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INVESTIGATIONS OF ANATOMICAL CONNECTIVITY IN THE INTERNAL
CAPSULE OF MACAQUES WITH DIFFUSION MAGNETIC RESONANCE

IMAGING

KYLE ANDREW IGNATIUS TALJAN

ABSTRACT

Understanding anatomical connectivity is crucial for improving outcomes of deep
brain stimulation surgery. Tractography is a promising method for noninvasively
investigating anatomical connectivity, but connections between subcortical regions have
not been closely examined by this method. As many connections to subcortical regions
converge at the internal capsule (IC), we investigate the connectivity through the IC to
three subcortical nuclei (caudate, lentiform nucleus, and thalamus) in 6 macaques. We
show that a statistical correction for a known distance-related artifact in tractography
results in large changes in connectivity patterns. Our results suggest that care should be
taken in using tractography to assess anatomical connectivity between subcortical

structures.
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CHAPTER 1
INTRODUCTION

1.1 Deep Brain Stimulation

Deep brain stimulation (DBS) is a medical procedure in which an electrode is
placed deep in the subcortical structures of the brain to deliver electrical impulses to the
surrounding tissues. Conceptually, it is believed that DBS plays an analogous role to a
pacemaker for the heart, limiting erratic firing between subcortical structures thereby
allowing normal firing patterns to be reestablished. Currently, DBS is the gold standard
treatment for severe refractory Parkinson’s disease relieving a broad range of symptoms
such as rigidity, bradykinesia, and tremor'™*. DBS has also been used for other motor
degenerative conditions such as essential tremor and dystonia®®. In addition, there is a
great deal of research on expanding DBS to treat non-motor conditions such as epilepsy,
obsessive-compulsive disorder, and severe depression’”. Figure 1 shows a qualitative
rendering of a typical DBS implant.

However, even in the case of Parkinson’s disease there is a fundamental lack of
understanding as to how DBS works'”. Patients with similar clinical symptoms can

undergo a DBS procedure with different results. One patient may experience a complete



reversal of symptoms regaining normal motor control, whereas another patient may
experience some improvement in one symptom with an accompanying increase in

.. . . 11
secondary motor, cognitive, or emotional side effects .

DEEP BRAIN
STIMULATOR LEAD

ELECTRODES

SUBTHALAMIC NUCLEUS

SUBSTANTIA NIGRA

— CONNECTIVE WIRES

— PACEMAKER

Figure 1. A typical deep brain stimulation implantation. The electrodes penetrate deep
into the subcortical structures of the brain, and the connective wires are run under the

skin to a pacemaker that is implanted in the chest'.

There is hope that DBS performance can be improved by constructing accurate
models of Parkinson’s disease motor circuits'>. However, the complex network
architecture of the subcortical motor circuits presents a formidable challenge to modeling
because it is not possible to discern direct cause and effect relationships. Each region in
the motor circuit has many inputs and outputs so that stimulating the subthalamic nucleus

does not just effect the thalamus, but also effects the putamen, globus pallidus, motor
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cortex, etc. all of which are themselves interconnected. The result is that after years of
DBS treatment for Parkinson’s disease there are still multiple subcortical targets for
stimulation and disagreement as to which targets are optimum'*'.

In modeling the effects of DBS stimulation on the motor circuits a simple first
step is to understand which regions are being directly stimulated. Much work has been

done to calculate the volume of tissue activated around the electrode'®"”

. Knowing the
volume of tissue activated we can identify areas correlated with negative or positive
clinical outcomes. For example, the subthalamic nucleus, one of the most common
targets for DBS in Parkinson’s disease, is divided into motor and non-motor regions. A
recent paper has shown that direct stimulation of non-motor regions is associated with an
increase in negative side effects without an accompanying increase in positive

outcomes' .

Determining the volume of tissue activated is only the first step in understanding
how DBS modulates the motor circuits affected in Parkinson’s disease. The next step is
to determine connections to the volume of tissue activated. By mapping the anatomical
connections between the volume of tissue activated and other parts of the cortico-
subcortical motor circuit we can begin to unravel cause and effect relationships in order

to optimize electrode placement and stimulation parameters'*">.

1.2 Diffusion MRI and Tractography

Tractography is the only currently available method for noninvasively

18-20

investigating anatomical connections in the brain ~ . Diffusion magnetic resonance

imaging (dMRI) serves as the foundation for tractography. dMRI is capable of measuring



the diffusion of water in the brain on the millimeter scale. It is known that cell
membranes of neurons present a barrier to the free diffusion of water’'. An
oversimplified conclusion is that given the diffusion profile in a brain voxel whichever
direction diffusion is greatest is the same direction as the principle fiber tracts.
Tractography is the process of implementing an algorithm to connect voxels based on the
diffusion profiles and thereby create maps of anatomical connections. In order to put the
tractography work performed here into context it is necessary to give a history and
description of dMRI.

Diffusion is the random movement of molecules in a fluid due to thermal energy
independent of bulk flow. The theoretical description of diffusion on which dMRI is
based was made by Einstein in 1905%. Torrey was the first to describe how the Bloch
equations (the central equations in magnetic resonance imaging) change with the addition
of diffusion™. In 1965 Stejskal and Tanner published the paper that is still the practical
foundation of dMRI today™*. In this paper they derived the Stejskal-Tanner equation

describing how scan parameters affect signal in diffusion scans.

(D

In (1) S is the diffusion signal, Sy is the non-diffusion weighted signal, y is the
gyromagnetic ratio, G is the strength of the diffusion gradient, 0 is the duration of the
gradient, A is the time between gradients, and D is the diffusivity of the voxel. In

discussing dMRI it is common to group all of the terms in the exponential together as a



single variable b. This b-value gives a measure of the amount of diffusion weighting. In
practice to create a diffusion weighted image (DWI) we run a scan without any diffusion
weighting (an Sy image). Then, selecting a b-value we measure our signal S allowing us
to solve for the diffusion constant D.

Figure 2 gives a qualitative explanation of how a diffusion weighted pulse
sequence works. With no gradient the spins of hydrogen atoms process at the same rate in
the constant By field. The first magnetic field gradient causes a gradient in the rate of spin
procession. When we apply the second, opposite gradient all spins should realign and
process at the same rate. However if water has diffused in the direction of the gradient
there will be signal loss due to the mixing of dephased spins. Large signal loss means a
large amount of diffusion in the gradient direction, and little signal loss means relatively
little diffusion. Diffusion perpendicular to gradient will result in no signal loss because all
hydrogen atoms perpendicular to the gradient will be processing at the same rate.
Consequently, each DWI image is dependent on the direction of the applied gradient.
Changing the gradient direction or misaligning the patient in the scanner results in

different images.
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Figure 2. Description of the effect of diffusion weighting gradients. With no magnetic
gradient the spins process at the same rate. The first gradient causes spins in the higher
field to process faster than those in the lower field. If there is no diffusion along the
direction of the diffusion weighting gradient then the spins should perfectly rephase after
the second, opposite gradient. If there is diffusion along the gradient then there will be

signal loss (taken from* figure 6).

The need for an objective, i.e. gradient independent, method of modeling
diffusion culminated in 1994 with Peter Basser’s implementation of the tensor model for
diffusion®®. Basser modeled diffusion in each voxel as a 3x3 positive, symmetric, semi-
definite tensor describing how to estimate the diffusion tensor from a series of at least 6

different diffusion gradients using a least squares fitting algorithm””:
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Diffusion tensors can be diagonalized into three eigenvalues and eigenvectors
where the principle eigenvalue and eigenvector correspond to the direction of greatest
diffusion for that voxel. The eigenvectors define the gradient independent coordinate
system. The eigenvalues and eigenvectors can be visualized as a diffusion ellipsoid as

seen in figure 3.

Figure 3. Visualization of a diffusion tensor. The direction of the largest eigenvalue, yj,
corresponds to the direction of greatest diffusion. All eigenvectors are orthogonal and

define a gradient independent coordinate system for each voxel.

Fractional anisotropy (FA), an important invariant of the tensor model, measures

how much the diffusion ellipsoid is pointed®®. High FA voxels have ellipsoids shaped like



cigars and generally correspond to densely packed white matter tracts. Low FA ellipsoids
are spherical and usually correspond to grey matter or voxels with a mix of different fiber
directions.

Shortly after the advent of the diffusion tensor model, researchers began
developing algorithms to plot tracks through regions of high FA. Early tractography
algorithms would plot a streamline from a seed voxel by calculating the single most

likely path through the diffusion data®*™'

. Qualitatively, the cigar-shaped ellipsoids in
these high FA regions functioned like arrows where streamline algorithms found the most
likely path connecting these arrows. The underlying assumption was that these
streamlines through the diffusion data somehow mirrored the actual anatomical tracts of
white matter in the brain.

The diffusion tensor model and streamline tractography have serious limitations.
The fiber structure in the brain is intrinsically complex with many regions where white
matter tracts assume complex geometries such as crossing or kissing®>. The diffusion
tensor model is unable to resolve crossing fibers because the tensor has only a single
peak. An example where this single peak in inadequate is the case of two fibers crossing
at an acute angle in a single voxel. The tensor will have its principle eigenvector pointing
between the two fibers accurately capturing the anatomy of neither tract.

Streamline tractography does not account for the uncertainty in the fitting of the
diffusion data®. This is a serious limitation given that streamline tractography plots only
one fiber track per seed voxel and given that many fiber tracts pass through a single voxel

in the actual brain. Figure 4 shows a comparison of the diffusion profile for the tensor

model and persistent angular structure, a model that allows for multiple diffusion peaks.



There are numerous voxels with crossing fibers seen in the persistent angular structure
reconstruction. These voxels with crossing fibers are inaccurately modeled as spheres in

the tensor model.

Figure 4. A comparison of the diffusion tensor model and persistent angular structure for
the same section of the brain. (A) The diffusion tensor model is composed primarily of
spherical diffusion profiles leading to the spurious conclusion that there are not tightly
organized white matter fibers present. (B) Persistent angular structure is able to depict
multiple diffusion peaks for each voxel revealing that the region is actually composed of

well organized, crossing fibers.

Over the last decade many methods have been developed revamping the tensor
model to allow for multiple diffusion peaks and exchanging deterministic tractography
for probabilistic algorithms that plot numerous tracks from a single seed voxel**>°;

however, it is unclear which of these methods may be optimum. The non-tensor models

of diffusion often use functions such as high order spherical harmonics to capture



multiple diffusion peaks. Probabilistic algorithms calculate an uncertainty for each step
along a track. This uncertainty in fiber direction in a voxel is used as the basis of a fibre
orientation distribution (FOD). The FOD at each voxel is used as the sample distribution
for determining each step as a track is plotted. The result is a large number tracks being
generated for each voxel where the greater the uncertainty in the diffusion profile the
greater the spread in tracks” .

Recent studies using non-tensor models and probabilistic tractography have

revealed striking results that seem to agree with past '**°

. However, tractography is an
indirect measure of anatomical connectivity. Great caution must be taken before
interpreting tracks generated via tractography as representing actual white matter
fascicles™.

Due to the propagation of uncertainty in the fiber orientation probability density
functions there is a known artifact in probabilistic tractography in which proximal regions

are systematically more highly connected than distal regions®”"’

. For probabilistic
algorithms even along well-organized, straight fiber tracts, voxels close to a seedpoint
will have a higher percentage of tracks than voxels further from the seedpoint because of
the propagation of uncertainty. The result is a ‘flare’ pattern of high track frequency in
regions near the seedpoint where uncertainty is low and low track frequency further from
the seed as uncertainty grows. Subcortical structures are particularly susceptible to this
bias because of their proximity to each other. Correcting this bias may prove essential in
establishing probabilistic tractography as a noninvasive tool for measuring anatomical

connectivity, especially in the subcortical regions important to DBS. However, almost no

work has been done to correct for uncertainty propagation in probabilistic tractography.
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Recently, Morris et al. have introduced a statistical correction (the “Morris correction’) to

address this issue, but it has not been widely used™”.

1.3 Anatomy

The internal capsule (IC), a bundle of white matter fibers, is particularly important
in DBS. The IC divides the thalamus and caudate from the lentiform nucleus running
close to most of the important DBS targets including the subthalamic nucleus, globus
pallidus interna, and thalamus™. Figure 5 below shows an axial view of the internal
capsule along with the surrounding subcortical structures. The IC itself is the object of
ongoing research as a potential target for DBS treatment for severe depression**'*.

Given that the IC is highly connected to both subcortical and cortical structures it
has the potential to spread stimuli far from the site of activation*'. Such stimulus spread
could be beneficial, allowing stimulation of a variety of target structures from one
activation site. However, unintentional stimulation of the wrong structures could lead to
side effects™. Of practical importance is that white matter requires lower stimulation

thresholds than gray matter nuclei—a beneficial feature for DBS performance in

11
general .
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Genw of corpus callostam

Awnterior cornw of lateral ventricle
Caudale nuclevs
Septum pellucideum

Internal capsule (frontal part)
Column of forniz

Genuw of internal capsule
Putamen

Globuz pallidus

Internal capsule (occipital part),

External capsule
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Avrea strice: . §8
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Figure 5. Drawing of axial slice of one hemisphere of a human brain showing the
internal capsule and other important subcortical nuclei. The internal capsule is a white

matter tract separating the caudate and thalamus from the lentiform nucleus™.

1.4 Overview

In this work we use tractography to segment the IC in 6 macaques based on
anatomical connectivity to three subcortical nuclei: the caudate, lentiform nucleus (LN),
and thalamus. We perform segmentation with and without the Morris correction. The
principal foci of this work are:

* Using tractography we demonstrate connection among deep brain structures
correcting for the known distance bias. This is one of the few tractography studies
of subcortical connections.

* We find that the Morris correction has a large impact on connectivity results.

12



Without the correction, the patterns of connectivity are largely governed by
proximity. With the correction we find many examples in which proximity does
not determine connectivity. In some studies the correction reveals areas of the IC
with no significant connections to one or more target structures.

We find that the caudate is most strongly and consistently connected to the
anterior limb of the IC. The LN is most strongly and consistently connected to the
lateral genu of the IC. The thalamus is most strongly and consistently connected

to the medial genu of the IC.
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CHAPTER II
METHODS

2.1 Imaging and Postprocessing

Six rhesus macaques (macaca mulatta) were scanned under a protocol approved
by the Cleveland Clinic Institutional Animal Care and Use Committee. Animals were
anesthetized with a propofol drip and held snugly on a Plexiglas board to minimize
motion. High angular resolution diffusion imaging (HARDI)** (71 diffusion weighted
image volumes with b=1000 sec/mm?, 8 b=0 images) was performed at high spatial
resolution (96x96mm FOV, 64x64 matrix, 1.5 mm slice thickness, yielding 1.5 x 1.5 x
1.5 mm voxels) with TR=2000 ms, TE=87 ms, NEX ranging from 23 to 36
(corresponding to acquisition time of 4-6 hours) on a Siemens 3 tesla Trio (Erlangen,
Germany). Partial brain scans (14 or 15 1.5 mm thick slices) centered on the deep brain
structures were performed to improve signal-to-noise ratio (SNR). The SNR was
approximately 40 and 10 for the b=0 and diffusion-weighted images, respectively. Table
1 below gives the SNR for the internal capsule, caudate, LN, and thalamus for each of the
six studies for the b=0 scans (i.e. the non-diffusion weighted scans). Table 2 shows the

SNR for the diffusion weighted scans.
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Study Internal Caudate Lentiform Thalamus
Capsule Nucleus
1 30.1 37.1 26.8 33.6
2 29.4 354 28.3 29.4
3 34.0 54.4 37.4 34.6
4 30.3 39.7 30.3 30.2
5 45.5 53.6 43.8 48.1
6 55.5 65.6 52.1 59.0

Table 1. Signal to noise ratio for the non-diffusion weighted scans for each of the six

studies.

Study Internal Caudate Lentiform Thalamus
Capsule Nucleus

1 5.0 11.4 11.3 9.3

2 4.9 8.9 10.0 9.2

3 5.4 9.8 11.4 10.1

4 5.1 10.9 10.9 9.2

5 5.4 13.8 13.4 10.8

6 5.7 12.8 14.0 11.2

Table 2. Signal to noise ratio for the diffusion weighted scans for each of the six studies.

15




At each voxel, the diffusion tensor was calculated using a standard log-linear fit*” and
fractional anisotropy (FA) was calculated from the diffusion tensor*. The fiber
orientation distribution (FOD) was calculated at each voxel using regularized spherical

. 4546
deconvolution™

. The FOD was then used as the basis of probabilistic tractography.
2.2 Tractography

We assessed anatomical connectivity between the IC and 3 surrounding
subcortical structures: caudate, lentiform nucleus (LN), and thalamus. For each study,
caudate, LN, and thalamus ROIs were drawn by hand on coronal and axial FA images on
the right side of the brain using the Saleem and Logothetis MRI histology atlas of the
rhesus macaque as a reference’’. We limited the IC at the posterior using a line between
the posterior borders of thalamus and lentiform nucleus and at the anterior using a line
between anterior borders of caudate and lentiform nucleus*. The medial and lateral
borders of the IC were easy to distinguish because of the sharp contrast between the
bright white matter of the IC and the dark surrounding gray matter. The superior and
inferior borders were defined based on the boundaries of the caudate, LN, and thalamus
in conjunction with the Saleem atlas. Figure 6 shows an example of a manual ROI for

one study.
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(A) Internal (B)

Capsule
Caudate

Lentiform

d
Thalamus, Nucleus

Figure 6. Example of manual ROIs drawn on an FA map. (A) the FA map with labeled
arrows pointing to the IC, caudate, LN, and thalamus. (B) is the color FA image, and (C)

shows the ROIs selected for this slice.

Probabilistic tractography was used to define anatomical connectivity between
each voxel in the IC and the three subcortical structures of interest. We ran an in-house
algorithm using a rejection sampling approach based on the FOD**. We generated 250
tracks per IC seed voxel with a step length of 1.125 mm and maximum bending angle of
90°. Tracks initiated in the seed region (IC) proceeded throughout the entire brain until

the tracks left a mask defined using a robust range threshold on the b=0 image™.

2.3 The Morris Correction
As the tractography algorithm is probabilistic, a given voxel in the IC typically
exhibited connections to each nucleus. To correct for distance-related bias, we performed

the correction developed by Morris®®. The correction provides a framework for

17



determining whether connectivity between a seed voxel and a given target is statistically
significant. The method has been shown to account for distance artifact in anatomical
connectivity results. The key insight of the Morris correction is to compare track counts
generated by probabilistic tractography to a null distribution, thus allowing the statistical
comparison. In practice, the null distribution is simply achieved by repeating the
tractography with an isotropic FOD. The null distribution therefore provides a map of
connections due purely to chance instead of the directionality inferred from diffusion

anisotropy.

2.4 Connection Profiles and Segmentation

To assess the impact of the Morris correction, we generated an anatomical
connectivity profile of the IC to each subcortical nucleus and then performed a so-called
“hard segmentation” of the IC**. The anatomical connectivity profiles were generated by
superimposing the target ROIs on the whole brain tractography results seeded from each
IC voxel and adding up the number of tracks that intersect that ROI. The hard
segmentation classified each IC voxel according to which target had the highest number
of connecting tracks. The connectivity profiles and the segmentation were performed

with and without the Morris correction.
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CHAPTER III
RESULTS

Figure 7 demonstrates the overall impact of the Morris correction. Connectivity
through the IC from caudate is shown with and without the Morris correction. For
comparison, the null distribution map is also shown. As the null distribution map does not
include information from tissue microstructure, it primarily reflects the proximity
between individual voxels of the IC and the caudate. The null distribution map and the
connectivity map without the Morris correction demonstrate a high degree of similarity.
After the correction, the connectivity profile is qualitatively different from the null

distribution map.

High
Probability

Low
Probability

Figure 7. Overall impact of Morris correction on profile of connections from caudate
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through the IC. (A) shows the null distribution map. (B) and (C) show connection profiles

before and after the correction, respectively.

Figure 8 demonstrates the effect of the Morris correction on the anatomical
connectivity profile. Before the correction, regions of IC close to the caudate are more
connected than those further away — there are many connections from caudate running
through the anterior limb of the IC, fewer connections between caudate and genu of IC,
and fewer still from caudate running through the posterior limb of IC. The correction
results in a large reorganization of the connection pattern. The anterior limb is still highly
connected. However, a portion of the genu and posterior limb (both relatively far from
the caudate) become highly connected after the correction. Some of the posterior limb
remains weakly connected, showing that the impact of the filter is not uniform.
Variability of connectivity is particularly high in the posterior limb of IC even after the

correction.

High
Probability

Low
Probability

Figure 8. Effect of Morris correction on connectivity between IC and caudate. (A)

Fractional anisotropy image indicating location of the caudate (single arrow) and IC

20



(double arrow). Connectivity (B) without and (C) with correction.

Figures 9 and 10 show reorganization of IC connections to the LN and thalamus
due to the Morris correction. Without the correction, regions located closer to the LN or
thalamus are systematically more connected than those further away. After the correction,
lateral genu of IC shows high connectivity to the LN while medial genu of the IC show

high connectivity to thalamus. These patterns are consistent among subjects.

High
Probability

Low
Probability

Figure 9. Effect of Morris correction on connectivity between the IC and LN. (A)
Fractional anisotropy image, indicating location of the LN (single arrow) and IC (double

arrow). Connectivity (B) without and (C) with correction.
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High
Prohability

Low
Probability

Figure 10. Effect of Morris correction on connectivity between the IC and thalamus. (A)
Fractional anisotropy image indicating location of the thalamus (single arrow) and IC

(double arrow). Connectivity (B) without and (C) with correction.

Figure 11 shows the connectivity profile after correction for each of the three
targets across the 6 studies. Row A shows the connectivity profiles for the caudate, row B
for the LN, and row C for the thalamus. We observe similar connection patterns to those
mentioned above where caudate is most connected to anterior limb of IC, LN to lateral
genu, and thalamus to medial genu. Significantly, with the correction we see that
numerous regions across the different targets have no significant connections at all. Many
voxels in the genu of the IC have no significant connections to the caudate (row A).
Interestingly, there are still significant connections between the caudate and the distant
posterior IC even in studies where voxels in the genu of the IC show no significant
connection to the caudate. The LN shows least connection and occasional dropout of
connection to posterior limb of IC and medial genu. The thalamus has highest

connectivity throughout the entire IC with minimal number of insignificantly connected
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voxels in the anterior limb and lateral genu.

Figure 11. Connectivity maps after the Morris correction for all three structures across all
6 studies. The top row (A) shows connectivity profiles between IC and caudate, the
middle row (B) profiles between IC and LN, and the bottom row (C) between IC and

thalamus. Across the three structures we observe regions with no significant connections.

Hard segmentation provides a means for comparing connection differences

among the three target structures. The statistical correction had a strong impact on hard
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segmentation results as 23+6% of voxels change classification. However, there does not
appear to be an obvious pattern to which regions change classification because of the

correction. Figure 12 shows hard segmentation results for all six studies before (row A)

and after (row B) the correction.

Figure 12. Impact of correction on hard segmentation across the 6 studies. Green regions
had the highest probability of connection to caudate, purple and blue to LN and thalamus,
respectively. The top row (A) shows segmentation before the correction. The bottom row
(B) after correction. The patterns seem similar in top and bottom row, and although many

voxels change classification it is not clear how the Morris correction impacted results.
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CHAPTER IV
DISCUSSION AND CONCLUSION

We investigated anatomical connectivity of the internal capsule to three bordering
subcortical structures (caudate, LN, and thalamus) with particular focus on the impact of
a statistical correction to account for distance-related bias. In general, the correction shifts
connectivity patterns away from one in which proximity determines the degree of
connectivity. After the correction, the caudate is most strongly and consistently
connected to the anterior limb of the IC with some connection to the posterior limb. The
LN is most strongly and consistently connected to the lateral genu of the IC. The
thalamus is most strongly and consistently connected to the medial genu of the IC.

Tracer studies provide support for the results. Leichnetz and Astruc found
connections between the anterior limb of the IC and the caudate’'. Yeteran and Pandya
noted a similar result’>. Morecraft et al. observed a medial-lateral division in the anterior
IC where medial regions were more connected to caudate and lateral regions to LN*,
These results agree with the caudate and LN connectivity maps and the hard
segmentation results. Tanaka found some evidence that medial regions in the genu and

posterior limb were connected to the thalamus™*. However, these tracer studies primarily
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focused on cortical-subcortical connections and only noted if tracts passed through the IC
along the way from subcortical nuclei to the cortex. Existing tracer studies therefore do
not provide a comprehensive picture of connectivity between subcortical nuclei and the
IC.

This study complements recent tractography based studies of connectivity of the
IC. Zarei et al. studied connectivity of cortical structures through the IC, showing
connectivity largely consistent with anatomical tracer studies™. Sullivan et al. showed
age-related changes of fractional anisotropy and diffusivity measures in IC segmented by
cortical connections. In general, patterns of cortical connectivity of the IC show
organization along the anterior-posterior direction’”. However, we find a distinct pattern
in the organization of connections to subcortical nuclei along the lateral-medial direction.

The individual connectivity profiles may be more useful for DBS presurgical
planning than hard segmentation results. To illustrate, figure 13 compares corrected hard
segmentation with connectivity profiles indicating connectivity between IC and each of
the three subcortical nuclei of interest. Although hard segmentation classifies the
indicated voxel as most highly connected to thalamus, connectivity to caudate is nearly as
large. This region would therefore be a poor target if selective stimulation of a single

nucleus is expected to provide optimum therapeutic benefit.
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Figure 13. Comparison of hard segmentation (A) with connectivity profiles for caudate
(B), LN (C) and thalamus (D). The arrow indicates a region most connected to thalamus,

but which is also very highly connected to caudate.

This study was limited with regard to the ROIs. These limitations will be
addressed in future studies. Although we followed the methodology of Zarei, et al., using
FA maps to define ROIs*, ROI selection is typically performed on high resolution
anatomical images. However, HARDI images in this study covered only part of the brain
in the inferior-superior direction as part of a trade-off between the need for high spatial
resolution, adequate SNR, and memory limitations of the scanner. Unfortunately, we
found it impossible to reliably coregister these partial-brain images with high resolution
anatomical scans with standard techniques. Furthermore, distortions from the echo planar
acquisition for the HARDI images typically result in the need for manual editing of ROIs
using the FA maps after coregistration.

The inability to coregister to anatomical scans also prevented us from
coregistering studies into a common space. Consequently, we were unable to generate
average connectivity maps or quantify map consistency.
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ROIs were determined manually, leading to systematic errors that can be
addressed by automatic segmentation. Although there are widely used tools for
automated segmentation of cortical structures, fewer tools exist for segmenting
subcortical structures. Furthermore, these tools were optimized for human, not macaque,
anatomy. As macaques are an important model for studies of the central nervous system,
dedicated, automated methods for anatomical analysis of macaque images are an
important need for the research community in general.

Although we follow others’ precedents in using FA to identify regions®®, other
diffusion-based contrasts can be used to identify regions. For example, generalized FA
should improve contrast particularly in regions with crossing fibers and partial volume
averaging®*.

A number of algorithms exist for tractography. Streamline tractography is
commonly used”, but probabilistic tractography is required to perform the Morris
correction. Although we have demonstrated the use of the Morris correction using an in-
house algorithm, the correction is completely compatible with publicly available tools
such as F SL56, Camino”’, and MRtrix*®. Future work will evaluate the impact of the
correction on different probabilistic tractography methodologies.

The definition of anatomical connectivity is an open question for the research
community at large. One important methodological issue is partial volume averaging. As
the subcortical regions are small, a relatively large layer of voxels at the border of each
region is, in fact, a mixture of the tissue of interest and other tissue. A substantial fraction
of tracks passing through these border voxels therefore do not truly intersect the tissue of

interest, but neighboring tissue. The approach taken here simply assumes that if a track
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intersects the user-defined ROI, it intersects the tissue of interest. The partial volume
effect may be addressed by close examination of the trajectory of each track, excluding
those that graze the edge of the tissue of interest. Future work will examine the extent of
this effect on measured connectivity values.

The rejection sampling algorithm used to generate the tracks is simple, and further
refinements may improve performance. Partial volume effects due to crossing fibers are
accounted for by use of the FOD. However, beyond the relatively permissive 90 degree
bending criterion, no further constraints were placed on track shapes. For example, tracks
were not forbidden from looping back on themselves or re-entering the subcortical nuclei.
Future work will examine appropriate constraints on track geometries for the assessment
of anatomical connectivity.

An important distinction should be made regarding the nature of the Morris
correction. The correction works on overall statistics of track counts, but not on the track
geometries themselves. For example, the correction does not filter tracks with improbable
shapes from a mixture of tracks with plausible and implausible trajectories. An
alternative approach examining the statistics of shapes may be a valuable approach with
better properties, but is beyond the scope of this paper.

Relatively little work has examined anatomical connectivity of subcortical
structures by noninvasive means. The work of Iturria-Medina examined the connectivity
patterns of a large number of brain regions, including subcortical regions™ . An
important issue to be examined is the degree to which the Morris correction would alter
such patterns.

Future work will examine the efficacy of the Morris correction and subcortical
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connections in detail. For example, simulations on digital phantoms can be used to
quantitatively test the ability of the Morris correction to account for the distance-related
falloff in anatomical connectivity. Such simulations can also be used to clarify
distinctions in performance of the Morris correction in conjunction with different
probabilistic tractography algorithms. Furthermore, consistency with ground-truth studies
of connectivity using anatomical tracers are another indirect method for validating
anatomical connectivity results®'. This type of approach has been taken by Hagmann et
al®

A number of opportunities for optimizing the methodology of measuring
anatomical connectivity are available. Beyond the algorithmic approaches mentioned
earlier in the discussion, details of the image acquisition such as spatial resolution,
diffusion-weighting, and gradient acquisition scheme can each play an important role.

Optimization requires a reliable methodology for ground-truth validation. Beside
simulations and comparison with known anatomical connectivity patterns in macaques, it
may also be possible to use electrophysiology measurements taken in humans during
DBS placement. There have been several recent clinical studies using tractography in
surgical planning for DBS. Gutman, et al. analyzed the connectivity patterns of
subcallosal cingulate and anterior limb of internal capsule, two common stimulation sites
for depression®. Barkhoudarian, et al. looked at tractography results for three DBS
patients suggesting that tractography could help clinicians characterize potential effects
and side effects on a patient by patient basis®*. Coenen, et al. used tractography to
implicate the dentate-rubro-thalamic tract in controlling tremor in a single DBS patient®.

None of these seem to have addressed the distance artifact.
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DBS is attractive to study with tractography precisely because it provides some
possibility of optimizing tractography parameters via cross-validation with interoperative
electrophysiology and surgical outcomes. Modeling of stimulation patterns from
implanted electrodes can be used to determine consistency between connectivity profiles
and observed clinical outcomes and side effects®®. Upon validation of the connectivity
profiles, we hope to prospectively inform DBS implantation and stimulation parameters

for improved clinical outcomes.
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