line and the intersection point of the helix.  This can be done through some simple 

geometrical calculations. 



80 

 

Figure 65 – 25ft Perpendicular Helix Plane 

 

Figure 66 – 30ft Perpendicular Helix Plane 

 

Figure 65 & Figure 66 provide all necessary information for obtaining the planes 

coordinates.  The center point of the plane is located at the bottom left of each figure.  

The upper right point in the figure displays the coordinates of the intersection between the 

plane and the surface of the spiral tower.  The other coordinates, not displayed, can be 

found by mirroring the geometry about the x-axis and then the y-axis, thus negating the x 

& y coordinates.  (Note: the z coordinate will remain positive in all cases). 
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Figure 67 - Perpendicular Helix Plane 

(ISO#1) 

 

Figure 68 - Perpendicular Helix Plane 

(ISO#2) 

 

For understanding purposes a 3D illustration of this plane that was created in Fluent can 

be viewed in Figure 67 & Figure 68.  The final coordinates of these two planes can be 

viewed in the appendix.  (Note: These planes are denoted as plane 11a for the 25ft-R case 

and as plane 11b for the 30ft-R case). 

 

3.5.2 Numerical Verification (CFD) – 3D Spiral Structures 

 

The purpose of performing a CFD test on multiple spiral structures is to determine if it is 

cost effective and thus beneficial to build a larger structure for its additional velocity 

amplification.  To do this the 3D spiral structure was broken down into two cases, each 

with a different tower diameter.  Several scenarios can be analyzed, but for the purpose of 

this document the two cases that will be analyzed are a 25ft-R and 30ft-R tower.  All other 

parameters were held constant.  A few of these parameters would include: 

1. helix angle, 

2. pitch (height & revolutions) 

3. flange length 

4. turbine size 
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3.5.3 Case I – 25ft-R Spiral Structure (Turbulent Flow w/Unstructured 
Grid) 

 

The same mesh parameters that were used on the unstructured 3D cylinder grid were 

applied to both 3D spiral tower cases.  These values are provided and can be found in the 

appendix. 

 

Figure 69 – 25ft-R - Structured to Unstructured Grid Transition 

 

Figure 69 shows the transition between the global structured mesh into the local 

unstructured mesh.  The additional refinement is evident when directly compared against 

one of the earlier structured grid types.  A zoomed view of the unstructured region can be 

seen below. 
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Figure 70 – 25ft-R - Unstructured Grid, Zoom 

 

The elevation detail shows the d between each of the linearly stacked 2D structured mesh 

elements in the global region of the mesh.  The local region shows the tightly packed 

unstructured elements, which were created independent of any user enforced restrictions. 

 

Figure 71 – 25ft-R - Unstructured Grid, Elevation Detail 
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Figure 72 – 25ft-R Spire. – Vel. Magnitude Plane 10 Contours (k-ε turbulence model) 

 

Figure 72 shows the velocity distribution over plane 10 of the 25ft-R spiral tower.  The 

velocity magnitude is computed based on all of the node points that exist within the default 

interior of the domain.  The maximum velocity, which is displayed by the legend in red, is 

shown to have a value around 18.5mph.  This value would have a slightly larger magnitude 

than a 3D cylinder analysis that compared equal internal radii because of the additional 

velocity vectors that deflect off of the spiral structures flanges. 

 

Figure 73 – 25ft-R Spire. – Vel. Magnitude Plane 11a Contours (k-ε turbulence model) 

 



85 

This cut plane, denoted as plane 11a, displays a different perspective of the velocity 

magnitude distribution within the domain.  The figure shows the region near the cylinder 

where the points of maximum velocity occur.  Also, it is important to notice the uniform 

color distribution, especially near the wall of the cylinder.  This confirms that the boundary 

conditions were correctly defined for this problem set. 

 

Figure 74 – 25ft-R Spire. – Vel. Magnitude Plane 10 Pathlines (k-ε turbulence model) 

 

The velocity magnitude pathlines clearly illustrate the fluid flows path, direction, and speed 

around the spiral tower structure. 
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3.5.4 Case II – 30ft-R Spiral Structure (Turbulent Flow w/Unstructured 
Grid) 

 

The mesh for the 30ft-R spiral structure is identical to that of the 25ft-R spire with the 

only difference being from the substitution of the structure itself. 

 

Figure 75 – 30ft-R - Structured to Unstructured Grid Transition 

 

Figure 75 illustrates the transition between the global structured mesh into the local 

unstructured mesh.  The additional refinement is evident when directly compared against 

one of the earlier structured grid types.  A zoomed view of the unstructured region can be 

seen below. 
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Figure 76 – 30ft-R  - Unstructured Grid, Zoom 

 

Again, as seen in the 25ft-R case, the elevation detail shows the d between each of the 

linearly stacked 2D structured mesh elements in the global region of the mesh.  The local 

region shows the tightly packed unstructured elements, which were created independent of 

any user enforced restrictions. 

 

Figure 77 – 30ft-R - Unstructured Grid, Elevation Detail 
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Figure 78 – 30ft-R Spire. – Vel. Magnitude Plane 10 Contours (k-ε turbulence model) 

 

Figure 78 shows the velocity distribution over plane 10 of the 30ft-R spiral tower.  The 

velocity magnitude is computed based on all of the node points that exist within the default 

interior of the domain.  The maximum velocity, which is displayed by the legend in red, is 

shown to have a value around 19.3mph.  This is slightly larger than the maximum velocity 

reported in the 25ft-R spiral structure analysis because of the additional velocity vectors 

that are a result of the spiral flanges and larger structure diameter. 

 

Figure 79 – 30ft-R Spire. – Vel. Magnitude Plane 11a Contours (k-ε turbulence model) 
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Plane 11b was created at the center of the spiral structure to display the velocity distribution 

over the plane that the turbines will be operating on.  It is evident that the region near the 

spiral tower is where the points of maximum velocity occur.  As all other cases have 

displayed thus far, the velocity distribution is uniform.  This confirms that the boundary 

conditions were correctly defined for this problem set. 

 

Figure 80 – 30ft-R Spire. – Vel. Magnitude Plane 10 Pathlines (k-ε turbulence model) 

 

The velocity magnitude pathlines display the fluid flows path, direction, and speed around 

the spiral tower structure. 
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3.6 FINAL CFD RESULTS 
 

The analysis that was previously presented provides the user with a visual understanding of the 

various regions that encase the objects.  This can be taken one step further by extracting and 

analyzing specific data points.  Figure 81 & Figure 82 graphically show node points that will be 

studied. 

 
Figure 81 - Fluent Line/Rake Data Points (1) 

 
Figure 82 - Fluent Line/Rake Data Points (2) 

 

3.6.1 25ft Radius Wind Shell 

 

3.6.1.1 Amplification Factor (Min & Max Values) 

 

For the 25ft-R spiral structure case, the maximum velocity occurs at the 

intersection of plane 11a, plane 9, and the intersection of the spiral structure.  At 

this point the maximum value was calculated to have a velocity of 18.5mph.  The 

region of where the minimum velocity is located is at the rear of the structure 

where plane 8 intersects with plane 9.  This value was calculated to be as low as 

zero mph. 
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The amplification factor can be simply calculated by dividing the velocity of 

interest by the free stream velocity.18  Thus, the maximum velocity of 18.5mph 

would be divided by the free stream velocity of 10mph and would result in an 

amplification factor of 1.85.  The minimum amplification would be zero. 

 

3.6.1.2 Amplification Factor (15ft Wind Turbine Cross-Section) 

 

The average velocity distribution over the 15ft tip-to-tip wind turbines surface area 

was derived by averaging each node point displayed in Figure 83. 

 

Figure 83 – 25ft-R Spire - Avg. Vel. Distribution Coordinates 

                                                 
18

 See Glossary 



92 

 

The coordinates that define this region where determined specific to the tested 

model.  The numbers that are displayed along the vertical axis represent the 

quantity of node points that were used from each row.  These node points were 

exported one line at a time into Microsoft Excel where they were they were 

averaged to a final value of 15.246mph. 

 

The average amplification factor over the 15ft tip-to-tip wind turbine cross-section 

was calculated to be 1.5246.  The data points that were used to determine this 

factor can be viewed in Table 10. 

 

3.6.2 30ft Radius Wind Shell 

 

3.6.2.1 Amplification Factor (Min & Max Values) 

 

For the 30ft-R spiral structure case, the maximum velocity occurs at the 

intersection of plane 11b, plane 9, and the intersection of the spiral structure.  At 

this point the maximum value was calculated to have a velocity of 19.3mph.  The 

region of where the minimum velocity is located is at the rear of the structure 

where plane 8 intersects with plane 9.  This value was calculated to be as low as 

zero mph. 
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The amplification factor can be simply calculated by dividing the velocity 

magnitude by the free stream velocity.  Thus, the maximum velocity of 19.3mph 

would be divided by the free stream velocity of 10mph and would result in an 

amplification factor of 1.93.  The minimum amplification would be zero. 

 

3.6.2.2 Amplification Factor (15ft Wind Turbine Cross-Section) 

 

The average velocity distribution over the wind turbines surface area was derived 

by averaging each node point displayed in Figure 84. 

 
Figure 84 – 30ft-R Spire - Avg. Vel. Distribution Coordinates 

 

The coordinates that define this region where determined specific to the tested 

model.  The numbers that are displayed along the vertical axis represent the 

quantity of node points that were used from each row.  These node points were 

exported one line at a time into Microsoft Excel where they were they were 

averaged to a final value of 15.396mph. 
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The average amplification factor over the 15ft tip-to-tip wind turbine cross-section 

was calculated to be 1.5396.  The data points that were used to determine this 

factor can be viewed in Table 11. 

 

3.6.3 Result Comparison (25ft-R vs. 30ft-R) 

 

The width of the 25ft-R structure is roughly 83.33% the size of the 30ft-R structure.  The 

average velocity of the 25ft-R spiral tower is 99.02% of the 30ft-R spiral tower.  In order 

to justify whether the 16% increase in size is worth the 1% gain in energy, additional 

information needs to be known such as the cost of material, turbine lifespan, and tower 

lifespan.  If the parameters work to the favor of supporting the larger structure based on a 

unit analysis, this could result in a very large cost savings when multitudes of turbines are 

applied. 
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3.7 CFD WIND SHELL CONCLUSIONS 
 

Final CFD results show that when comparing the amplification factors of 25ft-R and 30ft-R 

spiral structures, the delta in average velocity over the surface area of the 15ft diameter turbine is 

0.15mph.  To determine if this amplification is justifiable, the additional power generated must 

be compared against a number of dynamic parameters.  To begin, the lifespan of operation for 

one tower must be determined.  A lifespan of operation of 100 years versus a number of 15 

years will have a substantial affect in the final cost/benefit analysis.  For each year of additional 

operation the larger tower will gain added value.  The next item that is required to complete an 

accurate analysis would be today’s equivalent cost/unit energy as well as the equivalent projected 

cost/unit through the towers last years of operation.  The additional power that is generated as a 

result of tower amplification may have larger value in 100 years in comparison to present prices 

(energy could in fact cost 10 times as much as it costs today if some of the world’s most 

prominent energy sources continue to diminish).  A similar analysis would have to be performed 

on the additional material costs due to the increased tower size.  It must be realized that 

although the 0.15mph seems minute if one turbine was to be used for a short period of time, but 

it is important to realize that the larger number of turbines a tower is comprised of the more 

effective this means of power amplification. 

 

It is not the purpose of this thesis to make the determination of “the best spiral shell size”, but 

rather the intent was to provide meaningful information from which experts can make informed 

decisions from.  It is important to note that even experts will need to use a number of 

projections of the future, none of which are guaranteed to be exact.  It is for this reason that I 

believe that additional studies should be pursued, in addition to this work, with the sole intent of 
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complimenting prior studies.  It is my opinion that power generation by way of clean energy 

technologies is the way of the future and is here to stay.  With the proper funding for research 

and development, I am sure that this will be a promising technology of the future. 

 

3.8 FUTURE CONSIDERATIONS 
 

The information provided within this thesis details a series of test cases that were administered 

to achieve the amplification factor of two spiral towers of varying radii.  The results of these 

analyses have been verified to be valid based on theoretical calculations as well as a number of 

independent grid types.  Although this information may be adequate to determine several 

production parameters, there are a number of alternative analyses that can be performed to 

compliment these results.  For example, if the proper computational resources were readily 

available, the same analysis presented in this thesis could be run as unsteady (time dependent).  This 

analysis should produce results similar to that of the steady solver, but with the added versatility 

to create artistic renderings of the flow phenomenon.  This allows for a much more detailed 

analysis by providing the user with a tool to study turbulent flow, vortices, and flow behavior 

over time.  The continuity of the flow can also be analyzed as a function of time.  This can be 

taken a step further by manipulating an additional parameter known as the Strouhal number 

(which in this cases presented within this document would be between 0.19-0.20).  The Strouhal 

number, often used in the study of unsteady flow conditions, could be used to mimic actual flow 

conditions relative to a specific condition or region.  By definition the Strouhal number is used 

for analyzing oscillating flows in unsteady fluid flow dynamics problems. 19   

                                                 
19

 “The Strouhal number represents a measure of the inertial forces due to the unsteadiness of flow or local 

acceleration to the inertial forces due to changes in velocity from one point to another in a flow field.” (The 

Engineering Tool Box, 2007)  
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In order to minimize research costs, future analyses would be run using Fluent’s parallel 

processing capabilities on OSC’s supercomputer farm.  This was not implemented in this thesis 

due to the learning curve that is required to understand the Linux kernel and v-editor program (a 

text editor used to write batch scripts, which is required to submit jobs to the OSC 

Supercomputer system).  A comprehensive understanding of these two items would make 

testing of the large quantities of models of varying parameters (shapes, sizes, etc) a feasible task.  

Initial discussions between Cleveland State University and OSC Supercomputer have resulted in 

an allotment of 4000 units (or 4000 computational hours).  Future correspondence should 

resolve any issues with the putty and v-editor issues pertaining to the submission of batch jobs.   

 

Additional efforts to maximize power generation can be allocated to the optimization of the 

wind turbines blades weight, curvature, and usable surface area.  The goal would be to not only 

improve wind capture by way of structural modifications but also to improve the reliability of 

the mechanical components and efficiency of the turbines. 
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1 NOMENCLATURE 
 

 average velocity 

 speed of fluid in front of the rotor 

 speed of fluid downstream of the rotor 

 mass flow rate 

 density 

 area of a disc 

 delivered power 

 maximum power 

 coefficient of performance 

 elastic modulus 

 mass density 

 pounds per square inch 

 strain (dimensionless quantity) 

 radius 

 radius 

 Mach Number 

 speed of sound 

 velocity 

 diameter 

 dynamic viscosity 

 kinematic viscosity 

 derivative with respect to time (t) 

= function 

 pressure gradient 

 partial derivative 
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 delta (change in) 

 characteristic length 

 size of the eddy 

 dimensionless parameter 

 stream function for 2D flow 

 U*a2 

 angle (degrees) 

 angle (degrees) 

 unit vector denotation 

 pressure 

 gravity 

 height/elevation 

 velocity 

 boundary layer parameter (used to determine initial spacing) 

 Reynolds number (dimensionless) 

 turbulent flow model 

 Strouhal number 

 frequency of vortex shedding 

 computational unit 
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2 GLOSSARY 

 

Algebraic Equations – Equations that need to be solved simultaneously throughout a 

problem domain in order to find the numerical representations of the problem.  (Wikipedia, 

2007) 

 

Amplification Factor – This is dimensionless quantity that is used to describe the increase or 

decrease in flow speed at a given point or over a given region.  The amplification factor is 

defined as the (velocity of interest)/(free-stream velocity). 

 

Attribute – a property that is inherent in a database entity that is often used to characterize a 

specific element or variable.  (Wikipedia, 2007) 

 

B.L. – Boundary Layer (Originated by Ludwig Prandtl in 1904.  For a sufficiently large 

Reynolds number a thin region existed near a solid boundary where viscous effects were at 

least as important as inertia effects no matter how small the viscosity of the fluid might be.).  

(Tannehill, Anderson, & Pletcher, 1997) 

 

Boundary Types – unknowns that are often determined in direct correlation with the physical 

model.  Examples of boundary types could include wall, velocity inlet/outlet, pressure 

inlet/outlet, or even planes of symmetry.  (Fluent Inc., 2007) 

 

Case – An engineering representation of a physical model that is used to accurately represent 

and simulate real life engineering situations.  Cases are often assigned a series of attributes 
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that are specific to the given problem, which is then stored as the variable called “data”.  

(Fluent Inc., 2007) 

 

CFD – Computational Fluid Dynamics (A methodology that is used to solve complex 

problems in the field of computational fluid dynamics and heat transfer.  This computational 

approach has gained extensive popularity due to the rise wide stream availability of the digital 

computer).  (Wikipedia, 2007) 

 

Computational Domain – Often a rectangle but can be of any size or shape.  Often through 

the study of computational fluid dynamics you will need to convert between physical 

coordinates and transformed coordinates.  (Tannehill, Anderson, & Pletcher, 1997) 

 

Consistency – Relates to the accuracy to which a FDE approximates a PDE.  The FDE can 

be tested by setting variables such as t and x to zero.  (Tannehill, Anderson, & Pletcher, 

1997) 

 

Continuum Types – continuous matter, including both solids/fluids and liquids/gases.  

(Fluent Inc., 2007) 

 

Contours – a curve connecting points where the function has a same particular value.  In the 

instance of wind direction the contour would be classified as an isogon and the wind speed 

would be classified as an isotach.  (Fluent Inc., 2007) 
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Convergence – Generally if a scheme is consistent and stable it is convergent.  The solution 

to the finite-difference equation approaches the true solution to the PDE having the same 

initial and boundary conditions as the mesh is refined.  (Tannehill, Anderson, & Pletcher, 

1997) 

 

Coordinate System – A system for assigning a tuple of numbers to each point in an n-

dimensional space. 

 

Coupled – An approach to solving algebraic equations and all dependent variables 

simultaneously.  This is often more complex method in comparison to the segregated 

approach.  (Fluent Inc., 2007) 

 

Decompose – to break down or simplify into smaller parts.  Often required in pre-meshing 

programs in order for a mesh to be satisfied.  (Fluent Inc., 2007) 

 

Discretization – Concerns the process of transferring continuous models and equations into 

discrete counterparts. This process is usually carried out as a first step toward making them 

suitable for numerical evaluation and implementation on digital computers.  (Wikipedia, 2007) 

 

Explicit – Is a scheme for which only one unknown appears in the difference equation in a 

manner that permits evaluation in terms of unknown quantities.  (Tannehill, Anderson, & 

Pletcher, 1997) 

 

http://en.wikipedia.org/wiki/Continuous_function
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External Flow – Flow that does not penetrate the into the inside of a part or component.  

Takes place on the external faces of the given body.  (Fluent Inc., 2007) 

 

FDE – Finite Difference Equation (FDE’s are equations that have been developed through 

testing and are commonly used to represent PDE.  These equations can then be numerically 

modeled via computer simulation.  In more complex problems a common result of this 

action leads to multiple algebraic equations).  (Tannehill, Anderson, & Pletcher, 1997) 

 

FOS – Factor of Safety, a criterion that is specifically defined to determine the redundancies 

within a given design.  (Wikipedia, 2007) 

 

Gradient – often a physical quantity that describes in which direction and a what rate the 

given variable changes most rapidly around a particular location.  Often a dimensional 

quantity that is expressed in some form of physical units.  (Fluent Inc., 2007) 

 

Grid Independence – an approach that is used to verify CFD results by comparing the 

convergence of multiple sets of results, which directly correlate with the coarseness and 

quality of the grid.  (Fluent Inc., 2007) 

 

Grid/Mesh – Preliminary step to performing the CFD analysis.  Discretizes the model and 

spatial domain into small cells (preferably rectangles of minimum skew, but can consist of 

pyramidal solids in 3D).  (Fluent Inc., 2007) 
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Implicit – Often needed when a third unknown (usually time) appears in the difference 

equation, which forces the algebraic formulation of several equations to be solved 

simultaneously.  (Tannehill, Anderson, & Pletcher, 1997) 

 

Initialize – the process of specifying initial conditions to a given problem.  (Fluent Inc., 2007) 

 

Intermittent – subject to interruption or periodic stopping.  (Wikipedia, 2007) 

 

Internal Flow – Flow that occurs within a given body or shape.  Can be affected by an outside 

flow source, but does not need to be.  (Fluent Inc., 2007) 

 

Iterate – a classification of a procedure that repeats itself often within a computer program 

until the specified criterion is achieved.  (Fluent Inc., 2007) 

 

Laminar – Also known as streamline flow, occurs when a fluid flows in parallel layers, with 

no disruption between layers.  In fluid dynamics, laminar flow is a flow regimen characterized 

by high momentum diffusion, low momentum convection, and pressure and velocity 

independence of time.  (Wikipedia, 2007) 

 

Map – regular structured meshes.  (Fluent Inc., 2007) 

 

Monitors – categorization of predefined functions that are used to determine when the 

iterative calculations meet the specified criterion.  (Fluent Inc., 2007) 
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Navier Stokes Equation – Time dependent equations that represent the most complex time 

dependent turbulent flows.  (Tannehill, Anderson, & Pletcher, 1997) 

 

ODE – Ordinary Difference Equation (Is a relation that contains functions of only one 

independent variable, and one or more of its derivatives with respect to that variable.  

(Tannehill, Anderson, & Pletcher, 1997) 

 

Pathlines – 1) Are the trajectory that an infinitesimally small point would make if it followed 

the flow of the fluid in which it was imbedded.  “2) Is the actual path traversed by a given 

fluid particle.  Note: Streamlines, pathlines, and streaklines are identical in steady flow.” (Fluid 

Mechanics, Fifth Edition pg[39]) 

 

Pave – unstructured meshes.  (Fluent Inc., 2007) 

 

PDE – Partial Difference Equation (Equations that are used to model important physical 

processes that often take place in nature).  (Tannehill, Anderson, & Pletcher, 1997) 

 

Periodic – an interval of time that an event, chain of events, instance or happening, takes 

place within.  It is measured generally between a start point and an end point and it generally 

repeats, or progresses in a cycle with the end point of one period being the start point of the 

next.  (Fluent Inc., 2007) 

 

Profile (aerodynamics) – cross section of an object that is undergoing testing that shows the 

curvature of the upper and lower surfaces.  (Fluent Inc., 2007) 



112 

 

Residual – Residuals are related to the concept of truncation error and are used to determine 

the proper time to terminate an iterative set of calculations.  (Fluent Inc., 2007) 

 

Round Off and Discretization Error – Error that is a result of the finite number of digits that 

a computational machine can hold.  This error is proportional to the number of grid points in 

the computational domain.  (Tannehill, Anderson, & Pletcher, 1997) 

 

Segregated – An approach to solving algebraic equations independent of one another.  

(Fluent Inc., 2007) 

 

Stability – A stable scheme is one for which errors from any source (round-off, truncation, 

mistakes) are not permitted to grow in sequence of numerical procedures as the calculation 

proceeds from one marching step to the next.  (Tannehill, Anderson, & Pletcher, 1997) 

 

T.E. - Truncation Error (The error that is a result of the truncation or removal of terms in 

the Taylor Series formulation. It can also be represented and the FDE - PDE).  (Tannehill, 

Anderson, & Pletcher, 1997) 

 

Turbulent – Turbulence or turbulent flow is a flow regimen characterized by chaotic, 

stochastic property changes.  This includes low momentum diffusion, high momentum 

convection, and rapid variation of pressure and velocity in space and time.  (Wikipedia, 2007) 
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Scheme – an important concept connecting the fields of algebraic geometry, commutative 

algebra and number theory.  (Tannehill, Anderson, & Pletcher, 1997) 

 

Steady – A state that is not affected or influenced by time.  (Tannehill, Anderson, & Pletcher, 

1997) 

 

Streakline – “is the locus of particles that have earlier passed through a prescribed point.  

Note: Streamlines, pathlines, and streaklines are identical in steady flow.”  (Fluid Mechanics, 

Fifth Edition pg[39]). 

 

Streamlines – 1) A family of curves that are instantaneously tangent to the velocity vector of 

the flow.  “2)  A line everywhere tangent to the velocity vector at a given instant.  Note: 

Streamlines, pathlines, and streaklines are identical in steady flow.” (Fluid Mechanics, Fifth 

Edition pg[39]) 

 

Submap – divides an unmappable face into mappable regions and then creates a structures 

mesh in these new regions.  (Fluent Inc., 2007) 

 

Timeline – is a set of fluid particles that form a line at a given instant. (Fluid Mechanics, Fifth 

Edition pg[39]) 

 

Tri Primitive – divides a three sided face into three quadrilateral regions and creates a mapped 

mesh in each region.  (Fluent Inc., 2007) 
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UDF – User Defined Functions (A popular option for users wanting to customize a software 

program.  Often used to develop specialized models for a broad range of applications).  

(Fluent Inc., 2007) 

 

Unsteady – Differs from steady through the appearance of the term *(du/dt) in the 

momentum equation and d /dt in the continuity equation.  These equations are also 

parabolic but with time as the marching parameter.  (Tannehill, Anderson, & Pletcher, 1997) 

 

Vectors – a concept that is characterized by a magnitude and a direction.  Can be one of 

many attributes such as velocity, pressure, temperature, etc.  (Wikipedia, 2007) 

 

Wedge Primitive – for a wedge shaped region, creates a triangular mesh at the tip and radial 

quadrilateral meshes outward.  (Fluent Inc., 2007) 

 

WVAF – Wind Velocity Amplification Factor (The factor that the initial velocity or average 

velocity gets amplified.  Formula can be calculated simply by Vtower/Vo = G (amplification 

factor) 
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3 ABBREVIATIONS 
 

OAP – Ohio Alternative Power (R&D organization that provided general requirements and 

restraints for the first Spire Smart Energy Tower System designed in 2005). 

 

GET – Green Energy Technologies (R&D organization that provided general requirements 

and restraints for the redesigned Spire Smart Energy Tower System designed in 2006). 

 

OECD - The Organization for Economic Co-operation and Development was established in 

1961 building on the OEEC.  It is a Paris-based club for industrialized countries and the best 

of the rest.  

 

OEEC - Organization for European Economic Co-operation was established under the 

Marshall Plan 
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4 ENERGY TRENDS/PROJECTIONS 
 

 

Figure 85 - World Marketed Energy Consumption 1980-2030 

 

 

Figure 86 - World Marketed Energy Use: OECD and Non-OECD, 2004-2030 
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Figure 87 - Marketed Energy Use in Non-OECD Economies by Region, 1990-2030 

 

 

Figure 88 - World Marketed Energy Use by Fuel Type, 1980-2030 
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Figure 89 - World Marketed Energy Use by Fuel Type, 1980-2030 

 

 

Figure 90 - World Coal Consumption by Region, 2004-2030 
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Figure 91 - World Electric Power Generation by Region, 1980-2030 

 

 

Figure 92 - World Nuclear Generating Capacity by Region, 2004 and 2030 
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5 THESIS SCHEDULE 
 

The magnitude of the project would have been unorganized without the implementation of a 

Management Schedule.  This schedule was a collaborative effort to effectively communicate 

ideas, concepts, and finished products in a minimal amount of time.  The team members 

from various disciplines were able to visually see and understand all activities detailed in 

research and design project.  Another benefit of the schedule was the ability to implement 

logic into the process to optimize all time restraints.  This not only increased productivity, but 

also the quality of the final design.  By understanding the breakdown of the specific 

mechanical systems, engineers were able to minimize the number of design iterations when 

integrating the systems together. 

 

All charts and diagrams were created professionally and were able to be transmitted 

electronically to each member of the team.  The schedule can be viewed in Appendix under 

the category Schedule.   
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Table 8 - Schedule Breakdown Table (Part 1) 
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Table 9 - Schedule Breakdown Table (Part 2) 
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Figure 93 - Schedule Breakdown Ghant Diagram 
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6 SUPPORTING DOCUMENTATION 
 

 

Figure 94 - 3D Cyl. – Defined Planes 

 

 

 

Figure 95 – 25ft Spire – Defined Planes 

 

 

 

Figure 96 – 30ft Spire – Defined Planes  
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Table 10 – 25ft Spire - Avg. Vel. Over Surface Area of Turbine 

 

 

 

 

Table 11 – 30ft Spire - Avg. Vel. Over Surface Area of Turbine 
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Figure 97 - Structured Grid - Turbulent Flow Mesh Parameters 
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Figure 98 - Unstructured Grid - Turbulent Flow Mesh Parameters 
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Figure 99 - Full Tower – Original Gambit Mesh (Inaccurate) 
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Figure 100 - Full Tower - Velocity Magnitude Distribution (Inaccurate) 
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7 PUBLICATIONS & RECOGNITION 
 

7.1 Wind-Tech International 
 

 

Figure 101 - Windtech Internation (Magazine Cover Page) 
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7.2 Cleveland Plain Dealer 

 

7.2.1 Article I 

 
 
“PD: "A spire built to inspire - Is this the future breezing into town?" 
Start: 2006-10-01 14:05 
Timezone: Etc/GMT+4 
Saw this in today's PD: 
A spire built to inspire 
Is this the future breezing into town? 
Sunday, October 01, 2006 
Chris Sheridan 
Plain Dealer Columnist 
It seems only fitting that the man who agreed to lead a struggling urban university at age 64 would now want to put a windmill 
on its campus. 

But when the man is Michael Schwartz and the institution Cleveland State University, Don Quixote analogies quickly 
crumble. 

For one thing, CSU's president isn't talking about a typical three-blade structure like the one that now stands by the Great 
Lakes Science Center. For another, he expects it to carry far more than symbolic value; ideally, this SmartEnergy Spire 
eventually will blow lots of dollars directly toward CSU's bottom line. 

"It's a terrific idea," he says, beaming at a desk- sized model of the device that he's kept in his office since learning about the 
technology. 

It's also terrifically well-timed. Spiraling energy prices have spurred unprecedented interest in alternative energy options in 
areas across the country, and specifically in Northeast Ohio. President Bush directed millions in new money toward solar and 
wind power in the 2007 budget, and federal applications for wind turbines have more than doubled over the last two years. 
Meanwhile, Cuyahoga County's commissioners appointed a task force this summer to consider alter native energy 
strategies, starting with an examination of wind power. 

But with only about 6 percent of the United States' land mass appropriate for construction of traditional wind turbines - 
typically as tall as a downtown skyscraper - opportunities are huge for those who can turn innovative designs into reliable 
and efficient machines. A San Diego company, for example, is plugging a model that has four spinning rotors floating roughly 
15,000 feet in the air, while scholars at the Massachusetts Institute of Technology and Johns Hopkins University each offer 
unique designs to allow wind turbines to stand far out at sea. 

Into this heated competition comes CSU engineering professor Majid Rashidi, a man whose passion for product design 
yielded three patents in just six years. When Akron-area entrepreneur Mark Cironi was looking for someone to make a vague 
idea reality, Cleveland experts paired him with Rashidi. The professor, whose past inventions have been on a far smaller 
scale - for example, a device to test for leaks in a catheter - soon was hooked by the challenge of creating an entirely new 
way to capture the wind. 

Traditional wind turbines require huge open space. They also are costly to maintain because of the height of the gearbox and 
massive strain placed on it by translating the energy of giant, turning blades into significant electrical power. 

Replacing one big rotor with bunches of smaller ones addressed key maintenance concerns. Still unanswered, however, was 
the larger question: how to persuade the wind to travel in such a way as to increase its speed? 

As on the TV game show "Jeopardy," Rashidi's answer ultimately came in the form of a question: "What if I made it like a 
screw?" 

Because the device is round, it doesn't have to turn to "chase" the wind, like a traditional windmill. Because it can be built in 
perfectly similar segments, transport is not nearly as complex as it is when ferrying blades that can stretch longer than a 
football field. Finally, because rotors sit inside the curves, blades are not as susceptible to rain and snow. 

CSU has a provisional patent for Rashidi's design, and Cironi and the professor have touted it to nearly anyone who will 
listen - politicians, business people and, of course, university leaders. Academic institutions have been among the nation's 
leaders in pursuing alternative energy sources; the University of Pennsylvania, for example, gets nearly a third of its power 
from wind, while several Minnesota colleges have erected traditional wind turbines on their campuses. Officials at the 
University of Akron have explored placing multiple spires on its campus, although they'll need substantial funding to make 
the idea happen. 
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Richard Stuebi, the Cleveland Foundation's BP Fellow for Energy and Environmental Advancement, says the spire targets a 
new market, the urban niche. But as promising as the spire sounds in theory, the performance of an actual structure over 
time is what matters most to potential investors. 

"It's hard to know if it's going to be a winner," Stuebi said, "but it could be a winner." 

Cironi says he has sold five of the structures to a Pennsylvania customer already, but CSU will get the very first spire 
produced. Schwartz is confident of securing funding and already plans for the model to sport the university's green-and-white 
colors. 

"It makes the statement," the president says, "that this technology was created at CSU."”  

(Sheridan, 2006) 

 

7.2.2 Article II 

Accessible with subscription. 

 

 

7.3 WCPN News 

 

7.3.1 Article I 

 

“New Wind Turbine for Urban Environments  

Aired February 22, 2007 

Later this morning, officials at Cleveland State University will meet to move ahead with plans to build a new type of 
wind turbine designed specifically for dense urban environments. ideastream's Lisa Ann Pinkerton has more. 

 

The "Smart Energy Spire," as it's called, looks like 
a giant corkscrew, with two small wind turbines 
nestled on each side of its grooves. In principle, it's 
spiral shape is expected to increase the velocity of 
low speed winds that encounter the grooves, 
creating a wind tunnel effect. Dr. Majid Rashidi, a 
Mechanical Engineering Professor at Cleveland 
State University who helped to engineer the 

design, says this wind tunnel effect works whether 
the spire is a stand alone tower or mounted on top 
of a building. 

Majid Rashidi: So when the wind stream hits it it's 
going to go around the structure. And as it goes 

around it speeds up and we are exposing the wind 
turbines to a higher wind velocity than what Mother Nature gives us. 

 
Image courtesy of Green Energy Technologies 
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Rashidi says CSU has funding to build a prototype of the "Smart Energy Spire" on top of one of its academic buildings. The 
plan is to construct a two groove spire what will test the accuracy of computer models. Rashidi says even on this small scale, 
the spire should generate between 100 and 500 kilowatts of power, depending on the wind. 

Majid Rashidi: With this two turn system we can supply four houses full blast with all the appliances and electrical systems 
on. 

The Akron Company Green Energy Technologies approached CSU to assist with the spire design, and hopes to mass 
market it in the future. 

Dr. Rashidi presented the design plans to a room full of staff members at the Cleveland Natural History Museum on 
Wednesday, where concerns were raised about the spire's potential to harm flying wildlife. Past wind turbine projects, which 
didn't undergo proper environmental impact studies have been known to kill large numbers of animals that flew too close. 
David Krista, coordinator of biodiversity at the museum, says the small 20 foot diameter of the Spire's turbine blades means 
they could spin very fast, up to 200 rotations per minute. 

David Krista: While the big turbines, like were talking about on Lake Erie, those turbines have a 300 foot diameter they don't 
spin at fast maybe 20 rpms. He quoted 200 rpms. So the concern is how fast those guys are spinning. Those essentially 
could be blenders. So I'm concerned about the energy efficiency but I'm also concerned about the wild life impacts. 

Dr. Rashidi says the spire prototype will go through studies to satisfy public concerns over wildlife impacts and sight 

selection. Contracts with fabricators and parts suppliers will also need to be negotiated making it a year or more before the 
first Wind spire can be built. Lisa Ann Pinkerton, 90.3.” 

(WCPN News, 2007) 

 

7.3.2 Article II 

 

“Clarification on Wind Turbine Report:  

On February 22, 90.3 aired a report about Cleveland State University's efforts to develop a new type of wind turbine - one 

that would utilize a spire in place of big rotor blades. It's called a wind spire, and it shows promise for making wind power 
generators safe for wildlife and practical for densely populated urban environments like Cleveland. 

Our report did not mention that CSU and Green Energy Technologies, an Akron-based company, are in a dispute over the 
patent of the device. Dr. Majid Rashidi, a Mechanical Engineering Professor at CSU, is party to the dispute and was a 
primary source for our story. However, after the report aired he contacted WCPN to clarify statements attributed to him. 

While we reported that Green Energy Technologies approached CSU to "assist with the spire design," Dr. Rashidi says the 
more accurate way to describe it would be to say that Green Energy asked CSU to "assist with designing and developing a 
wind energy system." The distinction is important, Rashidi says, because he claims he alone "invented, designed and 
engineered" the new wind spire device. 

Dr. Rashidi also clarified that the prototype wind spire he demonstrated before the press would not generate the 100 to 500 
kilowatts referenced by him during the demonstration. He now says that it is the finished full scale design that would 
eventually generate that level of electrical energy. 

This week Green Energy Technologies decided not to file a lawsuit over the patent dispute at this time.” 

(WCPN News, 2007) 
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