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SYNCHROPHASORS’ APPLICATION IN SVC FOR INDUSTRIAL NETWORKS 

KAREEM M. SUHWAIL 

ABSTRACT 

It is widely understood that as fuel and energy prices continue to increase, new 

and innovative ways of becoming more energy efficient will be required. This 

couldn’t be more apparent than in industry, where every decision is constrained 

by economics. Power factor correction is a cost effective way for industry to have 

economically sound improvements with maximum efficiency benefits. It is 

proposed that in large industrial systems, where an SVC (Static Var Control) 

system could be used, synchrophasor measurements could also be used to 

control the SVC and provide enhanced historical analysis. Currently, many 

protective relays used in industry provided by SEL (Schweitzer Engineering 

Laboratories) already have this capability built-in. While synchrophasor 

measurement technology is still relatively unknown, they are a powerful tool that 

could greatly increase power system control, efficiency and historical data 

analysis.  
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CHAPTER I 

MOTIVATION FOR THESIS 

 

1.1 DISTRIBUTION NETWORK ISSUES 

There are many problems facing large industrial manufacturing facilities in 

today’s business environment; not the least of which are energy costs due to 

consumption of electricity and power distribution reliability. Thousands of 

facilities across the nation from small electric utilities to chemical plants, steel 

mills and waste management facilities, attempt to generate power by reclaiming 

unused or wasted process energy to offset their electricity costs.  
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Many of these same facilities also have abnormally large inductive loads 

that cause poor power factors on both their distribution grids and the grid of the 

electric utility.  This presents the engineering community with large opportunities 

for energy management improvements in these facilities. 

The inspiration for my thesis comes from a steel mill where I had the 

pleasure to work. Like most steel mills in the United States, this steel mill is very 

old. Parts of the facility are over 100 years old, while much of the inter-mill 

power distribution system is 70+ years old. The mill has two power houses that 

perform different functions. One power house generates compressed air for use 

at a blast furnace and provides steam to the plant. While the other power house, 

originally built in 1917, generates power to sell back to the utility. This mill was 

heavily expanded under a government grant during World War II to increase steel 

production for the war effort. As a result, there is a mixture of technology from 

the 1940s through modern day.  

This facility has a number of steam driven generating units, both 25Hz and 

60Hz, which have a combined peak generating capacity of approximately 32MW. 

The boilers that produce the steam are multi-fuel units that can burn either 

natural gas or blast furnace gas.  
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Blast furnace gas is a byproduct of the iron reduction process and has a 

BTU value in the 80-100 range, while the BTU value of natural gas is 

approximately 1000 BTU/cubic ft. This variable BTU makes it much more difficult 

to control the boilers and power generation varies continually as a result. 

The mill has a special contract that allows them to buy electricity from the 

electric utility at a lower cost than they can produce it for while burning natural 

gas. However, they can generate power from burning blast furnace gas at the 

lowest cost possible. While blast furnace gas can be seen as a free fuel and 

through its consumption help mitigate environmental constraints, it also poses a 

problem. Blast furnace gas has a variable BTU value and is available only when 

the blast furnaces are running. The amount of blast furnace gas produced is 

continuously variable. There are blast furnace gas swings every time a blast 

furnace stove is taken on or off gas and when the blast furnace operators adjust 

the amount of injectants (O2, NG or fuel oil) used.  This causes the amount of 

power being generated to continuously change.  

Moreover, the infrastructure of the mill’s power distribution system poses 

many additional challenges. For example, the mill has more than two dozen 

substations scattered throughout the facility with varying degrees of size and 

dependence. Much of the high voltage cabling is old and poorly maintained. 
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Some of the cabling runs underground and has been known to have grounding 

faults in the past. The substations have a mix of new and decaying equipment.  

It is common to have voltage profile issues and periodically equipment will 

drop out as a result (4-5 times per year). It is also common to have power factors 

below 0.6. This poor voltage profile and power factor is the primary motivation 

for this thesis. A proposed method to help correct this problem will be explored 

throughout this thesis along with a power system simulation to validate findings. 

1.2 SYNCHROPHASORS AND STATIC VAR CONTROL 

Static VAR Control (SVC) is a popular component of today’s Flexible AC 

Transmission Systems (FACTS). While they have been used extensively on the 

transmission side of the power grid, their implementation at the distribution or 

customer level is in its infancy.  

The static var controller uses an algorithm and semiconductor components 

to control a bank of capacitors and/or inductors that can inject or absorb reactive 

power from the grid as needed. Currently, the feedback variables used to control 

the SVC are a mix of both calculated and estimated values. Bus voltages are easily 

measured, but until recently, phase angles had to be estimated by the use of 

state estimating software. This reliance on state estimated values provides an 

opportunity for improved control methods and technology.  
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The proposed measurement method explored throughout this thesis 

utilizes synchrophasor technology. Synchrophasors have the ability to provide 

phase angle measurements that are directly measured in excess of 30 times per 

second. [1] This gives the utility or generating industrial facility greater accuracy 

and speed in phase angle metering.  

When synchrophasors are used as feedback for the static var controller, it 

provides an improved line voltage profile and power factor control. When large 

capacitor or inductor banks are switched on with mechanical circuit breakers, 

they introduce large transients into the network. The benefit of using 

synchrophasors with SVC may allow for not only more accurate control but less 

switching events. Over time, this can help improve the life span of network 

devices due to reduced transients. 

1.3 SYNCHROPHASORS AND STATIC VAR CONTROL AS A REMEDY 

The primary problem plaguing the mill’s power system is poor voltage 

profile and power factor. The implementation of an SVC and synchrophasor 

solution would be extremely beneficial in the short-term, while providing long 

term benefits ranging from increased power generation to reduced downtime. 

Additionally, the ability to monitor line phase angles when specific equipment is 

put on line or taken off line will allow the mill to understand the effect they are 
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having on their power factor and voltage profile. Thus, the mill’s operators will be 

able to make better decisions that will drive efficiency improvements. 

Since, the mill has poor quality conductors connecting many of its buses, 

synchrophasor technology will aid in the real time calculations of line ratings. It is 

known that power lines have different characteristics in different weather 

conditions. It would be a beneficial to know when power lines are being 

overloaded or are in need of immediate maintenance. 

In addition to the benefits of synchrophasor technology discussed 

throughout this thesis, a Phasor Monitoring Unit (PMU) also has the ability to 

measure line frequency. This is an added benefit since there have been numerous 

device failures because of faulty power supplies. The suspected problem has 

been dirty power with harmful harmonics that prematurely cause power supplies 

to fail. Monitoring line frequency will help identify when these issues are present.  

Recently, there has been discussion of expanding the mill and adding an 

electric arc furnace. This would add a tremendous amount of stress on the mill’s 

distribution network.  The corrective benefits a synchrophasor based SVC system 

provides would alleviate that stress and keep the network as reliable and 

efficient as possible. 
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1.4 ECONOMIC CONSIDERATIONS 

While power factor fines are not the industry norm, their impact on 

industry is increasing. The cost of generating power is ever-increasing with the 

rising cost of fossil fuels and the environmental constraints placed upon them.  

In addition to hard costs, such as fines or fuel, there are many soft costs 

that must be taken into account. The ability to better control power flow and 

voltage profile will benefit the life span and reliability of network devices, reduce 

maintenance and help alleviate down time.  

1.5 THESIS ORGANIZATION 

 This thesis is organized into six chapters. Chapter I describes the 

motivation for the development of this thesis. Chapter II holds a review on 

synchrophasor technology. What synchrophasor technology is, how it works and 

how it can be used. In Chapter III, different methods for power factor correction 

in industry are compared. They range from simple and cheap to complex and 

expensive. Chapter IV shows the simulation of an example industrial power 

system that has been developed in PSCAD. The results are then analyzed and a 

brief economic analysis is included. Chapter V discusses how SCADA systems 

typically used in industrial systems can be designed to interface with PMUs 

(Phasor Monitoring Units) and what PMU manufacturers could possibly do to 
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increase technology adaptation. Finally, Chapter VI summarizes the conclusion of 

this thesis and provides some ideas for future research.  
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CHAPTER II 

REVIEW OF SYNCHROPHASOR TECHNOLOGY 

 

 

2.1 WHAT ARE PHASORS AND HOW ARE THEY CALCULATED 

 Phasors are a complex representation of the magnitude (𝑉𝑚𝑎𝑥 𝑜𝑟 𝐼𝑚𝑎𝑥), 

angular frequency (ω) and phase angle (𝛿) of a sinusoidal voltage or current. As 

shown below, this sinusoidal voltage or current can be represented with 

reference to either the sine or cosine with the equation (2) being the most 

accepted form. 

𝑣(𝑡) = 𝑉𝑚𝑎𝑥 sin(𝜔𝑡 − 𝛿𝑣) , 𝑖(𝑡) = 𝐼𝑚𝑎𝑥 sin(𝜔𝑡 − 𝛿𝑣)  (1) 

𝑣(𝑡) = 𝑉𝑚𝑎𝑥 cos(𝜔𝑡 + 𝛿𝑣) , 𝑖(𝑡) = 𝐼𝑚𝑎𝑥 cos(𝜔𝑡 + 𝛿𝑣)  (2) 
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 Typically, phasors are shown in polar (Vmaxa𝛿) form. Table 1 shows the 

phasor diagrams of a pure resistive load, pure inductive load and pure capacitive 

load. It is demonstrated that the phase angle difference between the voltage and 

current are zero for a pure resistive load, 90o lagging (-90o) for the inductive load 

and 90o leading (+90o) for the capacitive load. 

TABLE 1 Typical phasor diagrams 

Pure Resistive Load 
IR   Vmax 

 

Pure Inductive Load 
IL    Vmax 

 

Pure Capacitive Load  IC 
   Vmax 

 

As stated previously, phasors are a complex representation of the 

magnitude (𝑉𝑚𝑎𝑥 𝑜𝑟 𝐼𝑚𝑎𝑥) and phase angle (𝛿) of a sinusoidal voltage or current. 

This is illustrated graphically in Figure 2.1 below. An additional consideration to 

note is that while a sinusoidal waveform moves across the time axes and 

performs its cycles according to its angular frequency (ω), the phasor 
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representation cannot do the same. Phasors will rotate around the origin at its 

angular frequency (ω) in the counter clockwise direction. 

 

Figure 2.1 – Cosine Representation of Sinusoidal Waveform and Phasor 
Representation [1] 

 

According to the mathematical description shown above, phasor 

representation is only possible for pure sinusoids. Since real world power signals 

consist of numerous signals of different frequencies it is necessary for us to 

extract the signal components that comprise the principal frequency we are 

interested in. 

This signal extraction can be done through the use of Fourier transforms. A 

common method of calculating Fourier transforms in digital system processing is 

through the use of discrete-time Fourier transforms (DTFT). This is accomplished 

by taking periodic samples of a continuous function. 
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An important concern to note is that our phasor calculation is a highly 

dynamic value. It is necessary to parse this continuous signal into smaller 

incremental periods (k∆t, k=0, ±1, ±2 …) where the phasor can be assumed to be 

static. [11] This incremental period is referred to as the “data window”. In a 

synchrophasor network, it is critical that the “data windows” among all phasor 

monitoring units (PMU) are properly synchronized. This synchronization will 

ensure all data are being parsed from the same moment in time. 

In today’s grid applications, phasors are typically calculated by PMUs. The 

data produced by numerous PMUs installed throughout a network are collected 

by PDCs (Phasor Data Collector).  PMUs used to calculate voltage phasors are 

placed at buses while current phasors are calculated at branches.  

Synchrophasors are essentially an extension of this phasor technology. 

What makes synchrophasors special is a time stamp, determined by a GPS unit, 

which is attached to each phasor measurement. This time stamp gives engineers 

the ability to view data across the power network and capture a complete 

understanding of what state the network is in at a given moment.  

 This time synchronization is extremely helpful in diagnosing and 

troubleshooting problems, whether they are in the past or currently occurring. 

While the field of diagnostics through synchrophasors is still growing and shows 
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great promise, synchrophasors have other special features that will lend them to 

greater uses.  

 
Current technology only allows for direct measurement of the voltage or 

current magnitude, but not the phase angle. Phase angles are calculated by a 

computer running state estimation software. These calculated angles are not 

always the most accurate because of computer processing time delays, errors or 

incompleteness of the state estimator’s algorithm. Synchrophasors can be used 

to alleviate these constraints by providing data to improve the state estimation 

algorithm to more accurately represent current grid conditions and measure 

phase angles directly.    

Another benefit is that phasors are calculated quickly. Most PMUs can 

calculate up to 30 times per second with some new models calculating in excess 

of 60+ times per second. [1]   Additionally, the GPS timestamp is provided by 

satellite GPS hardware that is accurate to the millisecond or better. In contrast, 

most SCADA systems scan in the 2 to 4 second range. [1] This sub-SCADA data 

collection shows dynamics that would otherwise have never been seen.  

There were only 250 PMUs installed across North America in 2010. [1] 

While that number is expected to increase exponentially, there is great 

opportunity for the improved metrology that synchrophasors provide.  
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It will be demonstrated throughout this thesis that the ability to accurately 

measure voltage and current magnitudes as well as phase angles, attach them to 

an extremely precise time stamp, and continue to do so in excess of 30 times per 

second makes synchrophasor technology an ideal candidate for both monitoring 

functions and control.  

2.2 CURRENT IMPLEMENTATIONS OF SYNCHROPHASOR TECHNOLOGY 

 Currently synchrophasor technology has primarily been used as a tool to 

improve grid reliability and help diagnose emerging system problems. This type 

of real time, high speed and time synchronized data allows operators to get a 

broad, yet detailed understanding of the current state of the network.  

 Utilities have numerous systems that attempt to look at transmission and 

distribution networks from a broad perspective. These types of systems are 

called WAMs (Wide Area Monitoring Systems).  Figure 2.2 shows a generic WAM 

system where three protective relays with advanced PMU capabilities are 

measuring pertinent data from various grid locations. These data are then 

collected by an SVP (Synchrophasor Vector Processor), which acts as a PDC 

(Phasor Data Collector), across a WAN (Wide Area Network). Additionally, a 

satellite GPS clock would be installed but is assumed necessary and isn’t shown in 

the figure. 
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Figure 2.2 –Common WAMS with Synchrophasor Vector Processing and SVC [4] 
 

Synchrophasors are becoming an integral component of WAMS and are providing 

critical new data that allow operators to better perform their jobs. A good 

example of the increasingly important role synchrophasors are playing is 

demonstrated in Figure 2.3.  
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Figure 2.3 – Ohio-Michigan Phase and Diverging on Aug. 14, 2003 [1] 
 

In Figure 2.3, provided by Schweitzer Engineering Laboratories, the phase 

angle between Cleveland and Michigan on August 14, 2003 is shown to slowly 

diverge over the course of approximately one hour. In the final 3 minutes, the 

divergence became extreme and caused the giant blackout that affected the 

entire northeastern United States. In 2003, PMUs were not installed at this 

interconnection. Had they been installed, Cleveland operators would have been 

able to identify that there was a potential problem and understand its severity 

much sooner.  

An obstacle that is slowly being overcome with synchrophasors is base 

lining. In Figure 2.3, the phase angle between Cleveland and Michigan was shown 
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to be approximately 15o but slowly grew to approximately 30o before the system 

broke down. If PMU data were being collected over a period of time, an 

understood normal or base line could have been identified so proper alarm limits 

would have been understood. If it was determined that 15o was normal for that 

time of day and weather conditions, operators could have had in excess of 30 

minutes to divert disaster through islanding and other preventative measures. 

If other PMUs were installed at other locations across the region it would 

have been possible to see the effect this diverging angle was having on the 

regional network in other locations. This technology could be incredibly 

important across intra-utility tie lines. If a particular utility saw that there were 

issues across the tie line with a neighboring utility, the line could be disconnected 

to prevent a cascading event.  This is one example of the many potential uses of 

synchrophasor technology. 

 Shown below in Figure 2.4 is an illustrative example of the impact 

synchrophasors can have on operations, planning and reliability considerations. 

The future research portion of Figure 2.4 will be discussed in the next section.  
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Figure 2.4 – Various Applications of Phasor Data [1] 
 

2.3 FUTURE IMPLEMENTATIONS OF SYNCHROPHASOR TECHNOLOGY 

While the technological implementation of synchrophasors thus far has 

produced great results, those results have been largely reactionary. Further 

research and implementation of synchrophasors will focus on proactive uses. This 

proactive approach will put synchrophasors at the forefront of power system 

automation and control. To just name a few applications, synchrophasor data can 

be used as feedback control for FACTS (Flexible AC Transmission System) devices, 

CUPS (Custom Power Systems) devices, islanding control and for safety alarming.  
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2.4 FUTURE IMPLEMENTATIONS OF SYNCHROPHASOR TECHNOLOGY IN SVC 

 While synchrophasors have many promising uses, the focus of this thesis is 

its implementation in conjunction with SVC (Static Var Control).  SVC on a power 

network is extremely important. The feedback control signals that are fed into 

the SVC’s controller are typically estimated, thus being less accurate than ideal. 

Since synchrophasors can calculate phase angles directly, accurately and quickly 

they appear to be a natural fit for SVC.  

When capacitor banks are switched on or off through the use of 

mechanical circuit breakers, significant transients are created. Additionally, the 

VAR compensation they provide is extremely coarse since the capacitors used are 

added in large increments. Using synchrophasor technology for SVC control will 

help to eliminate unnecessary switching and the resulting transients.  In turn, this 

will help reduce grid stress and increase the life of protective relays and other 

equipment, including the capacitor bank itself. 
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CHAPTER III 

INDUSTRIAL POWER FACTOR CORRECTION TECHNIQUES 

3.1 FIXED CAPACITOR VAR COMPENSATION 

The utilization of a shunt connected fixed capacitor for power factor 

correction has been around for decades. This capacitor provides a fixed 

amount of reactive power for a constant voltage. This fixed capacitor does 

not always provide the optimal amount of reactive power and doesn’t have 

the greatest voltage regulation characteristics.  

From a theoretical perspective, the reactance of a capacitor is shown 

below. 

𝑋𝐶 = − 1
𝜔𝐶

       𝑤ℎ𝑒𝑟𝑒 𝜔 = 2𝜋𝑓  0T  (3)
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The reactance provided by the fixed capacitor system is also a function 

of the voltage and current. 

In the example below, voltage and current values were arbitrarily 

chosen and the reactance provided by a capacitor was determined to be 20 

vars. The phase angle of -90o shows that the vars are being injected by the 

capacitor into the system. It is shown that since the reactance provided varies 

by the magnitude and phase angles of the voltage and current, the fixed 

capacitor system will have poor voltage regulation and a variable reactance. 

 

𝑆𝑖𝑛𝑐𝑒 𝑋 =
𝑉
𝐼

                        X=
100Va0o

5Aa90o  

𝑋=20a-90o
0T 𝑣𝑎𝑟 

 

However, the fixed capacitor is an extremely straightforward solution 

to install and maintain. This simplicity drives the installation cost of the fixed 

capacitor system down. Approximate cost per kvar is shown below in Table 2. 

With the cost of a simple fixed capacitor system less than one quarter that of 

SVC and with the cost disparity when compared to STATCOM even greater, it 

will be difficult for industrial facilities to overlook the economics. 
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TABLE 2 Cost Comparisons of Shunt Controllers [2] 

Shunt Controller    Cost  

Shunt Capacitor    $8/kvar 

SVC      $40/kvar 

STATCOM     $50/kvar 

  

  While the costs are compelling, there are numerous drawbacks of this 

system. As mentioned previously, since it is not controllable, the fixed 

capacitor will not always provide the system with the properly desired 

amount of reactive power. 

  

Figure 3.1 – Fixed Capacitor Topology 
 

There are times when this topology will either provide too much or too little 

reactive power. Depending on the system, this could quite easily cause major 

problems. In addition, there are large transients introduced when the 

capacitors are mechanically switched on or off. This switching, which can 

occur multiple times a day, causes damage to protective relays, breakers and 
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other power equipment. This design is quite popular today by not only large 

industrial facilities, but also with electrical utilities. 

3.2 SVC (STATIC VAR COMPENSATION) 

Static var compensation (SVC) is an extension of the fixed capacitor 

topology. SVC is essentially made up of capacitor and inductor banks and a 

sophisticated control algorithm that controls power electronic semiconductor 

devices that are used to vary the effect of the capacitors/inductors. This 

topology is used by utilities and gives them a much closer to optimal solution 

to power factor correction.  

Figure 3.2 shows a common SVC topology. This particular topology is 

called a fixed capacitor thyristor controlled reactor (FC-TSR) since the capacitors 

are fixed, but the current through the inductor is a function of the firing angles of 

the thyristors. This allows for coarse voltage control to be done by the capacitors 

and fine adjustment to be done through modulating the thyristor firing angles. 

The benefit of this topology is that the amount of reactive power injected or 

absorbed can be accurately controlled.  
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Figure 3.2 – SVC By Way of FC-TCR Topology 
 

As discussed previously, the magnitude of the reactance provided by the 

fixed capacitor is shown below. 

𝑋𝐶 = − 1
𝜔𝐶

       𝑤ℎ𝑒𝑟𝑒 𝜔 = 2𝜋𝑓 (3) 

However, we now have the thyristor controlled reactor (TCR) connected in 

parallel. The reactance provided by the TCR is derived with the assumption that 

higher order harmonics are negligible [5]. 

It is assumed that the voltage across the TCR is 

tVtv ωcosˆ)( =  (4) 

The two thyristors are turned on alternately every half cycle with a delay angle α. 

Only one thyristor will be conducting when αω ≥t  and no thyristors will conduct 

when αω =t .  Ohm’s law states that the voltage across an inductor is L𝑑𝑖(𝑡)
𝑑𝑡

 and 

since no current will flow when αω =t  the current can be solved as 
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∫ ∫=
t tI

dt
tdiLtdtV

ω

α

ωω
ω

)(

0

)()(cosˆ1  

Upon integration the current is determined to be 

]sin[sin
ˆ

)( αω
ω

−= t
L

Vti   where: απωα −≤≤ t  (5) 

Since the other thyristor will conduct during the second half cycle it can be 

determined that the current through it would be 

]sin[sin
ˆ

)( αω
ω

+= t
L

Vti   where: απωαπ −≤≤+ 2t   (6) 

Through analysis not covered in this thesis, it can be determined that the current 

has odd and quarter-wave symmetry.  As a result, i(t) will only contain odd-

numbered harmonics. Additionally, since this is a three phase system, all the 

triple-N harmonics (3rd, 6th, 9th) are naturally canceled out.  For these reasons, 

only the fundamental component of i(t) will be considered. 

 By performing a Fourier series analysis of the fundamental component of 

i(t) where k=1 the current can be determined.  

)cos(ˆ)( 111 θω += tIti  where: 2
1

2
11̂ baI +=  and 

1

1
1 arctan

a
b−

=θ    
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However, due to symmetry considerations  01 =a  . Thus 
21
πθ −=  and the current 

is determined to be  

 tbtbti ωπω sin)
2

cos()( 111 =−=  

Since ∫
−

=
απ

α

ωω
π

ttdtib sin)(2
1  and through substituting for i(t) 

∫
−

−=
επ

α

ωωαω
πω

ttdt
L

Vb sin]sin[sin
ˆ2

1  then upon integrating 

)}cos)cos((sin]2cos)22[cos(
2
1

2
2{

ˆ2
1 ααπαααπαπ

πω
+−−−−−−

−
=

L
Vb  

However, through simplification and the use of trigonometric identities 1b can be 

shown as such 

]2sin121[
ˆ

1 α
ππ

α
ω

−−=
L

Vb  

As a result, the current at the fundamental frequency is shown as 

 t
L

Vti ωα
ππ

α
ω

α sin]2sin121[
ˆ

),(1 −−=
 

(7) 

This can be further simplified if it’s assumed that 0≠α . If that assumption is 

made, the current is shown as 
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With the current known, the impedance of the TCR can be determined. 

Voltage Provided by Fixed Capacitor: 090
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(9) 

As a result, the inductive reactance of the TCR at any frequency is 

𝑋𝑇𝐶𝑅(𝛼) =  𝑋𝐿
1−2𝛼𝜋 −

1
𝜋sin2𝛼

,𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑡ℎ𝑦𝑟𝑖𝑠𝑡𝑜𝑟 𝑓𝑖𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 (10) 

Thus, by combining the fixed capacitor and the TCR in parallel, the complete 

reactance provided by the FC-TSR would be. 

𝑋𝑇𝐶𝑅(𝛼) =  
𝜔𝐿�− 1

𝜔𝐶 �

1−2𝛼𝜋 −
1
𝜋sin2𝛼−

1
𝜔𝐶

,𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑡ℎ𝑦𝑟𝑖𝑠𝑡𝑜𝑟 𝑓𝑖𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 (11) 
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Taking the TCR topology one step further, it is also possible to add 

thyristor switched capacitors (TSC). Figure 3.3 shows a topology which 

incorporates both TCR and TSC. This gives extremely accurate, flexible control 

and minimized transients on the network.  

 

Figure 3.3 – SVC By Way of TSC & TCR Topologies 

 

However, the drawbacks of the TSC-TCR topology are seen as added 

complexity, cost and an increase in losses due to the semiconductor components.    

3.3 DSTATCOM (DISTRIBUTION STATIC COMPENSATOR) 

A new topology that is currently more expensive, but is growing in 

popularity is DSTATCOM.  STATCOM (Static Compensator) and DSTATCOM 

(Distribution Static Compensator) are essentially the same topology. However, 

they differ in their size and application.  STATCOM is primarily used for 
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transmission and DSTATCOM is primarily used for distribution. Additionally, 

DSTATCOM is sometimes used for voltage flicker protection at large industrial 

facilities such as electric arc furnaces.  

DSTATCOM takes a constant DC voltage source and inverts it to the proper 

signal required for compensation through the use of fully controllable 

semiconductor devices.  

While DSTATCOM is slightly more expensive than SVC due to the expense 

to manufacture semiconductor components, their ability to provide more optimal 

VAR control, voltage regulation and flicker suppression has led to their market 

adoption. In addition, DSTATCOM generates harmonics with lower amplitudes 

and at higher frequencies than those of a conventional SVC. [3] This allows for 

easier harmonic filtering.  

 

Figure 3.4 – Single Phase STATCOM Topology 
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 Going forward, DSTATCOM faces obstacles surrounding cost, complexity 

and losses due to additional semiconductor components. Unlike SVC, DSTATCOM 

requires the use of fully controllable switching elements. This requires the use of 

gate turn off thyristors (GTO) as shown in Figure 3.4, insulated gate bi-polar 

transistors (IGBT), integrated gate commutated thyristors (IGCT) or any other 

similar devices. Such devices are quite expensive to produce at the rating levels 

required and are a major contributing factor to the increased cost of the 

topology. Additionally, DSTATCOM has increased complexity by the use of the H 

bridge inverter design. Neither the fixed capacitor nor the SVC topologies have 

this issue due to no inverter being required.  

 The economic case could be made that while the losses for the DSTATCOM 

are slightly higher, they can also save money by better voltage regulation. 

However, a more accurate economic analysis would need to be completed on a 

case by case basis.   

3.4 ADDITIONAL CONSIDERATIONS OF POWER FACTOR CORRECTION 

All of the discussed techniques for power factor correction are typically 

accompanied by a number of other devices and considerations. Since the cost of 

the required semiconductor devices are a function of their ratings, it’s quite 
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common to use step down transformers to bring the required semiconductor 

ratings to a reasonable cost level.   

As a result of the capacitor/inductor switching required in these 

topologies, transients at the switching event are introduced. Additionally, 

harmonics are introduced and engineers routinely design tuned trap filters to 

remove or minimize specific harmonics. It is also understood that there are 

particular safety devices used to protect the semiconductor components, but 

since their implementation is beyond the scope of this paper, they will not be 

discussed here.
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CHAPTER IV 

SIMULATION OF CURRENT MILL POWER SYSTEM 

4.1 SIMULATION OF THE MILL’S POWER DISTRIBUTION NETWORK 

To protect the privacy of the steel mill in question, a simplified generic 

circuit was used for simulation. While a more accurate simulation would have 

expanded the scope of the simulation, including increased licensing costs, 

without increasing the significance of the simulation. 

The test circuit was simulated in PSCAD (Power Systems Computer 

Aided Design). This time domain based software has become the industry 

standard to analyze electromagnetic power system transients. It is incredibly 

powerful, relatively easy to use and allows for not only the design of power 

systems, but also for the detailed design of control schemes. Shown below, in
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 Figure 4.1, is the sample circuit used for the simulation. This is the circuit 

implemented in PSCAD software. As it can be seen, there are two buses, a 

number of loads, a power source and an SVC. The power source is intended to 

simulate the electric utility. Considering the small amount of power the mill 

generates for itself in relation to the power it draws from the utility, it was 

assumed to be negligible for this simulation. The loads given are highly 

inductive and are intended to provide an accurate representation of the 

highly inductive motor loads the mill uses every day.  

The SVC is rated at 600MVA, 500MVA of which is provided by 4 

switched capacitor banks. The SVC is placed at the load side in order to put it 

as close to the loads as possible. The SVC block displayed in Figure 4.1 only 

pertains to the power electronic side of the SVC. The brains behind the SVC 

are in the control circuit, as it tells the SVC block whether to switch capacitors 

on or off, or to switch in additional inductance when necessary. The control 

shown in the circuit in Figure 4.2 circuit makes these decisions in real time 

depending on feedback it receives from meters placed in the power system 

circuit. 
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Figure 4.1 – Sample Large Industrial Test Circuit 
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Figure 4.2 – Control Circuit for Sample Large Industrial Test Circuit 
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This control circuit takes the reactive power measured in per-unit terms 

that the SVC outputs and works to drive that to the minimum necessary to 

achieve a per-unit voltage of 1. The error signal of the per-unit voltage is fed to a 

PI controller that ramps the TCR/TSC control block to request additional 

capacitors or switch capacitors off. A low pass filter designed at 70Hz is also 

added to filter out any higher order harmonics and provide for a cleaner control 

signal.  

With the SVC turned off, the circuit is left to operate in its normal but poor 

condition. Figure 4.3 displays that the circuit is pulling approximately 700MW of 

power from the electric utility and Figure 4.4 shows approximately 356 VAR is 

also being pulled. The current drawn is approximately 62A peak and is 

represented by Figure 4.5.  

 

Figure 4.3 – Real Power Flowing from Utility 
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As it can be seen, at approximately 1 second, a circuit breaker is scheduled 

to close and introduce an additional load of approximately 100MVAR. This is 

intended to simulate a large motor being turned on. The effect of this load is 

demonstrated in Figures 4.4 and 4.5. At the 1 second mark in Figure 4.3, the 

reactive power flow increased by 100MVAR. Furthermore, there is an additional 

bump in the current being drawn from the power utility as displayed in Figure 

4.4. 

 

Figure 4.4 – Reactive Power Flowing from Utility 
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Figure 4.5 – Current Flowing from Utility 

 In order to calculate the power factor the fundamentals of the 

power triangle are used and are shown in Figure 4.6. 

 

 

 

 

Figure 4.6 – Power Triangle Representation before SVC 

∅ = tan−1
356
700

= 26.95° 

𝑝𝑓 = cos 26.95° = .89 

Real Power =700MW 

Reactive Pow
er =356 M

VAR 
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While the power factor of .89 is not terrible and not quite indicative of the 

poor nature of the real life power system we are emulating, it is hardly ideal and 

still has a great deal of room for improvement.  

4.2 THE CORRECTIVE RESULTS OF SVC 

After enabling the SVC there were dramatic reductions in the reactive 

power provided from the electric utility and thus a reduction in the current being 

drawn. Figure 4.7 displays the reactive output from the SVC. After approximately 

.5 seconds, the SVC comes to a steady state of 458 VAR.  

 

Figure 4.7 – Reactive Power Produced by the SVC 

During the first second of the simulation the SVC is actually over producing 

reactive power and is emitting approximately 97 VAR back onto the electric 

utilities distribution network, as displayed in Figure 4.8. After the breaker is 
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closed at the 1 second mark, the amount of reactive power being provided to the 

electric utility is nearly zero.   

 

Figure 4.8 – Reactive Power Provided to the Electric Utility 

Shown in Figure 4.9 and the following calculations is the improvement in 

the power factor to near unity. Please note that these calculations are done 

before the additional load of 100MVAR was switched on by the breaker. During 

the time after the circuit breaker is closed, the original system had a worse power 

factor and the electric utility was forced to generate more reactive power. While 

the SVC was active, the SVC was able to improve the power factor even closer to 

unity. 
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Figure 4.9 – Power Triangle Representation after SVC 

∅ = tan−1
97

700
= 15.32° 

𝑝𝑓 = cos 15.32° = .988 

While the improvement in the power factor can reduce the amount of real 

power being drawn by improving the efficiency of the network, it will also 

prevent future fines from the utility and help improve power quality on the local 

industrial power distribution network. 

4.3 SYNCHROPHASORS TAKE SVC TO THE NEXT LEVEL 

Now that the benefits of the SVC are evident, there is one other factor 

that may enhance SVC even further. The part of the PSCAD simulation that hardly 

gets recognition is the metering. While not commonly discussed, metering 

happens to be an important part of designing an excellent engineering solution.  

Real Power =633MW Reactive Pow
er =-97 M

VAR 
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Currently, there is no good way to meter the changes in reactive power 

fast enough for a SCADA system to react. Systems that are used by the electric 

power utility usually contain state estimation software that use complex 

electrical models to determine the pertinent phase angles for the SVC to properly 

operate. These systems are expensive and are out of reach of industrial 

customers.  

The use of synchrophasor measurements as the feedback necessary for 

control is an emerging technology. As discussed previously, synchrophasors can 

calculate the necessary phase angles in real time, thus providing the optimal 

feedback signal for the control circuit of the SVC. 

Further economic benefits are seen in the increasing use of Schweitzer 

engineering laboratories (SEL) protective relays in industry and their built in 

capability to act as a phasor monitoring units (PMU). While this is not enough 

hardware to completely set up a synchrophasor system, it is a great stepping 

stone and will make the economic case easier to make. 
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4.4 DEMONSTRATION OF EFFICIENCY IMPROVEMENTS PROVIDED BY SVC 

SVC does not only provide benefits in power factor correction, but they 

also help ensure all electric machines are operating at their peak performance. To 

help demonstrate this, Figure 4.10 shows a sample circuit with inductive and 

resistive loads in parallel. Since the amount of power required to operate an 

induction machine is ωτ=P  and 2V∝τ , it would be ideal to provide the 

induction machine with its rated voltage. 

V jX1 RIL IR

I1

 

Figure 4.10 – Sample Circuit with Inductive and Resistive Loads in Parallel 

 

In Figure 4.10, it is assumed that 0∠= VV  and that V is a constant 

voltage. To calculate the amount of real power supplied by the power source, 
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current I1 must be solved for. In order to solve for I1, the equivalent impedance 

seen by the source must be determined. 
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For simplicity reasons, it is assumed that X1=R and as a result Zp can be simplified. 
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The magnitude of ZP as well as the phase angle of the impedance, Θ1 can now be 

calculated. 
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Since the current I1 has been determined, we can calculate the real power 

provided by the power source.  
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By substituting for I1,   
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In order to demonstrate how the SVC can raise a dropping voltage, 

consider a reactive inductance connected in series with ZP.  

V
jX1

RIL IR

IS
jX2

 

Figure 4.11 – Sample Circuit with a Series Inductive Reactance 

 

Again, the total impedance for the circuit is calculated and then simplified by 

assuming X2=X1=R. 

22 22
jXRjRjXZZ PTot ++=+=

  
(17) 
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and  
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Since the equivalent impedance is now known, we can determine the amount of 

real power provided by the source. In order to calculate the real power provided 

we must first determine the voltage across the resister. 

It is determined that by 

KVL: PS VIjXV += 2   and   KCL: RLS III +=  

It is also proven by Ohm’s Law that 
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Since it is assumed that X2=X1=R, V can be simplified. 
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It was proven in the first example that real power provided to the load can be 

determined as such.  
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(21) 

Through determining the real power provided to the load it is shown that once 

the series inductive reactance is added, the voltage across the load has drops and 

therefore the real power drops substantially.  

 If this was an induction motor, it would be operating below its rated 

voltage. This leaves room for efficiency improvements that could be achieved by 

adding an SVC.  

The SVC shown in Figure 4.12 is simulated by a capacitor in parallel with 

the load. The purpose of this capacitor is to bring the magnitude of VP back to V 

and thus bringing P2 back to P1. The question is how large of a capacitor will be 

able to do this? If the capacitor is too small, it will be insufficient and if it is too 

large, it will over compensate. 
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Figure 4.12 – Sample Circuit with a Series Inductive Reactance and an SVC 

 

It is determined that by 

KVL: PS VIjXV += 2   and   KCL: RLCS IIII ++=  

It is also proven by Ohm’s Law that  
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Solving for VP it is determined that 
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In order for VVP = , magnitude of the denominator must be equal to 1.  
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Through further simplification and the assumption that X1=X2=R it is determined 

that 
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Now that it is known that the real power provided to the load has reduced 

to 
5
1

 the original value, and that the sizing of the SVC should be 
5
4

 the size of the 

resistive load, an economic analysis can be done.  

If it is assumed that the original amount of real power required to drive 

the load was 500MW and after the addition of the series reactance only 100MW 

was being delivered to the load, it is obvious that 400MW of power was lost due 

to inefficiencies. If this load was left to run in this manner for 24hrs a day and 365 

days a year, at a cost of $50 per MWhr, it would cause losses of $175 Million per 

year. In accordance with Table 2, a cost of $40 per kVAR is assumed for the SVC 

and at the required size of 400MVAR; it would cost approximately $16 Million to 

install the appropriate SVC.  

 While this is an extreme case that is used for demonstration 

purposes, the SVC can provide real savings by boosting the efficiency across the 

whole distribution network. Considering the steel mill in question throughout this 

thesis has in excess of 200,000 HP in loads, there could be a substantial monetary 

savings achieved by boosting efficiency. 
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CHAPTER V 

SCADA INTEGRATION OF SYNCHROPHASOR DATA 

5.1 SCADA INTEGRATION OF SYNCHROPHASOR DATA 

 A current weakness that is hindering the adaptation of synchrophasors 

beyond the electric utility surrounds the integration of synchrophasor data into 

current SCADA (Supervisory Control and Data Acquisition) systems. SCADA 

systems are the architecture of choice in industrial automation. SCADA systems 

include PLCs (Programmable Logic Controllers), HMIs (Human Machine 

Interfaces) and historians. The PLC is where all control logic and the interface to 

process instrumentation is housed. The HMI is a graphical interface that is 

designed to help the operator interface more efficiently with the process that the 

PLCs are controlling. The historian is a data collection tool that typically includes a 

database of historical process data and can include charting software to enable 

trending and historical process analysis.
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 PLCs typically use proprietary operating systems that are designed to be 

robust, reliable, and feature-rich. However, HMIs and historians and typically 

windows-based server class machines that are constrained by the windows 

environment. While PLCs, when operated at their limits, have the ability to adjust 

their scan time down to 5-10ms, HMIs and historians typically scan for updated 

data every 5-10 seconds. It is possible to improve this 5-10 second scan time, but 

this may put added stress on the computer hardware, software and networking 

systems involved. Since most synchrophasor data are collected at intervals of 

100ms or less, this speed can be met by today’s PLCs, but windows based 

systems cannot keep up.   

 As such, this is a major growth area for synchrophasor technology and an 

area for further innovation. Currently, proprietary hardware and software are 

needed to interface PMUs (Phasor Monitoring Units) with the PLCs in a SCADA 

system. Since the process automation field is quickly moving to Ethernet based 

control systems, it may help in aiding the adaptation for synchrophasor 

technology into the industrial world provided that PMU manufacturers would 

integrate Ethernet communications and required drivers to interface with their 

products. Furthermore, there are a number of other communication protocols 

that are highly deterministic that could be implemented. Controlnet, devicenet, 
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Mudbus Plus and industrial Ethernet are just a few other examples. Giving 

engineers the ability to interface with PMUs will make them much less of a “Black 

Box” that people don’t understand and will lead to greater adaptation.  

 If one were able to interface the PMU and configure a PLC to interface 

with it, HMIs and historians (being windows based) would still leave a 

technological hurdle to overcome. A possible compensation to this dilemma 

would entail designing a small historian that is integrated into the PMU. This 

small historian would log the last 60-120 seconds of data, thus allowing the 

historian to poll the PMUs small historian data table and populate its own 

database. This would give the historian the ability to log data at a faster rate than 

it could otherwise do. Additionally, the HMI could be configured to update in the 

1-2 second range if the supporting systems were properly engineered. While the 

PMU is recording data much faster than every 1-2 seconds, human reaction time 

is easily limited to this slower range. An HMI updating faster than 1-2 seconds 

would add tremendous engineering complexity with little benefit. As long as the 

PLC is able to scan at similar speeds to the PMU, it will be able to control as 

necessary. Since the Historian would now log data at the time resolution required 

to analyze synchrophasor data, synchrophasors may be successfully integrated 

into SCADA systems. 
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CHAPTER VI 

CONCLUSION 

6.1 CONCLUSION 

With increasingly volatile energy and commodity prices becoming a reality, 

it has become more apparent that industrial facilities need to reduce energy 

consumption and drive efficiency. A major source for improved efficiency is in 

power factor correction. A number of correction methods have been explored 

and while synchrophasors and static var control were the primary focus of this 

thesis, it is not always the most economically sound or optimal decision. 

Hopefully, awareness of power factor correction as a method to improve power 

system efficiency, stability and longevity will continue to be examined as industry 

strives to improve the bottom line.
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One can only hope that manufacturers will begin to develop PMUs and 

synchrophasor devices that are directed towards industry. As long as PMUs 

remain the “Black Box” they currently are, it will be more challenging for 

engineers to take the risk to invest in a widely unknown technology. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

 Synchrophasor technology is still in its infancy. There is a great deal 

of future work needed to reduce costs and increase adaptation. As the “smart 

grid” continues to grow and FACTS become more common place, there is a 

greater need for improved monitoring and control. While using synchrophasor 

technology for monitoring is generally known and documented, there is great 

deal of research to be done in feedback control applications for FACTS systems.  

The methods used for feedback control in today’s automation fields have 

highly standardized processes and protocols that must be followed. These 

standards need to be redeveloped to encompass synchrophasor technology. 

Setting standardized communication protocols and methods of control would 

greatly impact the cost and adaptation rate of synchrophasor technology for 

feedback control systems. 
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