
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

ETD Archive

2010

Reverse Engineering Aspects to Derive Application Class Models Reverse Engineering Aspects to Derive Application Class Models

Irenee Morcos george Magdalla
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

 Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Magdalla, Irenee Morcos george, "Reverse Engineering Aspects to Derive Application Class Models"
(2010). ETD Archive. 735.
https://engagedscholarship.csuohio.edu/etdarchive/735

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/735?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

REVERSE ENGINEERING ASPECTS TO DERIVE

APPLICATION CLASS MODELS

IRENEE MORCOS GEORGE MAGDALLA

Bachelor of Science in Information Systems

Cairo University, Egypt

May 2005

submitted in partial fulfillment of the requirements for the degree

MASTERS OF SCIENCE IN SOFTWARE ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

May 2010

This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Nigamanth Sridhar

Department/Date

Dr. Yongjian Fu

Department/Date

Dr. Wenbing Zhao

Department/Date

To my beloved parents

ACKNOWLEDGMENTS

I would like to thank Dr. Sridhar, my advisor, for all his help and support,

throughout the course of this research.

REVERSE ENGINEERING ASPECTS TO DERIVE

APPLICATION CLASS MODELS

IRENEE MORCOS GEORGE MAGDALLA

ABSTRACT

Aspects provide a nice way to modify behavior and implement cross-cutting

concerns in object-oriented systems. As such, aspects do not have an existence of

their own; the application classes that the aspects refer to must be present in order

to instantiate the aspects. In this research, we present a reverse engineering approach

to generate a minimal class model that has all the structural elements necessary in

order to complete exercise a set of aspects.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

CHAPTER

I. Introduction . 1

1.1 Introduction . 1

1.2 The Problem . 3

1.3 The Thesis . 3

1.4 Solution Approach . 3

1.5 Contributions . 4

1.6 Organization of the Thesis . 4

II. Aspect-Oriented Programming . 6

III. Design Overview . 9

3.1 Introduction . 9

3.2 Design Methodology . 10

IV. Transformation Rules . 16

4.1 Introduction . 16

4.2 Packages . 17

4.3 Classes . 19

4.4 Fields . 29

4.5 Methods . 33

4.6 Constructors . 49

V. Applying the Rules . 56

vi

5.1 Introduction . 56

5.2 Aspect Input . 57

5.3 Identifying the Elements . 61

5.3.1 Identifying Packages . 61

5.3.2 Identifying Classes . 63

5.3.3 Identifying Fields . 71

5.3.4 Identifying methods . 72

5.3.5 Identifying Constructors 81

5.3.6 withincode Pass . 82

5.4 The Output . 84

5.4.1 Application Classes . 84

5.4.2 The Helper Class . 89

5.5 Execution Output . 95

VI. Related Work . 97

6.1 Implementation . 100

6.2 Non Aspect Oriented . 101

VII. Conclusions and Future Work . 102

7.1 Conclusion . 102

7.2 Future Work . 103

7.2.1 Tool Implementation . 103

7.2.2 Test case generation . 103

7.2.3 Design pattern mining 104

7.2.4 Design model validation 104

BIBLIOGRAPHY . 105

vii

CHAPTER I

Introduction

1.1 Introduction

Cross-cutting concerns represent a class of design issues that cannot be com-

pletely and properly modularized using traditional object-oriented design methods.

Over the last several years, aspect-oriented programming has been used as an effective

way of modularizing and implementing such cross-cutting concerns. An aspect can

identify one or more structural join points from among a set of classes, and can define

additional behavior to be attached at these join points. The join points are identified

using pointcuts in the aspect, and the behavior is defined as advice. The aspect(s) are

then woven in with the application classes to generate a new set of classes, which are

then supplied to the compiler. This modified set of classes includes behavior defined

in both the original classes as well as that defined in the aspects.

One important issue to consider with such a setting is to have a way of explicitly

defining and identifying the behavioral portions of the woven executable that came

from the original class model separately from those portions that came from the

1

2

aspects. A related issue is to consider whether or not it is safe to perform a weaving

in the first place. Others have looked at these issues [13]. All of this work is still

focused on defining specifications for the aspects separately, but aspects cannot be

executed separately, and so the only way to check for safety is after the weaving is

complete.

In this thesis, we take a different view: Aspect behavior must be identified and

verified to be correct before being woven in along with application classes. To support

this view, we present a reverse engineering approach to examine a set of aspects, and

use this set of aspects to derive a minimal class model that is a structural subset of

the class model of the target application. This minimal application that is created is

devoid of any real behavior; the classes that are generated will only have the structural

elements that the aspects expect to see.

Metaphorically speaking, if the behavior being introduced by a set of aspects

is seen as ornaments on a tree, and the pointcuts represent the hooks, the minimal

class model that we will create will represent the smallest tree that can appropriately

accommodate all the ornaments.

The aspect(s) can be safely woven with this minimal set of empty classes; no

safety requirements can be violated in this set of classes, since they do not represent

any behavior in the first place. Any behavior exhibited by this new executable is

exclusively attributable to the aspect.

We see a number of applications for such a class model harness to exercise a

set of aspects. Some of them are test case generation, design pattern mining, and

design model validation. We talk more about them in Chapter VII, in the future

work section.

3

1.2 The Problem

There is a need to be able to identify the behavior of the aspect itself. It would

really help the developer if he can see how the aspect he is writing will affect the

application. Unfortunately, aspects cannot be executed separately from the applica-

tion. There is no way to test the aspect code by itself, away from the application.

Currently, in order to test the aspect code, the aspects are first weaved with the

application, so the behavior we are able to test is really the combination of both the

behavior of the application combined with the new behavior added by the aspect

code. We need a way to examine the aspect behavior by itself independent from the

application.

The motivation for this research can be summarized in:

1. To develop a way to identify the aspect behavior by itself, away from the ap-

plication.

2. To be able to test the aspect code before weaving into the application.

1.3 The Thesis

We defend the following thesis:

Reverse engineering aspects to derive application class models allows us

to examine the behavior of the aspects independently from the applica-

tion code.

1.4 Solution Approach

In order to identify and verify the aspect behavior to be correct before being

woven in along with the application classes, we present a reverse engineering approach

4

to examine the set of aspects written by the developer. We use this set to derive a

minimal class model. The derived class model is a structural subset of the class model

of the target application. This minimal application that is created does not have any

real behavior. The classes that are generated will only have the structural elements

that the aspects expect to see, but they are basically empty classes.

The aspect(s) can be safely woven with this minimal set of empty classes; no

safety requirements can be violated in this set of classes, since they do not represent

any behavior in the first place. Any behavior exhibited by this new executable is

exclusively attributable to the aspect.

1.5 Contributions

We make the following contributions in this thesis:

1. We present a way to examine the aspect code by itself, separately from the

application.

2. We present a novel reverse engineering approach for deriving class models from

a set of aspects.

3. We describe the formal translation rules for such reverse engineering, and briefly

describe how these rules can be mechanically and automatically applied.

1.6 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we present an introduction

to aspect-oriented programming. In Chapter 3, we outline the strategies for reverse

engineering harness classes from aspects. In Chapter 4, we describe the list of trans-

lation rules that are used in deriving the harness class model. In Chapter 5, we go

5

through a step-by-step example for applying our approach. In Chapter 6, we present

salient work from the literature that is related to our own work. In Chapter 7, we

conclude and present future work and applications of our approach.

CHAPTER II

Aspect-Oriented Programming

Cross-cutting concerns represent a class of design issues that cannot be com-

pletely and properly modularized using traditional object-oriented design methods.

A cross-cutting concern is a design issue that spans many classes, such as logging

and authentication. Handling these types of issues using traditional object-oriented

approaches usually leads to code tangling, scattering, and duplication [15].

Over the last several years, aspect-oriented programming has been used as

an effective way of modularizing and implementing such cross-cutting concerns. An

aspect can identify one or more structural join points from among a set of classes, and

can define additional behavior to be attached at these join points. The join points

are identified using pointcuts in the aspect, and the behavior is defined as advice.

The aspect(s) are then woven in with the application classes to generate a new set of

classes, which are then supplied to the compiler. This modified set of classes includes

behavior defined in both the original classes as well as that defined in the aspects.

Applications of aspect-oriented programming are numerous; to name a few:

monitoring techniques such as logging, tracing, and profiling, policy enforcement using

6

7

system-wide contracts, optimizations such as pooling and caching, design patterns and

idioms, implementing thread safety, authentication and authorization, transaction

management, and implementing business rules [15].

Early AOP efforts have been done in universities around the globe. Gregor

Kiczales, and his team at Palo Alto Research Center (PARC), of Xerox Corporation,

were among the early contributors to the AOP. In the late 1990s, they created As-

pectJ, one of the first AOP implementations. In 1996, Kiczales came up with the term

aspect-oriented programming [11]. Currently, AspectJ is supported by eclipse.org, an

open source community that continues to enhance, and maintain the project.

AOP is implemented using several programming languages, to name a few:

Aspect C as an extension of C++, AspectJ for Java. Also, other implementations of

AOP exist as libraries PostSharp for C#, and Managed Extensibility Framework for

.Net applications. We are using AspectJ implementation of AOP in this thesis.

The following are the most used terms of AspectJ AOP that we will be using

throughout the document:

Aspect: “OOP class like”: the encapsulating unit of the AOP code.

Join Point: Point of interest where the new behavior is applied.

Pointcut: Defines the set of join points of interest.

Advice: “OOP method like”: The new behavior that will be applied at the defined

join point(s). The advice can be applied before, after, or around the join point.

before advice allows us to add behavior before the join point is executed. after

advice allows us to add behavior after the join point is executed. around Advice

allows us to modify, or bypass the behavior of the join point.

It is the aspect weaver’s responsibility to inject the new behavior described by

the advice, at the join points of interest, producing the woven code, which is then

8

passed to the compiler.

Let us consider logging as an example. Logging each method that is being

called in an application is a common cross-cutting concern. But as simple as this

issue seems to be, addressing it using OOP means that we need to change the source

code of each method that we want to log, to add a code instruction to print the

method’s signature. This literarily means touching each method of each class in the

application.

The following example demonstrates how effectively AOP addresses the logging

cross-cutting concern, as opposed to object oriented programming.

1 public aspect LoggingAspect {
2 pointcut log():
3 call(* *.*(..))&& !within(LoggingAspect);
4

5 before(): log(){
6 System.out.println("Log:" + thisJoinPoint);
7 }
8 }

AspectJ effectively use wild cards to specify join points. In the above example,

wild cards are used in a method signature. We use three asterisks: the first one, for all

return types, the second means in all classes, and the third means any method name.

We also use double dots in the arguments parentheses, which means that the function

can take zero or more arguments. So, the pointcut means that we are interested in

any method called, outside of the LoggingAspect.

This simple example gives us an idea of how powerful AOP is, and demonstrates

the urgency of having a way to help the programmer see how his AOP code will affect

the application it is written for.

CHAPTER III

Design Overview

3.1 Introduction

In this chapter we discuss our approach in reverse engineering the aspect code

into the constructed application code.Our reverse engineering approach allows us to

identify the aspect behavior by itself, away from the target application. We start with

the aspect code provided by the developer, and we go through it in several passes, to

identify the application classes that the aspect expects to see. Once the application

classes are identified, we flesh out the application, with the needed code to trigger the

aspect behavior. Then we weave the application with the aspect code provided, so we

can see the aspect behavior. Our constructed application is a subset of the original

application code, but it is devoid from any behavior, guaranteeing that the behavior

of the woven application is coming solely from the aspect written by the developer.

9

10

3.2 Design Methodology

The key motivation for our work is to be able to consider a set of aspects,

and to be able to independently exercise these aspects (separately from the target

application). Based on this, our process of reverse engineering aspects includes the

following steps:

1. We identify the list of necessary join points to be included in the class model.

We scan through the aspect code in several passes until there are no ambigu-

ities remaining to be revealed. Based on this scan, we identify the structural

elements, i.e. packages, classes, data members, constructors, and methods. In

addition, we discover the relationship between these structural elements, if any.

2. We flesh out the application by creating the packages, classes, data members,

methods and constructors, such that all structural relationships are maintained.

3. We create a trigger method in each created class to call all the methods that were

defined for that class, to exercise the aspect, and trigger the aspect behavior.

4. We create a separate “Helper” class, with a main function to call the invoking

methods of the created classes. We make sure the trigger methods and the

“Helper” class we added, are transparent to the aspect, since they are not part

of the original application. So we rewrite the pointcuts to exclude them.

The following is an example of the reverse engineering process:

We first start with the aspect that is provided by the developer.

1 public aspect AccountAspect {
2 pointcut creditOperation(Account account, float amount):
3 call(void Account.credit(float)) &&
4 this(account) && args(amount);
5

6 before(Account account, float amount):
7 creditOperation(account, amount) {
8 System.out.println(

11

9 "Crediting " + amount +" to " + account);
10 }
11

12 void around(Account account, float amount) throws
13 InsufficientBalanceException:
14 call(* Account.debit(float) throws
15 InsufficientBalanceException)
16 && target(account) && args(amount)
17 {
18 try {
19 proceed(account, amount);
20 } catch(InsufficientBalanceException ex) {
21 System.out.println("Overdraft protection logic");
22 }
23 }
24

25 after() returning : call(* Account.*(..)){
26 System.out.println(
27 "Log the successful completion" + thisJoinPoint);
28 }
29 }

This aspect includes, the three different types of advices: before, around, and

after. It also includes one named pointcut creditOperation(Account account, float

amount), and two anonymous pointcuts.

The first pointcut has two arguments, one of type Account, and another of type

float. We check if Account is a system-defined class, or if it was defined before. Since

Account is not a system-defined class, and has not been defined before, we add it to

the list of classes to be created. Since float is a system-defined type, we do not add it

to the list. The pointcut specifies the join point where it will be applied: on the call

of the method of which the signature is provided: void Account.credit(float). This

means that the Account class that we are creating has a method called credit(), that

takes an argument of type float, and has a void return type. So, we add this method

to the methods that will be created for the Account class. The this and args keywords

are used to pass context to the advice, that uses this pointcut.

Lines 6 to 10 is an advice, it is a before advice, which means that the behavior

defined in this advice will be executed before the join points to where the advice is

being applied. It has two arguments; those are of the pointcut it is applied to. The

12

context is passed using the arguments, so the advice will print how much is being

credited to which account.

Lines 12 to 23 is an around advice. The pointcut for this advice is anonymous.

The join points are defined in the advice itself. Account is already in the list of

classes to be created, so we do not need to add it. The join points are also defined

using a call pointcut of the method whose signature is * Account.debit(float) throws

InsufficientBalanceException). InsufficientBalanceException is added to classes to be

defined, it is flagged as an exception, so it will be declared to extend Exception. Since

the join point throws an exception, the advice is declared to throw the exception

also. proceed is a very important keyword of the around advice; without it the join

point will not get executed. Unlike the before and after advice, the around advice

has a return type, and it is the same as that of proceed. This means that the Account

class has a method called debit() that takes one argument of type float, has void as

return type, and throws an InsufficientBalanceException. As with regular Java, since

debit() throws an exception, proceed is called between try and catch.

Lines 25 to 28 is an after advice. returning specifies that this advice only

applies to successfully executed join points. So, it will not be executed if a join point

throws an exception. This advice uses an anonymous pointcut as well. The join

points are defined using wild cards. The method signature has 3 wild cards, the first

* for any return type, second * for any method in the Account class, and the third

.. for zero or more arguments. This means that the advice will be applied on any

method in Account that is being called. Since we have at least one method defined for

class Account, we do not need to define new methods. A call to any method of Account

class will satisfy/exercise this advice. ThisJoinPoint is a keyword that is used to print

the current join point signature.

13

Now we have the list of classes and methods to be defined. So we can flesh out

the application. We create class Account and its two methods debit() and credit().

1 public class Account {
2 void debit(float f) throws InsufficientBalanceException{
3 if(Math.random() > 0.5)
4 throw new InsufficientBalanceException();
5 }
6

7 void credit(float f){}
8 }

Since the debit() method throws an exception we use a random number to

trigger the exception.

We create InsufficientBalanceException as follows:

1 public class InsufficientBalanceException extends Exception{
2 }

In order to see the aspect behavior, we need to call all the methods that we

have defined. To do so we need a method that does exactly that: we need it inside

of the created class, in case we have private members that need to be called.

1 public class Account {
2 void debit(float f) throws InsufficientBalanceException{
3 if(Math.random() > 0.5)
4 throw new InsufficientBalanceException();
5 }
6

7 void credit(float f){}
8

9 public void trigger(){
10 Account i1 = new Account();
11 i1.credit(0);
12 try {
13 i1.debit(0);
14 } catch(Exception e) {}
15 }
16 }

We call the methods of the class using arguments’ default values. Insufficient-

BalanceException does not need an trigger() since it does not have any methods. It

is the responsibility of the Helper class to call all the triggers defined.

1 public class Helper {

14

2 public static void main(String[] args) {
3 Account a = new Account();
4 a.trigger();
5 }
6 }

The output is:

Crediting 0.0 to Account@1389e4

Log the successful completioncall(void Account.credit(float))

Overdraft protection logic

Log the successful completioncall(void Account.trigger())

As we can see the first line is from the before advice, the second and fourth are

from the after advice, and the third line of output is from the around advice. From

the output we can see that calling the debit() function threw the exception, which

was caught displaying Overdraft protection logic. Another thing to notice is that the

advice was also applied to the trigger().

Since the after advice applies to all called methods of the Account class, we

need to exclude our added trigger(). We only added this method to trigger the

aspect behavior, but it should be transparent to the developer, since it is not part of

the application. This is also true for class Helper, so we need to not apply the aspect

on our Helper class. To do so, we modify the aspect provided by the developer and

define 2 pointcuts to exclude them as follows:

1 public aspect AccountAspect {
2 pointcut excludeMyHelperClass():
3 !within(Helper);
4

5 pointcut excludeMyMethodsFromCall():
6 !call (void *.trigger());
7

8 pointcut creditOperation(Account account , float amount):
9 call(void Account.credit(float)) && this(account) && args(amount);
10

11 before(Account account , float amount):
12 creditOperation(account , amount) && excludeMyHelperClass(){
13 System.out.println("Crediting " + amount +" to " + account);
14 }

15

15

16 void around(Account account , float amount)
17 throws InsufficientBalanceException:
18 call (* Account.debit(float) throws InsufficientBalanceException)
19 && target(account) && args(amount) && excludeMyHelperClass(){
20 try {
21 proceed(account , amount);
22 } catch(InsufficientBalanceException ex){
23 System.out.println("Overdraft protection logic");
24 }
25

26 after() returning :
27 call(* Account .*(..)) && excludeMyHelperClass() &&
28 excludeMyMethodsFromCall() {
29 System.out.println("Log the successful completion"
30 + thisJoinPoint);
31 }
32 }

After this modification the output is:

Crediting 0.0 to Account@c20e24

Log the successful completioncall(void Account.credit(float))

Log the successful completioncall(void Account.debit(float))

We can see that this time, the after advice is not applied to our trigger().

Another thing to note is that the debit() method did return successfully.

CHAPTER IV

Transformation Rules

4.1 Introduction

In this chapter we examine the transformation rules we set to reverse engi-

neer the aspects into application classes. We developed our transformation rules for

AspectJ language [1]. AspectJ5 is the most current version of AspectJ. We believe

that our approach will stand applicable for future versions of AspectJ, since we have

based our approach on searching for the elements of the target application that are

mentioned in the aspect code, and the aspect needs to specify the join points to

where the behavior gets attached. We start with the aspect source code, and we use

the transformation rules listed in this chapter to construct the minimal set of classes

that is needed to exercise the aspects. These rules are set such that the constructed

application classes have no behavior in themselves; the only behavior in the woven

application is solely coming from the aspects, provided by the aspect developer.

We categorize the rule by the object-oriented element it defines, so we have

rules for defining packages, classes, constructors, methods, and fields. We show how

16

17

we use the clues found in the aspect source code to construct the minimal set of

application classes.

We present how each clue is transformed into the constructed object oriented

code. An important thing to note is that we do not define any Java system-defined

classes such as void, int, float, double, long, Object, Integer, Float, Double, Long, String,

Math library, etc. We assume that the developer imports the appropriate classes to

use system-defined classes, for example java.util to use List, ArrayList, Map, etc.

We also use the Java Reflection API [20] to determine if a class is system-

defined, and to get information about that class. Reflection API is a library that

allows us to examine the classes at runtime in Java Virtual Machine.

Also, we ignore any intertype declarations, or hierarchies introduced by the

aspect itself. If the aspect is introducing a new field or a method to a class of the

application, we do not add this element to the class, since this introduction is done

in the aspect and not part of the original application.

We illustrate the rules with examples on how we spot the clues in the aspect

source code, and what is the output of this clue in the constructed application classes

code. For organization, we name the rules used to derive packages as Pkg#, Cls# for

classes, Mtd# for methods, Ctr# for constructors, and Fld# for fields.

4.2 Packages

Packages can be spotted in the aspect code in the import statements, or in

the ClassName, FieldSignature, MethodSignature, or ConstructorSignature as part

of their fully qualified name. We assume the following format for a fully qualified

name:

1 package1.package2...packageN.ClassName.FieldName/MethodName/new

18

The following are the rules we use to create packages in the constructed appli-

cation code.

Pkg1 – PackageName.ClassName

Examples:

1 within(userPackage.Class1)
2 import(java..*)
3 within(userPackage..*)

This clue tells us that PackageName is a package in the application. We check

if the package is a system-defined package, e.g. java, and if so, we do not add it to

the list of packages to be created. We assume that the appropriate system-defined

classes are imported with the aspect code. If PackageName, e.g. userPackage, has not

been added to the list of packages to be created, we add it. This clue is used to define

package userPackage as follows:

1 package userPackage;

Pkg2 – PackageName.PackageName.ClassName

Example:

1 import package1.package2.*

This statement imports all classes in package2, and package2 is a package inside

package1. If not already defined, we define package1.package2. This statement is

transformed as follows:

1 package package1.package2;

Pkg3 – userPackage*..*

Example:

19

1 within(userPackage*..*)

This pointcut gives us the clue that there are one or more packages which

names start with userPackage. If we did not add userPackage, or any other package

that starts with userPackage, to the list of packages to be defined, we need to do that.

The constructed application will have the following line of code, built on this clue,

satisfying the pointcut.

1 package userPackage;

Pkg4 – PackageName.*.ClassName

Example:

1 within(userPackage.*.Class1)

This pattern matches all classes with name Class1, that exist in a subpackage

of userPackage. We add userPackage to the list of packages to be created, if it is not

already defined. If it is already added, we check if it has any sub package already

created. If we do not find any sub package for userPackage, we create a package p#

inside userPackage. The following is how these clues are transformed in the constructed

application classes:

1 package userPackage.package_p1;

4.3 Classes

There are several pointcuts that are used to define classes in the application.

We can also spot classes in the fully qualified name of a field, method, or a constructor.

The following are the statement and pointcuts where we spot the classes necessary

to construct the application code.

20

1 import PackageName.ClassName;

This statement includes the mentioned classe(s) to the source code.

1 staticinitialization(ClassName)

This pointcut matches the static initialization of ClassName. When ClassName is

initialized after loading.

1 declare parents: ClassName1 extends ClassName2;

This pointcut tells us that is the woven code that ClassName1 is a child of

ClassName2.

1 within(ClassName)

This pointcut is usually used with another pointcut. It states that the other

pointcut should match within the code of the mentioned class.

1 this(ClassName/Class-Instance)

This pointcut is usually used with another pointcut. It states that the other

pointcut should match where the object is of type ClassName.

1 target(ClassName/Class-Instance)

This pointcut is usually used with another pointcut. It states that the other

pointcut should match where the target object is an instance of ClassName.

1 args(ClassName/Class-Instance)

This pointcut is usually used with another pointcut. It states that the other

pointcut should match where the arguments are of type ClassName.

1 after() returning(ClassName Class-Instance)

This statement could be part of an after advice. It states that the pointcut

where the advice is applied, returns an object of type ClassName.

21

1 handler(ExceptionType)

This pointcut gets exercised when the ExceptionType is handled.

1 after() throwing(ExceptionType Exception -Instance)

This statement could be part of an after advice. It states that the pointcut

where the advice is applied, throws an exception of type ExceptionType.

1 throws(ExceptionType)

This statement may be a part advice, method or constructor signature, it states

that an exception of type ExceptionType may be thrown.

1 ClassName

Could be only the class name or the fully qualified name of the class, i.e.

includes the package where the class is declared; in which case we would follow the

package rules described earlier to identify the package, and create the class inside the

appropriate package. Note that if there is no package name associated with the class

name, we create the class in the default package where the aspect code resides.

Following are the rules we use to spot classes in the aspect code, and how we

use them in the constructed application code. The same as for packages, if the class

is system-defined, we do not need to create it; and if it is not we need to create it in

the constructed application code.

Cls1 – ClassName

Example:

1 staticinitialization(Class1)
2 after() returning(Class1 c)

The static initialization pointcut matches Class1, and the returning clause

states that there is a Class1 class in the application. We first check if Class1 is a

22

Java-defined class, if not we check if we have added it to the list of classes to be

defined, if we did not, then we add it. This will result in the following code to be

created, as part of the application classes.

1 class Class1{
2 ...
3 }

Cls2 – ClassName || ClassName

Example:

1 within(Class1 || Class2)

This clue tells us that the application has classes with names: Class1, and

Class2. If any of them is not in the list of classes to be created, we add it. This clue

will be transformed as follows in the constructed application classes:

1 class Class1{
2 ...
3 }
4 class Class2{
5 ...
6 }

Cls3 – ClassName*

Example:

1 within(Class1*)

This clue says that there are classes whose names start with Class1. Having

a class named Class1 in the constructed application satisfies this pointcut. So, we

check if we have a class called Class1, or a class whose name starts with Class1, in

the list of classes to be created, if we do not find one, we add Class1 to the list. The

following should be part of the constructed application code:

1 class Class1{

23

2 ...
3 }

Cls4 – *ClassName

Example:

1 within(*Class1)

This statement says within classes which names end in Class1, so having a class

named Class1 in the constructed application satisfies this pointcut. So, we check if

we have not added a class Class1, or another class whose name ends with Class1, to

the list of classes to be created we add Class1 to it. The following should be part of

the constructed application code:

1 class Class1{
2 ...
3 }

Cls5 – PackageName.ClassName

Example:

1 within(userPackage.Class1)

This statement says that there is a Class1 class in userPackage package. If

userPackage is not in the packages list to be defined, add it, as described in Section 4.2.

And add Class1 to the list of classes to be created inside userPackage. These clues are

transformed into the following application code:

1 package userPackage;
2 class Class1{
3 ...
4 }

24

Cls6 – ClassName+

Example:

1 within (Class1+)

This clue tells us that a pointcut will be attached to Class1 and its children

classes. Having Class1 satisfies this pointcut. We add Class1 to the list of classes

to be created, if it is not have been added before. The following is how this clue is

translated in the constructed application code:

1 class Class1{
2 ...
3 }

Cls7 – this(ClassName/class instance), target(ClassName/class instance),

args(ClassName/class instance)

Example:

1 this(Class1)
2 target(Class1)
3 args(Class1)

Or

1 Class1 c;
2 this(c)
3 target(c)
4 args(c)

These pointcuts match class Class1. We add Class1 to the list of classes to be

created, if it is not already there. This clue will be transformed into the following in

the constructed application classes:

1 class Class1{
2 ...
3 }

25

Cls8 – handler(ExceptionType)

Example:

1 handler(MyException+)
2 handler(*MyException)
3 hander(MyException*)
4 handler(MyException)

The first pointcut matches handling MyException and all its subclasses. The

second pointcut matches handling all exceptions that end with MyException. The

third pointcut matches handling all exceptions that start with MyException. The

fourth pointcut matches handling MyException. Satisfying the fourth pointcut satisfies

all the other. This clue is used as follows in the constructed application code:

1 class MyException extends Exception{
2 ...
3 }

Cls9 – throws(ExceptionType)

Example:

1 throws(MyException)

This clue states that there is an exception of type MyException. we basically

treat exceptions as classes that are flagged to be exceptions, so we can declare it to

extend the Exception class when we flesh out the application. If MyException is not

added to the list of exceptions to be created, add it. We basically treat exceptions as

classes that are flagged to be exceptions, so we can declare it to extend the Exception

class when we flesh out the application. The following is how this clue is transformed

in the constructed application code:

1 class MyException extends Exception{
2 ...
3 }

26

Cls10 – after() throwing(ExceptionType exceptionObject)

Example:

1 after()throwing(MyException)

This clue states that there is an exception of type MyException. If MyException

is not added to the list of exceptions to be created, then we add it. The following is

how this clue is transformed in the constructed application code:

1 class MyException extends Exception{
2 ...
3 }

Cls11 – after() returning(ClassName Class-Instance)

Example:

1 after()returning(Class1 c)

This clue states that there is a class of type Class1. If Class1 is not added to

the list of classes to be created, add it. The following is how this clue is transformed

in the constructed application code:

1 class Class1{
2 ...
3 }

Cls12 – after() returning

The return type is not specified, so do not do anything.

Cls13 – declare parents: ClassName1 extends ClassName2

Example:

1 declare parents: SubAccount extends Account

27

This is a way of how the aspect can change the hierarchy of the classes of the

original application; it can define one to be a subclass of the other. This clue gives

us the names of two classes in the application that need to be defined as follows:

1 class SubAccount{
2 ...
3 }
4

5 class Account{
6 ...
7 }

Notice that we do not define any hierarchy to the classes, since the aspect

introduces the hierarchy.

Cls14 – PackageName.*

Example:

1 within(PackageName.*)

This pointcut tells us that the other pointcut associated with this one is ap-

plicable to all classes inside PackageName. If we have at least one class in the list of

classes to be created in the mentioned package, we do not do anything. If no classes

are defined PackageName, we create a new class called ClassCls#. The following is how

the clue is transformed in the constructed application code.

1 package PackageName;
2 class ClassCls1{
3 ...
4 }

Cls15 – !within(ClassName) , !this(ClassName), !target(ClassName)

Example:

1 !within(Account)

28

The pointcut matches all classes except the Account class. If there is no other

class in the list to classes to be created, add ClassCls# to it if there is already at

least one other class defined do not add anything, the other classes will satisfy this

pointcut. This clue may be transformed into:

1 class ClassCls1{
2 ...
3 }

Cls16 – !ClassName

Example:

1 within(!Account)

The pointcut matches all classes except the Account class. Keep as ambiguity

for next pass and if there are no classes defined other than Account, add ClassCls#

to the list of classes to be created, if there is already at least one other class defined

do not add anything, the other classes will satisfy this pointcut. This clue may be

transformed into:

1 class Class1{
2 ...
3 }

Cls17 – Inheritance

If a system-defined class is used, and it is overridden by a new user-defined class,

then the user-defined class is a child of system-defined. All standard inheritance rules

should apply.

Example:

1 import java.awt.*;
2 public aspect AccountAspect {
3 void aspectMethod()
4 {

29

5 RunnableWithReturn worker = new RunnableWithReturn();
6 try {
7 EventQueue.invokeAndWait(worker);
8 } catch (Exception ex){}
9 }
10 }

invokeAndWait() takes an argument of type Runnable, and since Runnable is an

interface then RunnableWithReturn must implement it and its abstract methods. The

following is how RunnableWithReturn should be defined:

1 public class RunnableWithReturn implements Runnable{
2 public void run() {
3

4 }
5 }

4.4 Fields

The pointcuts that define fields or data members are set and get. They take

the following format:

1 set(FieldSignature)

The join point defined by this pointcut is the field mentioned in the FieldSig-

nature. The associated behavior is seen on its initialization or when it is assigned a

value.

1 get(FieldSignature)

The join point defined by this pointcut is the field mentioned in the FieldSig-

nature. The associated behavior is seen accessing this field to get its value, as when

returning the field, or using its value to define another variable.

FieldSignature has the following format:

1 AccessModifier Type ClassName.FieldName

Example:

30

1 private float Account.balance;

Notice that if the ClassName is part of the field signature, and has not been

already added to the list of classes to be created, we add it, following the rules

discussed in Section 4.3. The same is also done if the package is defined in the

method signature. E.g.: private float banking.Account.balance. In this case we add

banking to the list of packages to be created, and add Account to the list of classes to

be created in the banking package.

In order to see the associated behavior added by the aspect, we access the field

defined in a method (named trigger()) that is created for each created class. We

define trigger() as a public method that takes no arguments and has a void return

type. The responsibility of this method is to call/access all the class members that

have been defined for the created classes, in order to trigger the associated behavior

specified by the aspect. When setting the fields, we use the following default values

for each type:

• short, int, long, float, double : 0

• boolean : false

• String : ‘‘’’

• Object : new Object of the specified type

• Array : call with new Object[1] of the specified type.

When we encounter a set, we add the field, with the set flag set to true, to the

list of fields to be added for the mentioned class, if it has not been already added. We

initialize the field with the appropriate default value in the trigger() method. When

we encounter a get, if the field is not already added to the list of fields to be created

for the mentioned class, we add it, with the get flag set to true. We assign the field

to another local variable of the same type as the field in the trigger() method.

31

The following is the list of rules that we use to decipher the field signature

clues to construct the application classes.

Fld1 – AccessModifier Type ClassName.FieldName

Same with: set/get(AccessModifier type FieldName) && within(ClassName)

This clue tells us, that there is FieldName with the mentioned access modifier,

of type Type, a data member of class ClassName. The following is how the clue is used

in the constructed code application, for set and get:

Example:

1 set(private float banking.Account.balance)

This clue is transformed into the following in the constructed application:

1 package banking;
2 class Account{
3 private float balance;
4 public void trigger(){
5 balance = 0;
6 }
7 }

Example:

1 get(private float banking.Account.balance)

This clue is transformed into the following in the constructed application:

1 package banking;
2 class Account{
3 private float balance;
4 public void trigger(){
5 float i1 = balance;
6 }
7 }

Fld2 – AccessModifier Type ClassName.*

This clue tells us, that this pointcut applies, to all the fields of ClassName. If it

is a set/get pointcut, we look for any field with of the specified type, with the set flag

32

set to true. If there is one, it will satisfy the point cut. Otherwise we add the field

with the FieldSignature to the list of fields to be created for the mentioned ClassName,

and set its set/get respectively flag to true. The following is how the clue is used for

set/get pointcuts, into the constructed application code:

Example:

1 set(protected int Account.*)

This clue is transformed into the following in the constructed application:

1 class Account{
2 protected int f1;
3 public void trigger()
4 {
5 f1 = 0;
6 }
7 }

Example:

1 get(protected int Account.*)

This clue is transformed into the following in the constructed application:

1 class Account{
2 protected int f1;
3 public void trigger()
4 {
5 int i1 = f1;
6 }
7 }

Fld3 – AccessModifier * ClassName.*

This clue tells us that the pointcut is interested in all fields regardless of their

names, or types, but these, which have the mentioned AccessModifier. If we find a

field with the mentioned AccessModifier, and the appropriate set/get flags turned on,

we do not do anything. Otherwise, we add a field of type int, with the rest of the

mentioned specifications, and with set/get flags set appropriately.

Example:

33

1 set(private * Account. *)

This clue is transformed into the following in the constructed application:

1 class Account{
2 private int f1;
3 public void trigger()
4 {
5 f1= 0;
6 }
7 }

Example:

1 get(private * Account.*)

This clue is transformed into the following in the constructed application:

1 class Account{
2 private int f1;
3 public void trigger()
4 {
5 int i1 = f1;
6 }
7 }

Fld4 – !AccessModifier ClassName.FieldName

The clue tells us that this pointcut does not apply on the specified access

modifier. If there is a field that is not with the mentioned access modifier, we add

one. The same rule applies for !final, !static.

4.5 Methods

Pointcuts such as call, execution, within, cflow, and cflowbelow are used to

define method join points. We depend on the signature used in the pointcut, to

determine if the join point is a constructor or a regular method. These pointcuts are

written in the following format:

1 execution(MethodSignature)

34

The join point defined by this pointcut is the method mentioned in the Meth-

odSignature. The associated behavior is seen, when the method is executed at the

class side.

1 call(MethodSignature)

The join point defined by this pointcut is the method mentioned in the Meth-

odSignature. The associated behavior is seen, when the method is called. Unlike in

an execution pointcut, the advice behavior is inserted at the caller side, instead of

callee side.

1 withincode(MethodSignature)

The join point defined by this pointcut resides in the body of the method

defined with MethodSignature.

1 cflow(pointcut)

This pointcut takes another pointcut as an argument. The join points defined

by the cflow pointcut are all the joint points in the control flow of the enclosed

pointcut, including the calling join point.

1 cflowbelow(pointcut)

This pointcut takes another pointcut as an argument. The join points defined

by the cflowbelow are all the join points in the control flow of the enclosed pointcut,

excluding the calling join point.

MethodSignature has the following format:

1 AccessModifier ReturnType ClassName.MethodName(arg1,..., argN)
2 [throws ExceptionType]

Example:

1 public float Account.getBalance()

35

Notice that if the ClassName is part of the method signature, and has not been

already added to the list of classes to be created, we add it, following the rules

discussed in Section 4.3. The same is also done, if the package is defined in the

method signature. E.g.: public float banking.Account.getBalance(). In this case, we

add banking to the list of packages to be created, and add Account to the list of classes

to be created in the banking package.

If the method signature specifies that the method throws an exception, we add

the ExceptionType to the list of exceptions to be created, as described in Section 4.3.

In order to see the associated behavior added by the aspect, we call each defined

method in a function (named trigger()) that is created for each created class. We

define trigger() as a public method that takes no arguments and has a void return

type. The responsibility of this method is to call/access all the class members that

have been defined for the created classes, in order to trigger the associated behavior

specified by the aspect. When calling methods or constructors, we use the following

default values for each type:

• short, int, long, float, double : 0

• boolean : false

• String : ‘‘’’

• Object : new Object of the specified type

• Array : call with new Object[1] of the specified type.

When calling a class member that throws an exception, we call it inside a try

and catch block.

The following is the list of rules that we use to decipher the method signature

clues to construct the application classes.

36

Mtd1 – AccessModifier ReturnType ClassName.MethodName(arg1,..., argN)

Example:

1 call(public float Account.getBalance(AccountNumber , int))

This clue tells us that class Account, has a public method named getBalance(),

that takes two arguments, one of type AccountNumber, and the other of type int, and it

has float as its return type. We use the rules in Section 4.3 to determine if we need to

add Account and AccountNumber to the list of classes to be created. If the class, Account

in this example, does not have a method with this signature, we add the method to

the list of methods to be created for the Account class. The following is how this clue

is transformed into the constructed application code:

1 class Account{
2 public float getBalance(AccountNumber a1, int a2){
3 return 0;
4 }
5 public void trigger(){
6 getBalance(new AccountNumber(), 0);
7 }
8 }
9 class AccountNumber{
10 }

Mtd2 – AccessModifier ReturnType ClassName.MethodName(arg1,..)

- AccessModifier ReturnType ClassName.MethodName(.., argN)

- AccessModifier ReturnType ClassName.MethodName(arg1,.., argN)

Example:

1 private int Class1.method1(int,..)
2 private int Class1.method2(.., float)
3 private int Class1.method3(.., long, ..)

These clues are saying that these methods have an argument of type arg#, and

may have others, that the pointcut does not care about. This means that we can

treat these examples, as their following correspondents:

37

1 private int Class1.method1(int)
2 private int Class1.method2(float)
3 private int Class1.method3(long)

This means we can use rule Mtd1 to create the appropriate methods, simply

by ignoring the “..” part of the arguments.

Mtd3 – AccessModifier ReturnType ClassName.MethodName(arg1,..., argN) throws

ExceptionType

Example:

1 call(private void Account.debit(float) throws InsufficentBalanceException)

Or:

1 after() throwing(InsufficentBalanceException e):
2 call(private void Account.debit(float){
3 System.out.println(After throwing exception);
4 }

This clue tells us that the Account class has a private method called debit()

that takes a float as an argument and returns a void type, and throws an Insuffi-

centBalanceException. We use class rules to decide whether we need to create Account

and InsufficentBalanceException. If this method’s unique signature is not already in-

cluded, it is added to the list of methods to be created for the enclosing class, Account

in this case. Each created method is called in the public trigger() method, and only

the trigger() method, is called from outside of the class, in the Helper class. The

following is how we use the clue in the constructed application code:

1 class Account{
2 private void debit(float a1) throws InsufficentBalanceException{
3 if(Math.random() > 0.5)
4 throw new InsufficentBalanceException();
5 }
6 public void trigger(){
7 try{
8 debit(0);
9 }catch(Exception e){}
10 }
11 }

38

12 class InsufficentBalanceException extends Exception{
13 }

Mtd4 – execution(AccessModifier ReturnType MethodName(arg1,..., argN)) &&

within(ClassName)

Example:

1 execution(public int method1(AccountNumber)) && within(Account)

This clue says that Account class has a public method, that takes an argument

of type AccountNumber, and returns an int return type. If the ClassName class does not

have a method with this unique signature, we add one to the list of methods to be

created for this ClassName. The following is how this clue is used in the constructed

application code.

1 class Account{
2 public int method1(AccountNumber a1) {}
3 public void trigger(){
4 method1(new AccountNumber());
5 }
6 }
7 class AccountNumber{
8 }

Mtd5 – pointcut(MethodSignature) && within(ClassName || ClassName)

Example:

1 call(private int method1()) && within(Account || SavingsAccount)

This clue tells us that method1() is either found in Account or SavingsAccount. We

check the list of methods to be created for both methods. If method1() is not already

added at either, we add it to the first class, Account in this case. The following is how

this clue is used in the constructed application code.

1 class Account{
2 private void method1(){}

39

3 public void trigger(){
4 method1();
5 }
6

7 class SavingsAccount{
8 }

Mtd6 – call(MethodSignature1) && withincode(MethodSignature2)

Example:

1 call(public void AccountNumber.method1(int)) &&
2 withincode(private int Account.method1())

This clue tells us that MethodSignature1 is called from MethodSignature2. Using

the method signatures we create methods in the appropriate classes. We add a call to

MethodSignature1 in MethodSignature2’s body and we make sure we import the appro-

priate package where MethodSignature1 resides, if it is different than MethodSignature2.

We use the appropriate way to create an object of the class where MethodSignature1

is defined. The following is how this clue is used in the constructed application code:

1 class AccountNumber{
2 public void method1(int i){}
3 public void trigger(){
4 method1(0);
5 }
6 }
7 class Account{
8 private int method1(){
9 AccountNumber i1 = new AccountNumber();
10 i1.method1();
11 }
12 public void trigger(){
13 method1();
14 }
15 }

Mtd7 – call(ConstructorSignature) && withincode(MethodSignature)

Example:

1 call(public Class1.new()) && withincode(private void Class2.method1(int))

40

This clue says that an object is initialized using ConstructorSignature in Meth-

odSignature. We use the rules in Section 4.3 to create the classes, and the rules in

Section 4.6 to create the constructor. We create MethodSignature in the appropriate

class. We initialize an object using ConstructorSignature in MethodSignature’s body.

We make sure we import the appropriate package, if ConstructorSignature and Meth-

odSignature are not in the same package. The following is how this clue is transformed

in the constructed application code:

1 class Class1{
2 public Class1(){}
3 public void trigger(){
4 Class1 i1 = new Class1();
5 }
6 }
7 class Class2{
8 private void method1(int i1){
9 Class1 i1 = new Class1();
10 }
11 public void trigger() {
12 method1(0);
13 }
14 }

Mtd8 – AccessModifier ReturnType ClassName.MethodNamePart*(arg1,..., argN)

Example:

1 public void Account.new*()

This clue tells us that the Account class has a public method whose name starts

with MethodNamePart, new in this case, and takes no arguments, and returns a void type.

We check the list of methods to be created for the ClassName, if we do find a method

whose name starts with MethodNamePart, and has the exact method signature except

for other part of the name, we do not do anything, and the found method satisfies this

pointcut. Otherwise, we add a new method called MethodNamePart m#, with the rest of

the defined specification in the MethodSignature. The following is how this example

clue is transformed in the constructed application code.

41

1 class Account{
2 public void new_m1(){}
3 public void trigger(){
4 new_m1();
5 }
6 }

Mtd9 – AccessModifier ReturnType ClassName.*MethodNamePart(arg1,..., argN)

Example:

1 private void Account.*int()

This clue tells us that the Account class has a public method whose name ends

with MethodNamePart, int in this case, and takes no arguments, and returns a void type.

We check the list of methods to be created for the ClassName, if we do find a method

whose name ends with MethodNamePart, and has the exact method signature except

for other part of the name, we do not do anything, the found method satisfies this

pointcut. Otherwise, we add a new method called m# MethodNamePart, with the rest of

the defined specification in the MethodSignature. The following is how this example

clue is transformed in the constructed application code.

1 class Account{
2 public void m1_int(){}
3 public void trigger(){
4 m1_int();
5 }
6 }

Mtd10 – AccessModifier ReturnType

ClassName.MethodNamePart1*MethodNamePart2(arg1,..., argN)

Example:

1 public void add*Listener()

This clue tells us that the Account class has a public method whose name starts

with MethodNamePart1 (add) and ends with MethodNamePart2 (Listener), and takes no

42

arguments, and returns a void type. We check the list of methods to be created

for the ClassName, if we do find a method which name starts with MethodNamePart1,

and ends with MethodNamePart2, and has the exact method signature except for other

parts of the name, we do not do anything, the found method satisfies this pointcut.

Otherwise, we add a new method called MethodNamePart1MethodNamePart2, with the rest

of the defined specification in the MethodSignature. The following is how this example

clue is transformed in the constructed application code.

1 class Account{
2 public void addListener(){}
3 public void trigger(){
4 addListener();
5 }
6 }

Mtd11 – AccessModifier * ClassName.MethodName(arg1, ..., argN)

Example:

1 public * Account.getBalance()

This clue tells us that the pointcut enclosing MethodSignature is satisfied with

ClassName.MethodName method, that has the mentioned access modifier, and arguments’

types and order, returns any return type. There is another clue we need to check for

in order to determine the return type. We need to check if this pointcut is mentioned

in an around advice, we use the return type of the around advice as the return type

of the method. We also do the same for after returning advice, which specifies the

return type. We check if the list of methods to be created for the ClassName class, and

if the rest of the method specifications found in the MethodSignature matches any of

the methods to be created, we do not do anything. Otherwise we add the method

to the list of methods to be created for ClassName class, and we use the return type

found for the around or after returning advice as the return type of the method. If

the is no around advice associated with this pointcut, we make the return type void.

43

1 int around():
2 execution(public * Account.getBalance()){
3 return proceed();
4 }

Or:

1 after() returning(int i)
2 execution(public * Account.getBalance()){
3 System.out.println(‘‘After returning advice’’);
4 }

If we have an around or after returning advice, the clue is used as follows:

1 class Account(){
2 public int getBalance(){
3 return 0;
4 }
5 public void trigger(){
6 getBalance();
7 }
8 }

Example with no around advice:

1 after():
2 execution(public * Account.getBalance()){
3 System.out.println(‘‘After advice’’);
4 }

If there is no around advice, then we do the following:

1 class Account(){
2 public void getBalance(){}
3 public void trigger(){
4 getBalance();
5 }
6 }

Mtd12 – AccessModifier ReturnType ClassName.MethodName(*)

Example:

1 public void Account.credit(*)

This clue tells us that the pointcut enclosing this MethodSignature specifies that

the method must have one argument, which the pointcut does not care about its type.

44

We check the list of methods to be created for ClassName, if it has a method with, only

one argument, and matches the method specifications in MethodSignature, we do not

do anything. Otherwise, we add a new method to the class that has an int argument,

and matches MethodSignature. The following is how the clue is used:

1 class Account{
2 public void credit(int i1){}
3 public void trigger(){
4 credit(0);
5 }
6 }

Mtd13 – AccessModifier ReturnType ClassName.MethodName(*,..)

Example:

1 public float Account.getBalance(*, ..)

This clue tells us that the pointcut enclosing this MethodSignature is interested

in the method join points that have at least one argument, and that match the rest of

specifications of MethodSignature. If there is a method with these specifications in the

list of methods to be created for ClassName class, we do not do anything. Otherwise,

we add a method that takes an int argument and has the rest of the specifications

defined by MethodSignature. Note that it is a good practice to check for this clue after

the previous rule: a method that satisfies the previous pointcut will also satisfy this

pointcut. The following is how we use the clue, to build the constructed application

code:

1 class Account{
2 public float getBalance(int i1){
3 return 0;
4 }
5 public void trigger() {
6 getBalance(0);
7 }
8 }

45

Mtd14 – AccessModifier ReturnType ClassName.MethodName(..)

Example:

1 public float Account.getBalance(..)

This clue tells us that the pointcut enclosing this MethodSignature does not

care about the arguments of the methods join points. We check if there is a method,

in the list of methods to be created for ClassName class, that matches the rest of

the specifications of MethodSignature. If a match is found, we do not do anything.

Otherwise, we add a new method that takes no arguments, and matches the other

MethodSignature specifications, to the list of methods of ClassName. Notice that it is a

good practice to check for previous rule before this one, since satisfying the previous

rule will also satisfy this rule. The following is how we use this clue:

1 class Account{
2 public float getBalance(){
3 return 0;
4 }
5 public void trigger(){
6 GetBalance();
7 }
8 }

Mtd15 – AccessModifier ReturnType ClassName.*(arg1,..., argN)

Example:

1 public int Account.*(int)

This clue tells us that the pointcut enclosing this MethodSignature does not

care about the method name, any method with the rest of the specifications of Meth-

odSignature, is a join point for this pointcut. We check the list of the methods to be

created for the ClassName class, and if we find a method regardless of its name but

has all the other specifications of MethodSignature, we do not do anything. Otherwise,

we create a new method we call it mm method# with the same other specifications of

46

MethodSignature. The following is how this clue is used:

1 class Account{
2 public int Account mm_method1(int i1){
3 return 0;
4 }
5 public void trigger(){
6 mm_method1(0);
7 }
8 }

Mtd16 – !AccessModifier * ClassName.*(arg1,..., argN)

Example:

1 !public * Account.*(..)

This clue tells us that the pointcut enclosing it is not applicable to the men-

tioned access modifier. We check the list of methods to be created for ClassName class,

and if at least one of them is not public, we do not do anything. If we do not find a

method with another access modifier than the mentioned, we add a private method

to the list of methods to be created for ClassName class. If the mentioned access mod-

ifier is public, the new method will be private; if it was private or protected the new

method will be public. The clue is used as follows:

1 class Account{
2 private void mm_method1();
3 public void trigger(){
4 mm_method1();
5 }
6 }

Similarly, for access modifier !static * ClassName.*(arg1,..., argN); if all of

the methods are static we create one that is not, and !final AccessModifier * Class-

Name.*(arg1,..., argN), if all the methods are final we create one that is not.

Examples:

1 public !static * Account.*()
2 public !final * Account.*()

47

The following is how the clue is used:

1 class Account{
2 public void mm_method1();
3 public void trigger(){
4 mm_method1();
5 }
6 }

Mtd17 – * ClassName.*(..)

Example:

1 * Account.*(..)

This clue tells us that the pointcut enclosing this MethodSignature is interested

in all the member methods of the ClassName class, regardless of their access modifiers,

names, and arguments. We check the list of methods to be created for ClassName

class, if it is empty, we add a method called mm method#, that takes no arguments, and

returns void. If at least one method is found, we do not do anything. The following

is how the clue is used:

1 class Account{
2 public void Account mm_method1(){}
3 public void trigger(){
4 mm_method1();
5 }
6 }

Mtd18 – MethodSignature with !within

Example:

1 call(public void printStatement()) && !within(Account)
2 && within(!SubAccount)

If we do not have a method created with the specified MethodSignature, in a

class other than Account and SubAccount, it is equivalent to creating this method in

any class that we are creating, so we create it in the first class on the list of classes

48

to be created. If the list of classes is empty we create a new class according to the

class rules, and we add the method to it. The following is how we are using this clue

in the constructed application code.

1 class ClassCls1{
2 public void printStatement(){}
3 public void trigger(){
4 ClassCls1 i1 = new ClassCls1();
5 i1.printStatement();
6 }
7 }

Mtd19 – In code

Methods can also be found in the aspect body, or inside an advice, or a method.

Example:

1 aspect Aspect1{
2 int x = Account.getAccountsCounter();
3 Account a = new Account();
4 float _balance = a.getBalance();
5 }

In this example, we find 2 methods: getAccountsCounter() and getBalance(). We

can deduce that getAccountsCounter() is a static method that takes no arguments and

has an int return value and that the second method getBalance() takes no arguments,

and has a float return type. If we have not created a method with either of these

signatures before, we need to add them to the list of methods to be created for class

Account. We create these methods with a public access modifier. If we cannot tell the

return type of the method, like when it is called and it is not assigned to a variable,

we create it with a void return type. We also find a constructor that is being used

then we add it to the class, we explore constructors in more detail next section. The

following is how the clue is transformed into the constructed application code.

1 class Account{
2 public Account() {}
3 public static int getAccountsCounter(){
4 return 0;

49

5 }
6

7 public float getBalance(){
8 return 0;
9 }
10

11 public void trigger(){
12 getAccountsCounter();
13 Account i1 = new Account();
14 i1.getBalance();
15 }
16 }

4.6 Constructors

The same pointcuts that apply to methods also apply to constructors such as:

execution, call, withincode, cflow, and cflowbelow. In addition, preinitialization and

initialization pointcuts are used to identify constructor join points. We depend on

the signature used in the pointcut to determine if the joint point is a constructor or a

method. The common pointcuts are used in the same format described in Section 4.5,

the only difference is the ConstructorSignature is plugged in instead of the MethodSig-

nature. ConstructorSignature is used to define the intended constructor to be advised.

The following is the format of the new constructor pointcuts:

1 initialization(ConstructorSignature)

The join point defined by this pointcut is any object that is created with the

mentioned ConstructorSignature.

1 preinitialization(ConstructorSignature)

The join point defined by this pointcut is any object that is created using

the mentioned ConstructorSignature, preinitialization here means before the super

constructor is called.

Constructor signature takes the following format:

1 AccessModifier ClassName.new(arg1,...,argN) [throws ExceptionType]

50

Example:

1 public Account.new()

Notice that if the ClassName is part of the constructor signature, if this class

has not been already added to the list of classes to be created, we will add it using the

rules discussed in Section 4.3. The same will be done if the package has been defined

in the constructor signature. E.g. : public banking.Account.new(). In this case we

add banking to the list of packages to be created, and add Account to the list of classes

to be created in the banking package.

If the constructor signature specifies that the constructor throws an exception,

we add the ExceptionType to the list of exceptions to be created. In order to see

the associated behavior added by the aspect, we call each defined constructor in the

trigger() that is created for each created class. Note that a constructor is simply a

special kind of method, so all what we have already described for the methods do

also apply as transformation rules for constructors. In this section we focus on rules

that are unique to the constructors transformation into the application code.

Ctr1 – AccessModifier ClassName.new()

Example:

1 withincode(public Account.new())

This clue tells us that Account class has a public constructor that takes no ar-

guments. If a constructor that takes no arguments, and has the right access modifier,

is not on the list of constructors to be created for class Account, we add one. The

following is how the clue is transformed into the constructed application code:

1 class Account{
2 public Account(){}
3 public void trigger(){
4 Account i1 = new Account();
5 }

51

6 }

Ctr2 – private ClassName.new(), protected ClassName.new()

Example:

1 private Account.new()
2 protected Account.new()

This clue tells that class Account has a private/protected access constructor

that takes no arguments. If a constructor that takes no arguments and has the right

access modifier is not on the list of constructors to be created for class Account, we

add one. Unlike methods, constructors with private/protected access modifiers are

treated differently than those with public access modifier. In order to be able to

create an instance of class Account to call the trigger() method from the Helper class,

we add a static method named createInstance(), which is a public method that takes

no arguments, and returns a new object of the class type. The following is how the

clue is transformed into the constructed application code:

1 class Account{
2 private Account() {}
3 public static Account createInstance()
4 {
5 return new Account();
6 }
7 public void trigger()
8 {
9 Account i1 = createInstance();
10 }
11 }

Ctr3 – AccessModifier ClassName.new(arg1,...,argN) throws ExceptionName

Example:

1 call(public Account.new(int) throws InvalidAccountNumberException)

52

The clue says that Account has a public constructor that takes one argument

of type int, and throws an exception of type InvalidAccountNumberException. If the

Account class does not have a constructor with the right AccessModifier and number

and types of argument, and that throws an exception of type InvalidAccountNumberEx-

ception, we add one to the list of constructors to be created for Account. The following

is how the clue is used to construct the application code:

1 class Account{
2 public Account(int i) throws InvalidAccountNumberException{
3 if(Math.random() > 0.5)
4 throw new InvalidAccountNumberException();
5 }
6 public void trigger(){
7 try{
8 Account i1 = new Account(0);
9 }catch(Exception e){ }
10 }
11 }
12 class InvalidAccountNumberException extends Exception{
13 }

Notice that we simulate throwing of the exception by checking if a random

number is bigger than 0.5. Another thing to note is that if the access modifier is

private or protected, we add createInstance() to the list of methods to be created

for the class type. createInstance() has the same arguments as the constructor, and

throws the same exception type.

Example:

1 call(private Account.new(int) throws InvalidAccountNumberException)

The following shows how Account class will be constructed as opposed to the

public constructor.

1 class Account{
2 private Account(int i) throws InvalidAccountNumberException{
3 if(Math.random() > 0.5)
4 throw new InvalidAccountNumberException();
5 }
6 public static Account createInstance(int i) throws
7 InvalidAccountNumberException{
8 return new Account(0);
9 }

53

10 public void trigger(){
11 try {
12 Account i1 = createInstance(0);
13 } catch(Exception e){ }
14 }
15 }

Ctr4 – call(ConstructorSignature1) && withincode(ConstructorSignature2)

Example:

1 call(public AccountNumber.new(int)) && withincode(public Account.new())

This clue tells us that Constructor1 is called from Constructor2. Using the con-

structor signatures we create the class constructors, and we add a call to Constructor1

in Constructor2’s body. The following is how this clue is used in the constructed

application code:

1 class AccountNumber{
2 public AccountNumber(int i){}
3 public void trigger(){
4 AccountNumber i1 = new AccountNumber(0);
5 }
6 }
7 class Account{
8 public Account(){
9 AccountNumber i1 = new AccountNumber(0);
10 }
11 public void trigger(){
12 Account i1 = new Account();
13 }
14 }

Ctr5 – call(MethodSignature) && withincode(ConstructorSignature)

Example:

1 call(public void Class1.credit(int)) && withincode(private Class2.new())

This clue says that credit() method of class Class1, is called in Class2’s private

constructor that takes no arguments. We create a public method that returns void

type, and takes no arguments named credit() in Class1. We also make sure to import

54

the correct package that includes the Class1 definition before using it in Class2, if they

are created in two different packages. We add the constructor to Class2 according to

the constructor signature, and we call the credit() method in Class2 constructor, as

follows:

1 class Class1{
2 public void credit(int a1){}
3 public void trigger(){
4 credit(0);
5 }
6 }
7 class Class2{
8 private Class2(){
9 Class1 i1 = new Class1();
10 i1.credit(0);
11 }
12 public static Class2 createInstance() {
13 return new Class2();
14 }
15 public void trigger() {
16 Class2 i1 = createInstance();
17 }
18 }

Ctr6 – ClassName ClassInstance = new ClassName(arg1,..,argN)

Example:

1 try{
2 int number = 1234;
3 Account a = new Account(number);
4 } catch (Exception e){}

This clue tells us that the Account class has constructor that takes an int as

argument, and throws an Exception. If there is no constructor defined for Account with

these specifications, we create a public constructor with the specified features. The

following is how this clue is used in the constructed application code.

1 class Account{
2 public Account(int a1) throws Exception{
3 If(Math.random() > 0.5)
4 throw new Exception();
5 }
6 public void trigger(){
7 try{

55

8 Account i1 = new Account(0);
9 }
10 catch(Exception e) {}
11 }
12 }

CHAPTER V

Applying the Rules

5.1 Introduction

In this chapter we examine an example of how the reverse engineering rules,

defined in the previous chapter, are used to construct the application code.

We begin with the aspect source code, and we work through it in several passes

until there are no more ambiguities to be revealed. We start identifying packages,

classes, fields, constructors, methods, and then we work on the withincode pointcuts.

As mentioned in the previous chapter, withincode is a pointcut that identifies con-

structors and methods join points. It needs to be deferred to the end, because we

need the constructors and methods to be defined first, before trying to add a call

inside their bodies. In each pass we go through the entire aspect code, i.e. if the

aspect code has more than one aspect, we go through the first aspect then the second

aspect to identify packages, then we return to first aspect again then second aspect

for classes, and same for fields, methods, constructors, and withincode.

56

57

5.2 Aspect Input

We start with the aspect code provided by the programmer in the file Accoun-

tAspect.aj.

1 import java.awt.*;
2 import javax.swing.*;
3 public aspect AccountAspect {
4

5 before():
6 preinitialization(private Account.new(int) throws Exception){
7 System.out.println("Account preinit "+thisJoinPoint);
8 }
9

10

11 pointcut publicConstructor():
12 execution(public new()) && this(Account);
13

14 after():
15 publicConstructor(){
16 System.out.println("Public Constructor "+ thisJoinPoint);
17 }
18

19

20 pointcut creditAccount(Account account, float amount):
21 call(void credit(float)) && target(account) && args(amount)
22 && within(Account);
23

24 before(Account account, float amount):
25 creditAccount(account, amount) {
26 System.out.println("Crediting " + amount +" to " + account);
27 }
28

29

30 before():
31 set(private float Account.balance){
32 System.out.println("Set Account.balance " + thisJoinPoint);
33 }
34

35

36 after():
37 get(!private * Account.*){
38 System.out.println(thisJoinPoint +
39 " accessing a non private data member");
40 }
41

42

43 after() returning(float a1):
44 call(public * Account.getBalance(AccountNumber ,int)) {
45 System.out.println("After Returning");
46 }
47

48

49 pointcut debitPointcut():
50 call(private void Account.debit(float) throws

58

51 InsufficientBalanceException);
52

53 after():
54 debitPointcut(){
55 System.out.println("Debit Pointcut");
56 }
57

58

59 pointcut methodWithincodeMethodPointcut():
60 call(public void AccountNumber.method1(int)) &&
61 withincode(private int Account.method1());
62

63 before():
64 methodWithincodeMethodPointcut(){
65 System.out.println(
66 "method withincode method pointcut: "+thisJoinPoint);
67 }
68

69

70 pointcut constructorWithincodeMethodPointcut():
71 call(public SavingsAccount.new()) &&
72 withincode(private void Account.addSavingsAccount(int));
73

74 after():
75 constructorWithincodeMethodPointcut(){
76 System.out.println(
77 "constructor withincode method pointcut: "+thisJoinPoint);
78 }
79

80

81 pointcut startOfMethodName():
82 call(public void Account.new*());
83

84 before():
85 startOfMethodName(){
86 System.out.println("matches start of method name: "
87 + thisJoinPoint);
88 }
89

90

91 pointcut endOfMethodName():
92 call(private void Account.*bit(..));
93

94 before():
95 endOfMethodName(){
96 System.out.println("matches end of method name: "
97 + thisJoinPoint);
98 }
99

100

101 pointcut startAndEndOfMethodName():
102 execution(private void add*Account(*));
103

104 after():
105 startAndEndOfMethodName(){
106 System.out.println("matches start and end of method name: " + thisJoinPoint);
107 }
108

59

109

110 pointcut anyReturnType():
111 call(public * Account.getBalance());
112

113 int around():
114 anyReturnType(){
115 System.out.println("Any return type: " + thisJoinPoint);
116 return proceed();
117 }
118

119

120 before():
121 call(public float Account.getBalance(*, ..)){
122 System.out.println("* and .. arguments matches @: " + thisJoinPoint);
123 }
124

125

126 after():
127 call(public int Account.*(int)){
128 System.out.println("Any method name matches @: " + thisJoinPoint);
129 }
130

131

132 before():
133 call(public !final * Account.*()){
134 System.out.println("public non final matches @: " + thisJoinPoint);
135 }
136

137

138 after():
139 execution(* *(..)) && within(SavingsAccount+){
140 System.out.println("Any method SavingsAccount name matches @: "
141 + thisJoinPoint);
142 }
143

144

145 pointcut getGreenAccounts(int type):
146 call(int[][] logic.Banking.getGreenAccount(int)) && args(type);
147

148 after(int i):
149 getGreenAccounts(i){
150 System.out.println("packages: " + thisJoinPoint);
151 }
152

153

154 before():
155 call(void JComponent.repaint(..)){
156 System.out.println("System defined:" + thisJoinPoint);
157 }
158

159

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());
162

163 after():
164 guiPackage(){
165 System.out.println("2 layer package " + thisJoinPoint);
166 }

60

167

168

169 declare parents: SubAccount extends Account;
170

171

172 after():
173 call(private int method1()) && within(Account || SavingsAccount){
174 System.out.println("Within either class" + thisJoinPoint);
175 }
176

177

178 after():
179 call(* GUI.*.Class2.*()){
180 System.out.println("Any method in Class2,
181 Class2 belongs to a sub package of package GUI");
182 }
183

184

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }
189

190

191 before():
192 call(public void printStatement()) && !within(Account)
193 && within(!SubAccount) {
194 System.out.println(
195 "!within(Account) and within(!SubAccount)"
196 + thisJoinPoint);
197 }
198

199

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }
204

205 pointcut exceptionHandler():
206 handler(InsufficientBalanceException);
207

208 after():
209 exceptionHandler(){
210 System.out.println("Exception Handler matches @: " + thisJoinPoint);
211 }
212

213 int Account.x = 0;
214 before():
215 set(int Account.x){
216 System.out.println("Set Account.x ITD " + thisJoinPoint);
217 }
218

219

220 void aspectMethod()
221 {
222 Account.print("My String");
223 RunnableWithReturn worker = new RunnableWithReturn();
224 try{

61

225 EventQueue.invokeAndWait(worker);
226 } catch (Exception e){}
227 }
228

229 }

5.3 Identifying the Elements

5.3.1 Identifying Packages

We first start looking for packages.

1 import java.awt.*;
2 import javax.swing.*;

At line 1 and 2 we find packages java.awt.* and javax.swing, but since they are

system-defined packages we do not need to create them in the constructed application

code (Pkg1).

145 pointcut getGreenAccounts(int type):
146 call(int[][] logic.Banking.getGreenAccount(int)) && args(type);

In pointcut getGreenAccounts, in line 146 package logic is mentioned, since logic

is not a system-defined package and we do not have a package called logic in the list

of packages to be created. We add logic to the list of packages to be created (Pkg1).

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());

At line 161, inside the guiPackage pointcut, GUI.Layer1 is mentioned, since GUI

is not system-defined, and we do not have a GUI package already created, we add GUI

to the list of packages to be created. We add Layer1 as a sub package of GUI (Pkg2).

178 after():
179 call(* GUI.*.Class2.*()){
180 System.out.println("Any method in Class2,
181 Class2 belongs to a sub package of package GUI");
182 }

62

At line 179, in the after advice, GUI.* is mentioned, since GUI is already in the

list of packages to be created, we do not need to add it. And since GUI has a sub

package, Layer1 in this example, then we do not need to create another one (Pkg4).

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }

In line 186, we see DataBase.* package, we add DataBase to the list of packages

to be created. * referrers to any sub package of DataBase. There are none defined so

far, so we continue this pass identifying packages, a sub package of DataBase may be

defined later in the aspect code.

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }

Line 201 in the after advice, we find logic.SubLogic, since logic package exists,

we search it for a sub package with name SubLogic, since we do not find one, we add

SubLogic as a sub package of package logic (Pkg2).

When we reach the end of file of the aspect source code, if there are no package

ambiguities we start a new pass for identifying classes. But since we still have a

package ambiguity to be resolved, we need to start another pass for revealing the

ambiguous package.

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }

So we start and we get to DataBase.* again, since there are no sub packages

inside DataBase package, we need to create one, we call it package p1 (Pkg4). We have

a counter that we increment whenever we create an element that does not have a

name, and this number becomes a part of the element’s name.

63

Since there are no more packages ambiguities to be resolved, we move on to

the next element. We start a new pass for identifying classes.

By the end of the package passes we have identified the following packages:

DataBase

package_p1

GUI

Layer1

logic

SubLogic

5.3.2 Identifying Classes

5 before():
6 preinitialization(private Account.new(int) throws Exception){
7 System.out.println("Account preinit "+thisJoinPoint);
8 }

We start from the beginning again, at line 6 we find Account, in the first un-

named pointcut. Since Account is not a system-defined class, and it has not been

added before to the list of classes to be created. Account is not fully qualified, so

we add it to the default package (Cls1). At line 6 also, we find int, but since int is

system-defined type we do not need to create it (Cls1). Also at line 6 we see Exception,

but since it is a system-defined type we do not add it to the list of exceptions to be

created (Cls9).

11 pointcut publicConstructor():
12 execution(public new()) && this(Account);

In pointcut publicConstructor at line 12, we see Account class, since it is already

added to the list of classes to be created, we do not add it again (Cls7).

20 pointcut creditAccount(Account account, float amount):

64

21 call(void credit(float)) && target(account) && args(amount)
22 && within(Account);
23

24 before(Account account, float amount):
25 creditAccount(account, amount) {
26 System.out.println("Crediting " + amount +" to " + account);
27 }

In pointcut creditAccount, we see Account and float as arguments of the point-

cut, we follow (Cls1), not creating anything since Account is already in the list of

classes to be created, and float is a system-defined type. We also see void as return

type of credit() method, and float as its argument, and we also do not create them

since they are system-defined types. We also find target(account), and args(amount)

which are of types Account and float respectively, following Cls7 we do not create

them. And lastly we find within(Account) and following Cls1 we do not need to create

Account again. In the before advice at line 24, we find Account and float again and

we do not create them according to Cls1.

30 before():
31 set(private float Account.balance){
32 System.out.println("Set Account.balance " + thisJoinPoint);
33 }
34

35

36 after():
37 get(!private * Account.*){
38 System.out.println(thisJoinPoint +
39 " accessing a non private data member");
40 }

In the unnamed pointcuts at line 31 and 37, we find Account again and we

follow Cls1 not creating Account.

43 after() returning(float a1):
44 call(public * Account.getBalance(AccountNumber ,int)) {
45 System.out.println("After Returning");
46 }

The after returning advice at line 43, has an argument of type float, and

according to Cls11, we do not need to add float to the list of classes to be created,

since it is a system-defined type. We do find Account and following Cls1 we do not

65

create it. We then find AccountNumber as an argument of getBalance and following

Cls1 we add it to the list of classes to be created. Since AccountNumber is not a fully

qualified name, we add AccountNumber to be created in the default package. We also

find int as the second argument of getBalance, but according to Cls1 we do not create

it.

49 pointcut debitPointcut():
50 call(private void Account.debit(float) throws
51 InsufficientBalanceException);

In pointcut debitPointcut we see void, Account, and float and we do not create

anything (Cls1). We see InsufficientBalanceException, so we follow Cls9. Insuffi-

cientBalanceException is not system-defined, and it is not in the list of exceptions to

be created, so we add it. Since InsufficientBalanceException is not a fully qualified

name, we create InsufficientBalanceException in the default package.

59 pointcut methodWithincodeMethodPointcut():
60 call(public void AccountNumber.method1(int)) &&
61 withincode(private int Account.method1());

In pointcut methodWithincodeMethodPointcut, we find void, AccountNumber, int,

and Account, and we do not add them according to Cls1.

70 pointcut constructorWithincodeMethodPointcut():
71 call(public SavingsAccount.new()) &&
72 withincode(private void Account.addSavingsAccount(int));

In pointcut constructorWithincodeMethodPointcut, we find SavingsAccount and

we add it to the list of classes to be created in the default package, also according to

Cls1. We also find void, Account, and int, and we do not do anything with them.

81 pointcut startOfMethodName():
82 call(public void Account.new*());

91 pointcut endOfMethodName():
92 call(private void Account.*bit(..));

110 pointcut anyReturnType():

66

111 call(public * Account.getBalance());

120 before():
121 call(public float Account.getBalance(*, ..)){
122 System.out.println("* and .. arguments matches @: " + thisJoinPoint);
123 }

126 after():
127 call(public int Account.*(int)){
128 System.out.println("Any method name matches @: " + thisJoinPoint);
129 }

132 before():
133 call(public !final * Account.*()){
134 System.out.println("public non final matches @: " + thisJoinPoint);
135 }

In line 82 and 92 we find both void, and Account, and in line 111 we find Account,

and in line 121 we find float and Account, also in line 127 we find int and Account,

and in line 133 we find Account, so we apply Cls1, not creating anything.

138 after():
139 execution(* *(..)) && within(SavingsAccount+){
140 System.out.println("Any method SavingsAccount name matches @: " +
141 thisJoinPoint);
142 }

In line 139 we find SavingsAccount+, so according to Cls6 we should treat that

as SavingsAccount, which is already added to the list of classes to be created, so we

do not need to add it again.

145 pointcut getGreenAccounts(int type):
146 call(int[][] logic.Banking.getGreenAccount(int)) && args(type);
147

148 after(int i):
149 getGreenAccounts(i){
150 System.out.println("packages: " + thisJoinPoint);
151 }

In pointcut getGreenAccounts, we find int and we do not create it (Cls1). We

also find logic.Banking, which is not a system-defined class. We have the fully qualified

name for Banking, and we know it is in logic package, so we search the list of classes

for Banking class that has logic as its package. Since there is no class created with

67

these specifications, we create a new class called Banking with package set to logic

(Cls1). We also see args(type) which is of type int, and we see it again as argument

of the after advice at line 148 so we do not create it (Cls1).

154 before():
155 call(void JComponent.repaint(..)){
156 System.out.println("System defined:" + thisJoinPoint);
157 }

At line 155 in the before advice, we find JComponent, which is a system-defined

class whose package is appropriately imported with the aspect code, we do not create

JComponent according to (Cls1).

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());

At pointcut guiPackage, we find GUI.Layer1.*. Since there are no classes defined

in GUI.Layer1 we skip this pattern for now, and we continue looking for classes, we

might find defined in this package later in the aspect code.

169 declare parents: SubAccount extends Account;

In declare parents line 169 we find a new class SubAccount, so we add it to the

list of classes to be created in the default package (Cls13). We also find class Account

and we do not do anything with it (Cls1).

172 after():
173 call(private int method1()) && within(Account || SavingsAccount){
174 System.out.println("Within either class" + thisJoinPoint);
175 }

In the after advice at line 173, we find type int and we do not do anything

with it. We also find within(Account || SavingsAccount) but since both of them are

already defined, we do not do anything (Cls2).

178 after():
179 call(* GUI.*.Class2.*()){
180 System.out.println("Any method in Class2,
181 Class2 belongs to a sub package of package GUI");
182 }

68

In line 179 in the after advice, we find GUI.*.Class2, since at this point all

the packages have being identified, we search GUI and we only find Layer1 as its only

subpackage. And since Class2 is not defined in Layer1, we add Class2 to the list of

classes to be defined, whose package is GUI.Layer1. Note: if GUI, had multiple sub

packages, defining Class2 is equivalent if done in any. But for consistency, we would

have add Class2 to the first sub package defined in GUI (Cls1).

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }

Same with the after advice at line 186, we have DataBase.*.Connection, we add

class Connection to the list of classes to be created in DataBase.package p1 (Cls1).

191 before():
192 call(public void printStatement()) && !within(Account) &&
193 within(!SubAccount) {
194 System.out.println("!within(Account) and within(!SubAccount)"
195 + thisJoinPoint);
196 }

In the before advice, at line 192 we find !within(Account) && (!SubAccount),

since the application we have other classes in the list of classes to be created we do

not need to do anything (Cls15) and (Cls16).

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }

In the after advice at line 201, we find logic.SubLogic.*, since no classes are

defined in the logic.SubLogic package, we skip this pattern for now, the class may be

defined later in the aspect code.

205 pointcut exceptionHandler():
206 handler(InsufficientBalanceException);

69

In pointcut exceptionHandler, we find InsufficientBalanceException, since it is

already added to the list of exceptions to be created, we do not do anything.

213 int Account.x = 0;
214 before():
215 set(int Account.x){
216 System.out.println("Set Account.x ITD " + thisJoinPoint);
217 }

In lines 213 and 215 we find int and Account types and we do not do anything

according to (Cls1).

220 void aspectMethod()
221 {
222 Account.print("My String");
223 RunnableWithReturn worker = new RunnableWithReturn();
224 try{
225 EventQueue.invokeAndWait(worker);
226 } catch (Exception e){}
227 }

And in line 222 we find Account and we do not do anything according to (Cls1).

In line 223 we find RunnableWithReturn, and we add it to the list of classes to

be created.

In line 225 we find EventQueue, and since the appropriate package is imported

we are able to determine that it is system-defined. So we do not do anything. Using

Reflection API, we can tell that invokeAndWait() is a system-defined method that takes

an argument of type Runnable. Since the variable passed to this function is not of type

Runnable, it must be a child of it. Since Runnable is an interface, the variable type, i.e.

RunnableWithReturn must implement Runnable, and its abstract methods, run() in this

case (Cls17).

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());

Since there are still some classes ambiguities, we start a new pass, to resolve

what we skipped in the previous one. We find GUI.Layer1.* and at this point we know

that there is a class named Class2 in this package, so Class2 satisfies this pattern.

70

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }

The other ambiguity is logic.SubLogic.* and since there are no classes defined

in this package, we need to define one, so we add ClassCls2 to the list of classes to be

created in the logic.SubLogic package.

By the end of this passes we have the following elements are identified:

In default package:

Account

AccountNumber

InsufficientBalanceException

RunnableWithReturn and its method public void run()

SavingsAccount

SubAccount

In DataBase.package_p1 package:

Connection

In GUI.Layer1 package:

Class2

In logic package:

Banking

In logic.SubLogic package:

ClassCls2

Since we are done identifying the classes, it is time to start identifying the class

elements.

71

5.3.3 Identifying Fields

We start with the fields

30 before():
31 set(private float Account.balance){
32 System.out.println("Set Account.balance " + thisJoinPoint);
33 }

In line 31, we find private float Account.balance (Fld1, we add the private

float balance field member to the list of fields to be created for the Account class,

and we flagged as a set field so we remember to assign a value to it in the trigger()

function.

36 after():
37 get(!private * Account.*){
38 System.out.println(thisJoinPoint + " accessing a non private data member");
39 }

In line 37, we found a get for !private * Account.*, since all the fields created

so far for Account are private, we skip this pattern for now, we might find an Account

field that is not private later in the aspect code.

213 int Account.x = 0;
214 before():
215 set(int Account.x){
216 System.out.println("Set Account.x ITD " + thisJoinPoint);
217 }

At line 213 and 215 we find int Account.x, but we ignore it as it is an intertype

member declaration, since it is added by the aspect itself and not part of the original

code application. So, we also do not need it to be part of the constructed code

application. The code added by the aspect to the original application, will still be

woven with the constructed application, giving us the same behavior, it added to the

original application.

Since there still are some ambiguities for the fields, we go another pass through

the ambiguities. In our example, the ambiguity is get(!private * Account.*). Since

72

all the fields of identified for Account are private, we add a new field public f3 of type

int and we flag it as get, so we remember to get its value in trigger method (Fld3)

and (Fld4).

Since we are done identifying the fields we move on to identifying the methods.

By the end of these passes we the following elements identified:

For class Account:

private float balance;

public int f3;

5.3.4 Identifying methods

20 pointcut creditAccount(Account account, float amount):
21 call(void credit(float)) && target(account) && args(amount)
22 && within(Account);

In pointcut creditAccount, we find void credit(float) and within(Account), since

Account does not have this method in its list of methods, we follow (Mtd4) adding a

method called credit() that has one argument of type float and returns a void type,

to the list of methods to be created for class Account.

43 after() returning(float a1):
44 call(public * Account.getBalance(AccountNumber ,int)) {
45 System.out.println("After Returning");
46 }

At line 44, we find a call to a getBalance() method, and since we do not find

this method in the list of Account methods, we follow (Mtd11) to add a public method

called getBalance(), that takes 2 arguments of types AccountNumber and int, and returns

float type, to the list of methods of Account.

49 pointcut debitPointcut():
50 call(private void Account.debit(float)
51 throws InsufficientBalanceException);

73

In debitPointcut at line 50, we find the debit() method, and since Account does

not have this method in its list of methods to be created, we follow (Mtd3) to add a

private method called debit(), that takes one argument of type float, and returns a

void type, and throws an exception of type InsufficientBalanceException.

59 pointcut methodWithincodeMethodPointcut():
60 call(public void AccountNumber.method1(int)) &&
61 withincode(private int Account.method1());

In pointcut methodWithincodeMethodPointcut we see a call to method1(), and since

AccountNumber has no methods of the signature of method1, and Account does not have

a method with method1 signature respectively, we follow Mtd1 to add a public method

called method1 that takes one argument of type int and returns a void type to the class

AccountNumber; and add a private method called method1() that takes no arguments

and returns int type to the Account class. Note that we will visit this pointcut again

to resolve the withincode later.

70 pointcut constructorWithincodeMethodPointcut():
71 call(public SavingsAccount.new()) &&
72 withincode(private void Account.addSavingsAccount(int));

In pointcut constructorWithincodeMethodPointcut, we find a call to addSavingsAc-

count(int), and since Account does not have a method with addSavingsAccount signa-

ture, we to the list of methods to be created for Account, a private method called

addSavingsAccount that takes one argument of type int, and returns a void type (Mtd1).

81 pointcut startOfMethodName():
82 call(public void Account.new*());

In pointcut startOfMethodName, we find public void Account.new*(). Since Ac-

count does not have a method that starts with new and have this signature, we skip it

for now, we may find it later in the aspect code.

91 pointcut endOfMethodName():
92 call(private void Account.*bit(..));

74

In pointcut endOfMethodName, we find private void Account.*bit(..), this point-

cut matches Account’s private void debit(float) that was created previously, so we

do not need to add any new methods (Mtd9).

101 pointcut startAndEndOfMethodName():
102 execution(private void add*Account(*));

In pointcut startAndEndOfMethodName, we find private void add*Account(*), and

since the class Account has a private method called addSavingsAccount and returns a

void type, this method will satisfy this pointcut, so there is no need to add a new

method (Mtd10).

110 pointcut anyReturnType():
111 call(public * Account.getBalance());

In pointcut anyReturnType, at line 111 we find public * Account.getBalance().

Account does not have a public getBalance() method that takes no arguments, but it

is used in an around advice that returns an int. So, we add a public method called

getBalance(), that takes no arguments, and returns int type to the list of methods to

be created for class Account (Mtd11).

120 before():
121 call(public float Account.getBalance(*, ..)){
122 System.out.println("* and .. arguments matches @: " + thisJoinPoint);
123 }

At line 112, we find public float Account.getBalance(*, ..). This pointcut is

basically interested in a public getBalance() method of class Account that takes at least

one argument, and returns a float type. Account already has a method of signature

public float getBalance(AccountNumber, int) that would satisfy this pointcut, so we

do not need to add any new methods (Mtd13).

126 after():
127 call(public int Account.*(int)){
128 System.out.println("Any method name matches @: " + thisJoinPoint);
129 }

75

At line 127, we find public int Account.*(int), since Account does not have a

public method that only takes one argument of type int, and has a return value of

type int, we skip it for now, we may find a method that satisfy it later in the aspect

code.

132 before():
133 call(public !final * Account.*()){
134 System.out.println("public non final matches @: " + thisJoinPoint);
135 }

At line 133, we find public !final * Account.*(). Since Account does not have

a public method that takes no arguments yet, we are going to skip this for now, we

may find a method that satisfies it later in the aspect code.

138 after():
139 execution(* *(..)) && within(SavingsAccount+){
140 System.out.println("Any method SavingsAccount name matches @: " +
141 thisJoinPoint);
142 }

At line 139, we find execution(* *(..)) && within(SavingsAccount+), which will

be satisfied by any method in the SavingsAccount class. Since SavingsAccount has no

methods defined yet, we skip this pointcut for now. We might find the method that

satisfies it later in the aspect code.

145 pointcut getGreenAccounts(int type):
146 call(int[][] logic.Banking.getGreenAccount(int)) && args(type);

At line 146, we find int[][] logic.Banking.getGreenAccount(int), we follow (Mtd1)

to add a method to class Banking in logic package, called getGreenAccount() that takes

one argument of type int and returns a 2 dimensional array of int.

154 before():
155 call(void JComponent.repaint(..)){
156 System.out.println("System defined:" + thisJoinPoint);
157 }

At line 155, we find void JComponent.repaint(..), since it is system-defined we

do not need to recreate it.

76

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());

At line 161, we find public * GUI.Layer1.*.*(). Since Class2 has no methods

defined yet, we skip this for now, we may find a method that satisfies it later in the

aspect code.

172 after():
173 call(private int method1()) && within(Account || SavingsAccount){
174 System.out.println("Within either class" + thisJoinPoint);

At line 173, we find call(private int method1()) && within(Account ||SavingsAc-

count), since Account has private int method1(), we do not need to do anything.

178 after():
179 call(* GUI.*.Class2.*()){
180 System.out.println("Any method in Class2,
181 Class2 belongs to a sub package of package GUI");
182 }

At line 179, we find call(* GUI.*.Class2.*()). Since Class2 still does not have

any methods defined, we skip this pointcut for now, we may find a method that

satisfies it later in the aspect code.

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }

At line 186, we find execution(public * DataBase.*.Connection.getConnection()

), since we do not know the return type of the method, we skip this pointcut for now,

we may find a method that satisfies it later in the aspect code.

191 before(): call(public void printStatement()) && !within(Account) &&
192 within(!SubAccount) {
193 System.out.println("!within(Account) and within(!SubAccount)" +
194 thisJoinPoint);
195 }

At line 192, we find call(public void printStatement()) && !within(Account)

&& within(!SubAccount). We can define printStatement() in any class other than Ac-

77

count or SubAccount, so we choose AccountNumber. We add a public method called

printStatement(), that takes no arguments, and returns void type in the list of meth-

ods to be created for AccountNumber class (Mtd18).

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }

At line 201, we find call(public * logic.SubLogic.*.*()), since ClassCls2 in

logic.SubLogic, does not have any methods defined yet, we skip this pointcut for now,

we may find a method that satisfies it later in the aspect code.

220 void aspectMethod()
221 {
222 Account.print("My String");
223 RunnableWithReturn worker = new RunnableWithReturn();
224 try{
225 EventQueue.invokeAndWait(worker);
226 } catch (Exception e){}
227 }

At line 222 we find Account.print(“My String”). We search the list of methods

to be created for class Account, for a static method called print, that takes one

argument of type String. If we find one, we do not do anything. Otherwise we add

to the list of methods to be created for class Account, a public static method called

print(), that takes one argument of type String and returns void type.

At line 225 we find EventQueue.invokeAndWait(worker). Since it is a system-

defined method, we do not do anything.

If there are no methods ambiguities to be resolved we can go to next pass

for identifying constructors, but since there are still some methods ambiguities to be

revealed we do another pass for methods.

81 pointcut startOfMethodName():
82 call(public void Account.new*());

78

We start with the first method ambiguity at line 82, we search our list of meth-

ods for a public method which name starts with new, and that takes no arguments,

and returns a void type. Since there is no method defined with these specifications,

we add a new method called new m4() with these specifications to the list of methods

to be created for class Account (Mtd8).

126 after():
127 call(public int Account.*(int)){
128 System.out.println("Any method name matches @: " + thisJoinPoint);
129 }

At line 127 we see call(public int Account.*(int)). Since there is no public

method in class Account that take one argument of type int and returns int type.

We add a method called mm method5(), with the provided specifications to the list of

methods of class Account (Mtd15).

132 before():
133 call(public !final * Account.*()){
134 System.out.println("public non final matches @: " + thisJoinPoint);
135 }

We encounter call(public !final * Account.*()) at line 133. Since there is at

least one public method that is not final in class Account, we do not do anything

(Mtd16).

138 after():
139 execution(* *(..)) && within(SavingsAccount+){
140 System.out.println("Any method SavingsAccount name matches @: " +
141 thisJoinPoint);
142 }

At line 139 we find execution(* *(..)) && within(SavingsAccount+). Since there

are no methods defined for class SavingsAccount, we create a new public method called

mm method6() that takes no arguments and returns void type, to the list of methods to

be created for class SavingsAccount (Mtd15).

160 pointcut guiPackage():
161 call(public * GUI.Layer1.*.*());

79

At line 161 we find call(public * GUI.Layer1.*.*()). Since GUI.Layer1.Class2

has a public method2(), it will satisfy this pointcut.

178 after():
179 call(* GUI.*.Class2.*()){
180 System.out.println("Any method in Class2,
181 Class2 belongs to a sub package of package GUI");
182 }

At line 179 we find call(* GUI.*.Class2.*()). This pointcut also will be satisfied

with public void GUI.Layer1.Class2.method2().

185 after():
186 execution(public * DataBase.*.Connection.getConnection()){
187 System.out.println("Any sub package in DataBase package");
188 }

At line 186 we find execution(public * DataBase.*.Connection.getConnection()).

Since there are no public methods defined in DataBase.package p1.Connection whose

name is getConnection(), we add a new public method that is called getConnection()

that takes no arguments, and returns void type to the list of methods to be created

for DataBase.package p1.Connection class (Mtd11).

200 after():
201 call(public * logic.SubLogic.*.*()){
202 System.out.println("Create a new Class");
203 }

At line 201 we find call(public * logic.SubLogic.*.*()). Since there are no

methods defined in ClassCls2, we define a new public method called mm method7() that

takes no arguments and returns void type, to the list of methods to be created for

ClassCls2 class (Mtd15).

By the end of these passes we have the following elements identified:

For class Account:

public void credit(float a1)

public float getBalance(AccountNumber a1, int a2)

80

private void debit (float a1) throws InsufficientBalanceException

private int method1()

private void addSavingsAccount(int a1)

public void new_m4()

public int getBalance()

public int mm_method5(int a1)

public static void print(String a1)

For class AccountNumber:

public void method1(int a1)

public void printStatement()

For class SavingsAccount:

void mm_method6()

For class DataBase.package_p1.Connection:

public void getConnection()

For class GUI.Layer1.Class2:

public void method2()

For class logic.Banking:

public int[][] getGreenAccount(int a1)

For class logic.SubLogic.ClassCls2:

public void mm_method7()

81

Now we are done identifying all the methods, we can start identifying the

constructors.

5.3.5 Identifying Constructors

5 before():
6 preinitialization(private Account.new(int) throws Exception){
7 System.out.println("Account preinit "+thisJoinPoint);
8 }

At line 6 we find preinitialization(private Account.new(int) throws Exception),

we create a private constructor for class Account that takes one argument of type int,

and throws Exception. We also create a public static method called getInstance()

that takes the same arguments and throws the same Exception, and returns a new Ac-

count object. The purpose of the getInstance() method, as mentioned in the previous

chapter, is to be able to create an object of the Account class from outside the class

(Ctr3).

11 pointcut publicConstructor():
12 execution(public new()) && this(Account);

At line 12 we find execution(public new()) && this(Account). Since we do not

have a public constructor that takes no arguments for class Account, we add one to

the list of constructors to be created for Account (Ctr1).

70 pointcut constructorWithincodeMethodPointcut():
71 call(public SavingsAccount.new()) &&
72 withincode(private void Account.addSavingsAccount(int));

At line 71 we find call(public SavingsAccount.new()). Since SavingsAccount does

not have a public constructor that takes no arguments defined, we add one to it (Ctr1).

220 void aspectMethod() {
221 Account.print("My String");
222 RunnableWithReturn worker = new RunnableWithReturn();
223 try{
224 EventQueue.invokeAndWait(worker);
225 } catch (Exception e){}

82

226 }

At line 223 we find RunnableWithReturn worker = new RunnableWithReturn(). We

add a public constructor that takes no arguments to the RunnableWithReturn class

(Mtd19).

By the end of this pass, we have identified the following elements:

For class Account:

private Account(int) throws Exception

public static getInstance(int) throws Exception

public Account()

For class SavingsAccount:

public SavingsAccount()

Since there are no ambiguities to be resolved for constructors, we can go ahead

with our next pass, going through the withincode pointcuts.

5.3.6 withincode Pass

Since we now have both the constructors and the methods of the constructed

application defined, we can look at the withincode pointcuts, to make sure we include

the appropriate calls in the constructors and methods bodies.

59 pointcut methodWithincodeMethodPointcut():
60 call(public void AccountNumber.method1(int)) &&
61 withincode(private int Account.method1());

At lines 60 and 61 we find call(public void AccountNumber.method1(int)) &&

withincode (private int Account.method1()). So, in the body of private int Account.method1(),

we need to create an instance of AccountNumber, and use it to call AccountNumber.method1(int)

(Mtd6). We create an object of AccountNumber using the first public constructor in the

83

list of constructors of AccountNumber class. If there are no public constructors and there

are private constructors, we use the first getInstance method to create the object. We

did not define any constructors for AccountNumber, since none of them is mentioned

explicitly in the aspect code. So we use the default system-defined constructor to

create an AccountNumber object. The following is how private int Account.method1()

will look like.

1 private int method1()
2 {
3 AccountNumber i1 = new AccountNumber();
4 i1.method1(0);
5 return 0;
6 }

70 pointcut constructorWithincodeMethodPointcut():
71 call(public SavingsAccount.new()) &&
72 withincode(private void Account.addSavingsAccount(int));

At lines 71 and 72 we find call(public SavingsAccount.new()) && withincode(private

void Account.addSavingsAccount(int)). So in the body of private void Account.addSavings-

Account(int), we need to create an instance of SavingsAccount (Mtd7). We create an

object of SavingsAccount using the constructor mentioned, i.e. public constructor that

takes no arguments. The following is how

1 private void Account.addSavingsAccount(int) will look like.
2 private void addSavingsAccount(int a1)
3 {
4 SavingsAccount i1 = new SavingsAccount();
5 }

By the end of this pass we have defined more specifications into the body of

the following elements:

private int Account.method1()

private void Account.addSavingsAccount(int a1)

84

5.4 The Output

5.4.1 Application Classes

Once we have all the elements identified, we flesh out the application with

trigger functions added.

Account class:

1 public class Account {
2

3 private float balance;
4

5 public int f3;
6

7 private Account(int a1) throws Exception{
8 if(Math.random() > 0.5)
9 throw new Exception();
10 }
11

12 public static Account createInstance(int a1) throws Exception
13 {
14 return new Account(0);
15 }
16

17 public Account() {}
18

19 public void credit(float a1){}
20

21 public float getBalance(AccountNumber a1, int a2)
22 {
23 return 0;
24 }
25

26 private void debit (float a1) throws InsufficientBalanceException{
27 if(Math.random() > 0.5)
28 throw new InsufficientBalanceException();
29 }
30

31 private int method1()
32 {
33 AccountNumber i1 = new AccountNumber();
34 i1.method1(0);
35 return 0;
36 }
37

38 private void addSavingsAccount(int a1)
39 {
40 SavingsAccount i1 = new SavingsAccount();
41 }
42

43 public void new_m4(){}
44

85

45 public int getBalance(){
46 return 0;
47 }
48

49 public int mm_method5(int a1){
50 return 0;
51 }
52

53 public static void print(String a1)
54 {
55 }
56

57 public void trigger()
58 {
59 print("");
60 try{
61 Account i1 = createInstance(0);
62 i1.balance = 0;
63 int i2 = i1.f3;
64 i1.credit(0);
65 i1.getBalance(new AccountNumber(), 0);
66 i1.method1();
67 i1.addSavingsAccount(0);
68 i1.new_m4();
69 i1.getBalance();
70 i1.mm_method5(0);
71 try{
72 i1.debit(0);
73 }catch(Exception e){}
74 }catch(Exception e){}
75

76

77 Account i3 = new Account();
78 i3.balance = 0;
79 int i4 = i3.f3;
80 i3.credit(0);
81 i3.getBalance(new AccountNumber(), 0);
82 i3.method1();
83 i3.addSavingsAccount(0);
84 i3.new_m4();
85 i3.getBalance();
86 i3.mm_method5(0);
87 try{
88 i3.debit(0);
89 }catch(Exception e){}
90

91 }
92 }

Note that we return the default values of the types for the return types of

the functions. If a constructor or a method throws an exception, we simulate the

checking if a random number is less than 0.5. As you can see, the trigger() function

is added. We start by calling the static functions, then creating object by object,

86

and accessing its fields. Note that balance is being set, and f3 is being get, according

to their flags. Then we call all the functions with their default values. Since debit()

throws an exception it should be called in a try ... catch block. Also note that we

create an instance of the class with each constructor and call all the methods, and

access all the fields for each instance created. This way allows us to cover all the

possibilities intended by the aspect developer. If the method or the field are declared

static, then we use them directly without the instance in the trigger() function. If

the class does not have an explicit constructor, and have methods or fields that need

to be exercised in the trigger() function, we use the system-default constructor to

create the instance.

And we do the same thing for all the classes.

1 AccountNumber class:
2 public class AccountNumber {
3

4 public void method1(int a1){
5 }
6

7 public void printStatement(){
8

9 }
10

11 public void trigger(){
12 AccountNumber i1 = new AccountNumber();
13 i1.method1(0);
14 i1.printStatement();
15 }
16 }
17

18 InsufficientBalanceException exception:
19 public class InsufficientBalanceException extends Exception{
20

21 }

Note that no trigger() method is added to the exception, since no methods

were created for it.

RunnableWithReturn class:

1 public class RunnableWithReturn implements Runnable{
2

3 public RunnableWithReturn(){}
4

87

5 public void run() {
6

7 }
8

9 public void trigger()
10 {
11 RunnableWithReturn i1 = new RunnableWithReturn();
12 }
13 }

Note that run() method is not called in trigger() method, since it is not ex-

plicitly mentioned in the aspect.

SavingsAccount class:

1 public class SavingsAccount {
2

3 public SavingsAccount(){}
4

5 void mm_method6(){}
6

7 public void trigger(){
8 SavingsAccount i1 = new SavingsAccount();
9 i1.mm_method6();
10 }
11

12 }
13

14

15 SubAccount class:
16 public class SubAccount {
17

18 }

Note that no trigger method is added to the SubAccount, since no methods were

created for it.

Connection class:

1 package DataBase.package_p1;
2

3 public class Connection {
4

5 public void getConnection()
6 {
7 }
8

9 public void trigger()
10 {
11 Connection i1 = new Connection();
12 i1.getConnection();
13 }
14

88

15 }

Class2 class:

1 package GUI.Layer1;
2

3 public class Class2 {
4

5 public void method2(){}
6

7 public void trigger()
8 {
9 Class2 i1 = new Class2();
10 i1.method2();
11 }
12

13 }

Banking class:

1 package logic;
2

3 public class Banking {
4

5 public int[][] getGreenAccount(int i){
6 return new int[1][1];
7 }
8

9 public void trigger(){
10 Banking d1 = new Banking();
11 d1.getGreenAccount(0);
12 }
13

14 }

ClassCls2 class:

1 package logic.SubLogic;
2

3 public class ClassCls2 {
4

5 public void mm_method6(){}
6

7 public void trigger()
8 {
9 ClassCls2 i1 = new ClassCls2();
10 i1.mm_method6();
11 }
12 }

89

5.4.2 The Helper Class

We then create a Helper class to exercise the aspect using the trigger() method

of each class. We only instantiate and access the classes that have trigger method

defined in them, to trigger the aspect behavior

Helper class:

1 import DataBase.package_p1.Connection;
2 import GUI.Layer1.Class2;
3 import logic.Banking;
4 import logic.SubLogic.ClassCls2;
5

6

7 public class Helper {
8

9 public static void main(String args[]){
10

11 Account i1 = new Account();
12 i1.trigger();
13

14 AccountNumber i2 = new AccountNumber();
15 i2.trigger();
16

17 RunnableWithReturn i3 = new RunnableWithReturn();
18 i3.trigger();
19

20 SavingsAccount i4 = new SavingsAccount();
21 i4.trigger();
22

23 Connection i5 = new Connection();
24 i5.trigger();
25

26 Class2 i6 = new Class2();
27 i6.trigger();
28

29 Banking i7 = new Banking();
30 i7.trigger();
31

32 ClassCls2 i8 = new ClassCls2();
33 i8.trigger();
34 }
35 }

As you can see we have imported the appropriate classes to be able to create

instances of the classes. And we use the first public constructor to create the instances.

If there is no public constructor, we use the first getInstance() method.

Since the trigger() method we added to each class is not really part of the

90

original application code, we need to make sure it is transparent to the aspect, so

no aspect behavior gets associated with it. We define 2 pointcuts, excludeMyMethods-

FromCall(), and excludeMyMethodsFromExecution() that exclude trigger() methods from

the call and execution pointcuts respectively. We add these pointcuts to the advice’s

point cuts which refer to methods names with a * wild card.

1 pointcut excludeMyMethodsFromCall():
2 !call (void *.trigger());
3

4 pointcut excludeMyMethodsFromExecution():
5 !execution (void *.trigger());

We also need to make sure that none of the pointcuts are applied to the Helper

class since it is not part of the original application code. We do that by defining a

pointcut excludeMyHelperClass() that excludes the Helper class, and we add it to each

advice’s pointcut in the aspect code.

1 pointcut excludeMyHelperClass():
2 !within(Helper);

So we rewrite the aspect code adding the excludeMyHelperClass() from each

pointcut, and adding excludeMyMethodsFromCall() and excludeMyMethodsFromExecution()

where appropriate. The following is the aspect rewritten:

1 import java.awt.*;
2 import javax.swing.*;
3

4 public aspect AccountAspect {
5

6 pointcut excludeMyMethodsFromCall():
7 !call (void *.trigger());
8

9

10 pointcut excludeMyMethodsFromExecution():
11 !execution (void *.trigger());
12

13

14 pointcut excludeMyHelperClass():
15 !within(Helper);
16

17

18 before():
19 preinitialization(private Account.new(int) throws Exception) &&
20 excludeMyHelperClass(){

91

21 System.out.println("Account preinit "+thisJoinPoint);
22 }
23

24

25 pointcut publicConstructor():
26 execution(public new()) && this(Account) && excludeMyHelperClass();
27

28 after():
29 publicConstructor() && excludeMyHelperClass(){
30 System.out.println("Public Constructor "+ thisJoinPoint);
31 }
32

33

34 pointcut creditAccount(Account account, float amount):
35 call(void credit(float)) && target(account) && args(amount) &&
36 within(Account) && excludeMyHelperClass();
37

38 before(Account account, float amount):
39 creditAccount(account, amount) && excludeMyHelperClass(){
40 System.out.println("Crediting " + amount +" to " + account);
41 }
42

43

44 before():
45 set(private float Account.balance) && excludeMyHelperClass(){
46 System.out.println("Set Account.balance " + thisJoinPoint);
47 }
48

49

50 after():
51 get(!private * Account.*) && excludeMyHelperClass(){
52 System.out.println(thisJoinPoint +
53 " accessing a non private data member");
54 }
55

56

57 after() returning(float a1):
58 call(public * Account.getBalance(AccountNumber ,int)) &&
59 excludeMyHelperClass(){
60 System.out.println("After Returning");
61 }
62

63

64 pointcut debitPointcut():
65 call(private void Account.debit(float) throws
66 InsufficientBalanceException);
67

68 after():
69 debitPointcut() && excludeMyHelperClass(){
70 System.out.println("Debit Pointcut");
71 }
72

73

74 pointcut methodWithincodeMethodPointcut():
75 call(public void AccountNumber.method1(int)) &&
76 withincode(private int Account.method1());
77

78 before():

92

79 methodWithincodeMethodPointcut() && excludeMyHelperClass(){
80 System.out.println("method withincode method pointcut: "
81 + thisJoinPoint);
82 }
83

84

85 pointcut constructorWithincodeMethodPointcut():
86 call(public SavingsAccount.new()) &&
87 withincode(private void Account.addSavingsAccount(int));
88

89 after():
90 constructorWithincodeMethodPointcut() &&
91 excludeMyHelperClass(){
92 System.out.println(
93 "constructor withincode method pointcut: " + thisJoinPoint);
94 }
95

96

97 pointcut startOfMethodName():
98 call(public void Account.new*());
99

100 before():
101 startOfMethodName() && excludeMyHelperClass(){
102 System.out.println("matches start of method name: "
103 + thisJoinPoint);
104 }
105

106

107 pointcut endOfMethodName():
108 call(private void Account.*bit(..));
109

110 before():
111 endOfMethodName() && excludeMyHelperClass(){
112 System.out.println("matches end of method name: "
113 + thisJoinPoint);
114 }
115

116

117 pointcut startAndEndOfMethodName():
118 execution(private void add*Account(*));
119

120 after():
121 startAndEndOfMethodName() && excludeMyHelperClass(){
122 System.out.println("matches start and end of method name: "
123 + thisJoinPoint);
124 }
125

126

127 pointcut anyReturnType():
128 call(public * Account.getBalance());
129

130 int around():
131 anyReturnType() && excludeMyHelperClass(){
132 System.out.println("Any return type: " + thisJoinPoint);
133 return proceed();
134 }
135

136

93

137 before():
138 call(public float Account.getBalance(*, ..)) &&
139 excludeMyHelperClass(){
140 System.out.println("* and .. arguments matches @: "
141 + thisJoinPoint);
142 }
143

144

145 after():
146 call(public int Account.*(int)) && excludeMyHelperClass(){
147 System.out.println("Any method name matches @: " + thisJoinPoint);
148 }
149

150

151 before():
152 call(public !final * Account.*()) && excludeMyHelperClass() &&
153 excludeMyMethodsFromCall(){
154 System.out.println("public non final matches @: "
155 + thisJoinPoint);
156 }
157

158

159 after():
160 execution(* *(..)) && within(SavingsAccount+) &&
161 excludeMyHelperClass() && excludeMyMethodsFromExecution(){
162 System.out.println("Any method SavingsAccount name matches @: "
163 + thisJoinPoint);
164 }
165

166

167 pointcut getGreenAccounts(int type):
168 call(int[][] logic.Banking.getGreenAccount(int)) && args(type);
169

170 after(int i):
171 getGreenAccounts(i) && excludeMyHelperClass() &&
172 excludeMyMethodsFromCall(){
173 System.out.println("packages: " + thisJoinPoint);
174 }
175

176

177 before():
178 call(void JComponent.repaint(..)) && excludeMyHelperClass(){
179 System.out.println("System defined:" + thisJoinPoint);
180 }
181

182

183 pointcut guiPackage():
184 call(public * GUI.Layer1.*.*());
185

186 after():
187 guiPackage() && excludeMyHelperClass() &&
188 excludeMyMethodsFromCall(){
189 System.out.println("2 layer package " + thisJoinPoint);
190 }
191

192

193 declare parents: SubAccount extends Account;
194

94

195

196 after():
197 call(private int method1()) && within(Account || SavingsAccount)
198 && excludeMyHelperClass(){
199 System.out.println("Within either class" + thisJoinPoint);
200 }
201

202

203 after():
204 call(* GUI.*.Class2.*()) && excludeMyHelperClass()
205 && excludeMyMethodsFromCall(){
206 System.out.println("Any method in Class2,
207 Class2 belongs to a sub package of package GUI");
208 }
209

210

211 after():
212 execution(public * DataBase.*.Connection.getConnection())
213 && excludeMyHelperClass(){
214 System.out.println("Any sub package in DataBase package");
215 }
216

217

218 before():
219 call(public void printStatement()) && !within(Account) &&
220 within(!SubAccount){
221 System.out.println("!within(Account) and within(!SubAccount)"
222 + thisJoinPoint);
223 }
224

225

226 after():
227 call(public * logic.SubLogic.*.*()) && excludeMyHelperClass()
228 && excludeMyMethodsFromCall(){
229 System.out.println("Create a new Class");
230 }
231

232

233 pointcut exceptionHandler():
234 handler(InsufficientBalanceException);
235

236 after():
237 exceptionHandler() && excludeMyHelperClass() {
238 System.out.println("Exception Handler matches @: "
239 + thisJoinPoint);
240 }
241

242 int Account.x = 0;
243 before():
244 set(int Account.x) && excludeMyHelperClass(){
245 System.out.println("Set Account.x ITD " + thisJoinPoint);
246 }
247

248

249 void aspectMethod()
250 {
251 Account.print("My String");
252 RunnableWithReturn worker = new RunnableWithReturn();

95

253 try{
254 EventQueue.invokeAndWait(worker);
255 } catch (Exception e){}
256 }
257

258 }

5.5 Execution Output

The following will be the output when run after the aspect code and the con-

structed application code are woven together:

Set Account.x ITD set(int Account.x)

Public Constructor execution(Account())

Account preinit preinitialization(Account(int))

Set Account.x ITD set(int Account.x)

Set Account.x ITD set(int Account.x)

Public Constructor execution(Account())

Set Account.balance set(float Account.balance)

get(int Account.f1) accessing a non private data member

Crediting 0.0 to Account@32c41a

* and .. arguments matches @: call(float Account.getBalance(AccountNumber, int))

After Returning

method withincode method pointcut: call(void AccountNumber.method1(int))

Within either classcall(int Account.method1())

constructor withincode method pointcut: call(SavingsAccount())

matches start and end of method name: execution(void Account.addSavingsAccount(int))

matches start of method name: call(void Account.new_m3())

public non final matches @: call(void Account.new_m3())

Any return type: call(int Account.getBalance())

public non final matches @: call(int Account.getBalance())

Any method name matches @: call(int Account.mm_method4(int))

matches end of method name: call(void Account.debit(float))

Debit Pointcut

96

!within(Account) and within(!SubAccount)call(void AccountNumber.printStatement())

Any method SavingsAccount name matches @: execution(void SavingsAccount.mm_method5())

Any sub package in DataBase package

2 layer package call(void GUI.Layer1.Class2.method2())

Any method in Class2, Class2 belongs to a sub package of package GUI

packages: call(int[][] logic.Banking.getGreenAccount(int))

Create a new Class

CHAPTER VI

Related Work

Aspect-Oriented Programming is relatively a new topic and is a rich field for

research. In this chapter we present what others have previously found that relates

to our research.

Xie and Zhao [23] developed Aspectra, a framework for testing aspectual be-

havior that automates test inputs generation. As with our research, they also start

with the aspects, and the developers construct the base classes, but they do not have

a defined procedure in place on how to create the base classes. In addition, they use

the byte code of the woven classes to create a wrapper class for each base class to

invoke the calling join points. They had to do several runs, modifying the base classes

to test the aspects. And in their paper they mention that a sophisticated base class

construction tool is needed to help enhance the aspectual branch coverage testing.

Our research defines how the base classes should be constructed.

Harman et al. [10] developed an approach for automating test data genera-

tion for AOP based on search-based optimization for hard-to-cover branches. Their

approach produces test data for the base class and this data indirectly exercises the as-

97

98

pect, and their evolutionary tester generates test data for relevant parameters. They

used domain reduction and program slicing, cutting off the unneeded parts of the

program, which are not affected by the aspect behavior. In our research we take the

opposite approach – that of creating the minimal set of application classes.

Zhou et al. [25] were also interested in testing aspects. Their testing approach

consists of four steps. The first step is to test the classes by themselves, without

the aspects in order to isolate and eliminate errors that are not aspect-related. The

second step is to weave each aspect separately with the classes, and each woven

application gets tested by itself to verify it is behaving as expected. The third step

is to start weaving multiple aspects with the classes in an incremental fashion. The

fourth step is to have all the aspects woven together with the classes to form the

complete application, and test it. They define rules to select relevant test cases for

the aspect-under-test. They are reusing test cases developed for the regular classes

to test the aspect. New test cases are developed if the reused test cases do not cover

the aspect under test.

J. Zhao [24] proposed a data-flow-based unit-testing approach for aspect-oriented

programs. The research was concerned with testing the aspect, and the classes whose

behavior are affected by the aspect code. They perform three levels of testing for each

aspect or class: intra-module, inter-module, and intra-aspect or intra-class testing.

Intra-module is for an individual module such as a piece of advice, a piece of intro-

duction, and a method. Inter-module is for a public module along with other modules

it calls in an aspect or class. Intra-aspect or intra-class is for modules that can be

accessed outside the aspect or class, and can be invoked in any order by users of the

aspect or class. Their approach uses control flow graphs to compute definition-use

pairs to guide the selection of tests for the aspect or class. Their research does not

cover inheritance in an aspect oriented program.

99

Interested in aspect behavior, Popovici et al. [16] developed a platform that

allows for dynamic weaving called the PROSE (PROgrammable extenSions of sEr-

vices) system. Aspects can be woven and unwoven at runtime. PROSE allows the

creation of aspects using pure Java classes based on the PROSE library, which can be

compiled using standard Java complier, and woven into the application at runtime.

Aspect testing and validation are speeded up by the repeated weaving and unweaving

of aspects.

Also interested in the impact of the aspect on the application behavior, Caval-

laro and Monga [7] introduced an application prototype that performs change impact

analysis on AspectJ programs. The tool can relate changes in an AspectJ program’s

source code to changes in the program behavior. They implemented their tool on top

of the abc weaver.

Borger et al. [8], interested in runtime visibility and traceability of aspects,

have implemented a debugger for AOP. This debugger supports the visibility of code

abstractions and artifacts as the aspects, advices, pointcuts, aspect instances, and

advice applications. The debugger supports the traceability of the advices and the

join points that caused them on the stack. They implemented a breakpoint model

on join points that allows the inspection of executed advices, executing advices, and

future advices, corresponding to before, at, and after the breakpoint.

Another interesting research is the one done by Vidal et al. [22]. They were

kind of doing the opposite of our research. Impressed by how well Aspect Oriented

Programming preserves encapsulation and modularization of cross cutting concerns,

they introduced a process to help developers refactor their Object Oriented applica-

tions into aspects. They developed a tool approach that uses aspect mining with rule

base engine to apply refactorings.

Avgustinov et al. [5] were concerned about the safety of the pointcuts. They

100

introduced rigorous semantics for AspectJ pointcut language. Their approach rewrites

the pointcuts in Datalog queries, a prolog-like language.

Krishnamurthi et al. developed a technique to verify the aspect advice mod-

ularly [14]. They assumed that the pointcut is fixed, and the advice is the one that

changes by the developer. This technique eliminates unnecessary analysis of the en-

tire system, every time the developer makes a change to the advice. Their verification

technique takes as input the programs with the pointcuts without the advices, and

a set of properties that the advice must not violate. They use finite state machine

to represent the aspect-oriented program, and apply model checking against them.

Their research also considered optimization of multiple pointcuts designators. As

described before, in our approach we do consider all parts of the aspect including

the advice, since we depend on the provided aspect code to find the clues about the

original application.

6.1 Implementation

During our research, we explored options for how we would implement a tool

to do the reverse engineering on the aspect code and construct the application code.

AspectJ Front [2, 6] was one of the options we came across. We found out that this

project is not active any more, and we needed a more flexible framework to work

with, to be able to change it and build on it. So we started exploring other options.

We looked at AspectBench Compiler (abc) [3, 4], a compiler framework. As-

pectBench is designed with extensibility in mind, which makes building on new fea-

tures easy. It is built in java, and it implements full AspectJ language. It allows

extensions in: syntax, type checking, code generations, data and control flow analy-

ses. We talk more about it in future work section.

Another option that is worth evaluating, is to consider building our tool on top

101

of the java eclipse aspectj project [1]. It is an open source project. Eclipse provides a

java IDE framework, and it has an aspectJ plug-in for aspect oriented programming.

6.2 Non Aspect Oriented

Finding the application elements from the join points that the aspect behavior

would apply to resembles implementing frameworks where the methods are left virtual

or abstract [17,18,21]. The application which is built using the framework is the one

that defines the behavior of these abstract methods. In this case the framework

defines the virtual method (the template method) and the application defines the

behavior of the hook method.

Another way for decoupling cross-cutting concerns is to use software containers.

Cross-cutting concerns as persistence, security, transaction management, and fault

masking are implemented as container services. Sridhar and Hallstrom [19] present a

formal model that allows the developers to identify how the behavior of components

deployed in a container are modified by the container.

CHAPTER VII

Conclusions and Future Work

7.1 Conclusion

In this research we have introduced a reverse engineering approach that allows

us to examine aspect behavior separately from the application and before weaving

into the application is done. We have also defined the transformation rules needed to

reverse engineer the application from the aspect code. In this thesis we have presented

an example that illustrates step by step how our approach and the transformation

rules are applied to construct the application class model.

Our approach takes the aspect code as its input, and finds clues of the ele-

ments the aspect(s) expect(s) to see. Using the transformation rules, we build the

constructed application classes. Our approach includes several passes to identify

the packages, classes, fields, methods, and constructors of the application. The con-

structed application is the minimal subset of the original application; it does not have

any behavior in itself. The constructed application classes are basically empty. The

aspect and the new constructed application are then woven together. The output

102

103

behavior of the woven application is exclusively pure aspect behavior.

7.2 Future Work

7.2.1 Tool Implementation

The immediate and most pressing extension of this work is the implementation

of a tool that reverse engineers aspect code into the constructed application code.

As mentioned before, we looked into ways for the tool implementation, and we feel

implementing on top of the AspectBench Compiler (abc) compiler is suitable for

our purpose. The AspectBench Compiler is designed with extensibility in mind, for

easy experimentation with new language features and implementation techniques for

AspectJ. It allows extensions in: syntax, type checking, code generations, data and

control flow analyses. It allows easy add-ons, keeping new extensions and base code

disentangled.

AspectBench [3, 4] compiler is built in java and implements the full AspectJ

language. Its front end is built on Polyglot, which provide syntax flexibility and type

checking. Its back end is built on Soot, for modular code generation, analyses and

code weaving. abc is freely available under the GNU LGPL.

Another option that is worth evaluation, is to consider building our tool on top

of the java eclipse aspectj project [1]. It is a open source project. eclipse is an provides

a java IDE framework, and it has a aspectJ plug-in for aspect oriented programming.

7.2.2 Test case generation

One of the applications of our approach is test case generation. A number of

other researchers have been working on testing of aspect-oriented programs in the

recent years [10]. The approach usually is that the application classes are woven

104

along with the aspects, and the whole application is analyzed to determine test cases.

In this manner, test cases can be computed that completely cover and exercise the

various behaviors exercised by the application. Some researchers have also worked

on isolating the behavior encapsulated in the classes from that encapsulated in the

aspects [12]. Our approach of constructing structural harnesses for aspects allows

the use of the same test generation techniques, while completely isolating and testing

only the behavior exhibited by the aspects.

7.2.3 Design pattern mining

Another application of our approach is design pattern mining. Hannemann and

Kiczales [9] have shown the use of aspects in refactoring the design of a system to use

one or more design patterns. To do this, the design pattern is encoded as a set of class

relationships in a target application. Since our reverse engineering process results in

a structural subset of the target application’s class model, generating a harness for

the aspect(s) that implement(s) a certain design pattern, and then comparing this

harness with the complete class model of an application can allow us to identify the

existence of design patterns or idioms in legacy Object Oriented applications.

7.2.4 Design model validation

We can also use our approach in design model validation. The harness classes

that we can reverse engineer from the aspect(s) are structurally a subset of the target

application. As such, dependencies and inheritance relationships between classes

in the target application can be inferred insofar as they are captured in the aspects.

Based on these inferences, the design model of the target application can be validated

against specifications that require (or disallow) certain relationships among classes.

BIBLIOGRAPHY

[1] Aspectj at eclipse.org. http://www.eclipse.org/aspectj.

[2] Aspectjfront website. http://strategoxt.org/Stratego/AspectJFront, 2006.

[3] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Building the abc aspectj

compiler with polyglot and soot. 2004 abc-2004-4, aspectbench.org.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible

aspectj compiler. In AOSD ’05: Proceedings of the 4th international conference

on Aspect-oriented software development, pages 87–98, New York, NY, USA,

2005. ACM.

[5] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble, and

M. Verbaere. Semantics of static pointcuts in aspectj. In POPL ’07: Proceed-

ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 11–23, New York, NY, USA, 2007. ACM.

[6] M. Bravenboer, E. Tanter, and E. Visser. Declarative, formal, and extensible

syntax definition for aspectj. In OOPSLA ’06: Proceedings of the 21st annual

ACM SIGPLAN conference on Object-oriented programming systems, languages,

and applications, pages 209–228, New York, NY, USA, 2006. ACM.

[7] L. Cavallaro and M. Monga. Unweaving the impact of aspect changes in as-

pectj. In FOAL ’09: Proceedings of the 2009 workshop on Foundations of aspect-

oriented languages, pages 13–18, New York, NY, USA, 2009. ACM.

105

106

[8] W. De Borger, B. Lagaisse, and W. Joosen. A generic and reflective debugging

architecture to support runtime visibility and traceability of aspects. In AOSD

’09: Proceedings of the 8th ACM international conference on Aspect-oriented

software development, pages 173–184, New York, NY, USA, 2009. ACM.

[9] J. Hannemann and G. Kiczales. Design pattern implementation in java and

aspectj. SIGPLAN Not., 37(11):161–173, 2002.

[10] M. Harman, F. Islam, T. Xie, and S. Wappler. Automated test data generation

for aspect-oriented programs. In AOSD ’09: Proceedings of the 8th ACM in-

ternational conference on Aspect-oriented software development, pages 185–196,

New York, NY, USA, 2009. ACM.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In S. M. Mehmet Aksit, editor, 11th

European Conference on Object-Oriented Programming, volume 1241 of Lecture

Notes in Computer Science, pages 220–242. Springer, 1997.

[12] G. Kiczales and M. Mezini. Aspect-oriented programming and modular reason-

ing. In ICSE ’05: Proceedings of the 27th international conference on Software

engineering, pages 49–58, New York, NY, USA, 2005. ACM.

[13] S. Krishnamurthi and K. Fisler. Foundations of incremental aspect model-

checking. ACM Trans. Softw. Eng. Methodol., 16(2):7, 2007.

[14] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice modu-

larly. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth

international symposium on Foundations of software engineering, pages 137–146,

New York, NY, USA, 2004. ACM.

107

[15] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning

Publications Co., Greenwich, CT, USA, 2003.

[16] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented

programming. In AOSD ’02: Proceedings of the 1st international conference

on Aspect-oriented software development, pages 141–147, New York, NY, USA,

2002. ACM.

[17] N. Soundarajan and S. Fridella. Understanding oo frameworks and applications:

an incremental approach. Informatica (Slovenia), 25(3), 2001.

[18] N. Soundarajan and B. Tyler. Testing polymorphic behavior. Journal of Object

Technology, 1(3):173–188, 2002.

[19] N. Sridhar and J. O. Hallstrom. A behavioral model for software containers. In

FASE, pages 139–154, 2006.

[20] Sun Microsystems. The java reflection API.

http://java.sun.com/docs/books/tutorial/reflect/index.html, 2010.

[21] B. Tyler and N. Soundarajan. Black-box testing of grey-box behavior. In FATES,

pages 1–14, 2003.

[22] S. Vidal, E. S. Abait, C. Marcos, S. Casas, and J. A. Dı́az Pace. Aspect mining

meets rule-based refactoring. In PLATE ’09: Proceedings of the 1st workshop

on Linking aspect technology and evolution, pages 23–27, New York, NY, USA,

2009. ACM.

[23] T. Xie and J. Zhao. A framework and tool supports for generating test inputs of

aspectj programs. In AOSD ’06: Proceedings of the 5th international conference

on Aspect-oriented software development, pages 190–201, New York, NY, USA,

2006. ACM.

108

[24] J. Zhao. Data-flow-based unit testing of aspect-oriented programs. In COMP-

SAC ’03: Proceedings of the 27th Annual International Conference on Computer

Software and Applications, page 188, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[25] Y. Zhou, H. Ziv, and D. J. Richardson. Towards a practical approach to test

aspect-oriented software. In SOQUA/TECOS, pages 1–16, 2004.

	Reverse Engineering Aspects to Derive Application Class Models
	Recommended Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	I. Introduction
	1.1 Introduction
	1.2 The Problem
	1.3 The Thesis
	1.4 Solution Approach
	1.5 Contributions
	1.6 Organization of the Thesis

	II. Aspect-Oriented Programming
	III. Design Overview
	3.1 Introduction
	3.2 Design Methodology

	IV. Transformation Rules
	4.1 Introduction
	4.2 Packages
	4.3 Classes
	4.4 Fields
	4.5 Methods
	4.6 Constructors

	V. Applying the Rules
	5.1 Introduction
	5.2 Aspect Input
	5.3 Identifying the Elements
	5.3.1 Identifying Packages
	5.3.2 Identifying Classes
	5.3.3 Identifying Fields
	5.3.4 Identifying methods
	5.3.5 Identifying Constructors
	5.3.6 withincode Pass

	5.4 The Output
	5.4.1 Application Classes
	5.4.2 The Helper Class

	5.5 Execution Output

	VI. Related Work
	6.1 Implementation
	6.2 Non Aspect Oriented

	VII. Conclusions and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Tool Implementation
	7.2.2 Test case generation
	7.2.3 Design pattern mining
	7.2.4 Design model validation

	BIBLIOGRAPHY

