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APPLICATION OF ACTIVE MAGNETIC FORCE ACTUATOR FOR CONTROL OF

FLEXIBLE ROTOR SYSTEM VIBRATIONS

VOLODYMYR MYKHAYLYSHYN

ABSTRACT

The purpose of this work was to develop and experimentally demonstrate a novel

approach to minimize lateral vibrations of flexible rotor. The applied feed forward

control approach employed magnetic force actuator to inject a specially designed force to

counteract the rotor unbalance force. By specific selection of frequency and phase as

functions of the rotor running speed and rotor natural frequency, the proposed simplified

injection waveform has been shown to be effective both in reducing the rotor’s vibrations

and for hardware implementation. A model of the test rig was constructed using the

finite element (FE) method and was validated using experimental data. The effectiveness

of the proposed current injection was numerically simulated with FE model and

experimentally validated using a residual unbalance force. It was noticed that at a

selected constant running speed, just below the first rotor critical speed, the rotor

vibrations were reduced approximately by 90%. The method was also implemented

during the speed ramp test, which passes through the first critical speed. In this test the

proposed force injection also reduced vibrations at various rotor speeds. These results

agree well with the results of simulation.
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 angular velocity

M mass of the disk
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 geometric correction factor
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g air gap distance between rotor and stator
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0g air gap distance between rotor and stator at “slow roll”

2g air gap distance between rotor and stator at subcritical speed
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation.

The dynamic of rotating systems was well understood long time ago thanks to number

of mathematicians and theoretical mechanics. Beginning with the ancient world we can

observe that scientist showed interest in harmonic motion and vibration. Pythagoreans

determined the natural frequency of vibrating system and proved that it is a property of

the system in the V century B.C. and Aristotle (384 – 322 B.C.) developed a fundamental

understanding of statics and dynamics. Also, archeologists discovered that ancient

Chinese scientists invented seismograph, which was used to measure earthquakes.

The modern day theory was probably founded by scientists and mathematicians such

Sir Isaac Newton (1642–1737), who gave us calculus and the laws of motion for

analyzing vibration; Daniel Bernoulli (1700 – 1782) and Leonard Euler (1707 – 1783)

who studied beam vibrations (Bernoulli – Euler beam); and Josef Fourier (1768 – 1830),
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who developed the theory of frequency analysis of signals. The technological revolution

expanded our present engineering development toward higher speeds and heavier loads

on machines, involving higher dynamic stresses caused by increased mechanical

vibrations. Proper design and control are crucial in maintaining high performance level

and production efficiency, and prolonging the useful life of machinery, structures and

industrial processes. The reliability of machines with rotating parts is closely connected

with the vibrational characteristic of the rotor as a whole and of its elements and with the

maintenance of the permissible level of vibrational stress. Rotordynamic dates from the

second half of the nineteenth century. The first systematic work was written by Lord

Rayleigh [24] where he introduced a correction to the lateral vibration of the beam due to

rotor inertia. Timoshenko [29] presented a model that takes into account shear

deformation and rotational inertia effects. Whirling of shafts was investigated by W.A.

Rankine [22], who anticipated that shaft operation above critical speed is impossible. The

first successful rotor model was proposed by Föppl in 1895. He described a single disk

centrally located on a circular shaft, without damping and demonstrated that supercritical

operation was stable [8]. Significant work was done by De Laval. His analysis was

inaccurately credited to Jeffcott who published his similar work in a widely read English

journal [11]. Later the Soviet scientists Nikolai [20] examined the stability of the shaft

with a disk mounted in the centre, and the stability of a shaft with the disk attached to the

free end. P.L. Kapitsa pointed out that a flexible shaft could become unstable due to

friction condition in its sliding bearings [12]. Many rotordynamics textbooks were

created, for example, by J.M. Vance [29], Erwin Kramer “Dynamics of Rotors and

Foundations” [15], K. Czolczynski [3] discussed aspects affecting the stability of the
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system, “Handbook of Rotordynamic” by Frederic F Ehrich [6] reflect devices and

phenomena which have entered the practice of rotordynamics engineering. A. Muszynska

[18] at her “Fundamental Response of a Rotor” discussed rotor response to the inertia

force due to unbalance. J.T. Sawicki [25] at “Unbalance Response Prediction for

Accelerating Rotors with Load-Dependent Nonlinear Bearing Stiffness” discussed

unbalance response for an accelerating rotor supported on ball bearings. Many other great

scientists made their contributions in the study of dynamics of rotating machinery.

The new chapter in these investigations began with the appearance of magnetic

actuators, which allow unique application of rotating machinery with excellent

performance. Magnetic actuator is typical mechatronics product; it is composed of

mechanical and electronic elements. The properties and principles of work will be

described in Chapter III. The study of magnetic levitation goes back to S. Earnshaw [5].

Earnshaw’s theorem contends that if inverse square law forces control a flow of charged

particles, they can never be stable. The theorem is based on the Laplace partial

differential equation. The solution of this equation does not have any local maxima or

minima, so there can be no equilibrium. This theorem confirms that it is impossible to

have a completely stable system using only forces of static fields of permanent magnets.

The next level of investigation of properties of magnetic actuators was begun in the

early forties of the nineteenth century when early magnetic bearing patents were assigned

to Jesse Beam. This technology matured with the work of H. Habermann [10] and G.

Schweitzer [26], where they developed modern computer-based control technology. A

great number of scientists made their contributions to the science of vibration control.
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Many different methods and techniques were proposed. Some of them, which are of

interest of this work, will be introduced.

1.2 State-of-the-Art of Active Control of Rotor Vibration.

A major problem faced by rotating machinery is the imbalance induced vibration. The

flexible rotor may have a variety of unbalance distribution. According to F. Ehrich [6]

there are four basic types of unbalance distribution encountered with multimass rotor.

First, continuous unbalance distribution along the shaft. The second distribution includes

radial unbalances, such as encountered by assembled compressor turbine stages on a

shaft. The third distribution represents a shaft with bow. In a bowed rotor the principal

axis of inertia (centerline) of the rotor is not concurrent with its axis of rotation. Bows

may be introduced by no uniform shrink fits, thermal effects, and permanent sag due to

gravitational effects. Fourth is the disk skew. Usually, not only one type of unbalance

appears.

There are great number of methods that can be applied to compensate this unbalance

[30]. Generally, they can be divided into two main categories: passive and active. In the

passive method we ‘assign’ balancing weights and select proper operational speed.

Balancing can be done by different methods such as single-plane balancing by influence

coefficient method, two-plane balancing by the influence coefficient method, single-

plane balancing using static and dynamic components, single-plane balancing by the

influence coefficient method using linear regression, generalized influence coefficient

method using pseudo-inversion, multiplane balancing using linear programming
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techniques, modal balancing, three-trial-weight method of balancing, multiplane

balancing without phase, rotor balancing without trial weights, coupling trim balancing

and other [6]. All of the methods can be divided into two categories: modal methods and

influence coefficient methods. The modal method, based on a rotating structure model,

determines experimentally the disturbing unbalance associated with a specific mode. The

influence coefficient method uses experimental models that represent the machine’s

sensitivity to unbalances. Some of them are very interesting but others are expensive and

time-consuming. The conditions where these methods can be effective are limited and

even though the rotor amplitude may be reduced to small vibrations at the particular

location and speed, other points along the rotor may exhibit higher vibrations. At other

speeds the rotor may appear not be in balance.

Active methods for vibration control in rotors involve controlled force delivered by

actuators. There are different types of actuators such as hydraulic, pneumatic,

piezoelectric, and electromagnetic. The advantage of electromagnetic actuators will be

described later. Considerable research has already been done on design and application of

magnetic actuators [6].

Kari Tammi [28] created a control system for active vibration control of rotor on

similar, to presented in this thesis, test environments. He designed controllers using

feedback and feedforward control algorithm. This control system determines the force

required and applies the force commands to the force control system. The control system

design was based on knowledge available about the system to be controlled, and the

parameters were assumed invariant in time. However, the higher peaks were observed at

post critical rotational speed. The clear explanation for this behavior was not presented.



6

The study confirms that reductions in rotor’s response can be achieved by compensating

the disturbance by means of the reference signal.

M.E.F. Kasarda [13] proposed active control solution utilizing active magnetic bearing

(AMB) technology in conjunction with conventional support bearings. The AMB is

utilized as an active magnetic damper (AMD) at rotor locations inboard of conventional

support bearings. Another active magnetic actuator was used as a source of sub

synchronous vibration. The study shows that sub synchronous vibrations are reducible

with an AMD. The study also shows that the AMD can significantly increase

synchronous vibration response (up to 218%) by increasing system stiffness. The overall

results from this work demonstrate that full rotor dynamic analysis and design are critical

for successful application of this approach.

J.M. Krodkiewski at the University of Melbourne used active hydrodynamic bearing

as a third bearing to add damping to the system. A multivariable adaptive self tuning

regulator was used to control oil film thickness in the third bearing located between the

load carrying ball bearings. The system was designed to cope with non-linear fluid-film

bearing characteristics, parameter vibrations and parameter uncertainty. [16].

Interesting results were shown in “Active Balancing of Turbo machinery: Application

to Large Shaft Lines” by C. Alauze [1]. The unbalance correction was carried out in real

time, during operation in steady state and transient responses. The concept consists of

generating a correction force by using two mobile weights situated in the same plane and

running at a constant radius of the rotation axis. The balancing process is based on the

influence coefficient method and includes specific measurement and control

developments. The behavior (Bode plot) of the heavy 5.56m long, 110 to 360 mm
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diameter and disk with mass 4.3 tons that situated in the middle was very similar to the

behavior of the test rig used at present work.

An interesting method was established by C.R. Knospe [14]. The stability and

performance robustness of an adaptive open loop control algorithm was examined.

Expressions were derived for a number of unstructured uncertainties. The experimental

results indicate that the theoretical expressions do provide an upper bound on actual

performance however, this bound is not tight.

Robust modal control design of a magnetically suspended rotor was presented in a

simulation study by Hsiang-Chieh Yu [31], involving the finite element formulation. The

original system is augmented using the direct output control in the first level, which

removes the repeated rigid body modes of an uncontrolled system. In the second level

design, a robust controller is implemented in the complex modal space. It has been

theoretically shown that the presented control design is robust, but not proved

experimentally.

M.S. De Querioz [22] presents the active feedback method that asymptotically learns

the unbalance-induced disturbance forces and identifying the unknown unbalance-related

parameters of a rotor.

A new approach was proposed by Kai-Yew Lum [17] that differs from the usual

adaptive feed-forward compensation. Under the proposed control law, a rigid rotor

achieves rotation about the mass center and principal axis of inertia. The calculation and

simulation example was done for a rotor supported by two AMBs.

Another good experiment in a similar test environment was done by C.R. Burrows [2]

at the University of Bath. In their work “Design and Application of a Magnetic Bearing
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for Vibration Control and Stabilization of a Flexible Rotor” they described using a

magnetic actuator, control algorithm that determines the amplitude and phase required for

each axis and some typical optimum control forces obtained experimentally.

Various active control techniques, applicable to rotating machinery where, presented

in work, performed by Heinz Ulbrich [29]. In his “Elements of Active Vibration Control

for Rotating Machinery”, he presented several topics such as the availability of an

appropriate actuator, modeling of the entire system, positioning of actuators and sensors,

control concepts that should be used, controllability and observability. Real applications

were presented as examples.

1.3 Scope of Work

This work is concerned with the subject of vibrations, system dynamics, magnetic

actuators and their combinations. To reduce vibrations of the rotor focus was on

synchronous response due to unbalance. Unbalance is one of the most common

malfunction of rotating machines; analysis of rotor synchronous response allows to

balance the rotor; to understand more complex rotor dynamic behavior caused by various

other malfunctions, knowledge of rotor unbalance response is necessary. In order to

reduce vibrations, the design of magnetic force actuator was completed (Chapter III) and

experimentally verified.

In Chapter II, review of flexible rotor system is presented concerning to application of

active magnetic actuator. Also, finite element model of the rotor and methods of solution

were described.
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A description of the , as well as unique features of active magnetic force actuators and

its modifications will be presented in Chapter III.

Unbalance compensation experimental results for sub and super-critical speeds with

model identification and force injection are shown in Chapter IV.

Chapter V provides conclusions as well as contributions and a short summary of future

research directions.
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CHAPTER II

FLEXIBLE ROTOR SYSTEM

2.1 Introduction

“Everything should be made as simple as possible, but not simpler.”- Albert Einstein.

The Jeffcott rotor has a flexible mass shaft, one rigid disk at the midspan and simple

supports as bearings. The Jeffcott rotor model is obviously an over-simplification of real-

world rotors but, it helps to understand many features of real-world rotor behavior,

including critical speeds, response to unbalance, or the effect of damping.

2.2 Model of Jeffcott rotor

Consider the case of a long and lightweight shaft, rotating with an angular velocity 

and carrying at its midspan a disk of mass M and mass polar moment of inertia with

respect to the axis of rotation J . As discussed in the previous chapter, a real flexible rotor

may have a variety of unbalance distributions. So, it is assumed that this is just a point

mass or heavy spot m on the disc. This unbalance heavy spot m is located at some

distance l from the geometrical center of the discO . This distance l is the disc
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eccentricity. To determine the position of m one also needs its angular position  ,

measured from the reference angle zero, marked on the shaft. Unbalance force F can be

characterized by its harmonic time base, expressed by the harmonic functions sin( )t ,

cos( )t or cos( ) sin( )j te t j t    (where t is time,  is angular frequency equal to

the rotative speed) and the force amplitude equal 2ml . The harmonic unbalance force

causes the rotor to respond harmonically.

The equations of motion, with present unbalance force, take the following format:

cos( )

sin( )

Mx Dx Kx F t

My Dy Ky F t

 

 

   

   

 

 
(2.1)

Where ,Mx My  represent inertia forces in two orthogonal lateral directions, ,Dx Dy  -

damping forces, ,Kx Ky - stiffness and F - exciting force (in our case it is unbalance

force). In order to cancel the rotor vibrations we need to cancel the exciting force.

Figure 2.1 Physical model of the rotor.



Z)(tx

( )y t

t



l

m 

X

Y Y

O
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Cancellation of the exciting force is possible by applying the same harmonic force but

in opposite direction. As an instrument to do this an active magnetic actuator (AMA) was

chosen.

An active magnetic actuator is a mechatronic device that uses electromagnetic fields

to apply forces to a rotor without contact. The advantages of using active magnetic

actuators are already well known. Their very low friction, virtually limitless life,

insensitivity to surrounding environment and relatively large changes in temperature, and

flexibility due to digital computer control, gives them extraordinary versatility. The

effectiveness of the active magnetic actuators is based on the nature phenomena of

attractive forces that are generated by magnets. See Figure 2.2. for schematic of rotor and

magnetic force actuator.

g

coilsWire

aFForce

(stator)Magnet

Rotor

Figure 2.2 Electromagnet (stator) and rotor.

The attractive magnetic force, aF ,applied to the rotor is determined by the formula:



13

2 2
0

24

g

a

A N I
F

g


 (2.1)

where  is a geometric correction factor, 0 is the permeability of the air gap, gA is a

single pole face area, N is the total number of wire coils in a horseshoe, I is the current

in the coil and g is the air gap distance. Now let us see what will happen if the rotor

begins to rotate. Figure 2.3 below shows the cross section of an active magnetic actuator

with four poles. In the figure, the rotor is shown displaced vertically from the center.



0g

staticg

1O

0O
Pole

SpotHigh

Rotor

rotordisplacednon

ofOutline



Pole

Pole

Figure 2.3 Position of the rotor at the slow roll.

At the “slow roll” speed the deflection of the rotor will differ from the static position.

Due to an unbalance force, the rotor will have some whirling orbit. The radius of this

orbit is the distance between static position of the center of the rotor 0O and new position
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of the geometrical center of the rotor O , plus the radius of the rotor. The position of the

center of mass (heavy spot) and response point (high spot) is on the same radial line

(Figure 2.3). There is no angle between them, 0 0  .

On the Bode plot, shown in Figure 2.4, this position can be seen on the left side of the

graph (low speed).

2
0

3

0g

2g

3g

speed,Rotating



P

h
a
se

,
A

A
m

p
li

tu
d

e,

Figure 2.4 Bode plot of the rotor.

On the schematic Bode plot, the line that shows the position of the heavy spot has a

fixed location on the rotor. The line of the response spot (or high spot) shows that it

increases with the increased rotating speed. Also, the magnitude of vibration of the

geometrical center of the rotor grows as resonance is approached. So, to cancel the
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unbalance force, one needs to apply an opposite force in the radial direction of the

location of the center of mass. At a slow roll, this is also the location of the response

(high beat point). The time base plot of the high beat point, center of mass, and unbalance

force at a slow roll will be sinusoidal waves and are all in phase (Figure 2.5).
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Figure 2.5 Time base plot for slow roll.

Figure 2.5 shows that for a slow rotational speed, high spot, center of mass and

unbalance force are in same phase, in other words, along the same radial line on the rotor.

With the speed increased to point designated by g 2 , 2 on Figure 2.4, the phase of the

center of mass and of the high spot become different. The difference of their phase is the

angle 2 in Figure 2.4. In the time base plot in Figure 2.6, one can see that the unbalance
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force and center of mass are in phase and the position of the high spot (high beat point)

changed its phase.
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Figure 2.6 Time base plot for subcritical speed.

A cross section of the rotor and actuator is again shown in Figure 2.7, this time for a

speed closer to resonance. The air gaps between the stator and rotor at the location of the

center of mass - 1g and the high spot - 2g , respectively, are now different. The air gap

between the high beat point and stator 2g is measured by sensors and reflected on the

Bode plot. The air gap between the location of the center of mass and stator 1g must be

calculated. This can be done because the heavy spot is at a fixed angle with respect to the

shaft.
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Figure 2.7 Position of the rotor at subcritical speed.

Starting from the cosine theorem:

2 2 2 2 cosa b c bc    (2.2)

This means that the square of a side of a triangle equal to the sum of the squares of the

two other sides, minus double the product of those sides by the cosine of the angle

between them. Now look at the triangle 0 2O CO . Let the side 0 2O O be marked with

symbol b for the equation (2.2). Distance 0 2O O is equal to the displacement of the

geometrical center of the shaft and can be obtained experimentally and determined on the

Bode plot. Let side 2O C be the side a ; it is equal to the radius of the shaft r . Side 0O C

can be the side c . Also, angle  (known from the Bode plot as the phase), is the angle

between a and b . Solving equation (2.2) for c we can calculate distance 0O C

2 22 (cos ) 2 cos 4( )

2

b b b a
c

   
 (2.3)
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Or
2 2 2

0 2 0 2 0 2
0

2 cos (2 cos ) 4( )

2

O O O O O O r
O C

   
 (2.4)

And, knowing the nominal air gap nomg and calculated distance 0O C we can determine

the air gap 1g which will be equal to:

1 0( )nomg g r O C   (2.5)

Substituting equation (2.4) in to (2.5) one can obtain a general formula for 1g :

2 2 2
0 2 0 2 0 2

1

2 cos (2 cos ) 4( )
( )

2
nom

O O O O O O r
g g r

   
   (2.6)

Note that from equation (2.5) one can see that the air gap at the location of the center of

mass is a function of the radius of the rotor, nominal gap, displacement of the rotor, and

phase .

Now substituting 1g in to formula (2.1) in place of g one can calculate magnitude of

the force 1F that will be applied to the rotor at the point of the location of the center of

mass:

2 2
0

1 2 2 2
20 2 0 2 0 22 cos (2 cos ) 4( )

4((( ) ) )
2

g

nom

A N I
F

O O O O O O r
g r



 


  
 

(2.7)

Now let’s look how the force is changing in the high beat point or response point. The

air gap 2g (see Figure 2.7) can be determined from the experimental data using formula

(2.8)

2 0 2( )nomg g r O O   (2.8)

Where 0 2O O is the amplitude of the vibration, or radial displacement, of the geometrical

center of the shaft. Note that 1 2g g . But the value of the injected current will change
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due to changing phase of the injected sinusoidal wave with the rotating of the shaft. This

phase also will be equal to the angle . So, the formula for the magnitude of the applied

force 2F at the point of response of the shaft or high beat point will be (2.9):

2 2
0

2 2
24

gA N I
F

g


 (2.9)

Substituting (2.8) into (2.9) the formula for calculating applied force at the high beat

point can be obtained:

2 2
0

2 2
0 24(( ) )

g

nom

A N I
F

g r O O




 
(2.10)

As was mentioned above this force should compensate exciting force that is an

unbalance force in this case.

MatLab codes were generated for observing this force graphically. The best

performance of the rotor occurs when it rotates around its center of mass. From the

plotted graphs, we can conclude that for obtaining the force that forces the rotor rotate

around its center of mass, we need to generate a wave of current with a special shape for

injecting into magnetic actuator.

Starting with the magnetic actuator force equation:

2 2
0

2
14 cos( )

gA N I
F

g t



 



(2.11)

It is desired to cancel the unbalance force, using the magnetic actuator force.

The equation for these forces can be stated thus:

2 2
02

2
1

cos( )
4 cos( )

gA N I
ml t

g t


 

 



(2.12)
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Solving for the current gives:

2 2
2 1

2
0

cos( )4 cos( )

g

ml t g t
I

A N

   




 (2.13)

Substituting (2.6) into (2.13) gives a formula for the ideal current that needs to be

injected to cancel the unbalance exciting force:

2 2 2
2 20 2 0 2 0 2

2

2
0

2 cos (2 cos ) 4( )
cos( )4( ) cos( )

2
nom

g

O O O O O O r
ml t g r t

I
A N

 
   



  
  



(2.14)

Finding the actual coil current is complicated by the switching nature of the opposing

coils in the magnetic actuator. The top coil is “on” if, and only if, the bottom coil is “off”

and vice versa. Also, the signal injection is interpreted as a negative current in a bottom

coil. Finally the switch is made dictated by the expected direction of the unbalance force

to be cancelled, as described in the formulas for all three conditions (2.15):

2 2
1

2
0

2 2
1

2
0

cos( )4 cos( )
when cos( ) 0

cos( )4 cos( )
when cos( ) 0

0 when cos( ) 0

g

g

ml t g t
t

A N

ml t g t
I t

A N

t

   




   






 



   














(2.15)

This is a complicated waveform, which is difficult to generate with conventional

hardware. It is proposed to approximate this result with a single-frequency cosine wave

because a cosine wave can be readily created using hardware common in the industry.

Starting from the constraint of a cosine form wave, three parameters must be selected to

define the injection, frequency, phase, and amplitude. To select frequency, a frequency
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analysis of the ideal injection signal must be performed. The Figure 2.8 below is the Fast

Fourier Transform of the idealized injection signal, using parameters taken from the

experimental (which will be shown in Figure 2.10).
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Figure 2.8 Frequency response of idealized unbalance compensation injection current for rotor
running at 1950 RPM.

It is found that the dominant frequency component is that of the running speed. This is

an intuitive result because the unbalance force, which is to be cancelled, occurs at this

frequency. The phase between the unbalance force and the rotor response is found by the

relationship between running speed and natural frequency, such that the magnetic force

will always be in the opposite direction as the unbalance force. The amplitude of current

injection is taken as the maximum amplitude of the idealized current injection.

The Figures 2.9 through 2.12 shows the ideal injection current found and a

comparable cosine wave. The results for four running speeds are as follows: slow roll
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(500 RPM); the speed that is used for the experiment (1,950 RPM); the critical speed

(2,045 RPM); and super critical speed (2,152 RPM). The unbalance magnitude and rotor

orbit amplitudes used in calculation are estimated from the response with no injection,

which will be shown in Chapter IV. At a slow roll, the unbalance force is in phase with

the rotor deflection and, therefore, the required current appears as simply the square root

of a cosine wave. As the speed increases towards resonance, the rotor response

approaches 90 degrees from the unbalance force. This phase shift results in the required

current being an asymmetrical harmonic wave. Once resonance is passed, the required

current moves back to a symmetrical pattern. Because of the switching of the top and

bottom coils, there are always multiple frequency components in the current waveform.

Also, shown in the figures below is the proposed injection current. This is a cosine

wave with an equivalent frequency as the running speed. It will be shown through

simulation in the next section and experiments in Chapter IV that this proposed approach

is capable of reducing rotor vibrations, even though it differs from the calculated current.
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Figure 2.9 Calculated unbalance compensation current and proposed compensation current at slow
roll (500 RPM).
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Figure 2.10 Calculated unbalance compensation current and proposed compensation current
(1,950 RPM).
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Figure 2.11 Calculated unbalance compensation current and proposed compensation current at
critical speed (2,045 RPM).
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Figure 2.12 Calculated unbalance compensation current and proposed compensation current at
supercritical speed (2,152 RPM).
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2.3 Method of Solution and Numerical Simulation Results

A simulation is conducted to demonstrate the vibration control method described in

the previous section and to make predictions of the results of the experiment discussed in

Chapter 4. The experimental rotor (the geometry of which is discussed in later chapters)

is modeled using Timoshenko beam elements. Force is applied to certain nodes in the

form of a position feedback stiffness to account for the bushing supports. The rotor-

exciter system is simulated in MatLab Simulink, using Runge-Kutta numerical

integration. Figure 2.8 below shows the Simulink model.
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Figure 2.13 Simulink model for numerical simulation of flexible rotor with unbalance and magnetic
actuator compensation.
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In the simulation, the rotor running speed and eccentricity create an unbalance force

which acts only at the disk node. The unbalance force acts in vertical and horizontal

directions 90º out of phase. The magnitude of the unbalance is estimated from the orbit

of the actual rotor without vibration control as 1.68 gm-in. There is also a representation

of the magnetic actuator which may be turned “off” or turned “on” by removing or

applying its resulting force from the rotor via a manual switch block. Each axis of the

magnetic actuator is modeled using the nonlinear equation (2.15) for the top and bottom

magnetic coils in opposite directions. This is in blocks “MA x axis” and “MA y axis” for

the horizontal and vertical axis, respectively. Also, note that the rotor position is a factor

in the magnetic actuator force, which is taken from the magnetic pole node of the finite

element rotor. Figure 2.14 below shows the inside of one magnetic actuator axis block.

The saturation blocks mimic the real system, which does not accept negative current.

1

x force

-1

directionSaturation1

Saturation

f(u)

Force

Function

2 x current

1

x position

MA

f orce [N]

rotor position [um]

top coil current [A]

bot coil current [A]

Figure 2.14 Simulink model of magnetic actuator force corresponding to block “MA x axis” shown in
Figure 2.8.
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The current generators are set for sinusoidal signals with the same frequency as

rotation and out-of-phase. The current from each generator is shown in Figure 2.15

below.
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Figure 2.15 Sample of current signals sent to magnetic actuator in simulation.

The simulation was first run with the actuator force turned “off” and allowed to come

to steady state rotation. The position of the disk in the horizontal and vertical directions

for a characteristic span of time is shown in Figure 2.16. Note that deflection in each

direction has slightly different amplitude due to non-isotropic bearing stiffness.
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Figure 2.16 Simulated vibration of rotor at disk in horizontal and vertical directions with no

vibration control.

After a time, the magnetic actuator is switched to “on.” The vibrations of the rotor due to

unbalance are decreased. Figure 2.17 shows the rotor vibrations at the disk now with

vibration control. Note the change of scale.
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Figure 2.17 Simulated vibration of rotor at disk in horizontal and vertical directions with vibration

control.

For comparison, Figure 2.18 below shows the orbit at the disk before and after

vibration control is applied. A vibration reduction of 78% is achieved through use of the

magnetic actuator.

Larger reductions in the experiment were achieved. However, it was found that this

caused problems when passing through transient vibrations. If the magnitude of the

transient vibration happens to be larger than the residual vibrations at steady state, then

for a short period of time the actuator having a fixed phase, will be forcing the vibrations

larger. Using this nonlinear numerical simulation, it is observed that these short-moment

cases are capable of forcing the rotor outside of the actuator’s effective geometric

operational range. This causes unstable vibrations. Because of this, there is a limitation

of how much the vibrations can be canceled.



31

-100 0 100
-150

-100

-50

0

50

100

150

horizontal position (m)

v
e
rt
ic
a
l
p
o
s
it
io
n
( 
m
)

-100 0 100
-150

-100

-50

0

50

100

150

horizontal position (m)

Figure 2.18 Simulated rotor orbit at the disk with vibration control (left) and with no vibration

control (right).
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CHAPTER III

THE FLEXIBLE ROTOR TEST RIG

3.1 Overview of the rig

The experiment was performed using a commercial Bently Nevada Rotor Kit RK4

shown in (Figure 3.1(a)) and a modified active magnetic bearing (AMB) manufactured

by SKF Magnetic Bearings see (Figure 3.2(b)). The modified bearing serves as an

actuator. The Bently Nevada Corporation Rotor Kit is a versatile and compact example of

a rotating machine that demonstrates several patterns of shaft vibration by duplicating

vibration-producing phenomena found in large rotating machinery. This combination of

RK4 and AMB was found effective in demonstrating one of the features of active

magnetic actuators with vibration control.
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Figure 3.1(a) Bently Nevada Rotor Kit RK4 with active magnetic actuator.

Figure 3.1(b). Active magnetic actuator by SKF Magnetic Bearings.
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In addition to active magnetic actuator (AMA) sensors, a Bently Nevada Rotor

Proximitor Assembly was used. Signals were transmitted first to a Bently Nevada Data

Acquisition Interface Unit (DAIU) and then to the Bently Nevada Automated Diagnostics

for Rotating Equipment software (ADRE for Windows) for displaying and recording the

data collected from the probes. The probes are located near the disk with one probe in the

vertical and one in the horizontal directions.

The stainless steel shaft is 560 mm long (22 in) and 10 mm (0.394 in) in diameter. The

weight of the rotor shaft is 350 g. One steel balance disk, 76.2 mm (3 in) in diameter,

25.4 mm (1 in) thick and weight of 0.8 kg (1.764 lb), was attached at approximately one

quarter of the rotor span from the motor side. The rotor supported by two bearings. The

radial rotor of the active magnetic actuator, which is 34.3 mm (1.35 in) in diameter, 47.8

mm (1.88 in) long and weight of 0.264 kg (0.58 lb), is placed at the bearings midspan.

The rotor was driven by an electrical motor with a separate controller. The rotor is

attached to the motor by a flexible aluminum coupling, which also incorporates speed

sensors for motor control and a Keyphasor for rotor’s angle determination.

The speed is controlled by feedback pulses from speed sensors, which observes a 20-

notch wheel mounted on the rotor coupling. The motor controller let us choose desired

rotational speed that can be selected from 250 rpm to 10,000 rpm. In addition, the speed

set point can be set to ramp up or downward at a rate of up to 15,000 rpm/min. The radial

displacement of the shaft was measured in two planes (vertical and horizontal) with eddy

current transducers or proximity probes. Proximity probes measure distances between

0.254 mm (10 mils) and 2.28 mm (90 mils). The proximity probes signal is generated by

measuring voltage changes in the proximity probes circuit. The Keyphasor let us know
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the angular location (phase) of the shaft vibration response in relation to the physical

location of the event (Figure 3.2). Also, we used a keyphasor for triggering a Wavetek

5MHz LIN/LOG sweep generator that produced an injected sine wave, to be described

later in this chapter.

V

0

One
)360(Re 0volution

probe

proximity

Figure 3.2 Keyphasor sensor used to determine the phase.

3.2 Redesign of active magnetic actuator

An active magnetic actuator (AMA) was used for vibration control, its specification

presented in Appendix C.

The AMA system consists of a stator, a rotor with an internal collet, position sensors,

touchdown bearing, a control system and power amplifiers. The rotor, which is made of

laminated iron, is attached the shaft with the collet. The magnetic actuators and sensors

are located on opposite sides of the rotor in two perpendicular control axes. The control

system and amplifiers are located in a separate housing and connected by wires. The

stator is also made of laminated steel with poles on the internal diameter. Wire coils are

wound around each pole, so that the actuator is divided into four quadrants, each having

two poles. In our case, quadrants are aligned strictly vertically and horizontally.
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Opposing quadrants constitute an axis and, therefore, each actuator can be described by

two perpendicular axes. So each actuator’s axis has a pair of amplifiers to provide current

to generate an attractive magnetic force to correct the position of the rotor along that

particular axis. The amplifiers, which are of pulse with modulation (PWM) type, are high

voltage switches that are turned “on” and “off” at a high frequency, to achieve a current

in the coils requested by the controller. The stator and rotor are the active bearing

elements used to apply force to the shaft. The application of magnetic actuators is based

upon the principle that an electromagnet will attract ferromagnetic material. The sensor

ring measures radial position of the shaft and is mounted as close to the actuator as

possible. The sensors feed information about the position of the shaft to the controller in

the form of an electrical voltage. The touchdown bearing is not in contact with the rotor

during normal operation and used to protect the magnetic poles when vibration of the

shaft exceeds admissible level. See Figure3.3, which shows the components

disassembled. The touchdown bearing used on this are deep groove ball bearings

mounted in the actuator housing. The clearance between the shaft and the touchdown

bearing is approximately half of that between the magnetic bearing rotor and stator. The

original magnetic bearing was designed for 3/8 inch diameter shaft. Bently Nevada’s

Rotor Kit RK4 uses a shaft 10mm in diameter. To keep the same clearance between the

shaft and the touchdown bearing, a new bearing ring with necessary dimensions was

produced.
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Figure 3.3 Components of the active magnetic actuator.

As was mentioned above, a V-shape base from Bently Nevada was used. A special V-

shape mount was designed and manufactured for mounting the active magnetic actuator

by Revolve Magnetic Bearings, Inc. The V-shape mount is shown in Figure 3.4. Since the

V-shape rotor kit’s base is being perturbed by an unbalance force in the X-Y plane, there

always is a harmonic force applied in the vertical and horizontal directions, no matter

where the perturbation plane is. But it is possible to reduce the torque on the base by

reducing the length of the moment arm between the perturbation force (unbalance at the

disk) and the center of mass of the base.

Touchdown
Bearing with
adjusting ring

Radial
Rotor

Tapered
Sleeve

Housing with
Radial Stator
and Radial
Sensor
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Figure 3.4 V-shape actuators mount.

Since the v-shape base is symmetric about the Y-Z plane (see Figure 3.5), we have

only vertical and axial offsets that caused angular moments. The axial location of the

unbalance force is the consequence of the location of the rotor components. So, rotor

response is different in vertical and horizontal direction not only due to the gravity but

also to the vibration of the base caused by angular moments (to be shown later in thesis).

Figure 3.5 V-shape base schemes.
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To minimize these moments as much as possible, the mount was designed to keep the

center of mass of the rig as close to the axis of rotation as possible. See Figure 3.6.

Figure 3.6 Active magnetic actuator assembled on a V-shape base.

The active magnetic actuator was connected to the MB350 Controller. See Figure 3.7.

The MB350 Controller is a self-contained, fully digital, magnetic bearing control system.

It has a great number of features. But, to make this method of reducing vibration more

attractive and easy to use, only a simple one is used. The function of the controller is to

receive and process the voltage signal from the position sensors and inject and calculate a

feedback control current. Here it is used for accepting and sending externally-generated

harmonic current to the active magnetic actuator. The MB350 controller was connected

to the computer via MBScope software. MBScope is a Windows-based software program

designed to provide full access to the functional capabilities of SKF magnetic bearing

controllers. System parameters such as position and current can be monitored with an

external computer connected with a parallel cable. The software provides a rich,



40

graphical interface for viewing this information. MBScope software can also be used for

control law parameter adjustment (tuning), code loading, and detailed fault analysis.

Figure 3.7 Scheme of connection of the rig.

Two Wavetek sweep/function generators are connected to the MB350 Controller

through a MBResearch board. The MBResearch is a BNC connector-based breakout box

that provides access to signals from the magnetic bearings controllers. The signals

available include analog current and position signals, and top dead centre (TDC) pulse

signal for monitoring speed and phase. In addition, MBResearch provides the ability to

inject signals on all control axes, making the rig an excellent research tool in the areas of

control theory and rotor dynamics. The last feature was used in this experiment. The
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MBResearch board connects to the magnetic actuator controller via 68-pin SCSI

connector.

Two Wavetek sweep/function generators are taken for generating and injecting sine

waves in the vertical and horizontal directions. Model 185 and model FG3B are used in

this experiment. Wavetek generators are a precision source of sine, triangle square,

positive pulse and negative pulse waveforms as well as a DC voltage supply. The

frequency of the waveforms is manually or remotely variable from 100 Hz to 5 Hz .

Frequencies can be swept both linearly and logarithmically. The amplitude of the

waveforms is variable from 20V p-p, open circuit maximum, to -80dB. The waveforms

can be given a DC offset positively and negatively. The symmetry of the waveforms is

continuously adjustable from approximately 1:19 to 19:1. Varying symmetry provides

variable duty cycle pulses, sawtooth and asymmetrical sine waveforms. The heart of the

generator consists of the positive and negative current sources, the current switch, timing

capacitors, triangle amplifier, and hysteresis switch. The positive and negative current

sources generate equal but opposite polarity currents, which charge and discharge the

timing capacitor selected by the range selector. The current switch, which is controlled by

the hysteresis switch, selects either the positive or negative current as the input to the

capacitor. Since the capacitor is being charged by a current source, which changes

polarity periodically, the voltage across the capacitor forms a triangle waveform and

reaches predetermined positive and negative peak values. When this occurs, the output of

the hysteresis changes state and causes the current switch to select the opposite polarity

current. The output of the hysteresis switch is a square wave whose edges correspond to

the triangle peak values. The magnitude of the current produced by the current sources is
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dependent upon the output of the voltage controlled generator (VCG) amplifier. By

varying the output of the VCG amplifier, the frequency of the triangle and square

waveforms may be controlled. In order to generate sine waves, the triangle waveform is

sine shaped in the sine converter circuit with nonlinear elements. The waveforms switch

selects the waveform of interest and the portion of the signal is selected by the amplitude

potentiometer and applied to the output amplifier. The output amplifier is capable of

driving a 50 load and may be DC offset. The amplifier output is routed to a 50

attenuator which can provide 60dB of attenuation in 20dB steps. An additional 20dB of

attenuation can be obtained from the amplitude control. We used the generator in the

trigger mode. In the trigger mode, the generator is stopped by the amplifier. This

amplifier compares the output of the triangle amplifier to ground. Its output draws just

the right amount of current away from the capacitor to keep it at zero volts. This level is

known as the “trigger baseline”. When the external signal is applied to the trigger input, it

is shaped into a fast rise time pulse by squaring the circuit and is applied to the trigger

logic circuit. This circuit in turn shuts off the trigger amplifier for one cycle of the output

waveform [22].

The wave generators are triggered by the signal received from the Bently Nevada

Rotor Kit Proximitor Assembly. That signal is taken from the Keyphasor probe. Also this

signal was sent to the interface and then to an independent data acquisition system.

An Automated Diagnostics for Rotating Equipment (ADRE) system was used. The

ADRE system is specifically designed for real-time highly parallel signal processing and

presentation. This system incorporates the functionality of many types of instrumentation,

such as oscilloscopes, spectrum analyzers, filters, signal conditioners, and digital
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recorders into a single platform. The system’s real-time display capability permits it to

continuously display data independently of data being stored to permanent memory. An

ADRE data acquisition system consists of a Bently Nevada 408 Dynamic Signal

Processing Instrument, ADRE client software, and a computer capable of running ADRE

software. The Bently Nevada data acquisition interface unit (DAIU) 408 supports many

standard and non-standard input types, including both dynamic transducer signals (such

as those from proximity probes), and static transducer signals (such as process variables

from transmitters and distributed control systems). For rotating machinery, a Keyphasor

or other speed input signal can be used. A Keyphasor with a 1 TDC mark is used for

phase and a speed sensor with a 28 teeth is used for speed.

Also, we used a Tektronix TDS210 oscilloscope for observation and synchronization.

The Tektronix TDS210 oscilloscope is a graph-displaying device. It draws a graphical

representation a voltage signal. In most applications, the graph shows how signals change

over time: The vertical axis represents voltage and the horizontal axis represents time. A

third axis is indicated by the intensity or brightness of the display.

The Tektronix TDS210 oscilloscope's simple graph can tell many things about a

signal such as:

 The time and voltage values of a signal.

 The frequency of an oscillating signal.

 The “moving parts” of a circuit represented by the signal.

 The frequency with which a particular portion of the signal is occurring relative

to, other portions.



44

 Whether or not a malfunctioning component is distorting the signal

 How much of a signal is direct current (DC) or alternating current (AC) and how

much of the signal is noise.

 Whether the noise is changing with time.

The specification for the Tektronix TDS 210 oscilloscope is presented in Table 3.3.

3.3 Rotordynamic modeling

Mathematical modeling is done in order to estimate the parameters of the mechanical

system such as unbalance and to validate the assumptions made in Chapter II. Finite

element analysis is applied in modeling of the rotor-bearing system using the finite

element modeling software. A Campbell diagram is drawn and the calculation of critical

speeds and mode shapes for the rotor on journal bearings (and with active magnetic

actuator off) are made. A determination of the magnitude of the unbalance is made by

assuming static unbalance at the disk and tuning orbit to experimental data. Also included

are the prediction of static deflection of the rotor and the critical speed map.

The finite element model consists of 53 Timoshenko beam elements with eight

degrees of freedom each and takes into account rotational inertia and shear deformation.

The model is shown in Figure 3.8.
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Figure 3.8 Finite element model of rotor.

The finite element model used for the configuration of the shaft is 560 mm long (22

in) and 10 mm (0.394 in) in diameter and is supported by journal bearings. One steel

balance disk, 76.2 mm (3 in) in diameter, 25.4mm (1 in) thick, and 0.8 kg (1.764 lb) is

attached to the shaft at approximately one quarter of the bearing span (on the motor side).

The rotor of the radial active magnetic actuator is 34.3mm (1.35 in) in diameter, 47.8 mm

(1.88 in) long and has a mass of 0.264 kg (0.58 lb). The actuator rotor is placed on the

rotor at the bearing midspan. The detailed geometry (FEA input file) is presented in

Table II. The Campbell diagram for the rotor is shown in Figure 3.9.
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Table I. Finite element analysis input file.

Station Length OD ID Density
Elastic
Modulus

Shear
Modulus

Added
Weight

Added
Ip

Added
It

# m m m kg/m3 N/m2 N/m2 kg kg-m2 kg-m2

1 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
2 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
3 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
4 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
5 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
6 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
7 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
8 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
9 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
10 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
11 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
12 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
13 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
14 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
15 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0.8 0.0006 0.000334
16 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
17 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
18 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
19 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
20 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
21 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
22 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
23 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
24 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
25 0.0155 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
26 0.0239 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
26 0.0239 0.034 0.01 7639.654 1.928E+11 6.573E+10 0 0 0
27 0.0239 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
27 0.0239 0.034 0.01 7639.654 1.928E+11 6.573E+10 0 0 0
28 0.0155 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
29 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
30 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
31 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
32 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
33 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
34 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
35 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
36 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
37 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
38 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
39 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
40 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
41 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
42 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
43 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
44 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
45 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
46 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
49 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
50 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
51 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
52 0.01 0.01 0 7861.093 1.928E+11 6.573E+10 0 0 0
53 0
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Figure 3.9 Campbell diagram for rotor.

The Campbell diagram is widely used for the prediction of occurrence of the

resonances of the rotating system (see Figure 3.9). In the Campbell diagram, natural

frequency is presented as a function of running speed. As the speed increases, gyroscopic

effects cause a change in natural frequency, resulting in the bifurcation of forward and

backward whirl. The synchronous (dashed) line has a slope of 1. The critical speed can be

read at the intersection point of a unity slope line with the natural frequency line.

The natural frequencies of the rotor-bearing system determined on the Campbell

diagram are 33.4Hz, 126.6Hz, and 165.3Hz. The value of the first critical speed was

validated experimentally.

Forward
Whirls

Backward
Whirls

1X
33.4Hz

126.6Hz

165.3Hz
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Also, critical speed of the system can be determined with another tool; i.e., undamped

critical speed map. The undamped critical speed map shows the behavior of the critical

speed as a function of the actual support stiffness. The critical speed can be read at the

intersection point of the superimposed actual bearing stiffness line (175000 N/m) and

frequency mode curves. The undamped lateral critical speeds map for the rotor-bearing

system is shown in Figure 3.10.
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Figure 3.10. Undamped critical speed map.

The visualization of the mode shape at the first critical speed is shown in the Figure

3.12. The mode shape at the second critical speed is shown in Figure 3.13.

175000
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Figure 3.11 (a). First natural bending mode shape at 33.4 Hz (isometric view).
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Figure 3.11 (b). First natural mode shape at 33.4 Hz.

In Figure 3.11(a, b), we can observe the first natural bending mode shape. The biggest

deflection is on the midspan of the shaft.
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Figure 3.12 (a). Second natural mode shape at 126.6 Hz (isometric view)
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Figure 3.12 (b). Second natural mode shape at 126.6 Hz

For determining the magnitude of the unbalance of the system, a rotordynamics

response analysis was performed. The finite analysis method was also used. Unbalance

was located at the 15th node that matches to the point of the location of the balancing

disc at the experimental rig. To obtain the same response as the real rotor response at

measured nodes, the amount of 1.68 gm-in was placed at the 15th node. The response of

the station no 27 that matches to the point of the location of the rotor of the active
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magnetic actuator is shown in Figure 3.13. The response of the modeled node at the real

rig was measured by the active magnetic actuator sensors and will be shown in Chapter

IV.
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Figure 3.13. Simulated rotordynamics response plot at the location of the rotor of the active

magnetic actuator.

The response of the 11th and 12th stations that matches the points of the location of

the proximity probes is shown in Figures 3.14 and 3.15.
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Figure 3.14. Simulated rotordynamic response plot at the location of the ADRE horizontal

proximity probe.

In Figure 3.15, we can see response of the rotor modeled by the finite element method.

In this plot, the modeled response of the 11th station on real rig is the location of the

horizontal proximity probe. We can observe that the first resonant response occurs at the

speed above 2,000 rpm with the amplitude 0.26 mm p-p that agreed well with real

response plot created by ADRE with experimental data.
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Figure 3.15. Simulated Rotordynamic Response Plot at the location of the vertical ADRE proximity

probe.

From the analysis, one can validate the assumption that the system behaves like a

Jeffcott rotor. Also, some parameters of the system were verified experimentally.
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CHAPTER IV

UNBALANCE COMPENSATION EXPERIMENTAL RESULTS

4.1. Introduction

As previously stated an experiment was conducted on the rig with the following

configuration. The shaft is 560 mm long (22 in), 10 mm (0.394 in) in diameter and

supported by journal bearings. The active magnetic actuator is installed at the midspan of

the shaft and one steel balance disk, 76.2 mm (3in) in diameter, 25.4 mm (1in) thick and

0.8kg (1.764lb) is attached at approximately one quarter of the shaft’s span from the

coupling. Two Wavetek sweep/function generators are used for generating and injecting

sine wave current in the vertical and horizontal axis of the active magnetic actuator. The

function generators are triggered with a once per revolution keyphasor. To determine the

model identification, an impact hammer test was carried out. Two types of results are
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presented in this work: one for constant subcritical speed and the second for speed range

crossing the resonant first natural frequency.

4.2. Experimental Results.

4.2.1. System Identification.

The model validation of the experimental rig was performed for the configuration

described above with the active magnetic actuator turned “off” (no injection). The

transfer function of the rotor was measured using impact hammer modal testing. The

measurements were carried out on the non-rotating rotor in the vertical plane. The

calibrated impulse hammer excited the rotor at the non-drive end. The response of the

rotor was measured with an accelerometer, fixed on the rotor. The input and output were

analyzed using the Hewlett Packard 35670A dynamic signal analyzer shown in

Figure 4.1.



56

Figure 4.1 Hewlett Packard 35670A dynamic signal analyzer, impulse hummer, accelerometer and

assembled rotor removed from bearings.

Figure 4.2 shows the resulting transfer function of the experimental rig. The data

coincides very well with the prediction obtained by finite element modelling.
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Figure 4.2 Transfer function of the experimental .

4.2.2 Constant Speed

For the first set of experiment, a subcritical speed of 1,950 rpm (32.5 Hz) was chosen

and vibration measurements were collected. Then, an injection of current of the type

discussed in Chapter III was applied to the magnetic actuator. Vibration measurements

were again collected. Figure 4.3 shows the position of the response lines of the shaft in

the vertical and horizontal vibrations. Note that the position responses are 090 out of

phase. Also in this figure, it is shown that generated current will later be injected in the
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vertical and horizontal direction to decrease the position response amplitudes.

Amplitudes of the vertical and horizontal injections are 0.69 A and 0.66 A, respectively.

The frequency is the same for all of the lines and corresponds to the rotating speed of

1,950 rpm (32.5 Hz).

Figure 4.3. Uncompensated response of the shaft at magnetic actuator sensor and required current.

In Figures 4.3 through 4.7, the V13 and W13 positions represent the response of the

shaft in the vertical and horizontal planes respectively. The V13 Post Inject and W13 Post

Inject represent the current injected into the active magnetic actuator’s poles in the

vertical and horizontal axes, respectively.

Vertical
Response

Horizontal
Response

Horizontal
Injection

Vertical
Injection
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Figure 4.4 presents the statistical information of the uncompensated response and

generated current.

Figure 4.4 Statistical data of the uncompensated response and required current.

Note that the vertical sensors in the magnetic actuator are labeled V13 and the

horizontal sensors of the magnetic actuator are labeled W13. Also, note that due to the

modification of the actuator, the vertical axis is actually opposite in signs to the data

shown.

Figure 4.5 shows the orbit of the shaft measured by the proximity probes that are

located next to the balance disk (corresponding to the 12th and 11th element at the finite

element model).
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Figure 4.5 Orbit of the shaft without injection.

Figure 4.6 shows the response of the shaft and injected current in the vertical and

horizontal directions. Data was measured by the sensors on the active magnetic actuator.
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Figure 4.6 Response of the shaft after compensation and injected current.

The statistical evaluation of the results for the vertical and horizontal response and

injected current are presented in Figure 4.7. This data was also obtained from the active

magnetic actuator’s sensor rings.

Figure 4.7 Statistical data of the compensated response of the shaft and injected current.
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The response of the rotor was also measured by the ADRE proximity probes. ADRE

data, presented in Figure 4.8, shows the orbit of the shaft measured at the position next to

the balance disk, after the force was applied to the shaft by the magnetic actuator.

Figure 4.8 Orbit of the shaft with injection.

In Figures 4.6 through 4.8, a significant reduction in the vibration amplitude of the

shaft is observed. Figure 4.9 compares the vibration amplitude both with and without

current injection on the same scale. A reduction of amplitude of over 90% was achieved.
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Figure 4.9 (a, b). Orbit of the shaft( a) with current injection, b) without current injection.

In Figure 4.8, we can observe the reduction of the vibration by more than 90%. The

shaft was rotated at a constant subcritical speed of 1,950 rpm (32.5 Hz), than from a wave

generator triggered by the Keyphasor sine shape current wave was sent to the active

magnetic actuator. The amplitude of the current wave was 0.69A peak-to-peak and the

frequency was the same as the rotation of speed 32.5 Hz.
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4.2.3 Speed Ramp

The speed range experiment was conducted where the rig speed was ramped up

through resonance and constant frequency injection, which was used to control vibrations

passing through the critical speed. Figures 4.9 through 4.11 show the results of the speed

ramp experiment.

Figure 4.10. Experimental Bode plot (no injection).

Speed at which
constant speed
test was done
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Figure 4.9 shows the experimental Bode plot, generated by the ADRE system. This

Bode plot shows the rotor vibration response (magnitude and phase) as the rotor speed is

increased from 250 rpm to 2,500 rpm. Resonance occurs at 2020 rpm with an amplitude

260 µm. Vibrations are measured by the proximity probes near the disk and processed by

ADRE.

Figure 4.11. Experimental Bode plot of the rotor with injected current.
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The response of the rotor with an injected force is shown in Figure 4.10. The

experiment was conducted at a speed range up to 2,400 rpm. A wavetek signal generator

was triggered by the Keyphasor and generated a sinusoidal signal with a frequency of

33.7 Hz. We can see a 50% reduction in magnitude of the resonant response. For a better

observation, Figure 4.11 shows the response of the rotor with and without an injected

force presented on the same plot.

Figure 4.12. Response of the rotor over the speed range with and without current injection.
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Due to limitations of the equipment, it is not possible to adjust the frequency of the

injected generated signal in real time. At all speeds in the range of the experiment, the

generator produced a constant frequency wave for every revolution of the shaft. A better

result could probably be achieved if the generator could change the injection frequency

according to the rotational speed.
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CHAPTER V

CONCLUSIONS

5.1 Summary

A novel method for vibration control of a flexible rotor using a feed-forward signal

and magnetic force actuator has been studied. The method was discussed and an

analytical solution of the required magnetic actuator current, to cancel the steady state

vibrations, was found. An experimental was discussed, including the generation of a

system transfer function using a finite element method and rotordynamics modeling of

the rig. A Campbell diagram, critical speed map, unbalance response simulation, and

mode shape analysis were done. The flexible rotor model was confirmed by the impulse

hammer modal testing method. The proper current was modified to be applicable for

readily available signal generator hardware and demonstrated to be effective using

numerical simulations. The vibration control method was confirmed by operating the at

a constant speed and at changing speeds and comparing its behavior with and without the
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control method applied. An approximately 90% reduction in vibration amplitude was

achieved.

5.2 Contributions

The new method was proposed for the control of vibrations for a flexible rotor. The

method uses a magnetic actuator and feed-forward of single frequency harmonic current

signals which counteract the unbalance force. It is unique because of the simplistic

application of the harmonic control signal, but it maintains the practical effectiveness of

more complicated approaches. Because of this, the proposed method is more useful to

industry than the current methods, which require specialized hardware.

5.3 Future Research Directions

This work can be further developed in a few areas. Studies could be conducted to

examine the influence of the change of location of the actuator on the effectiveness of the

vibration control. For example, the actuator can be located at the main unbalance

location for the maximum effect, located near the bearing for minimum interference of

the machine function, or at other locations to control other modes of vibration. Also, this

method could be studied in a real world application by using an actual machine with

realistic unbalance issues as a . An important area of improvement is the creation of an

automated algorithm for injection tuning. This will speed the process and may be able to

achieve slightly greater levels of vibration cancelling.

Some problems have been analyzed in this work, and the results may now be

summarized. The following conclusions emerge.



70

A new method for the control of flexible rotor system vibration using an active

magnetic actuator was established. Going to this goal theoretical explanation of the

remodeled rotor was reviewed. This review lead to the more precise formula for force

and required current calculations.

The finite element model of the rig was developed. The modeling produced results

indicative of the actual rotor dynamic behavior.
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Appendix A

Selected ADRE Data Acquisition in Horizontal Direction

Without Injection With Injection
Speed

(RPM)
Average

Amplitude
(µm)

Average
synchronous

Amplitude
(µm)

Average
Phase

(degrees
)

Speed
(RPM)

Average
Amplitude

(µm)

Average
synchronous

Amplitude
(µm)

Average
Phase

(degrees)

1905 93.9 89.3 319 1905 48.27 47.05 52

1910 98.5 93 320 1910 50 48.64 54

1916 102 98.8 321 1917 51.6 50.4 56

1922 105 101 322 1922 54.7 53.8 59

1926 111 105 324 1934 71.7 66.8 66

1932 118 110 326 1939 84.4 76.5 73

1938 125 118 328 1945 84.4 85.1 79

1942 131 123 329 1949 107 102 95

1948 139 128 331 1955 115 115 111

1950 139 132 332 1958 115 115 111

1960 158 146 336 1960 120 117 113

1965 167 155 338 1968 123 122 123

1970 178 165 341 1975 123 123 126

1976 178 173 343 1980 128 124 136

1981 205 188 348 1985 128 124 145

1985 205 194 350 1990 128 122 150

1991 218 207 355 1996 125 118 156

1998 231 224 1 2001 125 115 158

2003 243 236 5 2008 120 110 162

2009 256 247 6 2013 116 103 165

2015 257 252 8 2017 104 92.3 167

2019 257 254 10 2020 94.8 75.5 168

2025 258 254 13 2040 59.4 32.26 157

2028 257 254 19 2042 59.4 25.33 155

2034 259 255 24 2045 24.28 4.755151BMA

2040 261 257 35 2048 36.03 21.23 296

2044 264 258 38 2052 57.1 24.2 206

2045 264 258 40 2058 92.8 40.24 158

2046 264 258 42 2064 148 67.1 122

2060 262 246 66 2070 148 101 90

2062 262 242 69 2075 222 113 80

2069 192 199 92 2081 222 133 61

2076 192 186 96 2087 72.6 27.45 89

2082 161 166 101 2093 72.6 48.07 102

2086 156 160 104 2098 144 68.9 91



78

Speed
(RPM)

Average
Amplitude

(µm)

Average
synchronous

Amplitude
(µm)

Average
Phase

(degrees)

Speed
(RPM)

Average
Amplitude

(µm)

Average
synchronous

Amplitude
(µm)

Average
Phase

(degrees)

2093 153 158 105 2105 58.6 32.97 86

2100 153 156 107 2110 90.2 51.1 94

2107 146 148 114 2117 97.6 55.2 74

2110 139 141 118 2122 96.5 42.37 98

2114 135 138 119 2128 120 62.8 91

2122 134 137 120 2129 71.2 48.45 66

2130 133 133 123 2138 52.5 51.3 73

2134 129 131 124 2140 78.5 46.89 105

2139 119 121 128 2145 82.1 44.75 88

2146 119 120 129 2150 82.1 44.37 110

2152 118 119 130 2159 99.6 52.4 91

2162 110 111 135 2164 68.7 40.77 113

2166 107 108 136 2169 67.5 40.41 115

2171 105 107 136 2172 84.9 37.59 104

2176 105 105 138 2177 84.9 43.83 115

2181 103 103 139 2185 57.6 28.8 113

2184 96.2 98.3 141 2190 57.6 37.56 117

2189 96.2 96.8 142 2193 57.9 34.87 112

2195 93.4 94.5 143 2195 57.9 33.03 124

2198 91.9 92.6 144 2200 58 37.99 118

2202 91.9 92.1 144 2204 58 33.6 124

2207 89.5 90.1 145 2207 58.1 38.83 120

2210 89.5 89.5 146 2211 63.9 34.95 126

2212 88.8 88.3 147 2223 72.3 36.69 129

2216 86.2 86.2 148 2224 72.3 37.86 117

2220 83.9 85 148 2228 68.7 39.69 115

2223 83.9 84.2 149 2232 68.7 34.36 116

2227 84.9 83.8 149 2237 62.8 40.56 125

2232 80.6 80.6 151 2241 86.9 41.64 129

2232 80.6 80.6 151 2246 51.8 34.21 136

2239 78.9 78.4 152 2249 51.8 33.02 131

2242 77.8 77.8 152 2253 51.7 34.56 135

2244 77.8 77.6 152 2257 51.7 32.1 139

2249 76.8 76.8 153 2261 52.2 34.84 136

2254 76.4 76.1 154 2264 52.8 35.17 136

2259 76.4 75.3 154 2271 54.6 34.22 132

2263 74.1 74.3 155 2276 54.6 33.03 140

2265 74.1 73.1 155

2270 72 70.8 157

2272 70.6 70.6 157
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Appendix B

Finite element Analysis Input File

lumped
mass
(lbm)

length
(in)

outer
diameter

(in)

inner
diameter
(in)

polar
moment of
inertia
(lbm/in2)

transverse
moment of
inertia
(lbm/in2)

modulus
of

elasticity
(PSI×106)

Density
(lbm/in3)

0 1.18 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
1.76 2.07 0.39 0 2.05 1.14 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 0.61 0.39 0 0 0 25 0.30
0 0.94 0.39 0 0 0 25 0.30
0 0.94 0.39 0 0 0 25 0.30
0 0.61 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 2.07 0.39 0 0 0 25 0.30
0 1.18 0.39 0 0 0 25 0.30
0 0 0.39 0 0 0 25 0.30
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Appendix C
Radial Magnetic Actuator Specifications.

Actuator Performance Specifications Imperial Units Metric Units
Static Load Capacity 12 lbf 53 N
Saturation Current 3.00 A
Current Stiffness, Ki 8.5 lbf/amp 38 N/amp
Position Stiffness, Kx 8.24+02 lbf/in 144E+05 N/m
Actuator Geometry
Number Of Poles Per Quadrant 2
Stator Stack Length 0.500 in 12.700 mm
Stator OD 2.788 in 70.822 mm
Stator ID 1.380 in 35.052 mm
Rotor OD 1.336 in 33.9344 mm
Nominal Gap 0.022 in 0.5588 mm
Small Pole Wight 0.207 in 5.245 mm
Pole Height 0.496 in 12.587 mm
Pole Centerline Angle 22.5 deg 0.394 rads
Material Properties
Material Grade Stator M-19, C-5, 0.044 0.3556 mm

Rotor Arnon 5, C-5, 0.005 0.127 mm
Saturation Flux Density 1.25 48.0

mic.ohm.cm
Relative Permeability 3000 0.07 N/cu.cm
Lamination Thickness: Stator 0.014 733 C

Rotor 0.005
Coil Specifications
Wire Gauge 23 AWG 1.923 mm
Wire type Hyslik 200 heavy/round
Coil Insulation 0 in 0 mm
Turns Per Coil 114
Coil Extension (max) 0.316 in 8.0264 mm
Quadrant Resistance (calculated) 0.912 ohm
Quadrant Inductance (nominal) 6.116 mH
Power Amplifier Specifications
Maximum Continuous Current 3 amp
Peak Current 10 amp for 2 seconds
Max DC Supply Voltage 48 V
Minimum Required Voltage 38.67 V
Minimum Load Inductance 250 micro-H
Switching Frequency 20 kHz
Position Sensor Specifications
Type Variable Reluctance
Number per axis 1
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