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MODELING AND PERFORMANCE INVESTIGATION OF A ROTOR WITH 

DISSIMILAR BEARING SUPPORT SYSTEM 

 

YUNLU LI 

 

ABSTRACT 

        Different types of bearings have different dynamic characteristics. By using one type 

of bearing at one end of a rotor and another type of bearing at the other end of the rotor, it 

is possible to exploit the advantages of both types in the same system. One example of 

such combination is a bronze bushing and active magnetic bearing (AMB). In the 

available literature, there are examples of such systems but are not fully explored with 

regard to how to model the system to fully utilize both support type properties. This 

thesis investigates the modeling and performance of such a dissimilar bearing support 

system. An experimental test rig with a rotor supported at one end by AMB and at the 

other end by bushing is modeled with two different methods, i.e., approximate analytical 

approach and finite element analysis (FEA). A cost function minimizing AMB controller 

design method is used for both system models, resulting in two controllers of the same 

form. Both controllers are implemented on the experimental test rig. AMB suspension is 

achieved, steady state orbits are measured at several selected constant speeds. Then 

experimental results are compared to numerical simulations and recommendations made 

regarding the utilization of these dissimilar bearing supports.  
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NOMENCLATURE 

gA = Area of active magnetic bearing pole face [
2μm ] 

Aamp = Linear state-space dynamic matrix of the power amplifier  

ffA = Linear state-space dynamic matrix of the free-free rotor model 

openA = Linear state-space dynamic matrix of the open-loop three-mass model 

sA = Linear state-space dynamic matrix of the open-loop three-mass model with supports 

a = Two dimensional acceleration vector [ 2

m

s
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Bamp = Linear state-space input matrix of the power amplifier  
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m
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sC = Linear state-space output matrix of the open-loop three-mass model with supports 

openC = Linear state-space output matrix of the open-loop three-mass model 

1sC = Damping on the motor side section of the shaft for the approximate analytical 

model [ N-s
m
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2sC = Damping on the non-motor side section of the shaft for the approximate analytical 

model [ N-s
m

] 

Damp = Linear state-space feed through matrix of the power amplifier  
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ffD  = Linear state-space feed through matrix of the free-free rotor model 

openD = Linear state-space feed through matrix of the open-loop three-mass model 

sD = Linear state-space feed through matrix of the open-loop three-mass model with    
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e = Eccentricity [μm ] 
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F = Force generated from the active magnetic bearing [ N ] 

xF = Force in the X direction [ N ] 

yF = Force in the Y direction [ N ] 

g = Acceleration due to gravity [ 2

m

s
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CHAPTER I  

INTRODUCTION 

 

 

1.1 Introduction 

Rotating machines are widely used in industry, since rotation offers a way to transfer 

power from one point to another, or convert motion to different planes through gears, 

belts, shafts etc.. Reliability and stability of rotating machines operating often at high 

speeds are very important in industry. Rotating machine usually includes a rotor, bearings 

and a support structure. Each component of the system has an effect on the overall 

dynamic behavior of the machine. To keep a stable motion of rotor machinery is an 

important motivating factor in looking into the dynamic behavior of the rotating system.   

At least two bearings are needed to support a rotor. The same type of bearing with 

the same parameters is usually preferred for simplicity. Models of these systems are 

usually based on an isotropic assumption. In other words, isotropic stiffness and damping 

in vertical and horizontal planes, both bearing supports are identical and symmetric 

bearing locations. Also it is convenient if the rotor itself is symmetric. Symmetric models 
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of the rotor bearing system offer several advantages. For example, a typical symmetric 

rotor bearing model, the extended Jeffcott rotor, is converted to a two mass-spring-

damper system with two degree-of-freedom by Kirk [1991]. With his assumptions and 

simplifications, the equations of motion for the simplified mass-spring-damper system 

are readily available for further analysis. Furthermore, for a geometrically symmetric 

configuration with both ends having bearings of the same properties, rotor mode shape is 

symmetric with respect to the bearing mid-span of the shaft. 

But, in reality, due to reasons such as manufacture differences, wear of bearing parts 

during operation, non symmetric external forces, assembling misalignment and so on, 

systems with identical bearing supports do not exist. Thus, anisotropy and dissimilarity of 

such system must be studied in order to provide more realistic results for rotating 

machinery.  

In this thesis, two different types of bearing supports with significantly different 

features, bushing and active magnetic bearing (AMB) are used with an experimental test 

rig. The modeling and performance of the test rig is examined to look at the problem. The 

AMB has unique capabilities such as embedded real time system monitoring, active 

vibration control, displacement tracking, or tunable stiffness and damping. The AMB also 

has disadvantages such as low static load capacity and possible instability, especially for 

a flexible rotor system. The bushing, have higher static load capacity and being 

inherently stable, can make up for the AMB’s deficiencies. In the later section, a 

literature review will be provided to discuss the development of the rotor. Published 

works on AMB suspension will also be included. Then, the scope of this thesis will be 

provided to guide the reader through the whole work. 
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1.2 Literature Review   

Childs [1993] provides the reader in his book with the background in analysis 

techniques related to rotating machinery dynamics. It is a good reference for those 

engineers and researchers who are involved with rotating machinery design and analysis. 

Several stages during the development of rotating machinery are pointed out in the 

reference. Early investigations of rotordynamics are only related to rotor structure, 

without concerns for any bearings; they examine the critical speeds for a flexible rotor. In 

the early 1960s, work such as Lund and Sterlicht [1962] focuses on rotor supports with 

hydrodynamic bearings. In the mid 1970s, since the increase of rotational speed of many 

machine parts, more components of a rotating system are taken into account. Many works 

focus on rotordynamic instability problems. They are interested in the influences on 

fluid-structure-interaction forces. While nowadays, for the sake of high performance of 

rotating machinery, all structure interaction forces and influence factors should be 

considered. 

Since this thesis will look into the problem for a rotor system with a support of two 

different types of bearings, early published papers of rotor system with different bearings 

will be overviewed in the following section. The dynamics of bearings exhibit some non-

linear characteristic. Many published works focus on the non linearity of the rotor bearing 

dynamics, such as Cheng [2006], Sinou [2009], Chang [2008] and Tiwari [1991]. Bearing 

foundations, as a crucial component in the system, have been studied by researchers in 

their works, such as, Kang et.al. [2002]. Kirk and Gunter [1972] finds the dynamic 

unbalance response and transient motion of a three-mass extended Jeffcott rotor in elastic 

bearings mounted on damped, flexible support. They provided design charts for 
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minimizing the rotor amplitude. They investigated the system response for two types of 

excitation forces, corresponding to unbalance excitation force at the mid span disk, and a 

constant magnitude harmonic excitation applied at the bearings. The paper concentrates 

on the solution of a two degree-of-freedom model developed by extending the original 

Jeffcott rotor to include bearing stiffness and damping, and with journal mass for 

modeling AMB supports, with non-collocation of the bearing and AMB sensor taken into 

account. Adiletta [1996] adopted a simple Jeffcott like experimental rotor with a shaft 

mass that is negligible with respect to the disk, and supported with all ball bearings. They 

set up an experimental model to check in a straightforward manner the non-linearity of 

the system and confirm results of theoretical analysis. Trajectory plots of the disk center 

and phase diagrams of component motions are shown. Friswell [2006] introduces a 

method for the analysis of rotor models where supports are considered. He pointed out 

that extra supports are often used in structures to increase natural frequencies, reduce 

displacements due to static loads, or to improve structural performance. Numerous papers 

can be found discussing the dynamic behavior of a simply supported rotor system. Since 

the simply supported rotor case is a mature topic, the reader is referred to rotordynamic 

handbooks such as Chong [1993]. 

        In the majority of former studies which do consider different types of bearings, 

researchers neglect the rotor flexibility and disk gyroscopic effect in getting the overall 

governing equations of motion. Mohiuddin [1998] compared the various methods for 

vibration analysis of rotor bearing systems. The first is a discretization approach, using 

finite element analysis (FEA), where the rotor bearing system is approximated by 

motions described by a set of ordinary differential equations at each node. The other is an 



5 

 

analytical method where the equations of motions of the system are described by partial 

differential equations. Model reduction techniques were applied to a complicated rotor 

bearing system, and the Lagrangian approach was employed. In the model, shear 

deformation, gyroscopic effect and rotary inertia are taken into account. Responses to 

different types of excitations are generated from the model. There are many papers which 

incorporate the finite element methods in deriving the responses and dynamics for the 

rotor bearing systems, such as Chen [1997] and Milne [1994]. 

        AMB supports in a variety of applications are becoming more and more popular 

because they provide unique advantages such as providing a frictionless operation 

environment for higher speeds, increased efficiency, eliminate the need for lubricant, 

prevent lubricant contamination of the product, as well as allowing for active vibration 

control and fault monitoring. Nevertheless, emerging papers dealing with magnetic power 

failure show another drawback aspect of the AMBs. Cuesta [2003] investigated the rotor 

behavior when the levitated rotor is in an overload regime. The work presents a rotor 

supported by magnetic bearing on the non-drive end, a bronze bushing on the other. A 

model was proposed for description of dynamical interaction between the backup bearing 

and the rotor during the impact. A detailed ball bearing model used in finding the 

dynamic behavior of a flexible rotor during drop is studied by Antti [2007]. Although not 

the focus of that work, a better understanding and modeling of a rotor system with a 

traditional support and AMB support will aid research in these areas. 
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1.3 Scope of work 

The scope of this thesis is to develop an algorithm for an extended Jeffcott rotor 

with dissimilar bearing support, specifically, one end supported with a typical bronze 

bushing and the other end levitated by an AMB. In literature we can find such rotors 

supported by either two conventional bearings or two AMBs, but research related to 

dissimilar bearing system has not been fully investigated so far. So, this thesis will focus 

on the analysis of dynamic behavior of a rotor bearing system upon dissimilar support. 

This analysis will be used for controller design and will compare the model made using 

finite elements and subsequent controller to the model and subsequent controller made 

using an approximate analytical method similar to the extended Jeffcott rotor model, but 

enhanced to accommodate the non-negligible effects of the AMB.  

Chapter I is the introduction and literature review for the whole thesis. Chapter II is 

an overview and set up of the experimental test rig. Chapter III sets up the approximate 

analytical rotor model and finite element model of the investigated system. Open-loop 

models of the system with AMB control current input and position output are assembled 

using both rotor models. Static deflections, critical speed map, Campbell diagram, and 

graphs of the mode shapes are shown for the unsupported finite element rotor in this 

chapter. Chapter IV introduces a cost function AMB controller design approach applied 

to the bushing and AMB support system. Two controllers are derived for the two 

different modeling methods. One controller is based on approximate analytical rotor 

model while the other is based on FEA model. The controller developed using the 

approximate analytical model is called controller “A”, and the controller developed using 

the finite element model is called controller “B”. Rotor behavior is numerically simulated 
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utilizing the models and derived controllers for several selected rotation speeds. Chapter 

V will show experimental results using the two controllers implemented on the test rig at 

the same speed as simulated in Chapter IV. Then a comparison of cost index values using 

both controllers is made through experimental and simulation. Finally, Chapter VI 

summarizes the whole thesis, draws conclusions and outlines future research directions. 
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CHAPTER II  

EXPERIMENTAL TEST RIG 

 

 

2.1 Overview and Description of the Test Rig 

The RK-4 Rotor test rig in this study was manufactured by Bently Nevada and fitted 

with an AMB manufactured by Revolve Magnetic Bearing Inc, Canada. The 

experimental test rig is shown below in Figure 2.1. 

 

 

Figure 2. 1   Experimental test rig 
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     The system’s motor, is 48VDC, runs from 0 to 15,000 RPM. This motor provides the 

system with rotation torque that allows for a rotordynamic investigation. A flexible motor 

coupling connects the motor to the shaft, allowing for small axial and radial movement of 

the shaft. The test stand also comes with an adjustable base which allows for axial 

movement of system components to achieve different system configurations. A V-shaped 

base is employed in the rig, which allows for axial flexibility of the location of the disk 

and the AMB, making it possible for a vertical Y axis and a horizontal X axis orientation 

for the AMB. A disk is mounted on a defined location near the middle of the bearing span 

of a bushing and an AMB. The shaft is supported by a bronze bushing on the left end 

(motor side) and a radial AMB supporting at the right end. The SKF MB340G4-ERX 

magnetic bearing controller is used to provide active control of the AMB. The controller 

is programmed with MBScope 2000
TM 

software. It is a highly graphical interface that 

allows for researchers to access system parameters such as current and position. 

Controller information such as proportional gain, derivative gain integral gain, notch 

filter, and low pass filter information is sent from an external computer that equipped 

with MBScope 2000
TM

 to the controller through a communication cable. Two types of 

sensors are used in this experiment to monitor position change of the rotor. One is a pair 

of eddy current position probes located near the disk, oriented vertically and horizontally. 

Data from these probes are collected using an ADRE 408 DSPi (Dynamic Signal 

Processing Instrument) and a computer equipped with ADRE software. The other is a 

pair of variable reluctance probes located on a sensor ring that is built into the AMB. The 

major dimensions and component layout of the experimental system with sensor 



10 

 

locations indicated is shown in Figure 2.2, a block diagram for the system layout with all 

data acquisition equipment involved is shown in Figure 2.3: 

          

558.8 mm

Center of AMB force

Force center of the bronze bushing

AMB sensor

Motor

ADRE sensor
Coupling

 

Figure 2. 2   Experimental system layout 

Magnetic bearing

 Interface computer

(MBScope 2000

Software)

Sensor

 Interface 

Motor 

Controller

Speed sensor

 Interface computer

(ADRE Sxp Software)

Controller  

MB 340G4-ERX 

ADRE 408 DSPi

Figure 2. 3   Experimental system block diagram 
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2.2 The Rotor 

     The rotor used in this experiment consists of a shaft, a disk, and an AMB rotor. The 

shaft has a length of 558.8 mm and a diameter of 10 mm. The disk mounted on the shaft 

has a weight of 0.83 kg, a diameter of 76.2 mm, and a thickness of 25.4 mm. The AMB 

rotor is part of the active magnetic bearing used to levitate the shaft. Major dimensions of 

the rotor bearing system and properties of components are shown in Figure 2.4 and Table 

I respectively. 

Center of AMB force
Force center of the 

bronze bushing

15.24

558.8

260

525.24

250

 

Figure 2. 4   Major dimensions of the rotor assembly with an AMB rotor and a disk (in millimeters) 

 

Table I    Masses and moments of inertia for the rotor components 

Component 
Length Diameter Mass 

Polar moment 

of inertia 

Transverse 

moment of 

inertia 

(mm) (mm) (kg) (kg-m
2
) (kg-m

2
) 

Shaft 558.8 10.0 0.346 10.40 2162.94 

Disk 25.4 76.2 0.830 1447.26 107.19 

MB rotor 47.8 34.3 0.246 86.88 71.49 
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2.3 The Bushing 

     A bushing is a kind of plain bearing that consists of only a bearing surface with no 

rolling elements, explained by Shigley [2006]. There are advantages such as high sliding 

velocity for rotating parts, no external lubrication needed, maintenance-free during the 

life of the bushing, easily replaceable when needed. 

     Figure 2.5 shows the bronze bushing that is used in the experiment. It is used to 

support the motor side of the shaft while allowing the shaft to rotate. The bushing is 

manufactured by Bently Nevada Corp.. This solid bronze bushing has an inner race 

diameter of 10 mm , the supporting stiffness provided by the manufacturer is 175 KN
m  

and 

148 KN
m  

in horizontal and vertical directions respectively, damping ratio for the bushing 

are 175 N-s
m  

and 148 N-s
m  

horizontally and vertically.
 
  

 

Figure 2. 5   Solid bronze bushing 

 

2.4 The Active Magnetic Bearing  

     AMBs differ from normal bearings because they can support a load by magnetic 

levitation. They are becoming more and more popular in both industry and research 

disciplines for their numerous advantages over conventional bearings, summarized below: 
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 Allow for no contact, eliminating wear and the need for lubricant in the system 

 Allow for rotating machine part at high speeds  

 Provide active control for the bearing and can realize active vibration control, along 

with tunable stiffness and damping. 

 Lower maintenance cost and longer life time for the machine due to lack of 

mechanical wear 

 Better performance can be achieved since the position of the rotor is read by a sensor 

signal within the control loop 

     However, there are also drawbacks for AMBs, such as: low static load capacity, 

possible instability (especially for a flexible rotor system), cost due to its complexity in 

structure and manufacturing. Also, AMBs may cause difficulty in implementation and 

technical supervision because magnetic bearings are still a relatively new technology as 

compared to conventional bearings.  

     The active magnetic radial bearing used in this experiment consists of a touchdown 

bearing, a radial stator, a radial rotor, a radial position sensor ring, and AMB housing. 

The stator and the radial rotor are used to levitate the shaft while the sensor ring monitors 

the rotor radial position. The touchdown bearing, sometimes called the backup bearing or 

auxiliary bearing, has a smaller inner race gap than the AMB radial rotor. Thus, the 

touchdown bearing can serve as a support for the shaft in case of a system power failure 

or in the case that the AMB’s not being in activation. Below, Figure 2.6 shows the 

components in a radial active magnetic bearing. 
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Housing

Sensor
Electromagnet

Touchdown bearing

 

Figure 2. 6   Radial AMB components 

 

     Basic usage for an active magnetic bearing is to suspend a ferromagnetic mass using 

an electromagnet. An actively controlled electromagnetic force is the principle 

mechanism used for stable levitation. Figure 2.7 explains this function in a simplified 

schematic. 

Rotor

Controller

Power 

amplifier

Position 

sensor

Electromagnet

 

Figure 2. 7   Basic function diagram of an active magnetic bearing 
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As the figure shows, the position sensor measures the displacement of the rotor by 

its relative distance from the sensor. Next, the controller generates a control signal from 

this displacement, finally, the power amplifier transfers the control signal to a control 

current and sends it to the electromagnet. In the sequence, the electromagnet generates 

more or less magnetic force to drive the rotor to remain at the desired position. A more 

detailed one-axis control theory in an AMB is shown in Figure 2.8. 

Top Magnet

Bottom Magnet

Rotor Controller

Power 

amplifier

Position sensor

+

-

Set point

Bias 

current

+

-

+

+-

+

Position sensor

Power 

amplifier

 

Figure 2. 8   One-axis differential control scheme for the active magnetic bearing 

 

    As is shown in Figure 2.8, the active magnetic bearing system consists of a pair of 

magnetic coils, sensors, power amplifiers and one controller. In order for the AMBs to 

create stable levitation of the rotor, the closed-loop control algorithm is implemented. 

Therefore, any change in a rotor position will result in a change of coil currents. Initially, 

bias current with a constant value is applied to top and bottom coils. Rotor position is 

changed when a control current is added to the bias current in one coil and subtracted in 

the opposite coil. Since configuration of the electromagnets is identical for both vertical 
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and horizontal planes, with planes mutually perpendicular, the same control principle 

applies to both.  

     The experiment uses one AMB to realize one rotor end levitation. The radial AMB 

bearing has two perpendicular control axes, i.e. X and Y  for the experimental test rig. 

With the AMB housing sitting on the V-base as is shown in the following figure, the 

actual control axis orientation is one horizontal and the other vertical. 

Drive End
Non-Drive End

Y

X
Bearing center line

 

Figure 2. 9   Magnetic bearing axis identification 

 

     Electromagnetic forces are applied along the two axes and rotor position is controlled 

by these radial forces from the AMB. This magnetic bearing actuator force is generated 

by a pair of opposed magnets which provide forces in either the positive or negative 

direction. As a consequence, the total force generated is: 

2 2 2
0

2 2

0 0

( ) ( )
cos

4 ( ) ( )

g b c b c
N A I I I I

F
g x g x




  
  

                                        

(2.1) 

 

     Where ( )b cI I  and ( )b cI I  are current of the top and bottom coils, respectively. The 

variable bI  is the bias current, cI  is the control current,  is the Angle of active 
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magnetic bearing pole face, 0g  is the effective gap distance between the rotor and the 

magnet when x=0, 2

0 gN A  is defined as a whole as the force calibration factor, and x  is 

the displacement of the rotor in X direction. An equivalent equation applies in the Y 

direction. Although Equation (2.1) shows that the forces acting on the rotor are nonlinear, 

the equation can be linearized at a set point for control purposes. The force generated by 

the electromagnet when expressed as a function of displacement and control current, 

follows a single linearized equation around the operating point: 

x i cF K x K I  
                                                     

(2.2)        
                                                        

 

     Where F  is the force generated from the AMB, x is the position relative to the set 

point, 
cI is the control current, and xK and iK  are position stiffness and current stiffness 

respectively. iK  and xK  are defined by taking partial derivatives: 

2

0

2

0

cos
(2( ) 2( )( 1))

4

g

b c b c

c

N AF
I I I I

I g

 
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
                                      

(2.3) 
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0

2 3 3

0 0 0

cos ( ) ( )
( 2) ( 1) ( 2) ( 1)

4 ( ) ( )

g b c b c
N A I I I IF

x g g x g x

    
        
               

(2.4) 

The current stiffness increases in proportion to bias current, and inversely with gap 

squared. The position stiffness is negative and is proportional to bias current and 

inversely proportional to gap. When at the set point, 0x  , and the resulting control 

current 0cI  , this condition applies if the actuator has two poles. Then the open-loop 

stiffness is studied by Maslen [2000], has current and position stiffness given by: 
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2 2

0

3

0
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
                                                (2.6) 

 

The following figure shows a general control loop using linearization assumptions: 

Controller

Amp

Plant

 m

Set point

 A

 N

position

Actuator 

-

+

+

+
iK xK

 m

 

Figure 2. 10   Linear expression of the AMB in feedback control loop block diagram 

 

     The following table shows the meanings to each parameter that appears in the 

Equation (2.5) and (2.6), along with values corresponding to the AMB used in the 

experiment. 
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Table II   Parameters for calculating 
iK and

xK  

Parameter Symbol Values Unit 

Number of windings in an active magnetic 

bearing coil  
N  228 NA 

Permeability of a vacuum   0  
74 10   H

m
 

Angle of active magnetic bearing pole face  
 8

  rad  

Bias current  bI  0.5 A  

Area of active magnetic bearing pole face   gA  
76.074 10  2μm  

Effective gap between of an active magnetic 

bearing  0g  401.55 μm  

 

 

     When these parameter values are placed in Equation (2.5) and (2.6), current stiffness 

and position stiffness yield the following values:  

2

0 N
A2

0

cos
11.74b

i

N I A
K

g

 
                                               (2.7) 

2 2
40 N

m3

0

cos
2.1 10b

x

N I A
K

g

 
                                       (2.8) 

 

2.5 Open-Loop System Identification 

    The system’s open-loop transfer function is found by using the experimental test rig. 

The experiment is done using MBScope Analyzer tool by injecting a harmonic current to 

the AMB and recording the amplitude response over a range of frequencies. A sinusoidal 
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current with amplitude of 0.05 A was injected to the AMB in both X and Y axes, one axis 

at a time. The block diagram illustrating the process is shown in figure as follows:  

Controller
AMB

position
AMB

setpoint

+

-

+
+

Current injection

Rig

(Rotor,AMB,Amp)

 
Figure 2. 11   Block diagram for system open-loop identification 

 

     The transfer function identification of the open-loop system refers to the system 

transfer function without controller. As is shown in Figure 2.11, the injection is added to 

the control current and the open loop transfer function can be found from the total current 

going into the rig to the AMB position output. Figure 2.12 and Figure 2.13 below shows 

the experimental results for open-loop system identification in horizontal and vertical 

directions respectively.  
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Figure 2. 12   Experimental frequency response of the open-loop system on horizontal axis 

 

Figure 2. 13   Experimental frequency response of the open-loop system on vertical axis 
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     As one can read from the figures above, the natural frequencies of the open-loop 

system in the horizontal axis occurred at 39.0 Hz, 257.6 Hz, 355.7 Hz and 514.1 Hz, 

while in the vertical direction only one at 36.8 Hz can be seen. 
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CHAPTER III  

MODELING OF THE ROTOR BEARING SYSTEM 

 

 

3.1 Introduction 

     In this chapter, two models of the open-loop experimental test rig are established. 

Both models include the amplifiers, the magnetic bearing, the bushing and an expression 

of the rotor. The first model in Section 3.2 is made using approximate analytical method, 

which is a three mass-spring-damper system. The parameters of the models are derived 

from the simplifications of the geometry from the test rig. This simple method is 

expected to be able to be applied quickly without a rotordynamic expertise. The second 

model in Section 3.3 is made by discretize the geometry of the rotor and then expressing 

the sections as finite elements. This method is more time-consuming but it is more 

detailed expression of the dynamics of the flexible rotor.    
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3.2 Approximate Analytical Model 

     A Jeffcott rotor model is shown in Figure 3.1. It consists of a massless flexible shaft 

and a rigid disk mounted on the middle of the shaft (bearing mid span) with rigid bearing 

supports.  

Bearing 

Centerline

y

Z

Y

X

 

Figure 3. 1   Jeffcott rotor with shaft bending due to weight of the disk 

 

The equation of motion for the disk is derived from Newton’s Second Law: 

mF a                                                                (3.1) 

x

y

F x
m

F y

   
   

                                                             

(3.2) 

     Kirk studied the critical speed and forced response solutions for an active magnetic 

bearing using an extended Jeffcott rotor system. A six degree-of-freedom model was 

developed by extending the original Jeffcott model to include bearing stiffness, damping, 

and journal mass. By looking at only the Y-Z plane, using the property of symmetry, the 

system can be reduced to a two degree-of-freedom. Figure 3.2 (a) and Figure 3.2 (b) 

below shows an extended Jeffcott rotor model and its conversion configuration to a two 

degree-of-freedom model.  
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                                              (a)                                                                                 (b)       

Figure 3. 2   (a) Extended Jeffcott rotor with lumped mass, (b) Equivalent two-mass system 

 

    Sometimes, models are simplified to represent particular characters and features of a 

system. However, there is limited application to the simplified model compared to the 

real one. All simplified models are based on assumptions that are used to derive the 

model. One advantage of simplifying a model is the problem can be easily understood by 

making simple equations. In this section, an approximate analytical model will be 

introduced. The simplified three-mass analytical model which is referred to as the 

approximate analytical model is finally presented by a mathematical representation. The 

ideas used in the extended Jeffcott rotor are applied to the system of interest in the study. 

The assumptions of symmetry however do not hold, therefore, a non-symmetric model 

will be introduced in the next section.  

 

3.2.1 Description of the Approximate Analytical Model 

     The rotor bearing system is simplified to a lumped three-mass configuration so as to 

represent the approximate analytical model in this section. There are three point-masses 

at three locations along the shaft that approximately represent the mass for the real rotor 
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bearing system. The mass of the shaft, mass of the disk, and mass of the AMB rotor are 

the main concerns of mass distribution for the system. In the model, mass of the shaft is 

distributed evenly on to the three concentrated masses. The disk mass is assumed lumped 

at the mass center. The AMB rotor mass is assumed lumped at one side. The total shaft 

mass is divided by four with one fourth added to the left, one fourth added to the right, 

and two fourth at the center. With the establishment of this simplified three-mass 

analytical model, system properties such as transfer function and natural frequencies can 

be studied. 

This approximate analytical model is similar to Kirk’s extended Jeffcott rotor model, 

which converts a rotor bearing system to a three-mass model with lumped masses on two 

bearing locations and the disk location, and assuming the shaft is massless. The 

configuration of the three-mass analytical model used fully represents the bushing and the 

AMB and is shown in the following Figure 3.3: 

input

output

F

lm mm rm

bK bC

1 1,s sK C 2 2,s sK C

Y

X

Z

lL rL

 

Figure 3. 3   Approximate analytical model of the system including rotor, bushing and AMB 

 

     The variables lm , mm and rm are the lumped mass on the left-end, near the center, on 

the right-end respectively, bK and bC are the stiffness and damping of the bushing, 



27 

 

1 2,s sK K are calculated stiffness of the flexible shaft on the left and on the right, likewise, 

1 2,s sC C are the damping for the two sides of the shaft. lL and rL are the length of the left 

segment of the shaft and right segment of the shaft respectively.       

  Some features that the three-mass analytical model has are listed as follows:  

 The shaft mass is distributed evenly on to three lumped mass; 

 The disk is mounted on a specific location near the mid span along the shaft; 

 The left-lumped mass 
lm  is supported by bronze bushing with manufacture provided 

stiffness and damping; the right-lumped mass 
rm is supported by magnetic force 

produced by the active magnetic bearing. 

 Three concentrated masses are located at three mass centers and are connected by the 

flexible shaft which has stiffness. 

 Shaft stiffness of the two segments which occur between the masses is calculated 

according to the beam deflection theory.  

 The system has one force input from the AMB, and one displacement output at the 

same location. 

     Since the right-end mass is suspended by the linearized AMB force as studied in the 

previous chapter, it is equivalent to say that the right-end mass is supporting by a spring 

with the stiffness xK , along with another force proportional to the control current 

according to iK  from the AMB. The configuration of this three-mass analytical model is 

shown in Figure 3.4:
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Figure 3. 4   Approximate analytical model with linearized AMB force 

 

 

3.2.2 Equations of Motion of the Simplified Rotor System 

     In order to analyze the dynamics of the system, equations of motion for the system are 

derived based on Newton’s Second Law. The overall equations of motion expressed in 

matrix form for vertical and horizontal planes yields: 

Mq +Cq + Kq F

                                                      

(3.3) 

     Where F

 

denotes the system external forces vector, such as unbalance forces and q is 

the position vector for the three masses in X and Y  planes. M, C and K are the mass 

matrix, damping matrix and stiffness matrix for the model respectively. Summing forces 

on each mass of the model, equations of motion respectively to X-Z plane and Y-Z plane 

can be written as follows: 
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1 2 1 2
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( ) ( ) ( ) ( ) 0
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      

        
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(3.4) 
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(3.5) 

     Where xF  and yF  are the forces from the active magnetic bearing horizontally and 

vertically. To account for the presence of the gravity force, the AMB force in the vertical 

direction has to overcome weight to levitate the system. While on the horizontal plane, no 

additional force is needed. Rewrite and arrange Equation (3.4) in the horizontal plane to a 

matrix form yields: 
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(3.6) 

     The state vector on the horizontal plane can be defined as : [ ]T

l m r l m rx x x x x xx . 

Then Equation (3.4) can be written in state-space representation form as follows: 
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    
   

0 I 0
x x +

-M K -M D M
                                        

(3.7) 
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Then, the state-space matrixes for the supported three-mass analytical model yields, 
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(3.9) 

 

The values used for the test rig are shown in Table III: 

Table III   Parameters of the values of the approximate analytical model 

Parameter Symbol Value Unit 

Total shaft mass   NA 0.3437 kg  

Left lumped mass   lm  0.0885 kg  

Middle lumped mass  mm  1.0019 kg  

Right lumped mass  rm  0.3294 kg  

Left half shaft length  lL  260 610  m  

Right half shaft length  rL  250 610  m  

Stiffness of the bronze bushing  Kb
 1.75 510  

N
m

 

Damping of the bronze bushing  Cb
 175 N-s

m
 

Stiffness of  left half  the shaft  1K s
 2.033×10

4
 N

m
 

Stiffness of  right half  the shaft  2Ks
 2.049×10

4
 N

m
 

Position stiffness  K x
 -2.1×10

4
 N

m
 

Current stiffness  Ki
 11.74 N

A
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3.2.3 Open-Loop Model   

     The open-loop three-mass analytical model introduced in this section has no controller, 

no feedback, but has other system components associated with the controller. The 

purpose of making this model is for controller design. Figure 3.5 below shows the open-

loop block diagram for the three-mass analytical model.  

Amplifier

(state space) iKInput
1y 2y 3y

xK





bK

State space plant with supports

 s s s sA B C D

u

[ ]A [ ]
[μm]

[ ]A

Free-free plant

(state space)

Figure 3. 5   Block diagram of open-loop model with amplifier  
 

     The transfer function from output 
3y to input u should be derived first in order to get 

the system natural frequencies. As one can see in the figure, an amplifier is in series with 

the plant. Amplifier output in series with current stiffness iK is input to the plant. Here 

the state vector of the amplifier is ax and that of the plant is x , openx is the open-loop 

plant state vector, 1y  is the output of the amplifier and 2y is the input to the plant.  

According to the diagram, derivation from input signal to output signal will be performed 

as follows: 
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i i iK K K



  

a amp a amp

1 amp a amp

2 1 amp a amp

x = A x + B u

y = C x D u

y y C x D u
                                        

(3.10) 

     For the plant, state-space representation yields: 

i i

i i

K K

K K

    

    

open s s 2 s s amp a amp

3 s s 2 s s amp a amp

x A x + B y = A x B C x D u

y C x + D y = C x D C x D u
                         

(3.11) 
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a

3 s

DA 0x x
x = u

B C A Bx x

x
y = 0 C

x
                                  

(3.12) 

The plant matrixes sA , sB ,
sC , sD  refers to the state-space matrixes obtained in the 

previous section, with parameter bK and xK included in these matrixes. Then, state-space 

matrixes for the open-loop three-mass analytical are as follows: 

 

i

i

K

K

 
  
 

 
 
  

amp

open

s amp s

amp

open

amp

open s

open

A 0
A

B C A

D
B =

B

C = 0 C

D = [0]
                                              

(3.13) 
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   Then, the bode plot of the open-loop system is shown in Figure 3.6: 

 

Figure 3. 6   Frequency response of the approximate analytical model in assembled open-loop 

 

In the figure above, a natural frequency can be seen at 39.0 Hz. Compute the 

eigenvalues of the system, three natural frequencies happens at 0 Hz, 39 Hz and 236.5 Hz. 

 

 

3.3 Finite Element Analysis Model  

3.3.1 Description of the FEA Rotor Model 

     The finite element approach is used in setting up a detailed model of the real 

experimental rotor. The beam elements are based on Timoshenko beam theory; beam 

shear deformation and rotation inertia taken into consideration. The rotor is modeled by 

30 elements, the disk and the AMB rotor are lumped at the 14
th

 node and 27
th

 node. The 
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overall equations of motion for the finite element approach given by Rao [2004], can be 

expressed as: 

( )   Mq C G q Kq F                                          (3.14) 

     Where M is the mass matrix, C is the damping matrix, G is the gyroscopic matrix and 

K is the stiffness matrix.   is the spinning speed of the rotor, q is the position vector of 

each node. However, the finite element model is set up in modal coordinates, where the 

equations of motion (2.13) can be updated as follows: 

( )T T T T T   Φ MΦq Φ CΦ Φ GΦ q Φ KΦq Φ F                       (3.15) 

     Where Φ is the modal matrix of the rotor. The figure below shows the FEA model of 

the rotor bearing system with sensor location indicated. 

Center of the bushing force

sensor

Center of AMB force

 Figure 3. 7   Finite element model of the free rotor with 30 stations. 
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3.3.2 Free-free Model   

A finite element modeling program is used in setting up the FEA mode. This analysis 

software for magnetic bearing audits was developed by Maslen et. al. [1997]. The finite 

element program is able to generate state representation for the FEA model. Input 

parameters to the software include geometry for each FEA beam segment. See Appendix 

A for detailed information. System analysis such as mode shapes and a Campbell 

diagram of the free-free (no bearing support) rotor can be generated. Equation (3.15) can 

be put into state space as follows: 

   

 

ff ff ff

ff ff

x A G x B u

y C x D u
                                          

 (3.16) 

Where
ffA , 

ffB , 
ffC , and 

ffD are the generated state-space matrixes for the free-free 

rotor model, 
ffG is the gyroscopic matrix,  is the running speed of the rotor. 

The Campbell diagram in Figure 3.8 shows the free-free system’s natural frequencies 

as a function of rotor running speed. The gyroscopic effect is taken into account and 

critical speeds can be read at the intersection of each forward whirl natural frequency line 

and a synchronous speed line which has a slope of 1. 
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Figure 3. 8   Campbell diagram for the supported FE rotor 

     As is shown in the figure above, the natural frequencies of the free-free rotor model 

were found to be rigid body modes at 0 Hz, and three bending modes at 83.25 Hz, 312.9 

Hz and 555.9 Hz. The mode shapes corresponding to the natural frequencies that occur at 

0 RPM are shown in Figure 3.9 below: 

 

Figure 3. 9   Mode shape of the FE rotor pinned at the bushing node 
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3.3.3 FEA Rotor Model with Supports 

As is described in Section 3.2.3, the three-mass analytical state-space model has an 

open-loop assembly with bearing stiffness bK , xK and iK  considered. Correspondingly 

in this section, the FEA model will have an open-loop model with all these factor taken 

into consideration. 

     With the free-free FEA model set up in the previous section, an easy change can be 

made upon the model to make it involve bearing stiffness on both ends for the system. A 

feedback with a gain which is exactly the value of support stiffness is performed at the 

node where the bearing force is applied. Extracting the displacement at the bearing node, 

then multiplying by the spring stiffness, results in the supporting force. Then, inject the 

resultant force to the state-space model of the original free-free rotor. 

     In one plane of the free-free finite element model, there are three position outputs, 

bronze bushing location, AMB sensor location, and AMB force center location. A block 

diagram that shows this feedback process is shown in the following Figure 3.10: 

bK

xK

Rotor

Displacement at the 

bushing

Displacement at the 

MB sensor

Displacement at the

 bearing center force

iK





cI
ff ff ff ff(A ,B ,C ,D )

                  

Figure 3. 10   Finite element model with stiffness feedback. 
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     In the above Figure 3.10, the center block is the free-free FEA model. The equivalent 

rotor bearing model corresponding to the overall block diagram is shown in Figure 3.11:  

bK x i cF K x K I  

Sensor location

Figure 3. 11   FE rotor with supports. 

 

     Defining parameter names of the new stiffness feedback system, the state space 

representation of the model can be re-written as a new state-space model. Name bF  the 

force caused by bronze bushing and F  the force caused by displacement stiffness from 

the AMB. 
b1C , 

2bC and 
3bC  are the state-space output matrixes of the bushing, AMB 

sensor and center of the bearing force respectively. According to the block diagram in 

Figure 3.10, then new model can be expressed as: 

 

ff ff ff

ff ff ff ff

+
b b

x i c

b x i c

F K

K K IF

K K K I

    
     

    

   

b1

ff

b3

b1 b3

C x
x A x B A x B

C x

A B C B C x B
                              

(3.17) 

     The same amplifier as is used for the three-mass analytical model is also considered in 

this FEA model for the open-loop assembly. Utilizing the same principle as in Equation 

(3.13), the open loop transfer function can be assembled. The frequency response of the 

transfer function is shown in the following figure: 
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Figure 3. 12   Frequency response of the FEA model in assembled open-loop 

     Seen from this figure, this FEA open-loop model has natural frequencies at 37.0 Hz, 

232.0 Hz, 371.0 Hz and 593.0 Hz. 

 

3.4 Experimental System Identification and Comparison to Both Models 

     A comparison of the three-mass analytical model and the FEA model will be 

discussed in this section. It can give the reader an idea on how well the simplified model 

and the FEA model can represent the real system. System frequency responses for all 

three transfer functions are compared. It is shown in the following Figure 3.13, that there 

is a difference in the first natural frequency of the three-mass model and the FEA model. 

The three-mass model has a higher frequency than the finite element model which is 

closer to the experimental system. Also, the finite element model reflects the flexible 
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modes that are seen in the experimental rig. A table shows the critical speeds for the 

three-mass analytical model, the finite element model and the experimental results 

respectively. 

 

Figure 3. 13   Comparison of the open-loop frequency response of the FEA model, the approximate 

analytical model and the experimental test rig 

 

 

Table IV    Natural frequencies of the different models 

 Natural frequencies (Hz) 

Three-mass analytical  39.0            236.5 

Finite element  37.0            232.0           371.0  

Experiment  39.0            257.6           355.7  
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The results show small differences in static stiffness with the finite element being 

less stiff than the experimental data. From a broad perspective, the comparison shows 

agreement between both model and experimental data. The three-mass model has a 

natural frequency at 236.5 Hz which cannot be seen in this bode plot due to the mode 

shape and collocation of the actuator and the sensor.  
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CHAPTER IV  

CONTROLLER DESIGN FOR THE ACTIVE MAGNETIC BEARING 

 

 

4.1 Introduction 

     As has been previously mentioned, feedback control is required for successful 

operation of AMBs in a rotor system.  In order to design a controller, several 

requirements have to be met concerning the overall dynamic characteristics of the rotor 

bearing system.  First, the controller must stabilize the system.  Second, the controller 

must be such that the closed loop system achieves certain performance requirements such 

as rise time, settling time, peak position response, peak current response, stiffness, natural 

frequency, etc.. And, the controller should be stabilizing and meet performance 

requirements in the rotor operating speed range, which is to say that there will be external 

excitation at the rotational speed due to unbalance that must be taken into account.  Also, 

non-collocation of the AMB’s sensors and force centers must be dealt with. Because in 

many AMB designs, the rotor displacement is not measured at the magnetic actuator 

center but rather some distance beside it because of space constraints, the control 

engineer is burdened with the problem of non-collocation. 
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     PD control is selected for the current work because it is compatible with hardware in 

use with most magnetic bearing systems today.  The problem then becomes how to select 

proportional and derivative gains to stabilize the system and best achieve the design goals 

in a dissimilar bearing configuration. In the section, a cost function minimizing approach 

similar to LQR but constrained to a local PD solution is used. This technique 

demonstrates the usefulness of the different modeling methods of interest in this work. 

     After knowing the whole open–loop model dynamics including a rotor, amplifier, and 

a linearized magnetic bearing, a controller is added in the system to achieve certain 

stability and performance requirements. Figure 4.1 below shows a schematic block 

diagram representation of the components of the open-loop rotor bearing system which 

has been stabilized with a feed-back controller. 

Amplifier
iK Rotor

Set Point [A]PD

controller

xK









[N]

[N]

[μm]
AMB Position

[μm]

[μm]
[A]

Figure 4. 1   Closed-loop model of the system with controller in feedback. 

 

     The idea of this part is to find a control manner that can minimize the system 

performance measure J. In the process of selecting the performance measure, a 

mathematical expression is found. In other words, this mathematical expression is 
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derived by translating from the system’s physical requirement to a quantified value. The 

minimized expression indicates the most desirable performance of the system. Kirk [1970] 

gives a typical performance measure of a minimum control effort problem, 
 

( )J u t dt   

where ( )u t  is the control input vector. In this present rotor bearing control scenario, the 

performance measure  is selected in order to evaluate the vibration and control current of 

the system. The control input vector ( )u t  in this case supplies control current ( )cI t  to the 

AMB. But, displacement is also a major performance concern. So, one possible cost 

function could be: 

2 2

1 2( ) ( )cJ W x t W I t dt                                                  
(4.1)

                                                        
 

     Where W1 and W2 are the weighting factors of each term, by changing the values of 

these factors, one can weight the importance of each part in the expression. The symbol 

( )x t denotes the time dependent displacement of the rotor. Note that ( )x t  is the 

displacement at the position sensors making this method easy to use considering real 

world operation limits. The weighted terms are squared to avoid returning faulty results 

when integrating possible negative parts of the function. It is a simple reason exercise to 

see that without the squaring of those terms the minimum value of J will become 

negative infinity. It is relatively intuitive to implement a PD controller with this method. 

For a PD controller, the proportional part is like a spring in a Spring-Mass-Damper 

system, while the derivative part is like the damper in such system. One can easily find 

out the displacement and velocity vector using the state-space model that has already 

been set up with a numerical simulation.  
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     Figure 4.1 shows the form of the rotor bearing system after inserting a PD controller. 

The system without controller has a state space representation with dynamic matrix: Aopen, 

input matrix: Bopen, output matrix: Copen and no feed through. After incorporating the 

controller, only dynamic matrix, Aopen, changes to: 

[ ]P DK Kc open open openA = A B C
                                      

(4.2)
                                       

 

     Where cA
 
is the open-loop dynamic matrix with a PD controller closing the loop. In 

the above equation, matrix[ ]P DK K , indicate a set of proportional and derivative gain 

values that constitute the controller.  Then, the cost function of the system performance 

measure with the PD controller is used to evaluate the system response. The cost function 

has PK  and DK  related terms, thus, the value that the minimum cost function returns is 

corresponding to a pair of PK  and DK  combinations, then this pair of PK  and DK  is the 

optimal controller parameters for the system. Using the same procedure for both finite 

element model and the approximate analytical model will result in two different PD 

controllers.  

     For the cost function, W1 =1, and W2=19000 are used. Assuming zero initial 

conditions and a current impulse disturbance acts on the system, the output response time 

history is substituted in the expression as displacement ( )x t . Current ( )cI t can be obtained 

by multiplying the controller matrix [ ]P DK K  and the output vector.  Note the output 

vector has two parts, one corresponding to displacement and the other corresponding to 

velocity. The equation that demonstrates this process can be expressed as follows:  

( ) [ ]T

c P DI t K K responseY
                                                  

(4.3) 
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Where [ ( ) ( )]Tx t x tresponseY
 
refers to the displacement and velocity response at the 

sensor. The cost function is updated as: 

2 2

1 2( ) ( ( ) ( ))p DJ W x t W K x t K x t dt                                              (4.4) 

 

4.2 Controller Design using Each Model 

        For both the approximate analytical model of the rotor and the FEA model, a proper 

proportional gain and derivative gain searching area is selected based on realistic values 

drawn from experience with the test rig. Note that controller total gain 
tK
 
should be 

multiplied by the proportional gain and derivative gain. The proportional gain searching 

area is from 50 A

μm
 to 100 A

μm
, and that for derivative gain is from 0.1 A-s

μm
 to 0.4 A-s

μm
, with a 

step size of 0.0001 A

μm
and 0.0001 A-s

μm
 respectively. The total gain 0.0001tK  . This 

search range is taken for both models. Figure 4.2 below shows the displacement and 

control current response of the system to an impulse for a characteristic   pair of PD 

values. The controller gains for this example are PK =60 A

μm
 and DK =0.35 A-s

μm
. This 

example is a characteristic impulse responses used for controller design. The Matlab 

command impulse was used with a fixed step size of 0.0001 s, and has a simulation time 

of 0.5 s. 
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Figure 4. 2    Example in impulse response in the PD controller tuning process. 

 

 

 

4.2.1 Initial Controller “A” Design for the Approximate Analytical Model 

     The aforementioned procedure is performed for the approximate analytical model. 

Figure 4.3 below shows the cost index with respect to PK and DK  using the cost function 

Equation (4.4). 
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Figure 4. 3   Cost index from numerical simulation response to impulse corresponding to different 

PD combinations for the three-mass model. 

     Selecting the minimum point from the figure above, the final PD controller was found 

to be PK =70 A

μm
, DK =0.2 A-s

μm
, and with total gain tK =0.0001. Therefore, a PD controller 

that minimizes the cost function for the three-mass system has the controller parameters 

in the following table: 

Table V   Nominal controller “A” parameters 

Parameters Symbol Value Unit 

Total gain tK  0.0001 NA 

Proportional gain PK  70 
A

μm
 

Derivative gain DK  0.2 
A-s

μm
 

Minimum cost function J 191.436 10  NA 
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4.2.2 Initial Controller “B” Design for the Finite Element Model 

     The aforementioned procedure is performed for the finite element model. Figure 4.4 

below shows the cost index with respect to PK and DK  using the cost function Equation 

(4.4). 

 

Figure 4. 4   Cost index from numerical simulation response to impulse corresponding to different 

PD combinations for the FE model. 

 

     Selecting the minimum point from the figure above, the final PD controller was found 

to be PK =88 A

μm
, DK =0.2 A-s

μm
, and with total gain tK =0.0001. Therefore, a PD controller 
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that minimizes the cost function for the finite element system has the controller 

parameters in the following table: 

Table VI   Nominal controller “B” parameters 

Parameters Symbol Value Units 

Total gain tK  0.0001 NA 

Proportional gain PK  88 
A

μm
 

Derivative gain DK  0.2 
A-s

μm
 

Minimum cost function J 311.731 10  NA 

 

4.3 Numerical Simulation 

4.3.1 Introduction 

     Matlab Simulink simulations are carried out in this section based on the mathematical 

models set up in the previous sections. Dormand-Prince numerical integration with 

variable step size is used. Both the finite element model and the approximate analytical 

model are simulated under the same conditions but utilizing their corresponding 

controllers which have been developed. Simulation results show the vibration response 

when the rotor is spinning at different speeds. A zero initial condition is employed and 

the transient is allowed to die out. An unbalance of 0.000023 kg-m is applied at the disk 

for both models. 

 

4.3.2 Simulation Using Controller “A” 

     The whole closed-loop AMB system is implemented in Simulink software in order to 

simulate the behavior for the controlled system. The generated PD controller previously 
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discussed is implemented in the simulation model. Figure 4.5 below shows a two axes 

control schematic for the AMBs. An unbalance force is applied at the disk with a 90

phase different from one plane to the other. The state-space model of the approximate 

analytical model used in this simulation model has two inputs one at the disk, the other at 

the right mass, rm . The AMB force is applied at rm . The two outputs of the model are 

also taken at the disk and rm , which separately represent the ADRE sensor output and 

the AMB sensor output. 

 

Figure 4. 5   Simulink simulation of the approximate analytical rotor and controller “A” in two 

planes. 

 

Figure 4. 6   Simulink model of the Three-mass rotor shown in Figure 4.5 
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     In order to simulate the responses, one at the ADRE sensor, and the other at the AMB 

sensor, the three-mass analytical model should have two outputs in each plane. Also two 

inputs are needed in each plane, the first on the disk for unbalance force, and the second 

on the AMB rotor for the magnetic force. The state-space representation for the 

approximate analytical model (without the amplifier and the AMB) will result in a 

change in the input matrix and the output matrix, which yields: 

0 0

0 0

0 0

0 0

1
0

1
0

r

r

m

m

 
 
 
 
 
 
 
 
 
 

 
 

2B
’ 

0 1 0 0 0 0

0 0 1 0 0 0

 
  
 

2C  

     The unbalance block in Figure 4.5 is shown in the following Figure 4.7: 

 

Figure 4. 7    Simulink model of the unbalance shown in Figure 4.5 
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     Figure 4.8 through 4.15 below shows the system vibration response 1000 RPM, 1600 

RPM, 2000 RPM, and 2500 RPM respectively at the AMB sensor and the ADRE sensor.  

  

     a)                                                                                  b) 

Figure 4. 8   Simulation at 1000 RPM using controller “A” at AMB sensor.                                                

a) Time response. b) Orbit. 

  

     a)                                                                                  b) 

Figure 4. 9    Simulation at 1000 RPM using controller “A” at ADRE sensor. 

a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 4. 10    Simulation at 1600 RPM using controller “A” at AMB sensor. 

a) Time response. b) Orbit. 

 

  

     a)                                                                                  b) 

Figure 4. 11    Simulation at 1600 RPM using controller “A” at ADRE sensor. 

   a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 4. 12    Simulation at 2000 RPM using controller “A” at AMB sensor.                                         

a) Time response. b) Orbit. 

 

 

  

     a)                                                                                  b) 

Figure 4. 13    Simulation at 2000 RPM using controller “A” at ADRE sensor 

   a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 4. 14    Simulation at 2500 RPM using controller “A” at AMB sensor. 

a) Time response. b) Orbit. 

 

  

     a)                                                                                  b) 

Figure 4. 15    Simulation at 2500 RPM using controller “A” at ADRE sensor. 

a) Time response. b) Orbit. 
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4.3.3 Simulation Using Controller “B” 

     The whole closed-loop AMB system is implemented in Simulink software in order to 

simulate the behavior for the controlled system. The generated PD controller previously 

discussed is implemented in the simulation model. Figure 4.16 below shows a two axes 

control schematic for the AMBs corresponding to the FE model. Unbalance force is 

applied at the disk with a 90phase different from one plane to the other. The state-space 

model of the FE model has three inputs, first at the bushing center, second at the disk, and 

the third is placed on the AMB center of force. Outputs are placed at the nodes that 

correspond to the ADRE sensor output and AMB sensor output. Another output at the 

bushing center is needed for making the bushing stiffness. The free-free model matrices 

are used in the rotor model which does not include bushing and AMB stiffness. Take
ffA , 

ffB , 
ffC , and 

ffD as the state-space matrices for the free-free rotor bearing model, 
ffG is 

taken as the gyroscopic matrix; the state vector x is arranged as X-plane first, then Y-

plane. Then, the speed depended system can be described as follows: 

   

 

ff ff ff

ff ff

x A G x B u

y C x D u
 

     Where  is the spinning speed of the rotor in rad/s. Figure 4.16 below shows the FE 

simulation model, Figure 4.17 and Figure 4.18 shows the free-free FEA rotor model and 

unbalance block for the whole system. Figure 4.19 through 4.26 show simulation results 

of the system vibration response with a rotating speed at 1000 RPM, 1600 RPM, 2000 

RPM, and 2500 RPM respectively at the AMB sensor and the ADRE sensor.  
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Figure 4. 16    Simulink simulation of the finite element rotor and controller “B” in two planes. 

 

Figure 4. 17 Simulink model of the Free-free FEA Rotor shown in Figure 4.16 

 

Figure 4. 18    Model block of the unbalance shown in Figure 4.16 
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     a)                                                                                  b) 

Figure 4. 19    Simulation at 1000 RPM using controller “B” at AMB sensor. 

  a) Time response. b) Orbit. 

 

 
     a)                                                                                  b) 

  
Figure 4. 20    Simulation at 1000 RPM using controller “B” at ADRE sensor. 

      a) Time response. b) Orbit.  
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     a)                                                                                  b) 

Figure 4. 21    Simulation at 1600 RPM using controller “B” at AMB sensor. 

 a) Time response. b) Orbit. 

 

 

  
     a)                                                                                  b) 

Figure 4. 22    Simulation at 1600 RPM using controller “B” at ADRE sensor. 

      a) Time response. b) Orbit. 
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a)                                                                                  b) 

Figure 4. 23    Simulation at 2000 RPM using controller “B” at AMB sensor. 

  a) Time response. b) Orbit. 

 

  

     a)                                                                                  b) 

Figure 4. 24    Simulation at 2000 RPM using controller “B” at ADRE sensor. 

      a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 4. 25    Simulation at 2500 RPM using controller “B” at AMB sensor. 

  a) Time response. b) Orbit. 

 

  
     a)                                                                                  b) 

Figure 4. 26    Simulation at 2500 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit.  

 

 

0 20 40 60 80 100
-8

-6

-4

-2

0

2

4

6

8

Time (ms)

D
is

p
la

c
e
m

e
n

t 
(

m
)

 

 

Horizontal displacement

Vertical displacement

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

Horizontal displacement (m)

V
e
rt

ic
a
l 

d
is

p
la

c
e
m

e
n

t 
(

m
)

0 20 40 60 80 100
-50

0

50

Time (ms)

D
is

p
la

c
e
m

e
n

t 
(

m
)

 

 

Horizontal displacement

Vertical displacement

-50 0 50
-50

0

50

Horizontal displacement (m)

V
e
rt

ic
a
l 

d
is

p
la

c
e
m

e
n

t 
(

m
)



63 

 

4.4 Practical Implementation Issues 

     In order to successfully levitate the system, at least one low pass filter must be used.  

Low pass filters are used to attenuate controller gain at frequencies above the bandwidth 

of the controller.  The low pass filter also serves as an anti-aliasing filter for digital 

implementation of the controller and to eliminate high frequency noise which does not 

occur in the simulation. In this research one low pass filter with a cut off frequency of 

1500 Hz and 0.707 damping ratio is used. The transfer function of the low pass filter can 

be written as: 

2

2 22

lp

L

lp lp lp

G
s s



  


 
                                                   

(3.5) 

     Where the lp is the cut off frequency of the low pass filter and lp is the damping of 

the low pass filter.      

     An additional tool for stabilizing the actual system is the notch filter.  The notch filter, 

or band stop filter, has near zero gain for a specific narrow frequency range and a gain of 

one for all other frequencies.  It is useful because the actual rotor, being continuous, has a 

theoretically infinite number of flexible modes. Either rotor model, having a finite 

number of flexible modes, will result in a controller which may excite the neglected 

flexible modes of the actual system. The notch filters are designed manually post hoc and 

cascaded with the AMB controller to counter this.  Also note that the rotor flexible modes 

will have at least some damping due to the flexing of the shaft material. The transfer 

function of a notch filter can be written as: 
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2 2

2 22

n
N

n n n

s
G

s s



  




 
                                                   

(3.6) 

          Where the 
n is the notch frequency of the notch filter and 

n is the damping of the 

notch filter. The low pass filter and the notch filter are discussed and the transfer 

functions are given by Maslen [2009]. 

     So the overall transfer function of a controller in this study is the controller in series 

with the low pass filter and notch filter. Then, the controller transfer function becomes: 

 N L PD N L P DG G G G G G K K s  
                                  

(3.7) 

     Both controller designs are based on horizontal axis, but in reality, controller in the 

vertical axis will need additional control current to generate a force that overcomes the 

rotor gravity. After designing both controllers, an integral gain 10 A
μm-s in the vertical axis 

is added. Then Equation (3.7) will be updated as follows: 

I
N L PID N L P D

K
G G G G G G K K s

s

 
    

                              (3.8) 

 

4.5 Finalized Controller “A” and “B” 

     Table VII below shows the final parameters for controller “A” and controller “B” in 

horizontal axis and vertical axis. Figure 4.27 shows the bode plot of the transfer function 

for both controllers in the horizontal direction. 
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Table VII   Finalized controller parameters 

Parameters 
Controller “A” Controller “B” 

X-axis Y-axis X-axis Y-axis 

Total gain tK  0.0001 0.0001 0.0001 0.0001 

Proportional gain PK  ( A

μm
) 70 70 88 88 

Derivative gain DK   ( A-s

μm
) 0.2 0.2 0.2 0.2 

Integral gain IK  ( A
μm-s ) 0 10 0 10 

Low pass filter cut off frequency lp  (Hz) 1500 1500 1500 1500 

Low pass filter damping lp  0.707 0.707 0.707 0.707 

Notch filter frequency 
n  (Hz)   514 514 514 514 

Notch filter damping ratio 
n  0.2 0.2 0.2 0.2 

 

 

 

Figure 4. 27    Horizontal controllers “A” and “B” with low pass filter and a notch filter. 
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CHAPTER V  

EXPERIMENTAL PROCEDURE AND RESULTS 

 

5.1 Introduction 

     Experiments using the test rig described in Chapter II and modeled in Chapter III are 

carried out. Results are presented and discussed in this chapter. The experiments consist 

of implementation of both controllers designed in Chapter IV. To evaluate performances 

of the controllers, the rig is rotated at several speeds (1000, 1600, first natural frequency, 

2000, and 2500 RPM). The time response and orbit are observed at the AMB and the disk, 

the cost function (Equation 4.4) is evaluated at each speed. An initial step before 

performing these experiments is identification of transfer function for the closed loop 

systems. This is realized using MBScope Analyzer tool through a sine sweep test. By 

injecting a harmonic current into the AMB over a range of frequencies, it is possible to 

measure the magnitude and phase of the response at each frequency, and construct the 

Bode plot. Recall the system frequency response without a controller as is shown in 

Figure 2.12 and Figure 2.13. The transfer functions are identified for the non-rotating rig.
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ADRE Sxp software and MBScope software are used in acquiring experimental data for 

rotation tests. The ADRE system collects rotor position data from two eddy current 

probes, one vertical and one horizontal, the one placing near the disk is around the mid-

span of the two bearings. MBScope collects horizontal and vertical rotor position data 

from the two AMB position probes. 

 

5.2 Controller “A” 

5.2.1 Closed-Loop Sine Sweep Identification 

       Figure 5.1 and 5.2 below shows the experimental closed loop system identification 

using controller “A”. The input is AMB control current perturbation and the output is the 

AMB position sensor signal. (See Figure 2.11 for block diagram.) 

  

Figure 5. 1    Controller “A” closed-loop sine sweep in vertical direction 
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Figure 5. 2   Controller “A” closed-loop sine sweep in horizontal direction 

 

A small change in natural frequency can be seen between the horizontal and vertical 

axes due to the integrator and gravity preloading. Also the resonance peaks are well 

damped due to the derivative gain. 
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5.2.2 Running Speed Tests 

 

     a)                                                                                  b) 

Figure 5. 3    Experimental response at 1000 RPM using controller “A” at AMB sensor. 

     a) Time response. b) Orbit.  

 

 

     a)                                                                                  b) 

Figure 5. 4   Experimental response at 1000 RPM using controller “A” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 5   Experimental response at 1600 RPM using controller “A” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 6   Experimental response at 1600 RPM using controller “A” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 7    Experimental response at 1813 RPM using controller “A” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 8   Experimental response at 1813 RPM using controller “A” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 9   Experimental response at 2000 RPM using controller “A” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 10   Experimental response at 2000 RPM using controller “A” at ADRE sensor. 

     a) Time response. b) Orbit. 

 

 

0 20 40 60 80 100
-40

-30

-20

-10

0

10

20

Time (ms)

D
is

p
la

c
e
m

e
n

t 
(

m
)

 

 

Horizontal displacement

Vertical displacement

-45 -40 -35 -30 -25 -20 -15 -10 -5
-20

-15

-10

-5

0

5

10

15

20

Horizontal displacement (m)

V
e
rt

ic
a
l 

d
is

p
la

c
e
m

e
n

t 
(

m
)

0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

Time (ms)

D
is

p
la

c
e
m

e
n

t 
(

m
)

 

 

Horizontal displacement

Vertical displacement

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

Horizontal displacement (m)

V
e
rt

ic
a
l 

d
is

p
la

c
e
m

e
n

t 
(

m
)



73 

 

 

     a)                                                                                  b) 

Figure 5. 11   Experimental response at 2500 RPM using controller “A” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 12   Experimental response at 2500 RPM using controller “A” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     Figure 5.3 through 5.12 shows the system vibration response using controller “A”.  

From figures, the following observations can be made. 

1. The closed-loop system natural frequency happens at 29.6 Hz, which is 1776 

RPM when using controller “A”.  

2. This experiment has verified that controller “A” is effective at levitating the 

system within practical limits. 

3. The largest vibration has a speed around 1813 RPM, which roughly agree with the 

experimental closed-loop system identification result.  

4. From AMB sensor data, one can read that the vertical controller with an integral 

term helps the system overcome gravity, all vibrations are around X-axis, when 

y=0. While on the other axis, there is always displacement due to rotor or AMB 

assembly misalignment.   

5. From the ADRE sensor, horizontal and vertical vibration are always near the ideal 

point (0,0), because the initial installment for the ADRE sensor probes. 
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5.3 Controller “B” 

5.3.1 Closed-loop Sine Sweep Identification 

       Closed-loop system identification using controller “B” is proceed in the following 

section, Figure 5.13 and 5.14 below shows the experimental closed loop system 

identification results:  

 

 

Figure 5. 13   Controller “B” closed-loop sine sweep in vertical direction 
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Figure 5. 14   Controller “B” closed-loop sine sweep in horizontal direction 

 

     Shown in the above figures, the closed-loop system critical speeds happen at 30.3 Hz, 

which is 1818 RPM. 

 

 

5.3.2 Running Speed Tests 

     Following Figure 5.15 through Figure 5.24 shows experimental result of system 

vibration data corresponding to AMB sensor and ADRE sensor at speeds 1000 RPM, 

1600 RPM, first natural frequency, 2000 RPM, 2500 RPM and one critical speed using 

controller “B” 
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     a)                                                                                  b) 

Figure 5. 15   Experimental response at 1000 RPM using controller “B” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

 

     a)                                                                                  b) 

Figure 5. 16   Experimental response at 1000 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 17   Experimental response at 1600 RPM using controller “B” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 18   Experimental response at 1600 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 19    Experimental response at 1833 RPM using controller “B” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

 

 
     a)                                                                                  b) 

Figure 5. 20   Experimental response at 1833 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 21   Experimental response at 2000 RPM using controller “B” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

 

     a)                                                                                  b) 

Figure 5. 22   Experimental response at 2000 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     a)                                                                                  b) 

Figure 5. 23   Experimental response at 2500 RPM using controller “B” at AMB sensor. 

     a) Time response. b) Orbit. 

 

 

     a)                                                                                  b) 

Figure 5. 24   Experimental response at 2500 RPM using controller “B” at ADRE sensor. 

     a) Time response. b) Orbit. 
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     Figures 5.15 through 5.24 show the system vibration response using controller “B”. 

From these figures, the following observations can be made. 

1. The closed-loop system natural frequency happens at 30.3 Hz, which is 1818 

RPM when using controller “B”. 

2. This experiment has verified that controller “B” is effective at levitating the 

system within practical limits. 

3. The largest vibration has a speed of 1833 RPM, which roughly agree with the 

experimental closed-loop critical speed.  

4. From AMB sensor data, one can read that the vertical controller with an integral 

term helps the system overcome gravity, all vibrations are around X-axis, when 

y=0. While on the other axis, there is always displacement due to rotor or AMB 

assembly misalignment.   

5. From the ADRE sensor, horizontal and vertical vibration are always near the ideal 

point (0,0), because the initial installment for the ADRE sensor probes. 

6. For the same running speed for the two controllers,  at the same sensor location, 

controller “B” and a smaller system vibration response than using controller “A”. 

 

5.4 Comparison of the Experimental Results and Simulation 

     With the two controllers successfully demonstrated on the test rig, comparisons can be 

made between the results and the results predicted by the numerical simulations. The 

simulation using controller “B” is more similar to the experimental results than that using 

controller “A”, not only in natural frequency, but also in vibration amplitude. The 
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simulation using controller “A” on the three-mass analytical model has generally smaller 

vibration amplitude than the experimental result using controller “A” on the actual test 

rig. Smaller vibration suggests the model system has higher stiffness than the actual 

system. Therefore, the finite element model is superior to the approximate analytical 

method from a performance prediction standpoint.  

     Since it is a cost function controller design method that is developed in Chapter IV, to 

further investigate the aptitudes of these two modeling techniques to this design problem, 

a comparison of cost index values for both controllers is made using both experimental 

and simulation values of position and current. The experiment has a sampling rate of 10 

kHz and the simulation has a numerical step size with the same time. Both cases are 

allowed to come to steady state and then a data vector for 100 ms is taken. The vector 

includes AMB position and current. The vectors are used in Equation (4.1) which is 

evaluated with trapezoidal integration. The cost function J is evaluated at each running 

speed. The values for each speed and each controller are shown in the following table for 

comparison.  

Table VIII    Experimental and simulation cost function values comparison 

Speed (RPM) 

cost function evaluating factor J value 

Experiment Simulation 

controller “A” controller “B” controller “A” controller “B” 

1000 0.7532 0.6559 0.0020 0.1473 

1600 11.8489 7.7443 0.0701 7.7121 

2000 22.4145 23.1188 0.2686 15.0440 

2500 7.6301 6.1967 0.0664 4.4818 
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      Seen from the table above, controller “B” has a smaller difference of J values for 

speed over 1600 RPM than controller “A” experimentally. The cost function evaluating 

J  involves the displacement and control current at the AMB, so the smaller value, the 

smaller vibration and control effort. It is obvious that controller “B” is more effective 

than controller “A”. As for the simulation comparison, simulation using controller “B” is 

more accurate than using controller “A”, this can tell by looking through simulation on 

the three-mass analytical model results with controller “A”, with stiffer system, the 

smaller vibration itself is not accurate.  

     After experimental results, simulation results and cost function value computation, it 

is safe to come to a conclusion that in designing a controller for this dissimilar bearing 

support system, the controller designed upon the finite element model is more accurate 

and more reliable to use with experiment. 
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CHAPTER VI  

CONCLUSIONS 

 

 

6.1 Contributions 

     This work is focused on the system modeling, controller design and dynamic analysis 

of a dissimilar rotor bearing system to increase the state of art knowledge of dissimilar 

bearing supports. Two modeling methods are proposed for a rotor with one bushing and 

one AMB, an approximate analytical modeling method and a finite element modeling 

method. In order to evaluate the two modeling methods, a model based AMB controller 

design strategy is proposed. The optimum controller design method maintains the 

proportional derivative control structure that is easy to use with current industry standard 

hardware. Numerical simulations were conducted using both models with their respective 

controllers and an experimental test rig was run with implemented both controllers. 

Stable levitation was achieved for all cases. Non-rotating closed-loop sine sweep tests 

were conducted on each system. Running speed orbits were measured for several speeds 

including the first natural frequency and the data used for a quantitative evaluation of a 

cost function. 
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     Sine sweeps were done on the open-loop systems and compared. It was found that 

both modeling methods can be used to model the system effectively, but the approximate 

analytical method is less accurate than the finite element approach. However, the 

approximate analytical method is easier to employ having no specific rotordynamic 

expertise. The proposed controller design method was found to be effective for 

stabilizing the AMB in this dissimilar rotor bearing support system. But for practical 

implementation on the experimental test rig, the provisions of notch filter, low pass filter 

and vertical axis integrator had to be included. The effectiveness of the controllers was 

demonstrated using the closed loop sine sweeps. The running speed tests show the 

practical implementation is possible for various operating conditions. The cost function 

analysis of the running speed tests show that the controller designed for the finite element 

model is quantitatively superior as compared to the other controller for all running speeds 

examined. This is to be expected because of the higher accuracy model used. The cost 

function analysis also shows the discrepancy between the experiment and simulation 

results. The simulation cost functions were lower than the experimental ones due to the 

use of the same models in simulation as in controller design.  

Qualitatively, the entire study shows that one AMB and one bushing can be 

effectively used on the same rotor although this is not a novel contribution.  

 

6.2 Future Work 

     Modeling techniques have been shown to be effective and a rotor dynamic 

performance of a dissimilar support rotor bearing system has been studied. It remains to 
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be shown that such a system can have the advantages of both bushings and AMB, while 

avoiding their disadvantages. To this end, future work should include investigations of 

the static and dynamic load capacity of the system. Also active vibration control 

techniques which have been developed for pure AMB levitation should be applied to this 

dissimilar support system. In literature, such as Britta [2010], there are examples of 

traditional supported rotor with a magnetic actuator added for active damping. Such a 

system could be replaced with a system with one traditional support and one AMB, 

thereby eliminating one component while increasing the active damping possibility. 

Further research should use an actual machine with dissimilar bearing supports in a non-

laboratory setting. 
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APPENDIX A 

Rotor Finite Element Parameter File  

 

Cleveland State University 

yunlu 

Mar 2  2010 

       30 

       5 

       -1          -3           2          0. 

       0.           0.6            0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   1 1 0 0 "bushing" 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0            30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.           0.853        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       1.8301   0.752        0.394      0.      2.0589   1.0295   30      0.287   1 1 0 0 "disk" 

       0.           0.752        0.394      0.      0.           0.           30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.752       0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.375       0.394      0.      0.          0.            30      0.287   0 1 0 0 "MB sensor" 

       0.54        0.25         0.394      0.      0.1236   0.2288   30      0.287   0 1 0 0 "center of mass" 

       0.            0.5           0.394      0.      0.          0.            70      0.287   1 1 0 0 "center force" 

       0.            0.75         0.394      0.      0.          0.            30      0.287   0 0 0 0 

       0.            0.0           0.394      0.      0.          0.            30      0.287   0 0 0 0 

      100.         200000.      100. 

      0.0 
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APPENDIX B 

Magnetic Bearing Specifications 

(a) Bearing Performance Specifications Units 

 Static Load Capacity 12 lbf 

 Saturation Current 3.00 A 

   

 Current Stiffness ( N
A

) N
A

11.74   

 Position Stiffness ( N
m

) 4 N
m

2.1 10   

(b) Bearing Geometry  

 Number Of Poles Per Quadrant 2 

 Stator Stack Length 0.500 in 

 Stator OD 2.809 in 

 Stator ID 1.380 in 

 Rotor OD 1.350 in 

 Rotor Lamination ID 0.905 in 

 Nominal Gap 0.015 in 

 Pole Width 0.207 in 

 Pole Height 0.456 in 

 Slot Width (at ID) 0.331 in 

 Pole Centerline Angle 22.5  

(c) Material Properties  

 Material Grade:     Stator M-19, C-5 

                                Rotor Arnon 5, C-5 

 Saturation Flux Density 1.25 T 

 Relative Permeability 3000 

 Lamination Thickness:         Stator 0.014 in 

                                               Rotor 0.005 in 

 Material Resistivity 18.9 μΩ-in  

 Density 0.276 3lb/in  

 Temperature 1350°F 

 Insulation C-5 Both Sides 

 Stacking Factor 96 % 

(d) Coil Specifications  

 Wire Gauge 23 AWG 

 Wire type Hyslik 200 

heavy/round 

 Coil Insulation 0.0135 in 
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 Packing Factor 97 % 

 Turns Per Coil 114 

 Coil Extension (max) 0.316 in 

 Quadrant Resistance (calculated) 0.912   

 Quadrant Inductance (nominal) 6.116 mH 

(e) Power Amplifiers Specifications  

 Maximum Continuous Current 3 A 

 Peak Current 10 amp for 2 

seconds 

 Max DC Supply Voltage 48V unregulated 

 Minimum Required Voltage 38.67 V 

 Minimum Load Inductance 250 μH  

 Switching Frequency 20 kHz 

 Power Dissipation @ Cont. Current 20 W 

(f) Position Sensor Specifications  

 Type Variable Reluctance 

 Number per axis 2 

(g) Speed  Sensor  

 Type Hall Effect 
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