Path Planning and Evolutionary Optimization of Wheeled Robots

Daljeet Singh
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know!

Recommended Citation
https://engagedscholarship.csuohio.edu/etdarchive/681

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
PATH PLANNING AND EVOLUTIONARY OPTIMIZATION OF
WHEELED ROBOTS

DALJEET SINGH

Bachelor of Science in Computer Engineering

Cleveland State University

May 2011

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE IN ELECTRICAL ENGINEERING

at the

Cleveland State University

May 2013
This thesis has been approved for the

Department of Electrical and Computer Engineering

and the college of Graduate Studies by

Thesis Committee Chairperson, Dr. Dan Simon

Department/Date

Dr. Nigamanth Sridhar

Department/Date

Dr. Chansu Yu

Department/Date
ACKNOWLEDGEMENT

I would like to thank my advisor Dr. Simon for his continuous support and assistance throughout this research. In addition thanks for being my mentor and advisor for my academic career at Cleveland State University. I would also like to thank the other thesis committee members, Dr. Nigamanth Sridhar and Dr. Chansu Yu, for their willingness to be on the committee. I would also like to thank my fellow students in the embedded lab for creating a friendly and motivating environment while working on this thesis. I would like to thank the students who built the robot in 2007 which was used for testing the results of this thesis. Finally, I would like to thank my family and friends for their support and patience.
PATH PLANNING AND EVOLUTIONARY OPTIMIZATION OF WHEELED ROBOTS

DALJEET SINGH

ABSTRACT

Probabilistic roadmap methods (PRM) have been a well-known solution for solving motion planning problems where we have a fixed set of start and goal configurations in a workspace. We define a configuration space with static obstacles. We implement PRM to find a feasible path between start and goal for car-like robots. We further extend the concept of path planning by incorporating evolutionary optimization algorithms to tune the PRM parameters. The theory is demonstrated with simulations and experiments. Our results show that there is a significant improvement in the performance metrics of PRM after optimizing the PRM parameters using biogeography-based optimization, which is an evolutionary optimization algorithm. The performance metrics (namely path length, number of hops, number of loops and fail-rate) show 34.91%, 23.18%, 52.21% and 21.21% improvement after using optimized PRM parameters. We also experimentally demonstrate the application of path planning using PRM to mobile car-like robots.
TABLE OF CONTENTS

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. x

ACRONYMS .. xii

CHAPTER

I. INTRODUCTION ... 1

1.1 Problem Overview .. 1

1.2 Literature Review .. 4

1.3 Thesis Contribution .. 10

1.4 Thesis Organization ... 11

II. PROBLEM FORMULATION .. 13

2.1 Statement of Problem ... 13

2.2 System Modeling ... 14

2.3 Objectives and Technical Approach ... 17

III. BIOGEOGRAPHY-BASED OPTIMIZATION ... 20

IV. IMPLEMENTATION OF PATH PLANNING ALGORITHM ... 25

4.1 Path Planning Algorithm .. 25
4.2 Obstacles .. 31
4.3 Initial and Goal Points .. 33
4.3.1 Start or goal inside a triangular obstacle .. 34
4.3.2 Start or goal intersecting a triangular obstacle 35
4.4 Probabilistic Roadmaps Method ... 37
4.4.1 Finding the next vertex .. 39
4.4.2 Obstacle-checking algorithm .. 42
4.4.3 Point inside a rectangle ... 44
4.5 Robot Command .. 45

V. HARDWARE AND EMBEDDED IMPLEMENTATION 47
5.1 Hardware .. 47
5.2 Microchip PIC .. 50
5.3 Software Design and Interfaces .. 51

VI. RESULTS ... 57
6.1 Simulation Results ... 57
6.1.1 BBO parameters .. 57
6.1.2 Optimizing PRM parameters using BBO .. 69
6.2 Experimental Results ... 73

VI. CONCLUSION AND FUTURE WORK .. 79
7.1 Limitations and Scope ... 79
7.2 Conclusion ... 80
7.3 Future Work .. 81
WORKS CITED .. 82
APPENDIX A: T-tests ... 86
APPENDIX B: F-tests ... 88
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Eight element vector of FSM</td>
<td>28</td>
</tr>
<tr>
<td>Table 2: Example of FSM vector in array format</td>
<td>29</td>
</tr>
<tr>
<td>Table 3: Comparison of “get start and goal” functions</td>
<td>34</td>
</tr>
<tr>
<td>Table 4: Data packet description</td>
<td>52</td>
</tr>
<tr>
<td>Table 5: Robot states</td>
<td>53</td>
</tr>
<tr>
<td>Table 6: Default values of BBO parameters</td>
<td>58</td>
</tr>
<tr>
<td>Table 7: Combinations of generation limit and population size</td>
<td>58</td>
</tr>
<tr>
<td>Table 8: Cost (path length) using different generation limits and population sizes in BBO averaged over 10 BBO runs</td>
<td>59</td>
</tr>
<tr>
<td>Table 9: T-test results of generation-population combinations</td>
<td>60</td>
</tr>
<tr>
<td>Table 10: Cost (path length) using different values of mutation probability (pMutate) in BBO</td>
<td>63</td>
</tr>
<tr>
<td>Table 11: Cost (path length) using different values of the elitism parameter in BBO</td>
<td>66</td>
</tr>
<tr>
<td>Table 12: T-test results of elitism parameter</td>
<td>67</td>
</tr>
<tr>
<td>Table 13: Optimized results from BBO</td>
<td>71</td>
</tr>
<tr>
<td>Table 14: Comparison of average path length when using default and optimized PRM parameters</td>
<td>71</td>
</tr>
<tr>
<td>Table 15: Optimized parameters obtained by BBO when optimizing for number of hops, number of loops and fail-rate</td>
<td>72</td>
</tr>
</tbody>
</table>
Table 16: Cost values when using default PRM parameters, and when using BBO-optimized PRM parameters. ... 72
Table 17: Output of PRM using input parameters optimized for path length 73
Table 18: Vertex-edge array and angle of rotation from PRM 75
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: Robot path planning using PRM.</td>
<td>.. 3</td>
<td></td>
</tr>
<tr>
<td>Figure 2: Algorithm to construct roadmap [2]</td>
<td>.. 6</td>
<td></td>
</tr>
<tr>
<td>Figure 3: Possible directions for robot movement</td>
<td>.. 14</td>
<td></td>
</tr>
<tr>
<td>Figure 4: Flow chart of system model</td>
<td>.. 17</td>
<td></td>
</tr>
<tr>
<td>Figure 5: Species model of a single habitat [20]</td>
<td>.. 22</td>
<td></td>
</tr>
<tr>
<td>Figure 6: Window angle and bias</td>
<td>.. 26</td>
<td></td>
</tr>
<tr>
<td>Figure 7: Bias towards or away from the goal</td>
<td>.. 28</td>
<td></td>
</tr>
<tr>
<td>Figure 8: Example of FSM vector in graphical format with probabilities of each state</td>
<td>.. 29</td>
<td></td>
</tr>
<tr>
<td>Figure 9: Pre-defined test obstacles</td>
<td>.. 32</td>
<td></td>
</tr>
<tr>
<td>Figure 10: Triangular obstacle ABC and point X</td>
<td>.. 35</td>
<td></td>
</tr>
<tr>
<td>Figure 11: Circle-triangle intersection points.</td>
<td>.. 36</td>
<td></td>
</tr>
<tr>
<td>Figure 12: Generalized PRM main loop</td>
<td>.. 38</td>
<td></td>
</tr>
<tr>
<td>Figure 13: Next vertex based on horizontal axis</td>
<td>.. 40</td>
<td></td>
</tr>
<tr>
<td>Figure 14: Next vertex angle based on fixed angle</td>
<td>.. 41</td>
<td></td>
</tr>
<tr>
<td>Figure 15: Next vertex based on variable window angle</td>
<td>.. 42</td>
<td></td>
</tr>
<tr>
<td>Figure 16: Extended next vertices</td>
<td>.. 43</td>
<td></td>
</tr>
<tr>
<td>Figure 17: Robot going over an obstacle</td>
<td>.. 44</td>
<td></td>
</tr>
<tr>
<td>Figure 18: Point X inside the rectangle ABCD.</td>
<td>.. 45</td>
<td></td>
</tr>
<tr>
<td>Figure 19: Printed circuit board used in robot [24]</td>
<td>.. 48</td>
<td></td>
</tr>
<tr>
<td>Figure 20: Photograph of MaxStream 9Xtend wireless radio [21]</td>
<td>.. 49</td>
<td></td>
</tr>
</tbody>
</table>
Figure 21: One of Cleveland State University's mobile robots .. 50

Figure 22: Pin diagram of 40-pin PIC18F4520. Taken from [27]... 51

Figure 23: Communication between the computer workstation and robot 54

Figure 24: Robot wheels at different velocities [28] ... 56

Figure 25: Average cost vs. generation limit / population size combinations (20, 20), (40, 10) and (10, 40) .. 61

Figure 26: Average cost vs. generation limit / population size combinations (40, 10), (50, 8) and (100, 4) .. 62

Figure 27: Average cost vs. mutation probability – 0.001, 0.01 and 0.1 64

Figure 28: Average cost vs. mutation probability – 0.1, 0.2 and 0.3 65

Figure 29: Average cost vs. elitism parameter 5, 6 and 7 ... 68

Figure 30: Average cost vs. elitism parameter 6, 7 and 8 ... 69

Figure 31: Average and minimum cost of BBO .. 70

Figure 32: A sample PRM-generated path from start to goal ... 74

Figure 33: Robot at the start position .. 76

Figure 34: Robot at the second vertex while going from (0.5, 0.5) to (2.5, 2.5) 77

Figure 35: Robot getting to the goal point (2.5, 2.5) ... 78
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBO</td>
<td>biogeography-based optimization</td>
</tr>
<tr>
<td>DBBO</td>
<td>distributed biogeography-based optimization</td>
</tr>
<tr>
<td>FSM</td>
<td>finite state machine</td>
</tr>
<tr>
<td>HSI</td>
<td>habitat suitability index</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>OBPRM</td>
<td>obstacle-based probabilistic roadmap methods</td>
</tr>
<tr>
<td>PCB</td>
<td>printed circuit board</td>
</tr>
<tr>
<td>PRM</td>
<td>probabilistic roadmap methods</td>
</tr>
<tr>
<td>SIV</td>
<td>suitability index variable</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

This chapter will introduce and provide the preliminary background for the research work done for this thesis. This chapter covers the problem overview, literature review and the contribution of this thesis. The preliminaries and the groundwork for this research are highlighted in brief.

1.1 Problem Overview

There has been a lot of work in robot navigation field in past two decades which relates directly to improve and enhance the quality of life [1], [2]. There are a number of different situations or cases for motion planning problems, such as finding a path between the start and goal in a given scenario, covering the whole area of a configuration space, or patrolling an area of interest [3]. Robot automation enables our society to finish more tasks in a given time. Robot automation provides us with the
benefit of using robots for jobs such as snow plowing, oceanographic imaging, taking pictures of an area with radioactivity problems, space exploration and many more [1].

This leads to a need of developing successful robot navigation algorithms. Many algorithms have been developed to tackle this problem of robot path planning. The field of study addressed in this thesis is to optimize these robot navigation algorithms for the best performance over a set of pre-defined metrics.

Figure 1 shows an example of robot path planning using PRM. We have a configuration space with two obstacles as illustrated by the rectangle and the triangle. Our goal is to find a feasible path between the start and goal points. PRM finds a random point P1 in the configuration space. An obstacle check then determines that line segment between the start and P1 intersects with the obstacle. PRM therefore ignores point P1 and finds a new random point P2, which turns out to be in free space. P2 is therefore added as the next vertex and the algorithm is repeated until the robot reaches the goal.
Figure 1: Robot path planning using PRM. The first randomly generated point P1 is discarded because of the obstacle collision. Points P2 and P3 are accepted as valid points since they do not result in an obstacle collision.

The PRM algorithm is evaluated in this thesis on four performance metrics which are path length, number of hops, number of loops and fail-rate. Path length is the summation of all individual line segment lengths from the start to the goal. In Figure 1, path length is the summation of the three line segment lengths between the start, point P2, point P3 and the goal. Number of hops is the total number of individual vertices the robot visits while going from the start to the goal. Number of hops includes the start and goal point and it can be seen that there are 4 hops in Figure 1. Number of loops is determined by the total number of PRM main-loop calls; that is, the total number of vertices generated before a valid path is found. For example, in the scenario in Figure 1 there are 4 main-loop calls although there are only 3 line segments representing the path from the start to the goal. One extra main-loop call is due to point P1 where the
path was not in free space. **Fail-rate** is the percentage of PRM evaluations (among several random robot/obstacle configurations) that fail to find a path to the goal within N main loop calls, where N is a user-specified limit. For our purposes, this limit was set to 50. The performance metrics are further discussed in Section 4.1.

1.2 Literature Review

There has been a lot of work done on motion planning in the past two decades. Algorithms are being developed to tackle these problems in more efficient ways. Some of the path-planning algorithms for robots are coverage path planning [1] and probabilistic roadmap methods.

In conventional path planning we have a set of start and goal configurations and the aim is to find a feasible path between the start and the goal. Coverage path planning, on the other hand, addresses the problem of finding a path for a robot to cover all possible points in the free space. This approach can be applied to robotic demining, snow removal, lawn mowing, painting, mine hunting, harvesting, etc. [1]. The main concern in this approach is usually the time it takes for the algorithm to cover all the free space in the configuration space. Clearly, it may take a long time to find a path that covers all the possible points in the configuration space. Moreover, if the configuration space has moving obstacles, this problem becomes much more complex and computationally demanding if PRM is used.

In [4], PRMS is extended and applied to car-like robots. This approach directly relates to the scope of this thesis where we used car-like robots which can only move forward (no reverse). The aim of using PRM is to find a feasible path from the start to the goal. In
this approach motion planning can be divided into two phases: the learning phase and the query phase. In the learning phase a probabilistic roadmap is constructed and saved in a vertex-edge array. In the query phase, this roadmap or vertex-edge array can be used to find the path between a starting point and a goal point. This approach to path planning can be successfully applied to car-like robots.

Information about the configuration space can be used to generate samples of vertices and edges to be saved as a data structure. This information is then used to run queries to find a path between the start and goal positions. There are a number of ways and techniques to implement this algorithm. Many different fields are benefitting from the improvement in motion planning algorithms, including cell structures, computer graphics, computer assisted surgeries and computer aided design [2], [5], [6], [7], [8]. Some of the variants of PRM, such as lazy PRMs and visibility based PRMs, are examined in [9].

Reference [2] provides a comparative study of different techniques and ideas used to implement PRMs. However, it is hard to compare these techniques because of differences in configuration, differences in testing spaces and differences in hardware. In general, the motion planning problem proposes the question of computing a path between two locations. The computed path must be collision-free. Initially the problem was studied only in the robotics community but recently there has been a broader look at the problem and its applications. Some of these fields are animation, virtual environments, gaming and computational chemistry [2].
Figure 2 shows the algorithm to construct the roadmaps. V is the set of vertices and E is the set of edges. We start with an empty set of vertices and edges. We randomly find a node c in the free configuration space represented by C_{free}. If the distance between c and c_{goal} is less than the user-defined threshold we break out of the loop because the goal has been reached. For our purposes, the goal threshold was set to 1 meter. The node is then added to the set of vertices. N_c is a set of useful nodes chosen from the set of vertices. c' is used to make the connections between the current vertex and the next vertex towards the goal. The roadmap is constructed and stored in $G = (V, E)$ where G is a vertex-edge array. If the local planner finds a path between c' and c which is not present in G, the c' to c path is added to E. The loop continues until the goal is reached.

```
Let: $V \leftarrow \emptyset; E \leftarrow \emptyset$
Loop:
  c $\leftarrow$ a (useful) configuration in $C_{\text{free}}$
  V $\leftarrow$ V $\cup \{c\}$
  $N_c$ $\leftarrow$ a set of (useful) nodes chosen from V
  if $|c-c_{\text{goal}}| < \text{goal\_threshold}$
    break
  end if
  for all $c' \in N_c$ in order of increasing distance from $c$ do
    if $c'$ and $c$ are not connected to $G$ then
      if the local planner finds a path between $c'$ and $c$ then
        add the edge $c'$ to $E$
      end if
    end if
  end for
end loop
```

Figure 2: Algorithm to construct roadmap [2]

The speed of PRMs can be greatly enhanced by parallelizing. It has been argued that the PRMs are “embarrassingly parallel” [8]. Most of the work done by PRMs can be
parallelized with little effort. Significant speedups can be achieved by incorporating parallelization in any randomized motion planning algorithm. It has been noted that the generation of nodes is very fast compared to making successful connections. On average PRM spends 2-3% of the time in the learning phase and 97-98% of the time in the query phase. It is shown that significant speedups are achieved by parallelizing the query phase. For the simple parallelizing strategy, multiple processors are used to generate nodes and find the connections simultaneously. The inherent parallelism in PRM algorithms can easily be exploited to achieve significant and scalable speedups.

There have been a number of variants of PRM. One of the variants which apply to closed chain systems with high degrees of freedom (DOF) is discussed in [10]. A closed chain system is formed by multiple robots grasping an object. Degrees of freedom refer to the number of independent variables that define the movement of a body. Here a body is a closed-chain system of multiple robots. The robots then work in conjunction with each other to move the object. Kinematics-based PRM is then applied to the closed chain in a workspace with obstacles. Dynamic path planning for a robot with high DOF in complex 3D workspaces is discussed in [5]. The novel feature of evaluating areas which are in free-space is employed. These areas of the workspace can be assigned to ‘zones’ with different degrees of desirability. For example, a ‘zone’ which is far away from any obstacle or workspace path will have a higher degree of desirability than a ‘zone’ which is closer to an obstacle or the border of the workspace. This approach can be used to recompute paths in dynamic environments where the obstacles are moving. The quality of a generated path is improved by using dynamic exploration of the roadmaps. A
comparative evaluation of different distance metrics and local planners are discussed in [11].

An obstacle based PRM (OBPRM) is proposed in [12]. That paper has a novel idea of generating the candidate nodes by choosing the nodes corresponding to the obstacles in configuration space. The method can be used for OBPRM only if the change in the environment is incremental. Various techniques to tackle the components of PRM such as dynamic collision checking, dealing with narrow passages, multi-goal motion planning, and manipulation planning for deformable linear objects are discussed in [13]. Path smoothing is also incorporated to optimize the path between a set of nodes in configuration space. OBPRM is further enhanced for cluttered multi-dimensional workspaces in [7], [14] and [15].

A different approach of obstacle avoidance in a cluttered dynamic environment is used in [6]. That approach is incorporated with the search for the shortest path from the PRM connections or queries. A laser range finder is used to implement obstacle avoidance. The technique is that the robot starts moving at its full speed following the shortest path. When an obstacle obstructs the path, the laser range finder instructs the robot to slow its speed until the path is clear. This strategy saves time because the learning and query phases are not re-computed when we find a dynamic obstacle crossing the robot’s path. The point for consideration in this technique is that additional hardware is needed to fully implement obstacle avoidance. In addition, just slowing the speed of the robot does not ensure that it will not hit the obstacle.
These problems can be addressed by using real-time obstacle detection, which includes reactive path planning [16]. Traditional PRM with dynamic constraints was considered to tackle the problem in a real-time dynamic environment. However, the article suggests that this approach may not be well-suited for real-time implementations. Rapidly-exploring random trees (RRTs) can effectively solve complex dynamic motion planning problems. This approach is further enhanced in [17] by a waypoint cache and adaptive cost penalty, which improves the efficiency of re-planning the path and the overall quality of generated solutions. This method is called execution extended rapidly-exploring random trees (ERRT).

Area patrolling by multiple robots with frequency constraints and adversarial settings is discussed in [3] and [18]. The problem of multi-robot perimeter patrol has been discussed in [3]. A strong adversary model is implemented which knows the location and the patrol scheme used by the robots. That paper proposes different models to find the probability of penetration. The traditional models of robot path planning only cover the points included in the path. The frequency of any specific point in the path is ignored. A patrol algorithm is presented in [18] which covers all the points in the given area with the optimal frequency. Sampling the free configuration space to get a better coverage of the area is discussed in [19]. A new sampling strategy, Gaussian sampling, was introduced to tackle difficult areas. It has been proposed that we do not need a lot of sampling points in open spaces. On the other hand, it is hard to find a good path in difficult areas such as near the obstacles or the borders of the room. The strategy proposed in [19] is that we sample more points near the difficult areas as
compared to the open areas. The technique has shown improvements in random sampling tests.

1.3 Thesis Contribution

This thesis contributes to the ongoing development and implementation of robot path planning algorithms. PRM can be adjusted based on the system specifications and the workspace. The path planning results, i.e., the set of nodes and edges, can then be improved by optimizing the parameters of PRM. We successfully optimized PRM using biogeography-based optimization. This shows that path planning results from algorithms such as PRM can be optimized and enhanced. It further supports the theory that biogeography-based optimization can be used to optimize complex mathematical problems [20]. It shows a direct relation between the biological behavior of living organisms and man-made machines.

Motion planning is a common problem in robotics. Although there has been a tremendous amount of work in this field for past two decades, no perfect answer or algorithm exists. The approach to solve motion planning problems depends on the given set of parameters and configurations. This thesis covers the implementation and optimizing of the motion planning algorithm PRM for car-like robots.

We implement the PRM algorithm for car-like robots. The results are backed up by simulations and experiments. The microcontroller on the robot is programmed to receive the path from PRM via radio commands. The path is then used to move the car-like robot from the start to the goal position. The robot follows the feasible path found by PRM in a configuration space with obstacles.
We use biogeography-based optimization to optimize the PRM parameters. A lot of methods have been proposed to tackle the problem of path planning for car-like robots. The contribution of this thesis is to show that optimization algorithms can be applied to path planning algorithms to get better results. The traditional PRM approach can easily be modified based on configuration-specific parameters and the inputs can be adjusted according to the specifications.

We used a variant of PRM based on the configuration scenario used by our mobile robot. Only one query is generated at each point and the results are directly used to find the goal within the free space. The algorithm to find the next feasible path depends on the set of PRM parameters.

1.4 Thesis Organization

Chapter II gives a brief overview of the formulation and statement of the robot path planning problem. It includes system modeling and various approaches for robot navigation.

Chapter III describes how an evolutionary algorithm such as BBO can be applied to mathematical problems with a set of discrete parameters. That chapter also describes how BBO is used to tune the parameters to find better PRM results. That chapter also illustrates the success of BBO as a black-box optimizer.

Next, we cover the MATLAB functions used in the system simulations. Chapter IV covers all the major MATLAB functions and their implementation including the pseudo code and specifications used to simulate the robot world.
Chapter V covers the embedded implementation of this project, which includes the robot and radio hardware used for this thesis. It also includes a brief description of the software design and implementation.

Chapter VI summarizes the simulation and experimental results. We start with the PRM simulation results and then describe the statistical tests of optimizing four input parameters of PRM using BBO. We also demonstrate the hardware result of the robot following the optimized path generated by PRM.

Chapter VII gives an overview of the findings and the results from this thesis. It also covers the limitations and scope of this project in an engineering environment. It gives a brief introduction to the future applications and possibilities for this project. It further supports the idea presented in [20] to merge the fields of biogeography and engineering for their mutual benefit.
CHAPTER II
PROBLEM FORMULATION

The purpose of this research is to study path planning problems using PRM, to use new algorithms to optimize PRM and to verify the results in an experimental system. This chapter introduces the statement of problem (Section 2.1), system modeling (Section 2.2), and the objectives and technical approach (Section 2.3).

2.1 Statement of Problem

There has been a lot of work in the past for developing a better path planning algorithm for mobile car-like robots. Over the past decade, probabilistic roadmap methods have provided good solutions to this problem. However, PRMs can be easily modified according to the user’s needs.

Traditionally, the approach to enhance PRM or any other path planning algorithm is by using hardware or computational enhancements. Hardware enhancements can be made with sensors, encoders, cameras, etc. [6], [12], [16], [20], [21]. Computational
enhancements can be made by parallelizing the PRM querying [8]. This thesis presents a novel and simple idea of tuning the PRM parameters using biogeography-based optimization.

2.2 System Modeling

We begin modeling probabilistic roadmap methods by developing simulations in MATLAB. An empty configuration space will be simulated with start and goal locations. Initially, our configuration space can be shown as an empty square room with normalized dimensions of 10 by 10. Eight different test cases were developed based on all possible directions of robot movement as shown in Figure 3.

![Figure 3: Possible directions for robot movement](image-url)
Possible directions for robot movements as shown in Figure 3 are:

1. Up
2. Down
3. Left
4. Right
5. Diagonally up right
6. Diagonally down left
7. Diagonally up left
8. Diagonally down right

PRM operates by generating a random angle theta. This angle is then used to determine the direction of motion. After initial testing in an obstacle free configuration space we added three test obstacles. This led us to add obstacle checking in our algorithm. PRMs are then adjusted for obstacle checking and ignoring the randomly-generated nodes that result in the robot hitting an obstacle.

Cartesian coordinates are used for configuration space, obstacles and robot locations. We use pre-defined knowledge of obstacles to determine whether the next PRM-determined location is in free space. The robot is represented as a circle and we test if the circle intersects the sides of the obstacles.

Random start, goal and obstacle configurations were implemented after testing was done with pre-defined configurations. This allowed our implementation of PRM to be more robust. It also ensured that the results could be applied to almost any configuration.

Figure 4 shows the model of the system in three major blocks. The first block represents the optimization process where we run BBO in conjunction with PRM and Monte Carlo simulations to optimize the PRM parameters. The BBO parameters are the generation size, population size, mutation probability and the elitism parameter. BBO is
configured to optimize PRM with respect to specific robot performance metrics, introduced in Section 1.1: path length, number of hops, number of loops and fail-rate. The outputs of the BBO function are PRM parameters, discussed in Section 4.1, which are then used by the PRM function to find the path. This process is repeated by the Monte Carlo simulation function to find the optimized PRM parameters.

After the optimization process is finished, optimized PRM parameters and system settings are used to generate a path using the PRM function. The system settings comprise the configuration space, obstacles, start and goal locations. The PRM path is then transmitted to the robot controller, which translates it into a series of rotate and move commands. Those commands are then transmitted to the robot via radio, and the robot then executes the desired motion.
2.3 Objectives and Technical Approach

The objective of this research is to tune the input parameters of PRM with biogeography-based optimization to get better results. The technical approach to accomplish these results can be divided into following parts.

1. Simulating PRM with no obstacles and fixed start and goal.
2. Introducing obstacles.
3. Randomizing the obstacles, start and goal configurations.
4. Setting up communication between the computer workstation and the mobile robot to transmit an optimal path to the robot.
5. Programming the robot to receive wirelessly transmitted motion commands from MATLAB which executes the PRM software.

6. Integrating an LCD and encoders on the robot.

7. Using biogeography-based optimization to optimize the input parameters of PRM.

8. Testing the optimized results using the mobile robot.

The first step was to simulate a configuration space without any obstacles, which was used to test PRM to find a path from the start to the goal. Next we introduced some test obstacles and implemented the algorithm to test that the next vertex found by PRM is in free space. Once this milestone was achieved, we randomized the obstacles, start and goal configurations.

In the fourth step we set up the communication between the computer workstation and the mobile robot. PRM will find the next vertex or the angle of rotation based on the configuration space. This next vertex will then be transmitted to the robot and the robot will move or rotate based on the command sent from MATLAB. The robot we use only rotates or moves forward. The commands sent by MATLAB are ‘rotate’ and ‘move’ commands alternatively. User input will be required to send the next command after the robot finishes executing the current command.

A liquid-crystal display (LCD) is used on the robot for debugging and testing purposes. The LCD displays the robot’s state and confirms that the command sent by MATLAB is properly received and the desired action is executed. Encoders are used on the robot wheels to keep track of the distance traveled. This can be used to reduce
noise problems when one wheel rotates more than the other. Encoders can also be used to compare the distance traveled by the robots with the commanded distance sent by MATLAB. The approach is that if the distance traveled by the robot (indicated by encoders) reaches the reference distance sent by MATLAB, the robot stops and waits for the next command. The same approach is valid for rotation where the angle of rotation indicated by the wheel encoders can be compared with the reference rotation angle commanded by MATLAB.

We then implement a robot PRM function to be optimized by BBO. This function serves as an input to BBO and BBO optimizes the parameters used by the PRM method. The parameters are optimized based on different performance metrics. These performance metrics can be considered to be the scale on which we are evaluating our results.
CHAPTER III

BIOGEOGRAPHY-BASED OPTIMIZATION

This chapter will review the bio geography-based optimization algorithm [20]. Biogeography can be defined as the study of geographic distribution of biological organisms [1]. Principles found in nature can be applied to solve engineering optimization problems. Mathematical models of biogeography explain how species migrate from one isolated habitat, known as an ‘island,’ to another.

For our purposes, we use BBO to optimize the PRM parameters window angle, bias and direction strategy. These parameters will be described in the following chapter. Our goal is to tune these parameters to reduce the cost of the PRM performance, which includes path length, number of hops, number of loops and fail-rate. These quantities will be described in the following chapter.

In biogeography, an island is any habitat that is geographically isolated from other habitats. Geographical areas with better characteristics for the survival of a species have a higher habitat suitability index (HSI). Conversely, islands with poor factors for the
survival of a species have a lower HSI. Features or factors affecting HSI are rainfall, food, land area, topography and weather. Variables that determine habitat suitability index (HSI) are called suitability index variables (SIV). It can be noted that for any given island, habitat suitability index directly depends on suitability index variables. In simpler terms, the characteristic of how well any given island is suited for life directly depends on factors such as rainfall or available food.

Islands that are more suitable to life have more individuals and islands that are less suitable for life have fewer individuals. More individuals for a better habitat mean fewer individuals coming into the habitat. This fact shows that the island with higher HSI is saturated with life. On the other hand, islands with lower HSI will have a lot of new individuals coming into the island, which shows that islands with lower HSI are more dynamic than those with higher HSI.

It can be seen from Figure 5 that immigration rate is zero when the number of species is maximum, and immigration rate is maximum when the number of species is zero. This shows that the immigration rate is zero (fewer new individuals coming in to the island) and the emigration rate is maximum (more individuals going out of the island) when HSI is high.
The immigration curve shows that the maximum possible immigration rate is \(I \) which occurs when there are no individuals in the island. With the decrease in immigration rate the number of individuals in the island increases. \(S_{\text{max}} \) is the maximum number of species that an island can support and the curve shows that the immigration rate reaches zero at this point.

Conversely, the emigration rate is zero when there are no species in the island and emigration rate becomes higher as the number of species increases on the island. It is highly unlikely that the immigration and emigration rate curves will be straight lines in the real world but this simple model gives a general description of immigration and emigration.

Good solutions to an engineering optimization problem represent islands with higher HSI, and poor solutions represent islands with lower HSI. From this theory, good solutions share their traits with poor solutions to make the overall results get better over time. In addition, good solutions are reluctant to change their traits which helps maintain the higher HSI of those islands. This theory is analogous to a good island not

Figure 5: Species model of a single habitat [20]

- \(E=I \)
- \(\lambda \) immigration rate
- \(\mu \) emigration rate
- \(S_1, S_0, S_2, S_{\text{max}} \) number of species
receiving more species from the outside, but species from a better habitat will migrate to a poor habitat. Poor solutions will benefit from this approach and the quality of the habitat will eventually become better. This approach to problem solving is called biogeography-based optimization (BBO).

BBO has some features in common with other biology based algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO). The performance of BBO compares well with other biology based algorithms as demonstrated in [20] on a set of 14 standard optimization benchmark functions. However, the focus of this thesis is to apply biogeography-based optimization algorithm to robot navigation algorithms.

The curve of Figure 5 also shows two solutions, S_1 and S_2. S_1 is a relatively poor solution compared to S_2. BBO can be applied to a problem where we have some candidate solutions that are represented by vectors of real numbers. These numbers will be called SIVs in BBO terminology. The solutions are then evaluated based on a fitness scale and the habitats with better solutions have a high HSI and the poor solutions are considered habitats with lower HSI. We consider that habitats with higher HSI have more species and the habitats with lower HSI have comparatively fewer species. The immigration and emigration curves shown in Figure 5 are considered to be identical for all habitats (that is, all candidate solutions).

Immigration and emigration rates are used to probabilistically share information between habitats. When a given solution is selected to be modified, immigration rate is checked to determine whether an SIV will be modified in that solution. When a given SIV is selected to be modified in a given solution S_i, emigration rate is used to determine
which of the other solutions will be used to migrate or replace a selected SIV in solution \(S_i \).

BBO also uses elitism to replace our worst two solutions with the best two from the previous generation, or iteration. This makes sure that we never lose the best solutions from one generation to the next.

BBO has been successfully applied to various problems. BBO was used to develop open loop control for a semi-active hydraulic prosthetic knee [22]. The research demonstrates that BBO is successful at finding optimal solutions of complex control problems based on mathematical models. Distributed biogeography-based optimization (DBBO) is an extension of the BBO which demonstrates that BBO can be successfully used to optimize the low-level control algorithms of mobile robots [21].

For our purposes, BBO is used to optimize the bias, window angle and direction strategy, which are described in following chapter. We used a 10 element vector to parameterize a PRM algorithm, with the first element being the bias, the second element being the window angle and the remaining eight elements being the direction strategy FSM described in the following chapter. BBO was run with different configurations to find the optimal generation size, population size, and mutation probability, as described in Chapter VI. After optimizing the PRM parameters using BBO we implement our results using PRM and demonstrate it using the robot.
CHAPTER IV

IMPLEMENTATION OF PATH PLANNING ALGORITHM

This chapter will focus on the implementation of the path planning simulation, which includes localization of the robot, defining the robot work-space, defining the obstacles, and checking for robot collisions with the obstacles. Section 4.1 discusses the path planning algorithm, Section 4.2 introduces the obstacles, and Section 4.3 illustrates the generation of the initial and goal points. Section 4.4 covers the main PRM algorithm, including finding the next vertex (Section 4.4.1), obstacle-checking for the path (Section 4.4.2), and obstacle checking for the current and next vertex (Section 4.4.3). The commands sent from MATLAB to the robot controller are covered in Section 4.5.

4.1 Path Planning Algorithm

The Monte Carlo simulation function serves as the stand-alone interactive testing routine for PRM. PRM includes the following parameters: window angle, bias and
direction strategy. Biogeography-based optimization (BBO) has been used to tune these parameters.

- **Window angle** is the angle within which robot motion is considered to be in the direction of the goal, as illustrated in Figure 6.

- **Bias** is a number between 0 and 1 which defines the probability of moving towards the goal. Therefore, the probably of moving away from the goal is $1-b$. For a probability b, bias is illustrated in Figure 6.

- **Direction Strategy** is a four state finite state machine (FSM) which defines different movement strategies depending on if the previously planned robot movement was in free space or not. This is discussed in more detail in the paragraphs immediately following.

![Figure 6: Window angle and bias](image)
The PRM finite state machine is an eight element vector that describes the behavior of the robot depending on if the previously planned robot motion hit an obstacle or not. The probability with which the robot is going to move towards or away from the goal is a number b between 0 and 1. Figure 7 illustrates the bias towards or away from the goal. The bias can be computed based on a perpendicular line between current position and goal as shown in Figure 7, or it can be based on a window angle as shown in Figure 7. For this example, it might be a good approach to go away from the goal because there is an obstacle right in front of the robot at the current position. There are four FSM states which can be defined as follows:

1. Move with b probability towards the goal and $(1-b)$ probability away from the goal.
2. Move with $(1-b)$ probability towards the goal and b probability away from the goal.
3. Move toward the goal with a probability of 100%.
4. Move away from the goal with a probability of 100%.
The FSM is an eight element vector that includes the four states mentioned above in case the previously planned robot motion was in free space or not. Each element of the FSM vector is shown in Table 1. S represents the state of the FSM and F or H represents if the previously planned robot motion was in free space or hit an obstacle. $S(i, F)$ indicates the state to which the robot will transition in case the robot is currently in state i and is moving to a free space. Similarly, $S(i, H)$ indicates the state to which the robot will transition in case the robot is currently in state i and tried to move to a point that was blocked by an obstacle.

|---------|---------|---------|---------|---------|---------|---------|---------|

Table 1: Eight element vector of FSM

Table 2 shows an example of the FSM vector used for testing purposes based on the four states discussed above. The corresponding FSM diagram can be seen in Figure 8.
Table 2: Example of FSM vector in array format. The graphical representation of this FSM is shown in Figure 8.

Figure 8: Example of FSM vector in graphical format with probabilities of each state. The tabular representation of this FSM is shown in Table 2.

Figure 8 shows that we begin in state 1, which has a b probability of moving towards the goal. This FSM illustrates following:

- State 1, where we move towards the goal with a probability of b, will transition to:
 - State 3, where we move towards the goal with probability 1, if the previously planned robot motion was in free space.
 - State 2, where we move towards the goal with $(1-b)$ probability, if the previously planned robot motion was blocked by an obstacle.
- State 2, where we move towards the goal with probability $(1-b)$, will transition to:
- State 1, where we move towards the goal with probability b, if the previously planned robot motion was in free space.
- State 4, where we move away from the goal with probability 1, if the previously planned robot motion was blocked by an obstacle.

- State 3, where we move towards the goal with probability 1, will transition to:
 - State 3, where we move towards the goal with probability 1, if the previously planned robot motion was in free space.
 - State 1, where we move towards the goal with probability b, if the previously planned robot motion was blocked by an obstacle.

- State 4, where we move towards the goal with probability 0, will transition to:
 - State 2, where we move towards the goal with probability ($1-b$), if the previously planned robot motion was in free space.
 - State 4, where we move towards the goal with probability 0, if the previously planned robot motion was blocked by an obstacle.

The output of the Monte Carlo simulation function is the mean of following results (see Section 1.1) over a user-specified number of simulations:

- **Length of the path** the robot takes to reach the goal from the start position.
- **Total number of hops** is the number of straight-line segments that the robot takes to reach its goal from the start position.
• **Total number of main-loop calls** gives us the computational resources utilized to find the path between the start and the goal.

• **Fail-rate** is the percentage of PRM evaluations (over a given number of Monte Carlo simulations) that fail to find a path to the goal within N main loop calls, where N is a user-specified limit.

4.2 Obstacles

The “define obstacles” function will construct the random or pre-defined obstacles for the robot world. The inputs to this function will be the number of obstacles required for the test, the number of vertices in each obstacle, a randomness test flag, and size of the robot world. The output of this function will be a cell array of row size one and column size equal to the number of obstacles. Each cell in the obstacle cell array contains the dimensions of one obstacle.

The pre-defined obstacles are used for testing and debugging purposes. The pre-defined obstacles used for testing are a line segment, a triangle and a rectangle. Figure 9 shows the pre-defined test obstacles used for testing and debugging. We create random obstacles in the configuration space when the randomness test flag is set. Currently, random obstacle functionality is tested with 2 (line segment) or 3 (triangle) point obstacles but it can be further extended to obstacles with more points with some modification in the code.
The problem with the random obstacles was that the size of the configuration space is limited and the size of obstacles was random, so sometimes the obstacles would almost completely cover the configuration space. This problem was addressed by implementing a second version of the define obstacle function which limits the size of the obstacle to a user-defined value. For our testing purposes, we limited each obstacle segment to a normalized value of 3 in a 10 by 10 configuration space. This feature gave the robot more free space to move.

Figure 9: Pre-defined test obstacles
4.3 Initial and Goal Points

The “get initial and goal” function will define the initial and goal locations. The inputs to this function are a randomness flag, the number of obstacles, the radius of the circle enclosing the robot, the robot world size, and the obstacle cell array. The output of this function will be the X and Y coordinates of the initial and goal locations.

For the random test, this function calls two functions if the obstacles are triangles to check if the initial or goal point is on the edges of the obstacle, or if the initial or goal point lies inside the obstacle. If either case is true, the function gets new random initial and goal points and starts checking the first obstacle. This loop breaks out if all the obstacles have been checked and none of the points are inside or on the edges of any obstacle.

A second version of this function was implemented to improve the performance of this function. In the first version, we are finding a set of points (start and goal) which do not lie inside any obstacle or intersect any obstacle. We were discarding the points if either the start or goal point was not good. In the second version, we find the start and goal separately. This allowed us to get the initial and goal points much faster than the first version.

The problem with the first and second functions was that sometimes they would find the start and goal very close to each other. This led us to write a third version which takes a threshold value as an input. This threshold determines the minimum distance between the start and goal positions.
Table 3 shows a comparison of two approaches to find start and goal configurations. The first version, where we are trying to find a set of start and goal configurations together, takes on average 6.75 milliseconds, while version 3, where we find the start and goal configurations separately, takes on average 3.74 milliseconds. This shows that there is approximately 45% improvement in version 3 over version 1.

<table>
<thead>
<tr>
<th>Run</th>
<th>Version 1 – Time (ms)</th>
<th>Version 3 – Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.40</td>
<td>3.63</td>
</tr>
<tr>
<td>2</td>
<td>7.06</td>
<td>4.14</td>
</tr>
<tr>
<td>3</td>
<td>6.13</td>
<td>3.59</td>
</tr>
<tr>
<td>4</td>
<td>5.85</td>
<td>3.17</td>
</tr>
<tr>
<td>5</td>
<td>7.29</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Table 3: Comparison of “get start and goal” functions. Version 1 illustrates getting a combined set of points whereas version 3 illustrates getting start and goal points one at a time.

4.3.1 Start or goal inside a triangular obstacle

The “point inside triangle” function determines if a given initial or goal point lies inside a triangular obstacle. The inputs to this function are a cell array consisting of X and Y coordinates of a triangle, and X and Y coordinates of a point, initial or goal. The output of this function is a point-inside-triangle flag which is true if the point lies inside the triangle or false otherwise.

This function works by forming three additional triangles as shown in Figure 10 with the point of interest X and the three points of the triangle A, B and C.
The summation of the areas of triangles AXB, AXC and BXC must equal the area of triangle ABC for point X to lie inside triangle ABC. This test is used to determine if point X lies inside the triangle ABC.

4.3.2 Start or goal intersecting a triangular obstacle

This function will determine if the circle that represents the robot intersects a triangle. The inputs to this function are the obstacle cell array, radius of the circle, and X and Y coordinates of the center of the circle. The output of this function is a circle-intersecting-triangle flag which is true if any part of the circle is inside the triangle. Equations 1 and 2 show the equations of a circle and a straight line.

\[(x - x_{\text{center}}) + (y - y_{\text{center}}) = radius^2 \] \hspace{1cm} (1)

\[(y - y_1) = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) \] \hspace{1cm} (2)
The roots of the simultaneous equations give the points of intersection of the circle and the triangle. If the X or Y point of the roots of the simultaneous equation is between the X and Y points of the sides of the triangle, the circle intersects the triangle and the circle-intersects-triangle flag is set to true.

![Diagram](image)

Figure 11: Circle-triangle intersection points. The x-coordinates of the intersection points R1 and R2 are between the x-coordinates of points A and B, which means the circle intersects the triangle. A similar logic can be used with the y-coordinates.

Suppose we have a circle centered at point X and a triangle ABC, as shown in Figure 11. Solving the simultaneous equations 1 and 2 gives us points R1 and R2 as the roots. We then compare R1 and R2 with the sides of the triangle. If R1 or R2 lies within the line segment AB, then the circle intersects the triangle and the flag is set to true.
4.4 Probabilistic Roadmaps Method

This function implements the idea presented in [2]. The inputs to this function are bias, window angle and default bias. The outputs of this function are vertex-edge array, path length, number of hops, number of loops and fail-rate. This function is also responsible for the plotting features. The main loop of this function is shown in Figure 12. We start by checking if we are already at the goal. We then find the next potential vertex to move the robot to the next position. We then check if the node we found, and the path to that node, is in free space. If it is in free space we update the vertex-edge array and repeat the main loop. If it is not in free space we ignore the next vertex and do not update the vertex-edge array, and instead find another vertex.
Figure 12: Generalized PRM main loop. Note that the threshold for number of loops is a user-specified value which was set to 50 as discussed in Section 1.1
We used the bias, window angle, locations and the direction strategy to find the next vertex. The implementation of this modified function can be shown as follows:

1. Check to see if the robot is already at the goal.
2. Find the next vertex based on the direction strategy, bias and window angle.
3. Check if the next vertex, or the path to that vertex, intersects an obstacle.
4. Update the next vertex distance array if the vertex and the path are in free space; otherwise go to step 2.
5. Find the next state based on the previous state.
6. Extract the new bias from the new state.

4.4.1 Finding the next vertex

This function implements the algorithm to find the next vertex depending on the current position. The inputs to this function are current position, goal position, bias, window angle and radius of the robot. The outputs of this function are the X and Y coordinates of the next position. Three different approaches were used to calculate the coordinates of the next position.

- **Initial Approach**

 The first approach was to find the next point based on an angle theta of the line segment from the current position to the goal position with respect to the horizontal axis, as shown in Figure 13. The angle determines the direction of the goal with respect to horizontal. The quadrant of the Cartesian coordinate system is then calculated based on the angle theta as seen in Figure 13. A random angle is then found within the quadrant with a higher probability than an angle outside the quadrant. For example, if
the goal lies in quadrant I then a random angle between 0° and 90° is found, with probability b. On the other hand, a random angle between 90° and 360° is found, with probability (1-b).

![Diagram](image)

Figure 13: Next vertex based on horizontal axis

- **Improved Approach**

 The above approach has a serious drawback in that it divides the search direction in quadrants with respect to the axes. For example, if the current-to-goal angle is close to 90° but less than 90° the above function will find an angle in the first quadrant with a higher probability (b) and an angle in one of the other three quadrants with a lower probability (1–b). This function is modified in the second approach so that the random angle was taken from a 90° range (with probability b) centered at the segment extending from the current position to the goal, as shown in Figure 14.
Figure 14: Next vertex angle based on fixed angle

- Final Approach

The above approach was further adjusted to make the angle range user-defined. This third version of the function takes a window angle as an input. The probability of finding an angle toward the goal is higher for that window angle (b) and lower (1-b) for anything outside the window angle, as shown in Figure 15.
4.4.2 Obstacle-checking algorithm

This function is implemented to check if the next vertex found hits an obstacle. The next vertex is discarded in case it hits an obstacle or lies inside an obstacle, and it is stored in the vertex distance array otherwise. The inputs to this function are the radius of the robot, number of obstacles, obstacle cell array, and current and next position coordinates. The outputs of this function are a free space flag and robot coordinates.

The circle that represents the robot is extended to a square inscribing the robot at the next position, as seen in Figure 16. The two lines made from the square inscribing the robot are then checked for intersection with edges of the obstacle. If any of the lines intersects the edges of the obstacle, the free space flag is returned as false.
The problem with this approach for obstacles with two points (that is, lines) was that the obstacle was could be inside the extended lines of the robot without hitting any of the edges. This can be shown as the wheels of the robot passing over the obstacle without hitting it, as shown in Figure 17.

This problem was corrected, as discussed in the following section, by defining a rectangle from the current positions and the extended next positions of both wheels. Figure 17 shows that the center of the robot and the wheels do not intersect with the obstacle (line segment) at any point.

Figure 16: Extended next vertices

![Diagram](image-url)
4.4.3 Point inside a rectangle

This function checks to see if a point lies inside the rectangle. This function was implemented to tackle the problem shown in Figure 17. The inputs to this function are the obstacle and rectangle coordinates. The output from this function is a flag that indicates if the obstacle lies inside the rectangle.

The algorithm used in this function is similar to the algorithm used in checking if a point lies inside a triangle, as shown in Figure 10. Four triangles are made by connecting the obstacle to four points of the rectangle. Figure 18 shows the rectangle ABCD with a
point X inside the rectangle. The areas of four triangles AXB, BXD, D XC and CXA are calculated and compared with the area of rectangle ABCD. If the sum of areas of triangles is equals to the area of rectangle, then the obstacle lies inside the rectangle and the point inside rectangle flag is returned as true. If the sum of areas of triangles is greater than the area of rectangle, then the obstacle lies outside the rectangle and the point inside rectangle flag is returned as false.

![Diagram of Point X inside the rectangle ABCD.](image)

Figure 18: Point X inside the rectangle ABCD.

This test is run for both of the end points of the line segment obstacle. If either of the results is true, the free space flag is set to false, indicating that the next vertex hits the obstacle. In this case, the next vertex is discarded by the PRM function. This test will ensure that we do not come across the problem shown in Figure 17.

4.5 Robot Command

This function is implemented to send commands to the robot from MATLAB. The vertex-edge array is returned from the PRM function which is then used to calculate the
straight-line distance in meters and the angle of rotation in degrees. This function then opens a serial connection to the specified port and sends the command to the radio. The command is sent as a 16-bit integer which is followed by a user prompt to press any key which then sends the next command. The command is sent in the format of rotation followed by distance for each hop until the goal is reached. Section 6.2 gives an example of the commands sent from the MATLAB and how they are received by the robot hardware to perform the desired operation.
CHAPTER V

HARDWARE AND EMBEDDED IMPLEMENTATION

This chapter will cover the embedded implementation of the robots. This chapter describes the testing and implementation of simulations done in MATLAB. We will also discuss the hardware used and the communication between various components. Section 5.1 discusses the hardware implementation for this thesis. Section 5.2 discusses the Microchip peripheral interface controller which serves as the brains of the robot. Section 5.3 describes the software implementation and interface of programming the robot hardware.

5.1 Hardware

The hardware used for this project was initially designed and implemented for a mapping swarm of robots [23]. The main objective of that project was to produce a swarm of mapping robots which could be used to develop a floor map. A square robot was designed with ultrasonic range finders, a gyroscope, a wireless camera and two
wheel encoders. The main circuitry is mounted on a printed circuit board with a Microchip PIC18F4520 microcontroller, which provides the brains of the robot. The robot also has an LCD, which is used for debugging and displaying real time messages. The PCB layout shown in Figure 19 is used in the robot.

Communication between the robot and the base station (that is, the personal computer) is accomplished using a MaxStream 9Xtend RF transmitter-receiver pair. This device supports an indoor range of 900 meters and operates on a selectable output power of either 1 mW or 1 W. This device is mounted on both the robot and the base station. The MaxStream 9Xtend wireless radio is shown in Figure 20.
The robot is equipped with two DC motors which are used to rotate the left and right wheels. Nobotics Wheel Watcher 2 encoders are mounted on each wheel to measure the distance traveled by the robot. The timers from the PIC are configured as counters to keep track of encoder counts. There are 64 stripes on the wheel encoders. The radius of the wheel is 3.50 cm which gives a circumference of 21.99 cm. The conversion factor of the encoders is derived by dividing the circumference of the wheel by the number of encoder counts in one rotation, which comes out to 0.34 cm per encoder count. This conversion factor is then multiplied by the number of encoder counts over a given period of time to calculate the distance traveled by the wheel. The robot used for the testing purposes is shown in Figure 21.
Figure 21: One of Cleveland State University's mobile robots

5.2 Microchip PIC

The PIC18F4520 is a microcontroller from Microchip Corporation [25]. Figure 22 shows the pin diagram of the 40-pin plastic dual in-line packaging (PDIP) of the PIC18F4520. The program for the microcontroller is written in the C programming language [26].
The Timer 0 and Timer 3 modules of the PIC are used to configure the encoder count sensors of the left and right wheels of the robot respectively. Timer 0 is connected to pin 6 and timer 3 is connected to pin 15 of the PIC. These timers give the number of ticks counted by the encoders in a given time period. This information is then translated to the distance traveled by the robot. The Timer1 module of the PIC is used as an interrupt timer to modify the current state of the robot. When Timer 1 interrupts, data from Timer 0 and Timer 3 are used to compare the distance traveled by the robot with the reference distance sent from MATLAB. This determines if the robot has completed the commanded move.

5.3 Software Design and Interfaces

The packet sent from the MATLAB simulation is shown in Table 4. Byte 0 gives information about the state of the robot, as discussed in next paragraph. Bytes 1 and 2
represent the data, i.e., the angle of rotation or the distance sent by MATLAB. The robot controller uses this information as the reference data and then compares it with the actual data from the left or right wheel encoders to determine when to stop rotating or moving. Bytes 3 and 4 are the terminators used to terminate the packet. Terminator 1 is 00 and terminator 2 is FF.

<table>
<thead>
<tr>
<th>Byte Number</th>
<th>Description</th>
<th>Number of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>State (see Table 5)</td>
<td>8 bits</td>
</tr>
<tr>
<td>1 and 2</td>
<td>Data = Angle of rotation or distance</td>
<td>16 bits</td>
</tr>
<tr>
<td>3</td>
<td>Terminator 1 = 00</td>
<td>8 bits</td>
</tr>
<tr>
<td>4</td>
<td>Terminator 2 = FF</td>
<td>8 bits</td>
</tr>
</tbody>
</table>

Table 4: Data packet description

Table 5 illustrates the finite state machine for robot movement. Note that this is not the same FSM used by the PRM (see Section 4.1). The state and the corresponding action are shown in the Table 5. The default state is set to idle. In this state, the robot waits to receive a command from the radio. Go, left turn and right turn states are sent by MATLAB over the radio. As the robot moves, the angle of rotation or distance from the wheel encoders is compared with the reference distance received from the radio. When the angle of rotation or distance from the wheel encoders becomes larger than the reference angle or distance, the state is changed to the halt state. The robot then stops moving and goes back to idle state.
<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Idle</td>
</tr>
<tr>
<td>1</td>
<td>Halt</td>
</tr>
<tr>
<td>2</td>
<td>Go Forward</td>
</tr>
<tr>
<td>3</td>
<td>Left turn</td>
</tr>
<tr>
<td>4</td>
<td>Right turn</td>
</tr>
</tbody>
</table>

Table 5: Robot states

A block diagram of the robot code on the PIC is shown in Figure 23. The data packet is sent over the radio from the computer workstation to the robot. The workstation is connected to the radio chip via a serial port. The radio command is then received by the radio on the robot and forwarded to the PIC microcontroller via serial port. The microcontroller then rotates the motors depending on the state.
Figure 23: Communication between the computer workstation and robot

The microcontroller starts both motors moving forward when in the ‘go state’. The left turn state is implemented by rotating the left wheel backward and the right wheel forward. The right turn state is achieved by rotating the right wheel backward and the left wheel forward. This approach makes it easier to use the algorithm developed in PRM because the center of the robot does not move while rotating. The halt state is reached when the encoders on both wheels indicate that the robot has traveled the commanded distance.

Encoders on the wheels provide feedback of the distance traveled when Timer1 interrupts. In the ‘go state’, the distance from the encoders is compared with the reference distance received from the radio, which was sent by MATLAB. The state is changed to the halt state whenever the distance traveled by the wheels becomes larger than the reference distance. For the left or right turn state, we convert the distance
from the wheel encoders to an angle in radians and then compare it to the reference angle received by the radio. The conversion of the wheel distance to the angle is given as follows;

\[
\theta = \frac{\text{wheel}_1\text{distance} - \text{wheel}_2\text{distance}}{\text{base_distance}} * \frac{180}{\pi}
\]

Here, \(\theta\) is the angle rotated by the robot,

\(\text{wheel}_1\text{distance}\) is the distance traveled by left wheel.

\(\text{wheel}_2\text{distance}\) is the distance traveled by right wheel.

\(\text{base_distance}\) is the distance between the left and right wheel of the robot.

\(180/\pi\) is the factor to convert the angle from radians to degrees.

The derivation to find the angle of rotation is taken from [28] and is shown in Figure 24. Note that in Figure 24, \(\text{wheel}_2\text{distance}\) is subtracted from \(\text{wheel}_1\text{distance}\), but we take care of that by knowing whether we are in the left or right turn state.
Figure 24: Robot wheels at different velocities [28]
This chapter will cover simulation and experimental results. Section 6.1 covers the tuning of BBO parameters and using those BBO parameters to optimize PRM parameters. Section 6.2 presents the experimental results where a mobile robot follows the path found by PRM.

6.1 Simulation Results

6.1.1 BBO parameters

We begin by setting the default values for generation size, population size, mutation probability and the number of individuals we want to keep for elitism in BBO. Table 6 shows the default values used in BBO.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation size</td>
<td>20</td>
</tr>
<tr>
<td>Population size</td>
<td>20</td>
</tr>
<tr>
<td>Mutation probability</td>
<td>0.01</td>
</tr>
<tr>
<td>Keep</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 6: Default values of BBO parameters

We find the optimal parameters below to improve BBO as it optimizes PRM parameters.

- **Population Size and Generation Limit**

 We ran 400 Monte Carlo simulations of PRM with different values of generation limit and population size to find the optimal parameters. Table 7 shows three combinations of generation limit and population size.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Generation limit</th>
<th>Population size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 7: Combinations of generation limit and population size

Note that the product of generation limit and population size in Table 7 is a constant 400 for each combination, which means that each combination uses about 400 function evaluations, which means that each combination uses the same computational effort. BBO optimizes the cost at each generation which means we get the best results at the last generation. We used averages of the cost at the last generation and evaluated the
three schemes shown in Table 7. The average costs for 10 BBO runs for these combinations are shown in Table 8. We then performed an F-test [29] to find out if the three sets of results differ fundamentally or if the difference is only due to random variation.

The F-value of the three schemes using the samples shown in Table 8 came out to be 17.35 which translates to a p-value of 0.000014243 which leads us to reject the null hypothesis, concluding that there is strong evidence that the results of the three groups of results differ fundamentally.

<table>
<thead>
<tr>
<th>Combination 1 (20, 20)</th>
<th>Combination 2 (40, 10)</th>
<th>Combination 3 (10, 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.19</td>
<td>10.86</td>
<td>15.63</td>
</tr>
<tr>
<td>11.35</td>
<td>10.78</td>
<td>15.56</td>
</tr>
<tr>
<td>10.89</td>
<td>12.34</td>
<td>17.28</td>
</tr>
<tr>
<td>9.59</td>
<td>11.66</td>
<td>15.36</td>
</tr>
<tr>
<td>14.06</td>
<td>9.48</td>
<td>15.82</td>
</tr>
<tr>
<td>14.47</td>
<td>10.72</td>
<td>14.20</td>
</tr>
<tr>
<td>11.59</td>
<td>9.13</td>
<td>16.34</td>
</tr>
<tr>
<td>16.65</td>
<td>15.20</td>
<td>13.33</td>
</tr>
<tr>
<td>12.78</td>
<td>12.21</td>
<td>16.06</td>
</tr>
<tr>
<td>10.75</td>
<td>9.73</td>
<td>16.45</td>
</tr>
</tbody>
</table>

Table 8: Cost (path length) using different generation limits and population sizes in BBO averaged over 10 BBO runs
After the F-test reveals that the results from the three combinations differ fundamentally, we performed pair-wise T-tests to investigate the differences in the three combinations. Table 9 shows the T-test results of the three pairs. It can be seen that according to the t-test results from Table 9, there is a 17% probability that the difference between combination 1 and combination 2 are due to random variations. The probability for the combinations (2, 3) and (1, 3) pairs are very low, which suggests that the combination 3 differs significantly from the other two combinations.

<table>
<thead>
<tr>
<th>T-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination 1 (20, 20) and Combination 2 (40, 10)</td>
<td>0.178448507</td>
</tr>
<tr>
<td>Combination 2 (40, 10) and Combination 3 (10, 40)</td>
<td>0.000007885</td>
</tr>
<tr>
<td>Combination 1 (20, 20) and Combination 3 (10, 40)</td>
<td>0.000932607</td>
</tr>
</tbody>
</table>

Table 9: T-test results of generation-population combinations. Results show that there is fundamental difference between Combination 3 and the other two combinations.

Figure 25 shows that out of the three combinations, combination 2 performs better. This tells us that the generation limit and population size of (20, 20) gives us similar results as (40, 10). We further increased the value of generation limit and decreased the value of population size and retested the new combinations with our best combination (40, 10).
Figure 25: Average cost vs. generation limit / population size combinations (20, 20), (40, 10) and (10, 40)

Figure 26 shows the results after further increasing the generation limit and decreasing the population size. The F-test result gave an F-value of 0.25562 which translates to a p-value of 0.7763. This shows that there is a 77.63% probability that the differences in the results shown in Figure 26 are due to random variation. This suggests that further increasing the generation limit and decreasing the population size from the combination (40, 10) does not affect the BBO results. For this reason, we fix the generation limit to 40 and the population size to 10, and find the best mutation probability in the next section.
After getting the generation limit and population size we find the best mutation probability. We run 10 BBO simulations to optimize PRM, each BBO simulation having a generation limit of 40 and a population size of 10. We test for mutation probability (pMutate) of 0.001, 0.01 and 0.1. Table 10 shows the result of 10 BBO runs.
The F-test gives a value of 0.17098 which translates to a p-value of 0.8437 which means there is 84.37% probability that the differences in the three sets of results are due to random variations. Figure 27 shows the average cost for 0.001, 0.01 and 0.1 mutation probabilities. It can be seen that 0.1 mutation probability gives the best results, but the t-test results indicate that this is simply due to random variation.
Figure 27: Average cost vs. mutation probability – 0.001, 0.01 and 0.1

We further increase the mutation probability to see that if can get better BBO performance. The F-value of 10 samples from mutation probabilities 0.1, 0.2 and 0.3 came out to be 2.9021 which translates to a p-value of 0.0722. This shows that there is strong evidence that the results with mutation probabilities 0.1, 0.2 and 0.3 differ fundamentally. Figure 28 show that 0.1 is the best mutation probability when compared with 0.2 and 0.3. We further investigated the mutation probability by decreasing the mutation probability to 0. The results show that although there is not a significant difference between mutation probabilities 0 and 0.1, 0.1 gives us the best results. For this reason, we use 0.1 as the mutation probability in BBO.
After finding the best value of mutation probability we find the optimal value of the elitism parameter. We found that increasing the value of the elitism parameter from the default value of 2 minimized the cost. Table 11 shows the path length for values 5, 6 and 7 for the elitism parameter. These three samples give us an F-value of 2.1058 which translates to a p-value of 0.1413. This shows that there is 14.13% probability the differences in the results are due to random variation. This means it is likely that there is a fundamental difference between three sets of results.
Table 11: Cost (path length) using different values of the elitism parameter in BBO

<table>
<thead>
<tr>
<th>Elitism Parameter = 5</th>
<th>Elitism Parameter = 6</th>
<th>Elitism Parameter = 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.89</td>
<td>9.11</td>
<td>7.81</td>
</tr>
<tr>
<td>8.26</td>
<td>9.60</td>
<td>7.66</td>
</tr>
<tr>
<td>8.17</td>
<td>7.79</td>
<td>9.54</td>
</tr>
<tr>
<td>8.14</td>
<td>8.72</td>
<td>7.56</td>
</tr>
<tr>
<td>11.24</td>
<td>8.48</td>
<td>9.34</td>
</tr>
<tr>
<td>9.86</td>
<td>7.97</td>
<td>7.81</td>
</tr>
<tr>
<td>9.76</td>
<td>9.34</td>
<td>10.06</td>
</tr>
<tr>
<td>12.08</td>
<td>8.49</td>
<td>9.34</td>
</tr>
<tr>
<td>8.43</td>
<td>8.91</td>
<td>9.13</td>
</tr>
<tr>
<td>9.89</td>
<td>9.11</td>
<td>7.81</td>
</tr>
</tbody>
</table>

This led us to do pair-wise T-test to investigate the difference between the three sets of results. Table 12 illustrates the pair-wise T-test results. The T-test results reveal that there is only 13.92% probability that the samples from elitism parameter values 5 and 6 are due to random variation. Similarly, there is 16.48% probability that the samples from elitism parameter values 5 and 7 are due to random variation. However, there is 96.2% probability that the samples from elitism parameter values 6 and 7 are due to random variation.
<table>
<thead>
<tr>
<th>T-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elitism Parameter = 5 and 6</td>
<td>0.13917</td>
</tr>
<tr>
<td>Elitism Parameter = 6 and 7</td>
<td>0.961991</td>
</tr>
<tr>
<td>Elitism Parameter = 5 and 7</td>
<td>0.164816</td>
</tr>
</tbody>
</table>

Table 12: T-test results of elitism parameter

Figure 29 shows average cost for various values of the elitism parameter. It can be seen that we get lower cost when the elitism parameter is 6 or 7. Combining that with our t-test we can say that there is only 3.8% probability that there is any fundamental difference between the two sets of results. This enables us to use the value of 6 or 7 for our elitism parameter. We further investigated by increasing the elitism parameter to find an optimal value.
Figure 29: Average cost vs. elitism parameter 5, 6 and 7

Figure 30 reveals that further increasing the elitism parameter beyond 7 increases the cost. This led us to use either 6 or 7 as our elitism parameter. We used the value of 7 to optimize the BBO cost (path length).
6.1.2 Optimizing PRM parameters using BBO

We used the BBO parameters from the previous section and ran BBO for 20 Monte Carlo simulations of PRM to optimize the PRM parameters. Figure 31 shows the average and minimum cost of path length optimized by BBO over 40 generations. It can be seen that the average cost of the 10 BBO individuals of 24.72 at the first generation came down to 6.62 at the last generation. Similarly, the minimum cost of the 10 BBO individuals was reduced from 11.21 at the first generation to 5.99 at the last generation.
Table 13 shows the five best sets of PRM parameters from BBO. The parameters shown in Table 13 are the best individuals at the last generation. It can be seen that the window angle is the same for the three best sets of parameters. The bias is the same for the five best sets of parameters. However, the direction strategy is different for each of the parameter sets shown in Table 13.
<table>
<thead>
<tr>
<th>BBO Individual</th>
<th>Window angle (degree)</th>
<th>Bias</th>
<th>Direction Strategy</th>
<th>PRM – Best Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.89</td>
<td>0.96962</td>
<td>[1 1 2 4 3 4 1 1]</td>
<td>5.99</td>
</tr>
<tr>
<td>2</td>
<td>3.89</td>
<td>0.96962</td>
<td>[1 1 4 3 4 1 1]</td>
<td>6.10</td>
</tr>
<tr>
<td>3</td>
<td>3.89</td>
<td>0.96962</td>
<td>[1 1 4 2 3 1 1]</td>
<td>6.15</td>
</tr>
<tr>
<td>4</td>
<td>11.26</td>
<td>0.96962</td>
<td>[1 1 3 2 1 1 3]</td>
<td>6.23</td>
</tr>
<tr>
<td>5</td>
<td>3.89</td>
<td>0.96962</td>
<td>[1 1 4 3 1 1]</td>
<td>6.26</td>
</tr>
</tbody>
</table>

Table 13: Optimized results from BBO

Table 14 shows a comparison of average path length between default and optimized PRM parameters of 100 Monte Carlo simulations of PRM. The default PRM parameters are \(\pi/4\) for window angle, 0.7 bias towards the goal and [3 2 1 4 3 1 2 4] for direction strategy, as discussed in Section 4.1. The optimized input parameters are as shown in row 1 of Table 13. The average of 5 runs comes out to be 11.17 for the default PRM parameters and 7.27 using optimized PRM parameters. This translates to a 34.91% improvement by using optimized PRM parameters instead of default parameters.

<table>
<thead>
<tr>
<th>Run</th>
<th>Average path length when using default parameters</th>
<th>Average path length when using optimized parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.05</td>
<td>7.07</td>
</tr>
<tr>
<td>2</td>
<td>10.36</td>
<td>7.24</td>
</tr>
<tr>
<td>3</td>
<td>11.07</td>
<td>7.17</td>
</tr>
<tr>
<td>4</td>
<td>10.45</td>
<td>7.09</td>
</tr>
<tr>
<td>5</td>
<td>11.93</td>
<td>7.77</td>
</tr>
</tbody>
</table>

Table 14: Comparison of average path length when using default and optimized PRM parameters.
We received similar results while optimizing number of hops, number of loops and fail-rate. Table 15 shows the input parameters optimized by BBO for number of hops, number of loops and fail-rate.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Window angle (degrees)</th>
<th>Bias</th>
<th>Direction strategy</th>
<th>Best Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hops</td>
<td>14.19</td>
<td>0.81744</td>
<td>[1 3 2 4 1 3 2 2]</td>
<td>3.63</td>
</tr>
<tr>
<td>Number of loops</td>
<td>4.49</td>
<td>0.37443</td>
<td>[3 2 2 3 3 3 4 3]</td>
<td>2.45</td>
</tr>
<tr>
<td>Fail-rate</td>
<td>67.39</td>
<td>0.52988</td>
<td>[3 1 3 2 3 4 3 1]</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 15: Optimized parameters obtained by BBO when optimizing for number of hops, number of loops and fail-rate

Table 16 shows the averages of 100 Monte Carlo PRM simulations of the number of hops, the number of loops and the fail-rate with default parameters and BBO-optimized parameters. It can be seen that there is 23.18% improvement in the number of hops. The total number of main-loop calls is improved by 52.21% and the fail-rate is improved by 21.21%.

<table>
<thead>
<tr>
<th></th>
<th>Default Parameters (average cost)</th>
<th>Optimized Parameters (average cost)</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hops</td>
<td>7.16</td>
<td>5.50</td>
<td>23.18%</td>
</tr>
<tr>
<td>Number of loops</td>
<td>8.16</td>
<td>3.90</td>
<td>52.21%</td>
</tr>
<tr>
<td>Fail-rate</td>
<td>6.60</td>
<td>5.20</td>
<td>21.21%</td>
</tr>
</tbody>
</table>

Table 16: Cost values when using default PRM parameters, and when using BBO-optimized PRM parameters. Three sets of BBO parameters are represented in this table as BBO optimized for number of hops, number of loops and fail-rate.
6.2 Experimental Results

We then used the input parameters optimized by BBO shown in the first row of Table 13 to find the path between Cartesian coordinates (0.5, 0.5) and (2.5, 2.5). Figure 32 shows the path found by the optimized input parameters. We use two arbitrary, predefined obstacles in the configuration space. The coordinates of the first obstacle are (1.3, 1.1), (1.8, 1.5) and (1.0, 1.7) and the coordinates of the second obstacle are (2.1, 0.2), (2.4, 0.8) and (2.5, 0.3). The output of the PRM function is shown in Table 17.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Length</td>
<td>3.5 units</td>
</tr>
<tr>
<td>Number of hops</td>
<td>5</td>
</tr>
<tr>
<td>Number of loops</td>
<td>15</td>
</tr>
<tr>
<td>Fail-rate</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 17: Output of PRM using input parameters optimized for path length
Figure 32: A sample PRM-generated path from start to goal

Table 18 shows the vertex-edge array of the path shown in Figure 32. The angle of rotation was found in radians using the line segment from the next to the current position, and the X-axis. The angle of rotation is then converted to degrees and sent to the robot over the radio. Left turns are represented by positive angles while right turns are represented by negative angles.
<table>
<thead>
<tr>
<th>X-point</th>
<th>Y-point</th>
<th>Distance (units)</th>
<th>Angle of rotation (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td>15.03</td>
</tr>
<tr>
<td>2.25</td>
<td>0.97</td>
<td>1.82</td>
<td>64.66</td>
</tr>
<tr>
<td>2.29</td>
<td>1.19</td>
<td>0.23</td>
<td>1.85</td>
</tr>
<tr>
<td>2.40</td>
<td>1.93</td>
<td>0.75</td>
<td>-2.7</td>
</tr>
<tr>
<td>2.54</td>
<td>2.64</td>
<td>0.72</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 18: Vertex-edge array and angle of rotation from PRM

Figure 33 shows the robot at the start position. We begin at coordinates (0.5, 0.5) while facing in a direction along the positive X-axis. Note the shape of the obstacles is not triangular as in the path shown in Figure 32. These obstacles are used only for demonstration purposes. The hops followed by the robot are marked with a green ‘X’ as shown in Figure 33. The robot starts by turning 15.03 degrees towards the second hop and travels 1.82 meters.
Figure 33: Robot at the start position

Figure 34 shows the robot at second hop after turning 64.66 degrees towards the third hop. The robot then follows the next positions and angles of rotation shown in Table 18 to get to the goal point.
Figure 34: Robot at the second vertex while going from (0.5, 0.5) to (2.5, 2.5)

Figure 35 shows the robot getting within 10 centimeters of the goal point (2.5, 2.5) following the optimized path from the PRM function, demonstrating that the results from PRM can be successfully apply to real-world problems.
Figure 35: Robot getting to the goal point (2.5, 2.5)
CHAPTER VII
CONCLUSION AND FUTURE WORK

In this chapter all the relevant information covered in this research is summarized. In this chapter we also shed some light on the limitations and scope of using optimization for robot path planning. It has been shown that engineers can learn from the nature of biological organisms, and that knowledge can be used to optimize complex engineering problems.

7.1 Limitations and Scope

The limitations in robot path planning directly depend upon the resources involved. Time and money are the major constraints in such a project. Use of better hardware will ensure that the robot correctly follows the path developed by PRM and optimized by BBO. The possibility and scope for research that addresses the path planning problem of car-like robots are endless. Space exploration, driver-less cars and oceanographic imaging are only a few examples where this technique can be applied.
The path planning algorithm can be enhanced on various scales such as computational complexity and speed. After enhancing the input parameters using BBO, the path planning algorithms can be tested in real-time environment. A combination of dead-reckoning and additional hardware can be used to tackle real-world scenarios. Camera, sensor, laser and sonar can be used in conjunction with information from actual wheel movement to localize the robot. Additional memory can be utilized to save the maps of already visited places. These maps can also be saved on a central server which can then be shared among multiple mobile robots. Additional hardware will also require more energy to run. A tradeoff will have to be made between the additional hardware used in the robot and the overall capabilities of the robot.

7.2 Conclusion

We successfully implemented PRM for car-like robots in an obstacle filled configuration space. The output from PRM, a vertex-edge array, was then transmitted to the robot via radio. The demonstration shows the robot following the path found by PRM.

We ran t-tests and F-tests to find the optimal BBO parameters. Those parameters were then used in BBO to optimize PRM with respect to path length, number of hops, number of loops and fail-rate. Section 6.1.2 showed that we achieved significant improvements, ranging from approximately 21% to 52%, after using the optimized PRM parameters.

This research shows that BBO can be used to optimize the parameters of path planning algorithms. Our results demonstrate that the field of robot path planning can
benefit from evolutionary optimization algorithms. This work can be further extended to multiple mobile-robots. The optimized parameters can be used to find the real-time path in a configuration space with dynamic obstacles. Additional hardware can be used to effectively tackle real-world robot path planning scenarios.

7.3 Future Work

Our next suggested step is to implement a dynamic configuration space for car-like robots. This will allow us to amend our system to make it closer to a real-world situation. The robot code from the PIC microcontroller can also be modified to implement reverse motion for the robot. Another step would be to use multiple robots where a distributed biology-based optimization algorithm could be employed [21].

As discussed in the previous sections, we have multiple objectives that we are optimizing using BBO. All of these objectives (path length, number of hops, number of loops and fail-rate) are optimized independently from each another. A multi-objective optimization algorithm to achieve Pareto optimality can be employed to find a desired balance among the objectives [29]. Pareto optimality can be used when we have more than one objective and it is not possible to make one of the objectives better without making other objectives worse. A decision-maker is then able to find a balanced solution from the Pareto front generated by the multi-objective optimization algorithm.
WORKS CITED

 http://academic.csuohio.edu/simond/courses/eec417/ESPWithThePIC16F877.pdf

 http://rossum.sourceforge.net/papers/DiffSteer/#d7

[29] D. Simon, Evolutionary Optimization Algorithms. New Jersey, United States of

Appendix A

T-tests

This section discusses the t-test used in Chapter VI. The t-test was invented by William Sealy Gosset, an Irish chemist, in 1908. This method is also called the student’s t-test. The t-test is used to determine if there is a fundamental difference between two sets of data or if differences are solely due to random variations. We use t-tests in conjunction with F-tests to determine the difference between BBO parameters. When comparing two algorithms A and B, we start by finding the mean of the two sets of data:

\[
X_A = \frac{1}{N_A} \sum_{i=1}^{N_A} x_{Ai}
\]

\[
X_B = \frac{1}{N_B} \sum_{i=1}^{N_B} x_{Bi}
\]

(4)

where, \(X_A\) and \(X_B\) are the average values of algorithms A and B respectively, and \(N_A\) and \(N_B\) are the number of values in samples A and B respectively. \(x_{Ai}\) is the i-th value in sample A and \(x_{Bi}\) is the i-th value in sample B. Second, we calculate the standard deviations of the two sets of data:

\[
S_A = \sqrt{\frac{\sum_{i=1}^{N_A} (x_{Ai} - X_A)^2}{N_A}}
\]

\[
S_B = \sqrt{\frac{\sum_{i=1}^{N_B} (x_{Bi} - X_B)^2}{N_B}}
\]

(5)

Next, we calculate \(S_t\) :
Next, we calculate the t-test value:

\[T - \text{test value} = \frac{X_A - X_B}{S_t} \]

(7)

We calculate the degree of freedom:

\[\text{Degree of freedom} = N_A + N_B - 2 \]

(8)

By using the degree of freedom and the t-test value for \(\alpha = 0.05 \), which translates to a 95\% significance level, we determine the critical point of the t-distribution using the table in [30]. The critical point defines the rejection region; if the t-test value falls within the rejection region we reject the null hypothesis.
Appendix B

F-tests

This section gives details about the F-test used in Chapter VI. F-tests can be used for a variety of tasks [29]. We use F-tests to investigate if there is any fundamental difference between data sets, or if the differences between data sets are solely due to random variation. This test was used because t-test is only valid for two sets of data, and F-tests are valid for any number of sets of data. Suppose we run M Monte Carlo simulations for each of G algorithms. We start by finding the mean of the algorithms using Equation 4. The variances of the algorithms are found by squaring the standard deviations calculated by Equation 5.

\[
\text{mean} = X_g \\
\text{Variance} = S_g^2
\]

(9)

where, \(X_g\) and \(S_g^2\) are the mean and variance of the g-th algorithm. The F-statistic is calculated as

\[
\bar{f} = \frac{1}{G} \sum_{g=1}^{G} X_g \\
S_w = \frac{1}{G} \sum_{g=1}^{G} S_g^2 \\
S_b = \frac{M}{G-1} \sum_{g=1}^{G} (X_g - \bar{f})^2 \\
F = \frac{S_b}{S_w}
\]

(10)
where \(\bar{f} \) is the average performance metric of all algorithms, \(S_w \) and \(S_b \) are the within-group and between-group variance respectively, and \(F \) is the F-value. We compute the numerator and denominator degrees of freedom.

\[
D_n = G - 1 \\
D_d = G(M - 1)
\]

(11)

After computing the F-value, \(D_n \) and \(D_d \) we find the p-value using Microsoft Excel function F.DIST.RT \((x, \text{deg}_\text{freedom1}, \text{deg}_\text{freedom2})\) to calculate the p-value. This tells us that there is probability \(p \) that the differences between our data sets are due to random variations, or \((100 - p)\) probability that the differences between our data sets are due to fundamental performance differences. We then perform pair-wise t-tests to determine which data set caused the F-test to indicate a difference between the data sets.