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SMART ROTATING MACHINES FOR STRUCTURAL HEALTH 

MONITORING  

 

 

DMITRY LEONIDOVICH STOROZHEV 

 

 

ABSTRACT 

 

     The objective of this thesis is to explore an innovative approach to the on-line health 

monitoring of rotating machinery in the presence of structural damage using active 

magnetic bearings (AMBs). First, the detailed model of the rotor with the breathing 

transverse crack is developed using finite element method. Next, the experimental data 

from the rotating magnetically levitated healthy and cracked shafts, under specially 

designed external excitation force, was collected, analyzed and compared with the 

computer simulation. The obtained results demonstrate that the presented on-line health 

monitoring technique is very effective for detection of the structural damage in rotating 

machinery, and it has a potential to be effectively applied in industry. 
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CHAPTER I 

INTRODUCTION 

 

1.1   Background and Motivation 

     Rotating machinery is a very common and widely used in the modern industrial world. 

For example, steam turbines, compressors, pumps and jet engines are the most known 

and commonly used rotating machines. A breakdown of the rotating machine may result 

in economic losses and even worse, in the death of a human being. That is why damage 

diagnostics of the rotating machinery during the operation is a very important and one of 

the most difficult engineering tasks on which the durability and safety of machine 

operation depend. 

     There are a variety of malfunctions that can cause machine failure; one of them is a 

crack. A crack is unpredictable and the most dangerous fault because it is can lead to 

abrupt catastrophic consequences. In theory, presence of a crack in the rotating machine 

will change the dynamic characteristics of the machine due to asymmetric stiffness 
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caused by a crack, but in reality it is very hard to see the difference between dynamic 

characteristics of healthy and cracked rotors while they are in operation. The defect can 

be identified only when the crack grows to a very large and unsafe size. There is a 

significant quantity of researches and publications all over the world devoted to the early 

shaft crack identification problem; however, there are still not enough reliable techniques. 

 

1.2   Literature Review 

     Detection and monitoring of fatigue cracks in the rotating machinery has been an 

interesting area of scientific study in the past 35 years. Particularly, the dynamic 

characteristics of cracked shafts and their monitoring have received the most attention in 

this area of research. There have been numerous papers written related to cracked shafts. 

     In order to conduct a study on the behavior of the rotor with a crack, a model of a 

cracked rotor has to be first derived. Gasch [Gasch, 1976] investigated the behavior of a 

simple rotor with a cross-sectional crack. He modeled a rotor with a breathing crack 

using the simplest ―Hinge Model‖. In this model the crack opens and closes abruptly as 

the rotor spins; therefore, stiffness of the shaft remains at a maximum value (closed 

crack) for the first half a rotor’s revolution and after that abruptly changes to a minimum 

value (opened crack) and remains for the second half a rotor’s revolution. Numerical 

simulations showed subharmonic resonances at 1/3X and 2/3X, which were interpreted as 

characteristics of the cracked shaft. 

     Mayes and Davies [Mayes, 1976, Mayes, 1980] presented the vibration behavior of a 

rotating shaft containing a transverse crack. They used a cosine function to describe an 

opening and closing or ―breathing‖ behavior of a cracked shaft. Moreover, they 
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demonstrated that when the angle between the crack and the unbalance lies within the 

range of -45º to 135º, the crack possesses major effects. When the unbalance is outside of 

this range, rotor demonstrates an uncracked behavior. 

     Jun et al. [Jun, 1992] derived the direct and cross-coupled stiffnesses of a rotor with a 

breathing crack using principles of fracture mechanics. It was concluded that the second 

horizontal harmonic components measured near the 2X resonant speed are the best 

characteristics of the cracked rotor.  

     Papadopoulus and Dimarogonas [Papadopoulos, 1987] demonstrated the coupling of 

bending and longitudinal vibrations of a rotating shaft due to a transverse crack. Also, 

they showed that an instability region exists for shafts with different moments of inertia 

experiencing natural vibrations.  

     Sawicki et al. [Sawicki, 2003] presented the cracked rotating shaft passing through the 

resonance with the constant acceleration and the constant driving torque. In order to 

determine the breathing of the crack, they used the angle between the vibration vector 

and the crack that allowed them to ignore the weight dominance assumption. They 

observed the presence of 1/3X and 1/2X subharmonic resonance peaks and amplification 

of 1X resonance peak when the crack exists in the shaft. Furthermore, they showed that 

the stalling effect is very sensitive to the crack; rotor can stall even with a small increase 

of a crack depth. 

     Lee and Chung [Lee, 2000] offered a nondestructive method for detecting a crack in a 

shaft using eigenfrequency test data. Sinou [Sinou, 2008] proposed the use of 2X and 3X 

super-harmonic frequency components for identifying the breathing transverse crack in a 

rotor. Xiang et al. [Xiang, 2008] developed a method of detection of a crack in a shaft 
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based on the combination of wavelet-based elements and generic algorithm. Excellent 

literature reviews on a dynamic behavior of cracked rotors and damage detection in shafts 

are done by Wauer [Wauer, 1990], Gasch [Gasch, 1993] and Dimarogonas 

[Dimarogonas, 1996]. All of these works, which address detection of transverse crack in 

rotors, do not involve external excitation technique i.e. applying an additional force on 

the spinning rotor not found during normal operation. 

     Of the works that explore active diagnostics of cracks in rotating shafts, active 

magnetic bearings (AMBs) are commonly used as force actuators because of their non-

contact nature of rotor support and inherent position sensors.   

     Aenis et al. [Aenis, 2002] introduced the model-based fault identification techniques 

using AMBs. They investigated different techniques of force measurement and possible 

accuracy of a radial AMB such as a reluctance network method, the i-s-method, and flux 

based method using Hall sensors. It was found that the Hall sensor method is the most 

accurate.  

     Zhu et al. [Zhu, 2002] theoretically analyzed the dynamic characteristics of the 

cracked rotor using AMB. They showed that the dynamic characteristics of the rotor 

system containing a transverse crack with AMBs are more complicated than the system 

with no AMBs. Also, it was concluded that the 2X and 3X super-harmonic components 

in the subcritical speed region can help to identify a crack in the rotor system with 

AMBs.  

     Nordmann and Aenis [Nordmann, 2004] used a built-in software for fault 

identification together with AMBs to measure force and frequency response of the 

centrifugal pump and to diagnose faults. 
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     Mani et al. [Mani, 2005, Mani, 2006] and Quinn et al. [Quinn, 2005] analytically and 

experimentally demonstrated a technique of health monitoring of rotor systems with the 

breathing crack using AMB as a force actuator. In their work, the rotor was supported on 

conventional ball bearings with AMB situated near the midspan of the rotor. AMB was 

used to inject a special sinusoidal excitation force. They used a multiple scale analysis in 

order to identify combinational resonances which occur due to crack. Also, it was shown 

that the cracked rotor under an excitation force at the combinational frequency 

experiences an increase in the response amplitude at the fundamental frequency as the 

depth of the crack increases.  

     Sawicki et al. [Sawicki, 2008] presented modeling, simulations, and experimental 

results obtained using the cracked rotor supported on ball bearings under external 

excitation force which was generated with additional AMB positioned near the midspan 

of the spinning rotor. It was shown that when a cracked rotor undergoes a specially 

designed harmonic excitation force, the combinational frequencies are induced, which 

can be used as indicator of presence of the crack. 

     There are many techniques for on-line detection of faults in rotating machinery. Most 

techniques use measured vibration signals and analyze orbits or Fourier spectra for a 

unique fault signature. However, recently there is a trend toward smart rotating 

machinery, where the machine can have a self-diagnostic features and full active control.  

Figure 1.1 shows the principle block diagram of the smart machine. The diagram was 

developed by R. Nordmann [Nordmann, 2001]. 
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Actual Machine

Controller SensorActuator Process

Correction Diagnostics Data Collection

Smart Machine Management

Mechatronic Machine Model

Controller SensorActuator Process

Human Operator

 

Figure 1.1 Principal block diagram of a smart machine 

 

     The block diagram shows that the smart machine consists of three parts. The first part 

consists of the actual machine during the work process, the controller, the actuator and 

sensors. The second part of the block diagram is a computer based mechatronic model of 

the actual machine which runs simultaneously with the actual machine. The third part is 

the management of the smart machine, which makes the machine ―smart‖. It gathers the 

information from the actual machine and from the model and identifies the present 

condition of the machine. Moreover, as a result of a closed-loop control, the machine can 

have self-diagnostic features, i.e. create specially designed experimental signals to check 

the parameters of the system. Based on the obtained results, prediction, detection and 

correction of faults can be possible [Schweitzer, 2005]. Excellent review on smart 

machines and their applications and capabilities was done by Maslen [Maslen, 2008]. 

     The approach presented in this thesis uses specially designed excitation force applied 

at one of the rotor supporting active magnetic bearings in order to detect a crack. In 

contrast with other published works done by Quinn et al. [Quinn, 2005], Mani et al. 

[Mani, 2006], Sawicki et al. [Sawicki, 2008], and Wroblewski [Wroblewski, 2008] the 
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undertaken approach does not require additional force actuator to generate the force 

excitation. This technology enables rotating machinery to become smart or have self-

diagnosing features.  

 

1.3   Objective and Scope of Thesis  

     The main objective of the present thesis is to validate a new approach for on-line 

detection of the transverse crack in AMB-supported shafts during operation. In addition 

to pure levitation, the rotor supporting bearing also serves as a force actuator that 

transforms current signals additionally injected inside the control loop into the 

superimposed specially selected forces which perturb suspended spinning rotor. These 

additional excitations induce combinational frequencies in the spectrum of the rotor 

response, providing a unique signature of the presence of a crack. This would be the step 

toward smart rotating machinery where no additional hardware is required for diagnostic 

purposes. The existing bearing and its sensors can be utilized for on-line structural 

damage detection. The inherent ability for sensing, information processing and actuation 

give the magnetic bearing the potential to become a key element in smart machines.  

     Chapter II describes the basics of a theoretical modeling of the Jeffcott rotor with a 

breathing transverse surface crack. The breathing behavior of a transverse crack is 

modeled based on a weight dominance assumption. Also, this Chapter presents the 

required conditions for combinational resonances that occur due to the presence of a 

crack. 
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     Chapter III presents the modeling of the experimental rotor-bearing system and its 

rotordynamic analysis. The results of the computer simulation are provided for the 

system with the healthy, 25% cracked and 40% cracked rotors.  

     Chapter IV presents a complete description of the experimental crack detection test rig 

as well as a configuration of the external signal injection and data acquisition systems. 

Experimental data is plotted for the healthy, 25% cracked and 40% cracked shafts with 

various AMB force injections. In addition, there is a section on a detailed modeling and 

control of a system with conical AMBs.  

     Chapter V presents the conclusions of the present research work. 
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CHAPTER II 

MODELING OF A CRACKED ROTOR 

2.1   Introduction 

     Fracture mechanics defines a crack as an infinitesimal defect which exists on the 

surface or within the material. A crack is unpredictable and the most dangerous fault in 

rotating machinery for the reason that it is can lead to abrupt catastrophic consequences. 

Damage of the machine can be prevented by identifying a crack on early stages of its 

propagation. There are three modes of crack deformation: 

1) Opening mode – crack deforms due to distribution of tensile stresses; 

2) Sliding mode – crack deforms due to distribution of shear stresses;  

3) Tearing mode – crack deforms due to distribution of out-of-plane shear stresses. 

Figure 2.1 shows these three modes of crack deformation. 

 

 



 

10 
 

Figure 2.1 Modes of crack deformation 

 

     The location of the crack, being lateral on the shaft, and loading conditions during 

rotation, tension/compression, make deformation mode I the most dominant for cracked 

shafts in rotating machinery and this work will concentrate on this situation.  

 

2.2   Weight Dominance 

     The presence of the crack in the rotating shaft changes the dynamic characteristics of 

the rotor as a result of the asymmetric cross-section at the crack location. Based on 

vibration amplitudes, crack may 1) always remain either opened or closed, or 2) open and 

close (i.e. breathe) once per shaft revolution. Breathing behavior of the cracked shaft is 

linked to a weight dominance condition. Figure 2.2(a) shows the model of the spinning 

cracked rotor with weight dominance. With weight dominance, static deflection of the 

rotating cracked shaft due to the gravity load is greater than the vibration amplitude of the 

cracked shaft due to unbalance force; therefore, the crack will open and close once per 

shaft revolution. On the other hand, when the vibration amplitude of the cracked rotor is 

greater than the static deflection of the rotor, then the crack will be always either opened 

or closed depending on a location and size of the unbalance. Figure 2.2(b) shows the 

Mode II Mode III
Mode I
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mechanism of the transverse crack opening and closing as a function of a shaft rotation 

due to weight dominance.  
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     (a)                                                                        (b) 

Figure 2.2 Model of the spinning cracked rotor with weight dominance (a), 

opening and closing of the crack with weight dominance (b) 
   

     The downward direction along the vertical axis serves as a reference position and 

corresponds to 0º. The crack is open for a location below the centerline of the shaft as it is 

under tension force; therefore, there is maximum reduction in stiffness of a shaft. As a 

shaft rotates, the crack starts to close until it reaches its maximum state at 180º, which 

corresponds to a fully closed state of the crack; therefore, there is no reduction of 

stiffness and shaft behaves as uncracked. When a shaft further rotates, a crack starts to 

open until it reaches a fully open state at 360º and that completes the cycle. The crack 

detection technique presented in this work is based on the weight dominance assumption 

which will be validated in section 4.1.1.  
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2.3   Models of the Breathing Crack 

     The problem of the breathing crack was initially investigated by Gasch [Gasch, 1976]. 

He modeled the breathing crack using the simplest ―hinge‖ model. In this model crack 

changes its state form closed to open and vice-versa abruptly as a shaft rotates. Namely, 

the crack is open for a first half of a shaft’s revolution and closed for the other half. This 

behavior of a breathing crack Gasch described using a steering function, which is defined 

as follows: 

                                              
1

0

for open crack
f

for closed crack


   
 

   
                                        (2.1) 

or, this function can be represented using Fourier cosine series expansion as:   

                                    
 

1 2 2 2
cos cos3 cos5 ...

2 3 5
f    

  
    

                       (2.2) 

     The hinge model is a very good depiction for small (shallow) cracks; however, it is 

not appropriate representation for deep cracks. Mayes and Davies [Mayes, 1976, Mayes, 

1980] used a cosine function to represent the model of the shaft with the deep breathing 

crack. The cosine function was used in order to account for the smooth transition between 

fully open and fully closed states of the deep crack. The crack steering function for this 

model f (θ), called the Mayes’ modified function, takes the following form: 

                                                                
1 cos

2
f





                                              (2.3) 

The opening and closing behavior of a crack using the hinge model for small crack and 

Mayes’ modified function for deep crack is shown in Figure 2.3 below.  
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Figure 2.3 Opening and closing behavior of a crack using the hinge model 

and Mayes’ modified function 

 

 

2.4   Equations of Motion of a Cracked Rotor 

     In order to conduct a rotordynamic analysis of a rotor-bearing system, it is necessary 

to choose a coordinate system that will be used to derive the equations of motion. The 

analysis may be performed either in inertial or rotating coordinate frames.  Since the rotor 

spins, it is advantageous to perform study on stiffness change due to opening and closing 

of the crack in the rotating frame, which is fixed to a rotor and rotates with it, and then 

transform obtained results to the inertial frame. Figure 2.4 shows a section of a rotor with 

a crack in inertial and rotating coordinate systems. 
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Figure 2.4 Section of a rotor with a transverse crack in inertial and rotating 

coordinate frames 

 

The origins of the inertial (x, y) and rotating (ζ, η) coordinate systems are attached to a 

bearing centerline at a point Ob. The ζ-axis of the rotational frame always remains 

parallel to a crack centerline and the η-axis remains perpendicular to crack edge; 

therefore, rotor and coordinate system (ζ, η) constantly spin at the same velocity. The 

crack position with respect to a response vector (high spot) is determined by the angle λ, 

which depends on a speed of the rotor. 

     The equation of motion of the spinning undamaged Jeffcott rotor in the inertial 

coordinate frame is: 

                                                       
st dyMq Cq Kq F F                                             (2.4) 

where M is a mass matrix, C is a damping matrix, K is a stiffness matrix, q is a position 

vector, Fst is a static component of the external force due to weight of the rotor, and Fdy is 
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a dynamic component of the external force due to unbalance. Equation (2.4) can be 

rewritten as:  

                 
2

0 0 0 1 cos

0 0 0 0 sin

m y c y k y t
mg me

m x c x k x t






               
                  

               
             (2.5) 

with 

                                                                       
y

q
x

 
  
 

                                                    (2.6) 

     Let the stiffness of the healthy rotor in rotating coordinate system be 
0

rotK  that can be 

expressed in a matrix form as follows: 

                                                             
0

0

0

rot
k

K
k





 
  
 

                                                (2.7) 

where kζ is a stiffness in ζ-direction and kη  is a stiffness in η-direction. Rotation of the 

cracked rotor with weight dominance results in a periodic change in the stiffness of the 

rotor; therefore, the stiffness of the cracked rotor can be written as: 

                                              
0 0

0 0

rot
k k

K f
k k

 

 


   

    
   

                                (2.8) 

where Δkζ  and Δkη are changes in stiffness due to presence of the crack in weaker and 

stronger axes respectively, and f (θ) is a steering function that describes the opening and 

closing behavior of the crack. In the present work the Mayes’ modified function for deep 

cracks from eq. (2.3) utilized as a steering function. From figure 2.4, the angle θ can be 

described as: 

                                                                     t                                                      (2.9) 
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Assume the rotor spins at the constant speed ω; therefore, the angle θ becomes a function 

of time and the stiffness of the cracked rotor can be expressed as a function of time as 

follows: 

                                                
0 0

0 0

rot
k k

K t f t
k k

 

 

   
    

   
                          (2.10) 

The transformation matrix is used in order to convert the stiffness matrix of the cracked 

rotor from rotational to inertial coordinate system: 

                                                    
cos sin

sin cos

t t y

t t x

  

  

     
     

     
                                  (2.11) 

or 

                                                                
y

T
x





   
   

   
                                                 (2.12) 

Thus the stiffness matrix of the cracked rotor can be written in stationary coordinate 

system as: 

                                   
0 0

0 0

T T
k k

K t T T T f t T
k k

 

 

     
           

                      (2.13) 

or 

                                            
00

00

yy

xx

kk
K t f t

kk

   
    

  
                                 (2.14) 

Substituting the stiffness matrix of the cracked rotor eq. (2.14) into the equation of 

motion of the healthy rotor eq. (2.5), the equation of motion of the cracked rotor in the 

inertial coordinate system becomes:  

              2
0 0 0 0 1 cos

0 0 0 0 0 sin

m y c y k k y t
f t mg me

m x c x k k x t






                   
                      

                        

(2.15) 
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or simply 

                                                     st dyMq Cq K t q F F                                        (2.16) 

     The crack detection technique used in the present work is based on the injection of the 

external excitation force applied on the rotor by AMB; therefore, the external force 

applied on the cracked rotor has to be included in the equations of motion. Thus the 

equation of motion of the cracked rotor can be expressed as follows: 

                                                 st dy AMBMq Cq K t q F F F                                  (2.17) 

where FAMB is an external AMB force applied on the cracked rotor. In this thesis, an 

external excitation force will be chosen to be a sinusoidal force which is described as: 

                                                         sinAMB AMB AMBF A t                                        (2.18) 

where AAMB is the amplitude and ΩAMB is the frequency of the external excitation force 

which will be discussed next. 

 

2.5   Combinational Frequency Technique for Crack Detection 

     There are many techniques for detection of faults in rotating machinery. However, 

recently there is a trend toward utilization of AMBs as force actuators for crack detection 

in rotating shafts. The idea of the combinational frequency technique is when the external 

excitation force applied on the rotor, the presence of the breathing crack generates 

combinational frequencies corresponding to the injected AMB force frequency, natural 

frequencies of the system and the rotor spin speed. Mani et al. [Mani, 2005, Mani, 2006] 

and Quinn et al. [Quinn, 2005] determined necessary conditions for combinational 

frequencies using multiple scale analysis. Combinational frequencies occur with: 

                                              for 1, 2, 3, ...in n                                   (2.19) 
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where Ω is the excitation frequency, ωi is the i
th

 natural frequency of the system, and ω is 

the rotational speed of the rotor. The external AMB force with any calculated frequency 

when applied on the rotor induces combinational frequencies corresponding to the 

injected AMB frequency, the rotor spin speed and natural frequencies of the system.
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CHAPTER III 

MODELING AND SIMULATION OF THE EXPERIMENTAL CRACKED 

ROTOR 

3.1   Introduction 

     In the present thesis the finite element method was used to develop the detailed model 

of the actual experimental rotor-bearing system with the breathing transverse crack. The 

finite element model consists of 48 Timoshenko beam finite elements with 8 degrees-of-

freedom each and takes into account rotational inertia and shear deformation effects. 

Also, the model accounts for gyroscopic effects. The rotor consists of the solid circular 

shaft, a disk and two conical magnetic rotors of AMBs. The shaft is 15.9 mm in diameter 

and its length is 660.4 mm. The disk has a diameter of 127 mm and a thickness of 30.5 

mm. Two identical conical rotors of AMBs have 13˚ cone angle and the 42.9 mm 

diameter at the center of actuation. The table with complete geometry of the finite 

element model is shown in Appendix A. Figure 3.1 shows the actual experimental rotor 

and the finite element model of the rotor.  
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Figure 3.1 The experimental rotor and the finite element model of the 

experimental rotor 

 

The disk is modeled at the 23
rd

 element, and the crack is located next to the disk at the 

22
nd

 element. AMB supports are modeled at nodes 4 and 42 and the AMB force 

excitation is modeled at the node 4. Also, the unbalance of 0.003 kg-m is modeled at the 

node 23 and a damper of value 10 N-s/m is added at the location of the disk at node 24. 

Node 8 is selected to be a position of sensing for signal processing. The rotor is 

composed of the 400 series hardened stainless steel with corresponding physical 

properties shown in Table I below. 
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                     Table I Physical properties of the experimental rotor 

 

 

 

 

 

 

                            

For the operating conditions corresponding to the tested case, the equivalent stiffness and 

damping of magnetic bearings were found to be about 2×10
5
 N/m and 500 N-s/m 

respectively. The method for determination of the effective stiffness and damping of 

active magnetic bearings comprehensively described in Appendix D. 

 

3.2   Rotordynamic Analysis of the Modeled System 

     The main aspect of the rotordynamic analysis is to determine critical speeds of the 

rotor-bearing system that help to identify the operational speed region of the system and 

possible mode shapes. The rotordynamic analysis of the modeled rotor-bearing system 

was performed using XLRotor software version 3.75 developed by Rotating Machinery 

Analysis, Inc. XLRotor software is based on the finite element method. The analysis 

consists of the Campbell diagram, undamped critical speed map and mode shapes of the 

rotor. The Campbell diagram presents the number of critical speeds and change of 

frequency modes due to induced gyroscopic effects with respect to the rotational speed 

of the rotor. The resonance speeds for backward and forward whirls can be identified at 

Physical Property Value 

Density 7800 kg/m
3
 

Modulus of Elasticity 200 GPa 

Shear Modulus 83 GPa 

Poisson Ratio 0.3 

Mass of the Disk 3.18 kg 
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points of intersection of the dashed line with lines corresponding to each frequency 

mode. The Campbell diagram for the modeled rotor-bearing system is shown in Figure 

3.2 below. 

 

Figure 3.2 Campbell diagram for the modeled rotor 

 

The natural frequencies of the modeled rotor-bearing system were found to be 29.4 Hz, 

74.7 Hz, 104.6 Hz, and 302.7 Hz. These values agreed well with experimental results 

obtained using actual rotor-bearing system and which are shown in the following Chapter 

IV. 

     The undamped critical speed map is another tool which helps to identify critical 

speeds of the system. The undamped critical speed map shows the behavior of the critical 
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speeds as a function of the actual support stiffness. The critical speeds can be obtained by 

superimposing actual bearing stiffness over frequency mode curves. Figure 3.3 shows the 

undamped critical speed map of the modeled rotor-bearing system. 

 

Figure 3.3 Undamped critical speed map 

 

From the undamped critical speed map, in order for critical speeds values to be equal to 

ones found in Campbell diagram, the bearing stiffness has to be about 2×10
5
 N/m. This 

value of the stiffness is in well agreement with the bearing stiffness value found using 

method described in Appendix D. This confirms the method of determination of stiffness 

coefficients of the AMB.  
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     The mode shape is a pattern that describes the deflection shape of the system due to 

vibration. Figure 3.4 shows the visualization of the first four mode shapes of the modeled 

rotor calculated at a rotational speed of 1560 rpm. 

 

 

Figure 3.4 Mode shapes of the rotor 

 

Due to low stiffness, active magnetic bearings are not rigid supports but have some 

flexibility; therefore, the first two modes are rigid-body modes and next two are flexible 

modes.  

 

3.3   Computer Simulations of the Modeled System 

     The crack modeling procedure presented in section 2.4 was applied to the finite 

element model in order to simulate a behavior of the breathing crack. The reduction of 

stiffness due to fully-open 25% diameter crack was modeled by reducing the cracked 

element stiffness by 25% in the direction perpendicular to the crack edge and 12.5% in 

the direction parallel to the crack edge. The reduction of stiffness due to fully-open 40% 

First Rigid Mode Second Rigid Mode

First Flexible Mode Second Flexible Mode
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diameter crack was modeled by reducing the cracked element stiffness by 40% and 20% 

in the directions perpendicular and parallel to the crack edge respectively. MATLAB 

software was used to perform simulations. In order to be able to compare the simulated 

and experimental results, computer simulations were conducted for the operating 

conditions and parameters corresponding to the experimental case.  The spin speed of the 

rotor for all simulation trials was 1560 rpm (26 Hz). Combinational frequencies for first 

three critical speeds were calculated using equation (2.19) and provided in Table II 

below. Note that combinational frequencies listed in this table were calculated using 

experimentally extracted natural frequencies which are discussed in Chapter IV. 

 

          Table II Calculated combinational frequencies 

n 

value 

Running Speed 

(Hz) 

Combinational Frequency 

(Hz) 

First Rigid 

ωn1 = 29.7 Hz 

Second Rigid 

ωn2 = 70.6 Hz 

First Flexible 

ωn3 = 102.1 Hz 

-4 26 133.7 174.6 206.1 

-3 26 107.7 148.6 180.1 

-2 26 81.7 122.6 154.1 

-1 26 55.7 96.6 128.1 

0 26 29.7 70.6 102.1 

1 26 3.7 44.6 76.1 

2 26 22.3 18.6 50.1 

3 26 48.3 7.4 24.1 

4 26 74.3 33.4 1.9 

5 26 100.3 59.4 27.9 

6 26 126.3 85.4 53.9 

7 26 152.3 111.4 79.9 

8 26 178.3 137.4 105.9 
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     Frequencies of 18.6 Hz, 22.3 Hz, and 50.1 Hz, corresponding to n = 2, were used as 

excitation frequencies for the first, second and third injection trials respectively. The 

amplitude of the externally injected sinusoidal AMB force was chosen to be 5 N which 

corresponds to the amplitude of the external excitation force used in the experimental 

trials.  

     Since the vibration signals of the complex structures often contain more than one 

frequency component, it is convenient to analyze these signals in the frequency domain. 

In order to analyze the vibration signal in the frequency domain, the Fast Fourier 

Transform (FFT) spectrum analysis was used. Figures 3.5, 3.6 and 3.7 show simulated 

frequency responses of the healthy, 25% cracked and 40% cracked rotors respectively.  
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Figure 3.5 Simulated frequency responses of the healthy rotor at spin speed               

ω = 26 Hz without and with excitation force of 5 N with various frequencies 
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Figure 3.6 Simulated frequency responses of the 25% cracked rotor at spin speed     

ω = 26 Hz without and with excitation force of 5 N with various frequencies 
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Figure 3.7 Simulated frequency responses of the 40% cracked rotor at spin speed     

ω = 26 Hz without and with excitation force of 5 N with various frequencies 
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     In Figure 3.5 for the case with no external excitation force (ΩAMB = 0), the only 

response is at the rotor running speed of 26 Hz or 1X. In this case, the healthy rotor is 

excited only by a rotating unbalance force at frequency of 26 Hz; therefore, there is only 

one peek at 26 Hz. The other three plots in this figure represent the cases with different 

frequency injections. Now, each plot shows the frequency response of the uncracked 

rotor, which contains the corresponding injection frequency as well as the rotor spin 

frequency. 

     In Figure 3.6 for the case without an external excitation force, the frequency response 

of the 25% cracked rotor consists of the rotor spin frequency and its harmonics (2X, 3X, 

4X, 5X) due to the presence of the crack. The other three plots in this figure correspond 

to the cases with 18.6 Hz, 22.3 Hz and 50.1 Hz frequency injections. These three plots 

present the frequency responses with each containing a number of unique combinational 

frequencies, in addition to the corresponding injection frequency, rotor spin frequency 

and multiples of the spin frequency. These combinational resonances provide unique 

signatures of a crack.  

     Figure 3.7 shows the frequency responses of the 40% cracked rotor. The frequency 

responses of the 40% cracked rotor are similar to the corresponding frequency responses 

of the 25% cracked rotor with a small difference in response amplitudes. Response 

amplitudes of the 40% cracked rotor are higher than the corresponding amplitudes of the 

25% cracked rotor, which was expected due to the higher asymmetric stiffness in 40% 

cracked rotor when compared with the 25% cracked rotor. 
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CHAPTER IV 

EXPERIMENTAL SETUP, PROCEDURE AND RESULTS 

 

4.1   Experimental Crack Detection Test Rig 

     The experimental crack detection rotor test stand employed in this study was 

manufactured by SKF Magnetic Bearings a Unit of SKF Canada Limited. The 

experimental crack detection rotor test rig is shown in Figure 4.1 below. 

 

Figure 4.1 Experimental crack detection test rig 
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     The rig consists of an aluminum base plate, 48 VDC brush type motor, a shaft, a disk, 

two identical conical AMBs equipped with two conical hydraulic rotors. The shaft 

connected to the motor using a lightweight, flexible coupling which allows axial and 

radial displacements of the shaft. Figure 4.2 shows the general assembly of the 

experimental crack detection rotor test rig with some dimensions. Note that dimensions 

are given in millimeters (mm).  
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Figure 4.2 General assembly of the crack detection test rig 

 

 

4.1.1 Rotor 

     The experimental rotor consists of the shaft, two conical magnetic rotors and a disk. 

The solid circular shaft is 15.9 mm in diameter and 660.4 mm in length. The shaft is 

composed of the 416 hardened stainless steel. The disk has a diameter of 127 mm and a 

thickness of 30.5 mm. The mass of the disk is 3.18 kg. Two identical conical rotors of 

AMBs composed of Arnon 5 and have 13˚ cone angle and 42.9 mm diameter at the center 
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of AMB actuation. Note that the present study on breathing crack is based on the weight 

dominance assumption. In order to show that the current configuration of the crack 

detection test rig falls under the weight dominance condition, the commercial computer-

aided design software SolidWorks was utilized. Figure 4.3 shows the visualization of the 

static deflection of the rotor supported on active magnetic bearings. 

 

Figure 4.3 Static deflection of the rotor due to gravity 

 

The peak amplitude of the static deflection of the rotor at the crack location is found to be 

roughly 160 µm. The peak amplitude of the experimentally obtained orbit of 40% 

cracked shaft was found to be approximately 70 µm; therefore, the current configuration 

of the crack detection test rig corresponds to the weight dominance condition. 

     In the present experimental work, in order to imitate a behavior of a real lateral crack, 

two shafts, one with a narrow lateral notch having the depth equal to a 25% of the shaft 

diameter and one with a narrow lateral notch having the depth equal to a 40% of the shaft 

diameter, were tested. Both notches of approximately 115 µm in width were made in the 

shafts at the bearing midspan using an electrical discharge machine (EDM). In theory, an 

actual crack would have a width of zero; therefore, a stainless steel shim was inserted into 

the 25% and 40% EDM cuts in order to mimic the opening and closing behavior of the 

160 µm 
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real crack as close as possible. Magnified images of the EDM cut with no shim and with 

the inserted shim are shown in Figures 4.4(a) and 4.4(b) respectively. 

114 m

                                        (a)                                                                      (b) 

Figure 4.4 Magnified view of the shaft with the EDM cut: (a) with no shim and (b)  

with a shim 

 

 

4.1.2 Conical AMBs 

     Conical AMBs serve as rotor supporting bearings as well as actuators for injection of 

the specially designed excitation force. The main advantage of conical AMBs over radial 

AMBs is that conical bearings can provide radial and axial forces simultaneously; 

therefore, there is no need for an extra AMB for axial support of the rotor. Each conical 

bearing consists of a cone-shaped stator based on an 8-pole radial design, a cone-shaped 

rotor with 13˚ cone angle, and a sensor ring equipped with four variable reluctance type 

position sensors. In addition, each AMB has a backup touchdown ball bearing which is 

used when the AMBs are inactive or during an upset condition. Both stator and rotor 

consist of a stack of laminated layers which are used to reduce eddy current losses and to 
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improve the response of the bearing. Figures 4.5 and 4.6 show a cone-shaped rotor and a 

conical AMB housing respectively. 

 

Figure 4.5 Cone-shaped AMB rotor 

 

Figure 4.6 Conical AMB housing 

 

     Electromagnetic forces are applied to the rotor along two perpendicular axes V and W, 

which are aligned 45 from the vertical. The line of action of these forces is inclined at 

13 from the plane perpendicular to the bearings centerline due to a cone angle of the 

W axis V axis 
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magnetic bearing rotor. Figure 4.7 illustrates the convention used for axes orientation in a 

5-axis magnetic bearing system. 

Z1
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Non-Drive 
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W4V4

V2

 

Figure 4.7 Axes orientation in a 5-axis magnetic bearing system 

 

The static load capacity of AMBs is 266 N and a dynamic load capacity is 48 N at 1000 

Hz. The nominal air gap of the magnetic bearings is 381 µm and the gap between the 

auxiliary bearings and the landing sleeves on the shaft is 190 µm. 

 

4.1.2.1   Modeling and Control of the System with Conical AMBs 

     Consider a symmetrical rigid rotor supported simultaneously laterally and axially 

using two conical AMBs, as shown in Figure 4.8. 
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Figure 4.8 Configuration of a rotor suspended on conical AMBs 
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From the Newton’s second law, the equations of translatory motion of the rotor can be 

derived in the following form:   

                         

 

 

   

1 3 2 4

1 3 2 4

1 1 3 3 2 2 4 4

2
cos

2

2
cos

2

sin sin
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

 

    

    

       

W W W W

V V V V

V W V W V W V W

mW F F F F mg

mV F F F F mg

mZ F F F F F F F F

      (4.1) 

while the equations of rotary motion of the rotor can be obtained from Euler’s equations 

as: 
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W ca W ca

I I F l r F r l

F l r F r l

I I F l r F r l

F l r F r l cos

         (4.2) 

where: m - mass of the rotor, FVj and FWj - electromagnetic forces acting on a rotor in j-

direction (j = 1, 2, 3, 4), ψ - cone angle of the rotor, l1 and l2 - distances between the rotor 

mass center and the center of actuation of first and second AMBs respectively, g - 

gravitational constant, ω - rotational speed of the rotor, rca - radius of the rotor at the 

center of AMB actuation, It and Ip - transverse and polar moments of inertia respectively.  

     Based on the electromagnetic theory, the force produced by a single electromagnet of 

a radial bearing with four pole pairs can be expressed as [Schweitzer, 1993]: 

                                                     

2

2

0

1
cos

4
AMB

I
F N A

s
 

 
  

 
                                     (4.3) 

where: µ0 - magnetic field constant, N - number of turn per coil, A - the area of a pole 

face, 𝜙 = 22.5˚ - pole centerline angle, I - coil current, and s - air gap between the stator 

and the rotor.  
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Equation (4.3) demonstrates that the electromagnetic force is a function of the coil 

current and the air gap; therefore, in order to derive magnetic forces generated by conical 

AMB, the changes in coil currents and air gaps have to be determined.  

     Consider the exaggerated motion of the rotor, as shown in Figure 4.9. Assume that the 

rotor’s displacements from the equilibrium position are very small such that sin α ≈ α and 

sin β ≈ β. 
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Figure 4.9 One-plane motion of the rotor suspended on two conical AMBs 

 

Based on Figure 4.9, the air clearances between the rotor and the stator of the system with 

conical AMBs can be described as follows: 
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                           (4.4) 

where: s0 - nominal air gap, ΔV, ΔW, and ΔZ - lateral displacements of the rotor along V, 

W, and Z-axes respectively, and α and β - angular displacements of the rotor around W 

and V-axes respectively.  

     In order for AMBs to create a stable levitation of the rotor, the closed-loop control 

algorithm is implemented; therefore, any change of a rotor position results in change of 

coil currents.  The levitation of the rotor using AMBs is most commonly performed with 

class A operation mode, i.e. a bias current with a constant value is applied to all coils and 

control current is added to a bias current in one coil and subtracted in the opposite coil.   

Since the configuration of electromagnets is identical for both levitation planes and the 

levitation planes mutually perpendicular, the same control principle applies to each plane. 

The schematic diagram of a one-plane control of the rotor suspended on two conical 

AMBs with class A operation mode is shown in Figure 4.10 below.
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Figure 4.10 Schematic diagram of a one-plane control of the rotor suspended on 

conical AMBs 

 

The shaft is affected by the forces generated by each magnetic pole of conical AMBs. 

Using conical AMBs, the magnetic force is divided into radial and axial force 

components that depend on a cone angle of the rotor; therefore, the radial position of the 

rotor is controlled by a radial component of the magnetic force and the axial position is 

controlled by an axial component of the magnetic force. As shown in Figure 4.10, each 

axis of levitation has its own controller. Based on position data received from the 

corresponding sensors, each controller calculates the amount of control current that needs 

to be added to or subtracted from the bias current in each coil. The total bias current, i.e. 

the sum of the radial and axial bias currents, is applied to all coils in both conical AMBs. 

At the same time, the axial control current is added to a total bias current in all coils of 
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one conical AMB and subtracted from a total bias current in all coils of another conical 

AMB such that the axial displacement of the rotor is controlled, whereas the radial 

control current is added in one coil and subtracted in the opposite coil of both AMBs such 

that the radial displacement of the rotor is controlled. In such manner, the rotor system 

with five degrees-of-freedom supported on two conical AMBs is fully controlled using 

only four magnetic coil pairs. As a result, coil currents can be expressed in the following 

way: 
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                                       (4.5) 

with  

                                                                     
0 0 0

r aI I I                                                 (4.6) 

where: 
0 0andr aI I  - radial and axial bias currents,  and andr a

c cI I  - radial and axial control 

currents respectively.  

     Substituting each corresponding term of equations (4.4) and (4.5) into equation (4.3), 

the forces produced by a system of two conical AMBs with four pole pairs each, as 

shown in Figure 4.8, can be written as: 
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     The system of equations (4.7) was implemented in MATLAB/Simulink software in 

order to simulate the behavior of the experimental rotor magnetically supported using two 

conical AMBs and confirm the stability of the experimental system. The simulink model 

of the rotor suspended on conical AMBs is shown in Figure 4.11 below.  

 

Figure 4.11 Simulink model of the rotor supported on conical AMBs 
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Figures 4.12 and 4.13 show simulink models of the conical AMBs and the bias current 

injection respectively. Theses figures correspond to blocks ―Conical AMBs‖ and ―Bias 

Current Injection‖ in Figure 4.10. 

 

Figure 4.12 Simulink model of the conical AMBs 

 

 

Figure 4.13 Simulink model of the bias current injection 
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4.1.2.2   PID Control of the Rotor System with AMBs 

     The simulated and experimental rotor-bearing system has five degrees-of-freedom, i.e. 

axis of levitation, each with its own controller. The controller transfer function G (s) 

consists of the classical PID controller, low-pass filter and two notch filters. The transfer 

function of the PID controller in the Laplace domain can be expressed as:  

                                                     I
PID P D

K
G s K K s

s
                                       (4.8) 

where KP is a proportional gain, KI is an integral gain, and KD is a derivative gain of the 

PID controller. These three parameters were tuned in order to achieve a stable levitation 

performance of the experimental rotor.  

     A low-pass filter is a filtering device that passes signals with low-frequency 

components and attenuates signals with frequency components above selected cutoff 

frequency. The transfer function of a low-pass filter in the Laplace domain is given by: 

                                               
2

2 22

cutoff
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LP cutoff cutoff

G s
s s



  


 
                              (4.9) 

where ωcutoff is a cutoff frequency and ζLP is a damping ratio of a low-pass filter. 

     A notch filter is a device that passes all frequencies unchanged except the ones in a 

narrow frequency band that affect the stability of the system. A notch filter attenuates 

signals with unwanted frequencies to a very low level. The transfer function of the notch 

filter in the Laplace domain can be written as follows: 

                                                
2 2

2 22

notch
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s
G s

s s
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                              (4.10) 

where ωnotch is a notch frequency and ζN is a damping ratio of the notch filter.  
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     The overall transfer function of the controller, which consists of all the above 

components connected in series, can be expressed as  

                                                       PID LP N TG s G s G s G s K                             (4.11) 

where KT is a total gain of the controller that works as a scaling factor of the entire 

control loop. Table III lists controller parameters that were used in the simulation and 

experiment. 

 

 Table III Controller parameters

                               

 

 

 

Figure 4.14 shows the bode plot of the developed controller that was used for levitation 

of the simulated and experimental rotors. 

Controller Parameter 
Value 

V13 axis W13 axis V24 axis W24 axis Z12 axis 

Bias Current (A) 1.2 1.2 1.2 1.2 0 

Proportional Gain (A/µm) 70 70 70 70 100 

Integral Gain (A/µm-s) 100 100 100 100 100 

Derivative Gain (A-s/µm) 0.12 0.12 0.12 0.12 0.2 

Total Gain 0.00006 0.00006 0.00006 0.00006 0.00002 

LP Cutoff Frequency (Hz) 1200 1200 1200 1200 1200 

LP Damping Ratio 0.707 0.707 0.707 0.707 0.707 

Notch 1 Frequency (Hz) 300 300 300 300 0 

Notch 1 Damping Ratio 0.4 0.4 0.4 0.4 0 

Notch 2 Frequency (Hz) 500 500 500 500 0 

Notch 2 Damping Ratio 0.4 0.4 0.4 0.4 0 
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Figure 4.14 Bode plot of the developed controller 

 

     In order to verify the stability and robustness of the simulated rotor magnetically 

suspended on conical AMBs, a force input in a form of an impulse was applied to a non-

rotating rotor at the V-axis of the non-drive end bearing at t = 1 second and the response 

was measured at the same location. The simulated impulse response of the magnetically 

levitated non-rotating rotor is shown in Figure 4.15. Also, an impulse was applied to a 

simulated rotor spinning at speed 1560 rpm and the impulse response of the rotor is 

shown in Figure 4.16.  
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Figure 4.15 Impulse response of the simulated non-rotating rotor suspended on 

conical AMBs with impulse applied at the V-axis of the non-drive end bearing at t = 

1 second  

 

 

Figure 4.16 Impulse response of the simulated rotor suspended on conical AMBs at 

rotor spin ω = 1560 rpm with impulse applied at the V-axis of the non-drive end 

bearing at t = 1 second  
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     Figure 4.17 shows simulated and measured time responses of the levitated rotor 

running at the speed 1560 rpm without and with an external harmonic force of 5 N 

applied at 18.6 Hz at the V-axis of the non-drive end bearing. For all cases, responses 

were measured with a position sensor located next to the non-drive end AMB and 

oriented along V-axis. For illustration purposes a time response only for one injection 

frequency is presented. The responses are very similar although the vibration amplitudes 

in the simulated case are slightly higher. This also applies for cases with 22.3 Hz and 

50.1 Hz frequencies of injection.  

 

Figure 4.17 Simulated and experimental time responses of the rotor suspended on 

conical AMBs at spin ω = 1560 rpm: (a, b) without an additional harmonic force 

and (c, d) with an additional harmonic force of 5 N at 18.6 Hz applied at the V-axis      

of the non-drive end bearing 
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     Figures 4.18 and 4.19 show simulated and measured orbits of the levitated rotor 

running at the speed  1560 rpm without and with external harmonic force respectively. 

The orbits were measured with a pair of sensors located next to the non-drive end AMB. 

The orbits are similar although the amplitudes in the W-axis in the simulated case are 

slightly higher than corresponding amplitudes in the experimental case. 

           
                                    (a)                                                                       (b) 

Figure 4.18 Orbits of (a) simulated and (b) experimental rotors suspended on 

conical AMBs at spin ω = 1560 rpm without an additional harmonic force  

 

           
                                     (a)                                                                      (b) 

Figure 4.19 Orbits of (a) simulated and (b) experimental rotors suspended on 

conical AMBs at spin ω = 1560 rpm with an additional harmonic force of 5 N          

at 18.6 Hz applied at the V-axis of the non-drive end bearing 
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Figure 4.17, 4.18 and 4.19 demonstrate a good agreement of the model with the 

experimentally extracted data indicating that the method of modeling a system with 

conical AMBs described earlier is accurate to reproduce the experimental behavior of the 

shaft magnetically levitated using conical AMBs. 

 

4.2   Experimental System Setup 

     The experimental system used in the present work consists of different components. 

The layout of the system is shown in Figure 4.20 below. 
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Figure 4.20 Experimental System Layout 
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     The experiment was performed on the crack detection test rig. The magnetic levitation 

of the experimental rotor and its rotational speed are controlled using the MB340g4-

ERX
™

 fully-digital, magnetic bearing controller. The controller is programmed with a PC 

which is equipped with the MBScope 2000
™

 version 4.0x software. The software consists 

of different graphical Tools, which are used to monitor and control system performance 

parameters such as position, current, and rotational speed. In addition to the levitation and 

rotation hardware, two independent systems are used. The first system is the ADRE data 

acquisition system which consists of the ADRE
®
 408 DSPi (Dynamic Signal Processing 

Instrument) and a PC equipped with the ADRE
®

Sxp software. This data acquisition 

system collects 6 channels of experimental data; five from Bently-Nevada
®
 3300 eddy 

current probes (four position data and one keyphasor data) and one from the Bently-

Nevada
® 

330400 accelerometer. One pair of position probes is located next to the non-

drive end AMB and another pair is located at the bearing midspan. Both pairs of position 

probes are oriented along two perpendicular axes V and W, which are aligned 45 from 

the vertical. The accelerometer is positioned on top of the non-drive end AMB housing. 

The second system is the dSPACE control prototyping system, which is used for external 

signal injection and connected to the MB340g4-ERX
™

 controller via a BNC connector 

module called MBResearch
™

. The dSPACE DS1103 PPC controller board is 

programmed by a PC via ControlDesk
®
 software which allows MATLAB/Simulink 

external excitation force model to be implemented in real time. In order to create the 

external excitation force, a sinusoidal current of particular amplitude and frequency is 

superimposed on the total current of the levitated rotor via the V-axis of the non-drive 
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end bearing using dSPACE. With the complete experimental system setup, the test matrix 

is developed and it is shown in Appendix B.  

 

4.3   System Identification of the Rotor 

     The system identification of the healthy experimental rotor was performed for two 

cases: 1) free-free rotor and 2) magnetically levitated rotor. The transfer function of the 

free-free rotor was measured using the impact hammer modal testing. A photo of an 

impact hammer test is shown in Appendix E. Particularly, the experimental rotor was 

suspended in the air using thin nylon wire and struck with the force-instrumented 

hammer. The resultant motion of the rotor was measured with an accelerometer fixed on 

the rotor and analyzed using the HP 35670A Dynamic Signal Analyzer. Figure 4.21 

shows the transfer function of the experimental rotor obtained using an impact hammer 

test and transfer function of the FE model of the rotor. 

 

Figure 4.21 Transfer functions of the modeled and experimental free-free rotors 
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Figure 4.21 demonstrates a good agreement of a FE model with experimentally extracted 

data. 

     The transfer function of the levitated non-rotating rotor was measured using the 

Analyzer Tool of the MBScope software package. A sinusoidal current of 0.05 A 

amplitude was injected to a levitated rotor via V-axis of the non-drive end bearing over a 

0 to 600 Hz frequency range and the amplitude of the rotor response was measured at 

each frequency. The transfer function between current disturbance and response of the 

rotor both measured at the same axis is shown in Figure 4.22 below. 

 

Figure 4.22 Bode plot of the experimental rotor suspended on conical AMBs 
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of 29.7 Hz, 70.6 Hz, and 102.1 Hz are each utilized in the equation (2.19) to calculate the 

combinational frequencies used in the present crack detection work. The calculated 

combinational frequencies were previously shown in Table II located in Chapter III. 

Overall there are many frequencies that can be used as excitation frequencies; therefore, 

frequencies of 18.6 Hz, 22.3 Hz, and 50.1 Hz, corresponding to n = 2, were selected as 

excitation frequencies for the first, second and third injection trials respectively. 

 

4.4   Experimental Results 

     For all presented experimental results the rotor is levitated on two AMBs and rotating 

at constant speed of 1560 rpm, which is equivalent to 26 Hz. The PID controller with 

notch and low-pass filters is implemented to provide stable and quiet levitation of the 

rotor over the range of speeds. The controller parameters were previously shown in Table 

III. The experimental data is obtained with two pairs of eddy-current position sensors. 

One pair of position sensors is located at the bearing midspan next to a crack location and 

another pair is positioned next to the non-drive end AMB, see Figures 4.1 and 4.2. Both 

pairs of position sensors are oriented along two perpendicular axes V and W, which are 

aligned 45 from the vertical. 

     For all experimental trials, the combinational frequency peaks were found to be more 

apparent in the data collected from the sensors aligned in plane with the axis used for 

excitation force injection; therefore, only data obtained from the sensors oriented in the 

V-axis is presented in this work. 

     In order to create an external excitation force, the external sinusoidal current of 0.12 A 

amplitude with particular frequency is added to the levitation current (bias plus control) 
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in the V-axis of the non-drive end bearing; therefore, the external excitation force is 

generated along the V-axis of the non-drive end AMB. The line of action of this force is 

inclined at 13 from the plane perpendicular to the bearings centerline due to the cone-

shape of the magnetic bearing rotor. As it was mentioned earlier, frequencies of 18.6 Hz, 

22.3 Hz, and 50.1 Hz, corresponding to n = 2, were selected as excitation frequencies for 

the first, second and third injection trials respectively. Based on the relationship between 

current and force, the amplitude of the external excitation force is estimated to be 5 N. 

For more details on the relationship between current and force see Appendix C.  

     Figure 4.23 shows four cases of the total magnetic force acting on the spinning rotor 

which is calculated in a similar manner as equation (4.7) using the total current and 

position data collected experimentally with the multimeter and local AMB proximity 

probes.  

 

Figure 4.23 Total magnetic force 
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4.4.1 Healthy Shaft 

     The first set of experimental trials is presented for the system operating with the 

healthy shaft. It should be noted that the frequency responses for all experimental trials 

are plotted on a logarithmic scale in order to better visualize the presence and the 

amplitudes of the frequency peaks which may not be observable on a linear scale.  

     Figure 4.24 represents the case of the healthy rotor without and with an external 

excitation force injection with the response measured at the bearing midspan. The first 

plot in Figure 4.24 shows the frequency response of the rotating rotor without an external 

excitation force. The frequency response consists of the rotor spin frequency of 26 Hz, 

also known as the 1X component, and its harmonics (2X, 3X, 4X, 5X). The 1X 

component is present in the response of the system due to unbalance existing in the 

system. The 2X, 3X, 4X, and 5X frequency components are present in the rotor response 

due to non-linearities caused by imperfections of the experimental system. Such 

imperfections may include a bow of the shaft, misalignments in the coupling, and some 

looseness between components of the experimental system. The other three plots in this 

figure represent the cases with 18.6 Hz, 22.3 Hz and 50.1 Hz frequency injections. Now, 

each plot shows the frequency response which contains the corresponding injection 

frequency as well as the rotor spin frequency and its multiples. 

     Figure 4.25 shows the frequency responses of the healthy rotor without and with an 

external excitation force injection with responses measured using the sensor positioned 

next to the non-drive end AMB. The frequency responses for this case are similar to the 

corresponding frequency responses measured at the bearing midspan with the slight 

difference in amplitudes of 2X and 4X vibration peaks.  
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Figure 4.24 Experimental frequency responses of the healthy rotor (rotor spin speed 

ω = 26 Hz and excitation force of 5 N with various frequencies, response measured 

at the bearing midspan)  
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Figure 4.25 Experimental frequency responses of the healthy rotor (rotor spin speed 

ω = 26 Hz and excitation force of 5 N with various frequencies, response measured 

next to the non-drive end bearing)  
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4.4.2 25% Cracked Shaft 

     The second set of experimental trials is presented for the system operating with the 

25% cracked shaft. Figure 4.26 represents the case of the 25% cracked rotor without and 

with an external excitation force injection with the response measured at the bearing 

midspan. The first plot in Figure 4.26 shows the frequency response of the rotating rotor 

without an external excitation force. As in the case with the healthy rotor without an 

external excitation force, the frequency response of the 25% cracked rotor also consists 

only of the rotor spin frequency of 26 Hz and its multiples of 2X, 3X, 4X, 5X. The only 

difference between frequency responses of the healthy and 25% cracked rotors for the 

case without external AMB excitation is a small increase in the amplitudes of the 

response peaks. The increase in the response amplitudes of the 25% cracked rotor is 

insignificant and not applicable for crack detection. The other three plots in this figure 

correspond to the cases with 18.6 Hz, 22.3 Hz and 50.1 Hz frequency injections. Now, in 

addition to the injection frequency, rotor spin frequency and multiples of the spin 

frequency, each plot shows a number of unique combinational frequency peaks due to the 

presence of the crack, although their amplitudes are insignificant.  

     Figure 4.26 shows the frequency responses of the 25% cracked rotor without and with 

an external excitation force injection with responses measured using the sensor 

positioned next to the non-drive end AMB. The frequency responses for this case are 

similar to the corresponding frequency responses of the 25% cracked rotor measured at 

the bearing midspan with the slight difference in quantity of combinational frequency 

peaks and their amplitudes.  
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Figure 4.26 Experimental frequency responses of the 25% cracked rotor (rotor spin 

speed ω = 26 Hz and excitation force of 5 N with various frequencies, response 

measured at the bearing midspan) 
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Figure 4.27 Experimental frequency responses of the 25% cracked rotor (rotor spin 

speed ω = 26 Hz and excitation force of 5 N with various frequencies, response 

measured next to the non-drive end bearing) 
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4.4.3 40% Cracked Shaft 

     The third set of experimental trials is presented for the system operating with the 40% 

cracked shaft. Figure 4.28 represents the case of the 40% cracked rotor without and with 

an external excitation force injection with the response measured at the bearing midspan. 

The first plot in Figure 4.28 shows the frequency response of the spinning rotor without 

an external excitation force. As in the case with the healthy rotor without an external 

excitation force, the frequency response of the 40% cracked rotor also consists of the 

rotor spin frequency of 26 Hz and its multiples of 2X, 3X, 4X, 5X. The only difference 

between frequency responses of the healthy and 40% cracked rotors for the case without 

external AMB excitation is a small increase in the amplitudes of the response peaks. The 

increase in the response amplitudes of the 40% cracked rotor is insignificant and not 

applicable for crack detection. The other three plots in this figure correspond to the cases 

with 18.6 Hz, 22.3 Hz and 50.1 Hz frequency injections. Now, in addition to the injection 

frequency, rotor spin frequency and multiples of the spin frequency, each plot shows a 

number of unique combinational frequency peaks, emerging due to the presence of the 

crack. These combinational frequencies provide a unique signature of a crack presence.    

     Figure 4.29 shows the frequency responses of the 40% cracked rotor without and with 

an external excitation force injection with responses measured using the sensor 

positioned next to the non-drive end AMB. The frequency responses for this case are 

similar to the corresponding frequency responses of the 40% cracked rotor measured at 

the bearing midspan, although there is a difference in quantity of combinational 

frequency peaks and their amplitudes. This difference between responses measured with 

the sensor positioned next to the non-drive end AMB and at the bearing midspan can be 
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explained by the relative location of the signal injection and a displacement sensor. 

Because of the geometry and operational speed of the experimental rotor, a higher 

magnitude response to the injection is seen close to the injection, i.e. using the sensor 

positioned next to the non-drive end AMB, than is seen farther from the injection, i.e. at 

the bearing midspan. 
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Figure 4.28 Experimental frequency responses of the 40% cracked rotor (rotor spin 

speed ω = 26 Hz and excitation force of 5 N with various frequencies, response 

measured at the bearing midspan) 
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Figure 4.29 Experimental frequency responses of the 40% cracked rotor (rotor spin 

speed ω = 26 Hz and excitation force of 5 N with various frequencies, response 

measured next to the non-drive end bearing) 
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4.4.4 Comparison of Experimental Responses of the Healthy and Cracked Rotors 

     Figures 4.30 and 4.31 show a comparison of the experimental frequency responses of 

the healthy and 25% cracked rotors measured using sensors positioned at the bearing 

midspan and next to the non-drive end AMB respectively. Both figures clearly 

demonstrate that the frequency responses of the healthy rotor are closely coincide with 

the corresponding responses of the 25% cracked rotor when the external excitation force 

is not applied, which makes the detection of a crack not possible. For the cases when the 

external excitation is applied, each frequency response of the 25% cracked rotor contains 

a number of unique combinational frequency peaks, which are not present in the response 

of the healthy counterpart, although their amplitudes are negligible that makes the 25% 

diameter crack tough to detect. 

     Figures 4.32 and 4.33 show a comparison of the experimental frequency responses of 

the healthy and 40% cracked rotors measured using sensors positioned at the bearing 

midspan and next to the non-drive end AMB respectively. As in the case of comparison 

of the healthy and 25% cracked rotors, both figures clearly demonstrate that the 

frequency responses of the healthy rotor are closely coincide with the corresponding 

responses of the 40% cracked rotor when the external excitation force is not applied. For 

the cases when the external excitation is applied, each frequency response of the 40% 

cracked rotor contains a number of unique combinational frequency peaks, which are not 

present in the response of the healthy counterpart. There is an apparent difference 

between frequency responses of the healthy and 40% cracked rotors, which provides a 

clear evidence of a crack presence. 
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Figure 4.30 Comparison between experimental frequency responses of the healthy    

(solid line) and 25% cracked (dotted line) rotors (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured at the bearing 

midspan) 
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Figure 4.31 Comparison between experimental frequency responses of the healthy 

(solid line) and 25% cracked (dotted line) rotors (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured next to the non-

drive end bearing) 
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Figure 4.32 Comparison between experimental frequency responses of the healthy 

(solid line) and 40% cracked (dotted line) rotors (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured at the bearing 

midspan) 
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Figure 4.33 Comparison between experimental frequency responses of the healthy 

(solid line) and 40% cracked (dotted line) rotors (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured next to the non-

drive end bearing) 
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     Figure 4.34 shows the experimental vibration signals of the levitated healthy and 40% 

cracked rotors running at the speed of 1560 rpm without (a, b) and with (c, d) an external 

excitation force of 5 N applied at 18.6 Hz at the V-axis of the non-drive end bearing. For 

all cases, responses were measured with a position sensor located next to the non-drive 

end AMB and oriented along V-axis. The responses are similar, although there is an 

increase in the response amplitudes of the 40% cracked rotor. The increase in the 

response amplitudes, which is about 10-15 µm, may be applicable for crack detection. 

 
 

Figure 4.34 Experimental time responses of the healthy and 40% cracked rotors at 

spin speed ω = 26 Hz: (a, b) without and (c, d) with an additional harmonic force of 

5 N at 18.6 Hz applied at the V-axis of the non-drive end bearing 
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     Figure 4.35 shows the experimental vibration signals of the levitated healthy and 40% 

cracked rotors running at the speed of 1560 rpm with an external excitation force of 5 N 

applied at 22.3 Hz (a, b) and 50.1 Hz (c, d) at the V-axis of the non-drive end bearing. 

For all cases, responses were measured with a position sensor located next to the non-

drive end AMB and oriented along V-axis. As in the previous cases with no injection and 

with 18.6 Hz force injection, the vibration responses of the healthy and 40% cracked 

rotors with 22.3 Hz and 50.1 Hz force injections are similar, although there is an increase 

in the response amplitudes of the 40% cracked rotor. The increase in the response 

amplitudes, which is about 15-20 µm, may be applicable for crack detection. 

 
Figure 4.35 Experimental time responses of the healthy and 40% cracked rotors at 

spin speed ω = 26 Hz: with an additional harmonic force of 5 N applied at 22.3 Hz 

(a, b) and 50.1 Hz (c, d) at the V-axis of the non-drive end bearing 
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     Figures 4.36 and 4.37 show the frequency responses of the healthy and 40% cracked 

rotors at the vicinity of combinational frequencies of 70.6 Hz and 111.4 Hz, respectively, 

for a case without (a) and with (b) external excitation force of 5 N at 18.6 Hz injection 

frequency. The magnification of the 40% cracked rotor response due to external 

excitation force is apparent.  

      
                                     (a)                                                                      (b) 

Figure 4.36 Experimental frequency responses of the healthy (solid line) and 40% 

cracked (dotted line) rotors at spin speed ω = 26 Hz: (a) without and (b) with 

excitation force of 5 N near the combinational frequency 70.6 Hz 

     
                                     (a)                                                                      (b) 

Figure 4.37 Experimental frequency responses of the healthy (solid line) and 40% 

cracked (dotted line) rotors at spin speed ω = 26 Hz: (a) without and (b) with 

excitation force of 5 N near the combinational frequency 111.4 Hz 
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     Figure 4.38 shows the experimental frequency responses of the healthy and 40% 

cracked rotors measured with an accelerometer, installed on top of the non-drive end 

bearing housing. The response of the healthy rotor consists of the rotor spin frequency of 

26 Hz (1X) and its harmonics (2X, 3X, 4X). Also, a few combinational frequency peaks 

appear at 1.9 Hz, 24.1 Hz and 27.9 Hz, although their amplitudes are negligible. The 

response of the 40% cracked rotor contains some combinational frequencies as well as 

the rotor spin frequency and its multiples. Overall, the response amplitude of the 40% 

cracked rotor is higher than the amplitude of the healthy rotor. The significant differences 

are visible at the induced combinational frequencies. Although the accelerometer data 

presented results analogous to the eddy-current probes, the accelerometer was found to be 

more effective for a system with higher operational speeds. 

 
 

Figure 4.38 Experimental responses of the healthy (solid line) and 40% cracked 

(dotted line) rotors measured with an accelerometer (rotor spin speed ω = 26 Hz 

with excitation force of 5 N at 50.1 Hz) 
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4.4.5 Comparison of Simulated and Experimental Responses  

     A comparison of the simulated and experimental frequency responses of the healthy, 

25% cracked and 40% cracked rotors is shown in Figure 4.39, Figure 4.40 and Figure 

4.41 respectively. It should be noted that the results are plotted on a logarithmic scale in 

order to better visualize the presence and the amplitudes of the frequency peaks which 

may not be observable on a linear scale. The combinational frequencies that were 

predicted by the simulation can be seen in the experimental data. The difference in the 

noise floor between the simulation and experimental data can be attributed to the optimal 

time step selection in the simulation which is ideal and has no noise or extra frequency 

inputs. The other factors which occur in a real system in conjunction with the practical 

time step raise the noise floor. The difference in peak amplitudes can be attributed to the 

small mistuning of the unbalance, injection magnitude, and stiffness and damping of the 

system.  
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Figure 4.39 Comparison between simulated (dotted line) and experimental (solid 

line) frequency responses of the healthy rotor (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured next to the non-

drive end bearing) 
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Figure 4.40 Comparison between simulated (dotted line) and experimental (solid 

line) frequency responses of the 25% cracked rotor (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured next to the non-

drive end bearing) 
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Figure 4.41 Comparison between simulated (dotted line) and experimental (solid 

line) frequency responses of the 40% cracked rotor (rotor spin speed ω = 26 Hz and 

excitation force of 5 N with various frequencies, response measured next to the non-

drive end bearing) 

 

 

 

0 50 100 150

10
0

10
2

10
-2

10
-4

A
m

p
li

tu
d

e
 (

m
)

 

 

0 50 100 150

10
0

10
2

10
-2

10
-4

A
m

p
li

tu
d

e
 (

m
)

 

 

0 50 100 150

10
0

10
2

10
-2

10
-4

A
m

p
li

tu
d

e
 (

m
)

 

 

0 50 100 150

10
0

10
2

10
-2

10
-4

A
m

p
li

tu
d

e
 (

m
)

Frequency (Hz)

 

 
1X

1X

2X

1X

2X

4X
3X2X

4X3X2X

3X1X
4X

3X 4X

5X

50.1

7.4

18.6

96.6

122.685.4

70.659.444.6
33.4

22.3

55.7

126.3

100.374.348.3

29.7

3.7

1.9
128.1

102.176.1

27.924.1


AMB

 = 0


AMB

 = 18.6Hz


AMB

 = 22.3Hz


AMB

 = 50.1Hz

81.7

5X

5X

5X



 

79 
 

 

 

 

 

 

 

 

 

CHAPTER V 

CONCLUSIONS 

 

     Detection and monitoring of fatigue cracks in the rotating machinery has been an 

interesting area of scientific study in the past three decades. Particularly, the dynamic 

characteristics of cracked shafts and their monitoring have received the most attention in 

this area of research.  

     This thesis has investigated an innovative approach to the on-line health monitoring of 

rotating machinery in the presence of structural damage using active magnetic bearings. 

In particular, a method for on-line detection of the transverse surface crack in AMB-

supported shafts during operation has been explored. In addition to pure levitation, the 

rotor supporting bearing also served as a force actuator that transformed current signals 

additionally injected inside the control loop with a specially pre-calculated frequency into 

the superimposed forces which perturbed the suspended spinning rotor. In order to 

calculate the external excitation frequencies, the first two natural frequencies of the rotor-



 

80 
 

bearing system that correspond to rigid body modes and the third frequency associated 

with the first bending mode were utilized.  

     An extensive amount of the experimental data for the healthy, 25% cracked and 40% 

cracked rotors with different force injections has been collected, analyzed and presented. 

The obtained results clearly demonstrate that the external excitation force with a specially 

pre-calculated frequency when applied on the levitated spinning cracked rotor induces 

combinational frequencies corresponding to the injected AMB frequency, the rotor spin 

speed and natural frequencies of the system. These combinational frequencies provide a 

unique signature of the presence of a crack. When the experimental results were 

compared, it was observed that the amplitudes of the combinational frequencies amplify 

when the crack depth increases. Moreover, the quantity and the amplitude of the 

combinational frequency peaks depend on the location of the force injection and position 

of the displacement sensor. 

     In addition, the modeling and control of the system with conical active magnetic 

bearings has been presented in detail. The forces generated by a system of two conical 

AMBs have been derived and then implemented in MATLAB/Simulink software in order 

to simulate the behavior of the experimental rotor magnetically supported using two 

conical AMBs and confirm the stability and robustness of the experimental rotor-bearing 

system. It has been shown that computer  simulations agree well with the experimentally 

extracted data indicating that the method of modeling a system with conical AMBs, 

described in this thesis, is accurate to reproduce the experimental behavior of the shaft 

magnetically levitated using conical AMBs.  
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     The inherent abilities for sensing, information processing and actuation give the 

magnetic bearing the potential to become a key element in smart machines. The existing 

AMB and its sensors can be utilized for on-line structural damage detection. This would 

be the step toward smart rotating machinery where no additional hardware is required for 

diagnostic purposes. This technology enables rotating machinery to become smart or 

have self-diagnosing features.  
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APPENDIX A 

Finite Element Model of the Rotor 

 

     Table A-I Finite element model of the rotor 

Node # 
Node Location 

m 

OD Left 

m 

ID Left 

m 

OD Right  

m 

ID Right  

m 
Comments 

1 0 0.0159 0 0.0159 0 
 

2 0.0133 0.0159 0 0.0159 0   

3 0.0266 0.0159 0 0.0159 0   

4 0.0393 0.0159 0 0.0159 0   

5 0.052 0.0159 0 0.0159 0   

6 0.0774 0.0159 0 0.0159 0   

7 0.0868 0.0159 0 0.0159 0   

8 0.102 0.0159 0 0.0159 0   

9 0.1171 0.0159 0 0.0159 0   

10 0.1323 0.0159 0 0.0159 0   

11 0.1475 0.0159 0 0.0159 0   

12 0.1626 0.0159 0 0.0159 0   

13 0.1778 0.0159 0 0.0159 0   

14 0.193 0.0159 0 0.0159 0   

15 0.2081 0.0159 0 0.0159 0   

16 0.2233 0.0159 0 0.0159 0   

17 0.2385 0.0159 0 0.0159 0   

18 0.2536 0.0159 0 0.0159 0   

19 0.2688 0.0159 0 0.0159 0   

20 0.284 0.0159 0 0.0159 0   

21 0.2991 0.0159 0 0.0159 0   

22 0.3143 0.0159 0 0.0159 0   

23 0.3245 0.0159 0 0.0159 0   

24 0.355 0.0159 0 0.0159 0   

25 0.36 0.0159 0 0.0159 0   

26 0.3664 0.0159 0 0.0159 0   

27 0.3867 0.0159 0 0.0159 0   

28 0.3974 0.0159 0 0.0159 0   

29 0.4105 0.0159 0 0.0159 0   

30 0.4236 0.0159 0 0.0159 0   

31 0.4368 0.0159 0 0.0159 0   
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32 0.4499 0.0159 0 0.0159 0   

33 0.463 0.0159 0 0.0159 0   

34 0.4762 0.0159 0 0.0159 0   

35 0.4893 0.0159 0 0.0159 0   

36 0.5024 0.0159 0 0.0159 0   

37 0.5156 0.0159 0 0.0159 0   

38 0.5287 0.0159 0 0.0159 0   

39 0.5418 0.0159 0 0.0159 0   

40 0.5512 0.0159 0 0.0159 0   

41 0.5766 0.0159 0 0.0159 0   

42 0.5893 0.0159 0 0.0159 0   

43 0.602 0.0159 0 0.0159 0   

44 0.6118 0.0159 0 0.0159 0   

45 0.6216 0.0159 0 0.0159 0   

46 0.6313 0.0159 0 0.0159 0   

47 0.6411 0.0159 0 0.0159 0   

48 0.6509 0.0159 0 0.0159 0   

49 0.6604 0.0095 0 0.0095 0   

3 0.0266 0.0381 0.0159 0.0429 0.0159 
VW24 Conical 

AMB Rotor 

4 0.0393 0.0429 0.0159 0.0476 0.0159   

5 0.052 0.0476 0.0159 0.0476 0.0159   

6 0.0774 0.0476 0.0159 0.0476 0.0159   

23 0.3245 0.127 0.0159 0.127 0.0159 Disk 

24 0.355 0.0316 0.0159 0.0316 0.0159   

25 0.36 0.0298 0.0159 0.0298 0.0159   

26 0.3664 0.0348 0.0159 0.0348 0.0159   

39 0.5418 0.0476 0.0159 0.0476 0.0159 
VW13 Conical 

AMB Rotor 

40 0.5512 0.0476 0.0159 0.0476 0.0159   

41 0.5766 0.0476 0.0159 0.0429 0.0159   

42 0.5893 0.0429 0.0159 0.0381 0.0159   
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APPENDIX B 

Test matrix 

 

              Table B-I Test matrix 

Trial Number Type of Shaft 
AMB Injection 

Frequency 
Injection Type 

1 Healthy 0 Hz none 

2 Healthy 18.6 Hz sine wave 

3 Healthy 22.3 Hz sine wave 

4 Healthy 50.1 Hz sine wave 

    
5 25% EDM Cut 0 Hz none 

6 25% EDM Cut 18.6 Hz sine wave 

7 25% EDM Cut 22.3 Hz sine wave 

8 25% EDM Cut 50.1 Hz sine wave 

    
9 40% EDM Cut 0 Hz none 

10 40% EDM Cut 18.6 Hz sine wave 

11 40% EDM Cut 22.3 Hz sine wave 

12 40% EDM Cut 50.1 Hz sine wave 
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APPENDIX C 

Experimental Verification of the Current -Force Relationship 

 

     The amplitude of the external harmonic excitation force that was used in the present 

work was experimentally determined to be 5 N. This was accomplished by applying a 

force with a known amplitude to the levitated non-rotating rotor on the V-axis and 

measuring the corresponding current in the magnetic actuator. Figure C-1 shows the 

configuration of the experiment for verification of the current-force relationship.  

 

 

Figure C-1 Configuration of the current-force relationship experiment 

 

Particularly, the experiment was accomplished in the following way. First, the current in 

the magnetic actuator was measured while the levitated rotor was at rest. Next, the 

levitated rotor was loaded incrementally with weights and corresponding currents in the 
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actuator were measured. The experimental data is shown in Table C-I. Finally, the 

current-force relationship was plotted. Figure C-2 show the plot of the current-force 

relationship. 

                           Table C-I The experimental data 

Force 

(lbf) 

Force 

(N) 

Current 

(Amp) 

Net Current 

(Amp) 

0 0.000 1.84 0 

0.68 3.025 1.91 0.07 

1.18 5.249 1.97 0.13 

1.68 7.473 2.02 0.18 

2.18 9.697 2.07 0.23 

2.68 11.921 2.12 0.28 

3.18 14.145 2.17 0.33 

3.68 16.369 2.23 0.39 

4.18 18.594 2.27 0.43 

4.68 20.818 2.33 0.49 

5.18 23.042 2.39 0.55 

5.68 25.266 2.43 0.59 

 

 

Figure C-2 Current-force relationship 
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APPENDIX D 

Determination of Stiffness and Damping Coefficients of the AMB 

 

     In order to have a suitable model of a cracked rotor supported using AMBs, the 

effective stiffness and damping coefficient of AMB have to be determined. Consider a 

well-known second order mass-spring-damper system shown on Figure D-1. 

m

ck

x

F

 

Figure D-1 Mass-spring-damper system 

 

The equation of motion for this system is: 

                                                            mx cx kx F                                                  (D.1) 

Taking the Laplace transform of this equation results in:  

                                                          

 

  2

1X s

F s ms cs k


 
                                           (D.2) 

In order to translate equation (D.2) from Laplace domain to frequency domain, set 

s j  and substitute it into equation (D.2) to yield:  

                                                     

 

   2

1X j

F j k m cj



  


 
                                      (D.3) 
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     Next, consider a typical one degree of freedom magnetic bearing system that consists 

of two opposing electromagnets and its schematic is shown in Figure D-2. 

 

1F

2F

m

x

 

Figure D-2 Schematic diagram of a single degree of freedom AMB 

 

Using Newton’s second law, equation of motion for a given system can be written as 

follows: 

                                                           1 2 dmx F F F                                                     (D.4) 

where m is the mass of the suspended rotor, F1 and F2 are the forces generated by 

electromagnets, and Fd is a disturbance force acting on a rotor. According to the theory of 

electromagnetic suspension, the magnetic force applied to a rotor by one pair of 

electromagnets using AMBs can be expressed as [Schweitzer, 1993]: 

                                
 

 

 

 

2 2

2

1 2 2 2

1

4

b c b c

AMB o a

o o

I I I I
F F F A N C

s x s x


  
    

   

                (D.5) 

where: 𝜇o - magnetic field constant, Aa - cross-section area of the air gap, N - number of 

turn per coil, C - geometric factor, Ib - bias current, Ic - control current, so - nominal air 

gap, x - displacement of the rotor. 
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The above equation can be linearized about operating point using Taylor series expansion 

as [Schweitzer, 1993]: 

                                    

2
2 2

2 3

b b
AMB o a x o a i x xf

o o

I I
F A N C i A N C x k i k x

s s
                      (D.6)           

where ki is a force-current factor and kxf is a force-displacement factor. Substituting 

equation (D.6) into equation (D.4) results in the following: 

                                                            i x xf dmx k i k x F                                             (D.7) 

     Based on the control theory, block diagram of the closed loop control of the rotor 

system with AMB’s in Laplace domain can be expressed as follows: 

 

2

1

msik

+

 dF s

+
+

-

+0x   X s
 G s

xfk

 

          Figure D-3 Block diagram of the closed loop control of the AMB system 

 

In Figure D-3,  G s  is the controller transfer function which consists of PID controller, 

low pass filter and two notch filters. Using block diagram reduction method, which is 

based on the elimination of feedback loops, the block diagram shown in Figure D-3 

transformed into a simpler form. Figure D-4 shows the transformation procedure. 
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-

+0x 
2

1
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+
+
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+

+

 dF s
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 X s
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+
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-

+0x 

 dF s

 G s
 X s

2

1

xfms k

 

(b) 

+

ik

-

 dF s

 G s

 X s
2

1

xfms k

 

(c) 

Figure D-4 Block diagram reduction procedure 

 

From Figure D-4(c), the total transfer function of the system which is a ratio of the output 

signal X(s) (position of the rotor) to the input signal Fd(s) (the disturbance force) can be 

written as follows: 
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 

   2

1

d xf i

X s

F s ms k k G s


 
                                      (D.8) 

In order to translate equation (D.8) from Laplace domain to frequency domain, set 

s j  and substitute it into equation (D.8) to yield:  

                                                 
 

   2

1

d xf i

X j

F j m k k G j



  

  

                                (D.9) 

where 1j   is an imaginary number. Since  G j  is a complex number which has a 

real and imaginary part, equation (D.9) can be rewritten in the following way: 

                               

      2

1

Re Imd xf i i

X j

F j m k k G j k G j



   


         

         (D.10) 

Comparing equations (D.3) and (D.10), the stiffness and damping coefficients of the 

AMB system can be expressed as: 

                                                         

 

 

Re

Im

i xf

i

k k G j k

k G j
c








    



    


                                    (D.11) 

     The MATLAB software was used to develop a computer code for calculation of the 

stiffness and damping coefficients of the AMB. The parameters used in the code were 

previously presented in Chapter IV table 1. Calculated stiffness and damping are shown 

in Figure D-5 below. 
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Figure D-5 Calculated stiffness and damping of the AMB 
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APPENDIX E 

Impact Hammer Test 

 

 

Figure E-1 Assembly of the impact hammer test 
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